
A PERIODIC JACOBI-PERRON ALGORITHM 

LEON BERNSTEIN 

In the first part of this paper I shall demonstrate that one irrational root of 
the algebraic equation 

(1) Un{x) = m(x- D) {xn~l + Cl xn~2 + ...+cn_2x + ^_i) - d = 0 

creates an algebraic number field, out of which n — 1 irrationals can be 
chosen so that they yield a periodic Jacobi-Perron algorithm. The coefficients 
in (1) are subject to certain restrictions which will be elaborated below. 

In the second part we shall show that under these restrictions equation (1) 
is irreducible. Finally we shall state explicitly a unit of the field K(w) where K 
is the rational field and w is a positive (irrational) root of (1) satisfying 
D < w < D + 1. 

1. In seven previous papers (1-7) I have investigated special cases of (1), 
namely 

ct = et D\ et = 0, 1 (i = 1, 2, . . . , n — 1), 

in particular the case et = 1 (i = 1, 2, . . . , n — 1), namely 

m(xn - Dn) - d = 0, 

and an analogous equation, namely 

xn - Dn + d = 0. 

I have shown in all these cases that n — 1 irrationals, suitably chosen from 
the algebraic field generated by an irrational root of such an equation, yield 
a periodic Jacobi-Perron algorithm. I have further shown that certain units 
of these fields can be calculated with the help of this algorithm, and I have 
modified the algorithm so that it becomes periodic for every irrational of these 
fields. The integrity of the numbers of the period was the price paid for this 
modification. 

For the reader who may not be familiar with the Jacobi-Perron algorithm 
we shall repeat its main essentials (8). Let 

t (0) t. (0) 7 (0) W0) 
#1 , t?2 , • • • , Dn-2, 0n-\ 

be a set of n — 1 real numbers. Then we form an infinite number of new sets 

7, (») -L (V) 7 (v) 7 (fl) 
G>1 , 0% , . . . , On-2, t V - 1 

by the recursive formulae (y = 0, 1, . . .) 
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7 (»+D _ ok — ak , 
c>i — ai 

(v+l) 1 
(2) 

6>i — a\ 

where at
(v) = [&ï(t°] (i = 1, 2, . . . , n — 1) is the greatest integer not exceeding 

bi{v). If we now define the numbers Ak
{v) by the recursive formulae 

Ak
{k) = 1, Ak

{v) = 0 (k,v = 0 , l , . . . J n - l ] k ^ v ) , 

(3) ^ (*+ w ) = ^ + aiiv)Ak
(v+1) + . . . + a & ^ , ( ^ - 1 } 

(k = 0, 1, . . . ,w - l ;u = 0, 1, . . .)• 

the ratios ^ t ^ : AQ
iv) are approximate fractions for the bk

(v\ i.e., 

(4) lim4^w = &*(0) (6= 1 , 2 , . . . , » - 1). 

The algorithm is said to be periodical if 

(5) a k ^ = a*™ (k = 1, 2, . . . , n - 1; v = s, s + 1, . . .) ; 

the 5 lines 

ai , a2 , . . . , dn-i (v = 0, 1, . . . , 5 - 1) 

are then called pre-period, and the m lines 

ai , a2 , . . • , an_i (z> = s, s + 1, . . . , 5 + m — 1) 

the period. The algorithm is said to be purely periodic if 5 = 0, i.e. if there is 
no pre-period. In my earlier papers I constructed such (n — l)-tuples bi(v) in 
the algebraic field generated by the root of the equation m{xn — Dn) — d = 0 
which yield a purely periodic Jacobi-Perron algorithm. For n = 2 this algorithm 
is identical with Euclid's algorithm. We shall therefore exclude the case n = 2 
from our considerations. 

We shall now prove 

THEOREM 1. Let the coefficients of Un(x) fulfil the conditions 

0 < d < D, ct > 0, m > 1. 

Then Un{x) has one and only one real positive root in the open interval (D, D + 1). 
It is irrational. 

Proof. Since Un(D) = -d < 0 and 

Un(D + 1) > m(D + l)»-1 - d > 0, 

Un(x) has real roots in the interval (D, D + 1). Differentiating Un(x) we 
obtain 

- U'n{x) = x"-1 + £ c^"-1-* + (x - D)[{n - l ) * - 1 + . . . + c_2]. 
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Thus Un(x) > 0 for x > D. Hence Un(x) has exactly one real root w > D. 
and w < D + 1. That w is irrational follows from the fact that Un(x) is 
irreducible, as will be proved below. 

The main results of this section are expressed in the following theorem. 

THEOREM 2. Let d, D, m, n, ct be integers satisfying 

\m > 1, d\D, n>3, D > 2{n - \)H, d > 1, 
( 6 ) \0 < ct < (D + 1 ) \ d^O (mod d) (i = 1, 2, . . . , n - 1). 

Put 

(7) /^i(«i, A 0 = Z (' | > " / > ' fe / = 0, 1, . . .), 

(7a) /s+1(w, £>, 0) = 1, f0(w, D, t) = w!, /,(w, J9, g) = 0 if q < 0. 
n—l—s 

(8) s,(w, 2?) = X) c«/,(w, A » ~ 1 ~ s - i) 0 = 0, 1, . . . , n - 2; c0 = 1), 

(9) 2, = z,(P,D). 

Then the Jacobi-Perron algorithm for the n — 1 numbers 

(10) S„_2(w, £>), 2n-3(w, £>), . . . , Z2(w,D), Zi(w, D), Z0 (w, •£>) 

is purely periodic. The period has the primitive length n, only for m = d = 1 is 
the length 1. The first line of the period has the form 

(11) 2w-2t 2 n _ 3 , . . . , 22, 2l, 20. 

77ze ith /me /^as the form (i = 2, 3, . . . , w) 

(11a) zw_2, 2W_3, . . . , 2i_i, mZi_2/d, mzt-z/dt . . . , mz\/d, mz0/d. 

If the numbers At
{v) are defined in (3) for the Jacobi-Perron algorithm for the 

numbers (10), then 

(12) w = lim (Aiv)/Aoiv)) - i n - 2)D - Cl. 

The proof will be given in two parts, (a) We shall first prove the formulae 

(13A) [ m * ( J ' J ) ] mzs 

d 

(13B) [z,(w, D)]=z8 (s = 0, 1, . . . , n - 2). 

(b) Then we shall prove that the Jacobi-Perron algorithm for the numbers 
(10) is purely periodic and that the period has indeed the form (11). From 
(b), the formula (12) will easily follow. 

We first prove that 

(14) [ws] = Ds (s = 1,2, . . . , » - 1). 
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By Theorem 1 

(14a) D < w, Ds < ws. 

We have further, from (1), (6), (14a), 

(14b) w = D + d/ (m £ ciw
iJ<D + d/( £ CiD

lJ <D + d/Dn~\ 

We shall prove that 

ws < (D + d/D71'1)8 < Ds + 1 (s = 1, . . . , n - 1). 

We thus have to prove that 

^ I / J /T\n>—1\ ij-\S— i £ r.) {d/Dn-lYDs-1 < l. 

Put 

F(i) = (A (d/D"-1)^*-*. 

Then 

F(i + l)/F{i) = (s - i)dD~n/(i + 1) < (n - l)dD~n < 1: 2D2(n - 1) < 1. 

Hence 

< s\d/Dn~l)Dn-2 < (n - l)2<2/£> < 1/2 < 1. 

Thus ws < Ds + 1, which, together with (14a), proves (14). 
For the proof of Theorem 2 we need some notations. Put 

The following identities are obvious: 

(16) fs'(w, D, t + 1) = f,+1(w, D, t), 

(17) / , ( A D , i + l ) = ( S + | + 1 ) f l l + 1 , 

(17a) /!(Z?, Z>, 0 = (t + 1)D*, MD, D, t) =D'. 

Further put 

(15a) Z's(w,0) = Z°{w'DlZZDD'D)-
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Thus 

(16a) z/(w,D) =zs+1(w,D). 

B y ( l ) 

(18) - A _ = ( . g C j W — ) / , = - ^ ) . 

We shall now prove (13a). We have to prove that 

mzs/d < (mzsiw, D))/d < mzs/d + 1 (s = 0, 1, . . . , n — 2) 

or, following (15a), (16a), (18), that 

0 < zs+1(w,D) < z0(w,D). 

The left-hand inequality is obvious because of (14a). For 5 = w - 2 we have 
zn-i{w1 D) = 1 < Zo(w, D). We therefore have to prove only that 

s,+i(w, JO) < *o(w, D) (s = 0, 1, . . . , n - 3). 

We prove a fortiori (with c0 = 1) that 

zs+1(w, D) < £ c,/^i(Z? + 1, Z> + 1, » - 2 - $ - i) 

< " E ' ( * _ I 7')•»'«> +ir*"-' 

< "if (" + j) P + D\D + IT-2-*-* 

= (n-l-s)(^-\)(D + ir2~s 

< (n - l)(D + lf-\n - I) n-i/^ ^ w — 2 n — 3 w — 5 — 1 
2D ' 3D " - ' (s + 1)D 

< (» - 1)2(D + I)""2. 

But 

D"-1 < D"-1 + £ c, D"-1- ' = 2o < *o(w, D). 

Thus it suffices to prove that 

(n - 1)2(D + l)n~2 < Dn~l 

or 

(n - 1)2(1 + 1/£>)W-2 < ZJ. 
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We shall prove a fortiori that 

(n - 1)2(1 + l/D)n~2 < 2(n - l ) 2 < 2{n - l)2d < D. 

We have only to prove that 

(1 + l/D)n~2 < 2 

or 

Put 

Then 

l ( " 7 2 ) D~* < 1. 

=(nr)° F(0 = l " , D-' (i= l , 2 , . . . , n - 2 ) . 

F(t + 1) n - 2 - i w - 3 
*•(*) (* + 1)/? 2Z> < 

Therefore 

S("72) £_ i = E *"(*) < E TO = (» - 2)2zr1 < l. 

This completes the proof of (13A). Formula (13B) is the special case m = d. 
We shall now prove that the Jacobi-Perron algorithm for the numbers 

i,<°> =zn^-s(w,D) (s = 1,2, . . . , » - 1) 

is periodic and that the period has indeed the form (11). We have 

i 

bi0) = zn_2(w, D) = YL Ctf^faD, 1 - i), 
i=0 

6i(0) = fn-*(w, A 1) + ^ / ^ ( w , 2?, 0), 

&!(0) = w + (» - 2)£> + ci, fn_2 = ai(0) = (» - 1)D + ch 

7(0) (o) ^ 7d) i / / r>\ mz0(wyD) bi - ai } = w — D, bn-i = l / (w - D) = ——^ i 

bs
{1) = (zn^s(wfD) - zn-2s)/{w - D) = z^s^iw^D) 

(s = 1,2, . . . , » - 2). 

Using the same method by which the ôs
(1) (s = 1 , 2 , . . . , » — 1) were found, 

one can easily prove the following Lemma by induction. 

LEMMA. Let 1 < t < n. Then 

bs
U) = s„_5_iO, D) if s = 1, 2, . . . , n - * - 1, 

, (f) rnzn+sjw, D) . 
0 / = r /̂ s = » — /, n — t + 1. . . . , » — 1. 

a 
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This Lemma implies that 

(n-l) _ mZn-i-8(w, D) , , 
os = (s = 1, 2, . . . , n — 1). 

Using again the method by which the bs
a) were found, we derive from the 

bs
{n~1) 

i,<»> = 2*_i_,(w, Z>) = i,c°> (s = 1, 2, . . . , n - 1). 

This establishes the structure of the period, as stated in Theorem 2. 
Regarding the numbers appearing in the period, we have the following types 
Natural numbers of the first kind, namely 

*.-"§ ,e'(w"5
1"*)z>"~I~"1 

= 0 (mod d), 

since d|D, d\ct (i = 1, 2, . . . , n — 1). 
Natural numbers of the second kind, namely mzs/d, which are natural since 

d\zs. By this the pattern of the period is explained. 
Taking into account the value of bi(0\ we obtain from (4) 

zn^(w,D) = ]hn(Al
i,)/Att

M), 
0->oo 

w = lim(^1
<",M„<")) - (n - 2)D - a. 

v-*x> 

Theorem 2 is now completely proved. 

EXAMPLE. 

Ub(x) = x5 - 62x4 - 124x3 - 250x2 - 382x - 130 = 0. 

This equation has one real root. Since 

Z75(64) = - 2 < 0, Z76(65) > 0, 

we have D = 64 and 

Uh(x) = (x - 64) (x4 + 2x3 + 4x2 + 6x + 2) - 2. 

Here n = 5, d = 2, D = 64 = 2d(rc - l)2 , m = 1, 

Ci < 64', ^i s= 0 (mod 2) (i = 1, 2, 3, 4). 

We easily calculate that 

Zo(w, D) = wA + 2w3 + \w2 + 6w, 
2 l ( w , D) = wz + w2D + wD2 + D3 + 2(w2 + wD + D2) + 4(w + D) + 6, 
22(w, £>) = w2 + 2w£> + 3D2 + 2w + 4£> + 4, 
23(w, Z>) = w + 3£> + 2, 

0o = 17318272, z1 = 1073670, z2 = 24964, z3 = 258. 
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The period has the following form : 

258 24964 1073670 17318272 
258 24964 1073670 8659136 
258 24964 536835 8659136 
258 12482 536835 8569136 
129 12482 536835 8569136 

2. The main result of this section is the following theorem. 

THEOREM 3. Equation (1) is irreducible under the conditions imposed on 
m, D, d, and the ct. 

Proof. Perron (9 ) calls the equation of degree n 

(19) 

As+t)-yA[s) Ais+t+1) - yAis+1) . . . Ais+t+"-1) - yAÏ^ 

Ai^-yAi» Aï+t+1) - yAÏ+1) . . . A[s+t+n-l) - yA[s+n~l) 

AtV'-yAi^ A^t+1)-yA^ . . . AiS***-* - yAlïT» 

the "characteristic equation" of a periodic Jacobi-Perron algorithm; the 
At

{v) were defined in Formulae (3). The letters s, t denote the lengths of the 
pre-period and of the period of the algorithm, respectively. In our case, 5 = 0 , 
t = n. Our main concern will now be to prove the irreducibility of this equation 
in our case. For this purpose we shall make use of Perron's theorem (9, Satz 13, 
p. 62). It states: 

Suppose for every v and all at
w (i = 1, 2, . . . , n — 1) of the period of a 

{periodic) Jacobi algorithm the relations 

(20) a™! >n + aSv) + a2
(v) + . . . + a™* 

hold. Then the characteristic equation of the algorithm is irreducible. 

On account of (11), (Ha) we have to prove that 

(21) z0 > n + (zi + z2 + . . . + 2n_2), 

\(m/d)z0 > n + (m/d)(zi + z2 + . . . + zt-2) + (z<_i + . . . + zn-2) 
(i = 3 , 4 , . . . , * ) . 

We shall now state explicitly the numbers zs (s = 0, 1, . . . , n — 2) : 

2o = Z ctMD, D, n - 1 - *) = "t, ct (n ~ * " *) D"-1-* = X ctD"-1-', 

Zs = " E ' Cif.(D, D , n - l - s - i ) = E " ct (
n ~ 1 " *) D"-1-*-l. 

ï=0 ï=0 \ S / 
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Therefore 

n— 2 n—l—s / 1 *\ 

2i + 2» + . . . + 2»-2 = E E f , * " 1 " > 8 - ! - M 

s=l i=o \ S / 

= - 1 + £ e4((Z> + I)""1-4 - D"-1-'). 
i=Q 

To prove (21) we have to verify that 

w - l n—1 

E ^-D"-1-' > n - 1 + E c,((Z> + D* -^' - -P""1-*)-
i=0 i=0 

Since £w_i > 0, we have 

E ^i?"-1-' > E ctD"-1-* > « - 1 + E Ci((i? + îr1-* - p"-1-4). 
i=0 t=0 t=0 

We thus have to prove that 

E c ^ - 1 - ' > n - 1 + E c,((D + If'1-1 - D"-1-*). 
i=0 i=Q 

Since ct > 0, it suffices to prove that 

(A) 2D*-1 >n+ (D + l)n~\ 
(B) 2D*-1-* > (D + l)"-i-« (i = 1, 2, . . . , n - 3), 
(C) 2D>D + 1. 

(C) is obvious, since the condition D > 2{n — l)2d implies that Z> > 8. We 
shall now prove (A). Here we have to prove that 

(1 + l/D)n~l + nD-(n-v < 2, 

n + 
D 

But for w > 3 we proved in Part 1 that n Part 1 that 

V ln ~ A ± < (»-2)(»-l) 

Furthermore (» + 1 )!>-<*-» < (» + 1)-D-2. Thus 

(» + l)p-<"-1) + E V ~ I D~l < (« - 2)(» - I)!»"1 + (» + I)!»" •2 

( » - 2){n - 1) w + 1 w - 2 Q - l ) 2 

^ 2(» - l ) 2 + 4(n - l ) 4 ^ 2(» - 1) + 4(» - l ) 4 

<
 n~ 1 . L _ < I . JL <r i 

^ 2(» - 1) ^ 4(n - l ) 2 ^ 2 ^ 16 ^ ' 
which proves (A). 
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The reader will note that equality holds true only for n = 2, D = 3, a case 
which has been eliminated from our considerations. 

To prove (B) we have to show that 

(1 + l/DY-1-1 < 2 (i = 1, 2 , . . . , n - 3). 

This inequality was proved in Part 1, too. Thus (21) is completely proved. 

To verify (22) we shall prove that 

(m/d)z0 > n + m{zi + z2 + . . . + zn_2). 

We thus have to prove that 

(ml à) E c.Jf-^ > n + » ( £ Ci{iD + l )"-1- ' - Dn~1-1) - l ) , 

and shall show that 

(m/d) £ CtD11-1-** im/d) £ CiD
n-1-1 

i=0 i=0 

> n + m ( g ct«D + I)"-1-' - D"-1-') + c„_2). 

Here, too, we shall proceed in steps: 

(A) (m/d)cn-2 D > wcM_2l 

(B) (m/d)Dn-1 > n + m((D + l)"-1 - Dn~l), 
(C) (m/d)ct Dn-^ > mct((D + l)»-1-') - £>»-i-*) (i = 1, . . . , » - 3). 
In (A) the equality sign holds for cn-2 = 0; otherwise D > d. 
In (B) we have to prove that 

Dn~l > nd/m + d((D + l)*"1 - Dn-1), 

and prove a fortiori that 

id + ^D71'1 >nd + d(D + l)n~\ 

d+l> ndD~{n-l) + d + d £ h 7 M D-', 

1 > n d D - ^ + i g ( ' T 1 ) ^ 

1 > ^ZT 2 + din - ifD'1 > ndD-^v + d £ (W T *) ZT \ 

We thus have to prove that 

1 > wd£>-2 + d(» - 1)2D~\ 
and prove a fortiori that 

1 > (» - l ) 2 ^ - 1 + d(n - l ) 2 ^ - 1 = 2d(» - l)2£>-\ 
J9 > 2d(rc - l)2. 
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In (C) the equality sign holds for ct = 0. Otherwise we have to prove 

D71-1-* > d((D + l)»-*-i - Dn-l~l), 

and the proof of this inequality is completely analogous to the proof in case (B). 
By this means (22) is proved completely. 

We shall now proceed to prove the following theorem. 

THEOREM 4. If the characteristic equation of the Jacobi-Perron algorithm 
formed by the root w of equation (1) and its functions zs(w, D) is irreducible y so is 
equation (1). 

Proof. We shall again make use of a fundamental theorem of Perron (9, 
Satz 15, p. 16) which states: 

If the characteristic equation of a periodic Jacobi algorithm is irreducible, then 
the n numbers 

i h ( 0 ) h ( 0 ) A (0) 

i-, oi , 02 , . . . , on-i 

cannot satisfy a linear homogeneous relation with rational coefficients. 

We first note that we can express the w* (i = 1, 2, . . . , n — 1) as linear 
forms of the bt

w with rational (and even integer) coefficients. From (7), (7a), 
(8) we find, using the formula 

6,<°> =zn_1_i(w,D), 

w = biw - (n - 2)D - ch 

(0) 

w2 
= 6l<«> _ ( ( B _ Z)D + Cl)blW + ( ( « ~ 2 ) z ) 2 + (W - 2 ) De + cî- c2), 

(O _ u„ _ A\-n _L , \;,_0» «,* = b*w - ((» - 4)2? + c,W 

-((vM-;V 
+ \ \ 2 ) D(d - ct) +cl- 2ci c2 + ci)) , 

By induction we obtain a relation, 

(23) «,' = &/0) - 5x &<& + 52 b% +...+ ( - D - V i &i<0) + ( -D**, 

(*= 1,2 » - l ) , 

where the sk (k = 1, 2, . . . , t) are natural numbers. Now, if (1) were reducible, 
w would be the root of an equation 

(24) wm + h w"1-1 + ...+ tm^ w + tm=0, 
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where the tt (i = 1, 2, . . . , m) are rationals and m < n — 1. Substituting 
the values from (23) for w\ we would get a linear homogeneous relation 
between the bii0) with integer coefficients, contrary to our assumption. By this, 
Theorem 4 is proved. This completes the proof of Theorem 3. 

Using the numerical example of Part 1, it is easily seen that the necessary 
conditions for the irreducibility of the characteristic equation are satisfied in 
this case, namely 

17,318,272 > 1,098,897, 8,659,136m > 1,098,897, 
8,123,301m > 25,227, 8,110,819m > 263, 8,110,561m > 5. 

Having thus proved that K(w) is an algebraic field of degree n, I want to point 
out that it is possible to give a unit of this field in a most simple form ; 

(25) e = m(w - D)n/d 

is such a unit. To prove this, we have to show that e and e~l are integers in the 
field K(w). We have, from (25), 

e = m{wn + DF(w))/d, 

where F(w) is a polynomial in w with integer coefficients. Furthermore by (1), 

mwn = [{D - djw71-1 + (Dd - c2)w
n-2 + (Dcn_2 - cn^)w + Dcn^]m + d, 

mwn = dF\{w). 

Thus e = Fi(w) + m(D/d)F(w), which shows that e is an algebraic integer 
in K(w). 

Also from (1), 

1 d dm71'1 

e m{w — D)n f d \n 

V n— 1 i n—2 i î | / 
\W + CiW + . . . + Cn-2 W + Cn-i/ 

/ n— 1 i n— 2 i t î \n n— 1 
(w + ciw + . . . + cn-2 w + Cn-i) m 

d71-1 

Put 

then 

But 

dF2{w) = d wn~2 + . . . + cn-2 w + cn_i; 

1 = y 1 + dF2(w))nm 
e d 

n —w—1 
V)) 

<n—l 

(w1 

f=0 \1 I 
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Now i > 0 implies that (n — 1){n — i) > n(n — 1 — i) or 

(w — 1)(n — i) = n{n — 1 — i) + r, f > 0. 

Hence 

( a ; * - 1 ) * - y = w ( w - 1 ) ( n - i ) J * = wn(n-1~i)wrdi 

= dn-1wr(Fi(w))n-1-« = d^F^w), say. 

Thus 1/e also is an algebraic integer. 
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