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Abstract

Given a prime p, the Fermat quotient qp(u) of u with gcd(u, p)= 1 is defined by the conditions

qp(u)≡
u p−1

− 1
p

mod p, 0≤ qp(u)≤ p − 1.

We derive a new bound on multiplicative character sums with Fermat quotients qp(`) at prime
arguments `.
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1. Introduction

For a prime p and an integer u with gcd(u, p)= 1 the Fermat quotient qp(u) is defined
as the unique integer with

qp(u)≡
u p−1

− 1
p

mod p, 0≤ qp(u)≤ p − 1.

We also put
qp(kp)= 0, k ∈ Z.

Fermat quotients qp(u) appear and have numerous applications in computational
and algebraic number theory and have been studied in a number of works; see,
for example, [1, 4, 5, 8, 9, 12, 14] and references therein. The study of their
distribution modulo p is especially important. This has motivated a number of
works [2, 7, 11, 15, 16] where bounds on various exponential and multiplicative
character sums with Fermat quotients are given. For example, Heath-Brown [11,
Theorem 2] has given a nontrivial upper bound on exponential sums with qp(u),
u = M + 1, . . . , M + N , for any integers M and N provided that N ≥ p3/4+ε for
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some fixed ε > 0 and p→∞. Furthermore, using the full power of the Burgess
bound, one can obtain a nontrivial estimate already for N ≥ p1/2+ε; see [4, Section 4].
For longer intervals of length N ≥ p1+ε, a nontrivial bound of exponential sums with
linear combinations of s ≥ 1 consecutive values qp(u), . . . , qp(u + s − 1) has been
given in [15]; see also [2].

Several one-dimensional and bilinear multiplicative character sums have recently
been estimated in [16]; see also [7]. Moreover, in [16, Corollary 4.2] the following
multiplicative character sums over primes:

Tp(N ; χ)=
∑
`≤N
` prime

χ(qp(`))

are estimated as
|Tp(N ; χ)| ≤ (N p−1/2

+ N 6/7 p3/7)N o(1), (1)

as N →∞.
Here we use an idea of Garaev [6] and derive a new upper bound on the sums

Tp(N ; χ) which is, as in [16], nontrivial provided that N ≥ p3+ε, for some fixed
ε > 0, but improves (1).

As in [16], we first estimate related sums with the von Mangoldt function

3(n)=

{
log ` if n is a power of a prime `,

0 otherwise.

THEOREM 1. For any integer N ≥ 1 and nonprincipal multiplicative character χ
modulo p, ∣∣∣∣∑

n≤N

3(n)χ(qp(n))

∣∣∣∣≤ (N p−1/2
+ N 5/6 p1/2)N o(1),

as N →∞.

Via partial summation, we immediately derive the following corollary.

COROLLARY 2. For any integer N ≥ 1 and nonprincipal multiplicative character χ
modulo p,

|Tp(N ; χ)| ≤ (N p−1/2
+ N 5/6 p1/2)N o(1),

as N →∞.

Throughout the paper, ` and p always denote prime numbers, while k, m and n (in
both upper and lower case) denote positive integer numbers.

The implied constants in the symbols ‘O’ and ‘�’ may occasionally depend on the
integer parameter ν ≥ 1 and are absolute otherwise. We recall that the notations U =
O(V ) and U � V are both equivalent to the assertion that the inequality |U | ≤ cV
holds for some constant c > 0.
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2. Vaughan identity

We use the following result of Vaughan [17] in the form given in [3, Ch. 24].

LEMMA 3. For any complex-valued function f (n) and any real numbers U, V > 1
with UV ≤ N, ∑

n≤N

3(n) f (n)�61 +62 +63 +64,

where

61 =

∣∣∣∣∑
n≤U

3(n) f (n)

∣∣∣∣,
62 = (log UV)

∑
k≤UV

∣∣∣∣ ∑
m≤N/k

f (km)

∣∣∣∣,
63 = (log N )

∑
k≤V

max
w≥1

∣∣∣∣ ∑
w≤m≤N/k

f (km)

∣∣∣∣,
64 =

∣∣∣∣ ∑
km≤N

k>V,m>U

3(m)
∑

d|k,d≤V

µ(d) f (km)

∣∣∣∣.
We apply this identity with f (n)= χ(n) for a nonprincipal multiplicative character

χ modulo p.

3. Sums with consecutive integers

We need some estimates of single and double character sums from [16]. First we
recall a special case of [16, Theorem 3.1].

LEMMA 4. For every fixed integer ν ≥ 1, for any integers M ≥ 1, nonprincipal
multiplicative character χ modulo p,∣∣∣∣ M∑

m=1

χ(qp(km))

∣∣∣∣≤ M1−1/ν p(5ν+1)/4ν2
+o(1)

as p→∞, uniformly over all integers k with gcd(k, p)= 1.

Next we present the following special case of [16, Theorem 3.3].

LEMMA 5. Given two positive integers K and M and two sequences αk , 1≤ k ≤ K ,
and βm , 1≤ m ≤ M, of complex numbers with

A = max
1≤k≤K

|αk | and B = max
1≤m≤M

|βm |,

for any nonprincipal multiplicative character χ modulo p,∑
k≤K

∑
m≤M

αkβmχ(qp(km))� AB

(
K

p
+ K 1/2

)(
M

p
+ M1/2

)
p3/2.
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We now use the idea of [6] to derive a version of Lemma 5 for the case where the
summation limit over m depends on k.

LEMMA 6. Given two integers K and M, a sequence of positive integers Mk with
Mk ≤ M, 1≤ k ≤ K , and two sequences αk , K < k ≤ 2K , and βm , 1≤ m ≤ M, of
complex numbers with

A = max
1≤k≤K

|αk | and B = max
1≤m≤M

|βm |,

for any nonprincipal multiplicative character χ modulo p,∑
k≤K

∑
m≤Mk

αkβmχ(qp(km))� AB

(
K

p
+ K 1/2

)(
M

p
+ M1/2

)
p3/2 Mo(1).

PROOF. For a complex z we define eM (z)= exp(2π i z/M). We have∑
m≤Mk

αkβmχ(qp(km))

=

∑
m≤M

αkβmχ(qp(km))
1
M

∑
−(M−1)/2≤s≤M/2

∑
w≤Mk

eM (s(m − w))

=
1
M

∑
−(M−1)/2≤s≤M/2

∑
w≤Mk

eM (−sw)
∑

m≤M

αkβmeM (sm)χ(qp(km)).

Since for |s| ≤ M/2 we have∑
w≤Mk

eM (−sw)= ηk,s
M

|s| + 1
,

for some complex numbers ηk,s � 1, see [13, Bound (8.6)], we conclude that for
|s| ≤ M/2 and k ≤ K there are some complex numbers γk,s = ηk,sαk such that∑

k≤K

∑
m≤Mk

αkβmχ(qp(km))

=

∑
−(M−1)/2≤s≤M/2

1
|s| + 1

∑
k≤K

∑
m≤M

γk,sβmeM (sm)χ(qp(km)).

Using Lemma 5, we derive the desired result. 2

As in [16], our main technical tool is an estimate of different double sums
with a ‘hyperbolic’ area of summation. We now derive a stronger version of [16,
Theorem 3.4].

LEMMA 7. Given real numbers X, Y , Z with Z > Y > X ≥ 2 and two sequences αk ,
X < k ≤ Y , and βm , 1≤ m ≤ Z/X, of complex numbers with

A = max
X<k≤Y

|αk | and B = max
1≤m≤Z/X

|βm |,
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for any nonprincipal multiplicative character χ modulo p,∑
X<k≤Y

∑
m≤Z/k

αkβmχ(qp(km))

� AB(Z p−2
+ Y 1/2 Z1/2 p−1

+ X−1/2 Z p−1
+ Z1/2)p3/2 Zo(1).

PROOF. Defining some values of αk as zeros, we write

∑
X<k≤Y

∑
m≤Z/k

αkβmχ(qp(km))=
J∑

j=I

∑
e j≤k≤e j+1

∑
m≤Z/k

αkβmχ(qp(km)),

where I = blog Xc and J = blog Y c. So, by Lemma 6,∑
X<k≤Y

∑
m≤Z/k

αkβmχ(qp(km))

� ABp3/2 Zo(1)
J∑

j=I

(
e j

p
+ e j/2

)(
Ze− j

p
+ Z1/2e− j/2

)
� ABp3/2 Zo(1)(JZ p−2

+ eJ/2 Z1/2 p−1
+ e−I/2 Z p−1

+ JZ1/2).

Since X � eI
≤ eJ

� Y , we immediately obtain the desired result. 2

4. Proof of Theorem 1

Since the bound is trivial for N < p3, we assume that N ≥ p3.
Let us fix some U , V > 1 with UV ≤ N and apply Lemma 3 with the function

f (n)= χ(qp(n)).
We estimate 61 trivially by the prime number theorem,

61 =

∣∣∣∣ ∑
1≤n≤U

3(n) f (n)

∣∣∣∣≤ ∑
1≤n≤U

3(n)�U. (2)

To bound 62 we fix some parameter W and write

62 = (62,1 +62,2)N
o(1), (3)

where

62,1 =
∑
k≤W

∣∣∣∣ ∑
m≤N/k

χ(qp(km))

∣∣∣∣,
62,2 =

∑
W<k≤UV

∣∣∣∣ ∑
m≤N/k

χ(qp(km))

∣∣∣∣.
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We now estimate the inner sum in 62,1 by Lemma 4 (with ν = 1) if gcd(k, p)= 1
and also use the trivial bound O(N/k) for p|k, getting

62,1 ≤
∑

1≤k≤W
gcd(k,p)=1

p3/2+o(1)
+

∑
1≤k≤W

p|k

N 1+o(1)

k
≤W p3/2+o(1)

+ N 1+o(1) p−1. (4)

To estimate 62,2, we apply Lemma 7. Thus

62,2 ≤ (N p−1/2
+ N 1/2U 1/2V 1/2 p1/2

+ N W−1/2 p1/2
+ N 1/2 p3/2)N o(1). (5)

Clearly, all the term N 1+o(1) p−1 in the bound (4) is dominated by the term
N 1+o(1) p−1/2 in (5), thus choosing W = N 2/3 p−2/3, we see from (3) that

62 ≤ (N p−1/2
+ N 1/2U 1/2V 1/2 p1/2

+ N 2/3 p5/6
+ N 1/2 p3/2)N o(1).

Since N 1/2 p3/2
≥ N 2/3 p5/6 for N ≤ p4 and N p−1/2

≥ N 2/3 p5/6 for N ≥ p4, this
bound simplifies as

62� (N p−1/2
+ N 1/2U 1/2V 1/2 p1/2

+ N 1/2 p3/2)N o(1). (6)

Similarly to (4), we also obtain

63� (V p3/2
+ N p−1)N o(1). (7)

It remains only to estimate

64 =

∣∣∣∣ ∑
V<k≤N/U

∑
U<m≤N/k

3(m)
∑

d|k,d≤V

µ(d)χ(qp(km))

∣∣∣∣.
Since ∣∣∣∣ ∑

d|k,d≤V

µ(d)

∣∣∣∣≤∑
d|k

1= ko(1) and 3(m)≤ log m,

see [10, Theorem 315], Lemma 7 yields

64 ≤ (N p−2
+ N 1/2(N/U )1/2 p−1

+ N V−1/2 p−1
+ N 1/2)p3/2 N o(1)

≤ (N p−1/2
+ NU−1/2 p1/2

+ N V−1/2 p1/2
+ N 1/2 p3/2)N o(1).

(8)

We now choose U and V to satisfy

U = V and N 1/2U 1/2V 1/2 p1/2
= NU−1/2 p1/2

in order to balance the terms that depend on U and V in the bounds (6) and (8), that is,

U = V = N 1/3.

With this choice recalling also (2) and (7), we obtain∑
n≤N

3(n)χ(qp(n))� (N p−1/2
+ N 5/6 p1/2

+ N 1/2 p3/2)N o(1).

Clearly the result is trivial for N < p3. On the other hand, N 5/6 p1/2
≥ N 1/2 p3/2 for

N ≥ p3. The result now follows.
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