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Abstract
Given a prime p, the Fermat quotient g, (1) of u with gcd(u, p) = 1 is defined by the conditions

|
qp(u) = T mod p, 0=<g¢qp(u)<p-1L

We derive a new bound on multiplicative character sums with Fermat quotients ¢g,(£) at prime
arguments £.
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1. Introduction

For a prime p and an integer u with gcd(u, p) = 1 the Fermat quotient q,(u) is defined
as the unique integer with

ub~l —1
qp(u)ET mod p, 0=<gq,(w)<p-—1.

We also put
qpkp) =0, keZ.

Fermat quotients g, («) appear and have numerous applications in computational
and algebraic number theory and have been studied in a number of works; see,
for example, [1, 4, 5, 8, 9, 12, 14] and references therein. The study of their
distribution modulo p is especially important. This has motivated a number of
works [2, 7, 11, 15, 16] where bounds on various exponential and multiplicative
character sums with Fermat quotients are given. For example, Heath-Brown [11,
Theorem 2] has given a nontrivial upper bound on exponential sums with g, (u),
u=M+1,..., M+ N, for any integers M and N provided that N > p3/4*¢ for
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some fixed € > 0 and p — oco. Furthermore, using the full power of the Burgess
bound, one can obtain a nontrivial estimate already for N > pl/ 2+¢. see [4, Section 4].
For longer intervals of length N > p!*¢, a nontrivial bound of exponential sums with
linear combinations of s > 1 consecutive values g, (u), ..., g,(u + s — 1) has been
given in [15]; see also [2].

Several one-dimensional and bilinear multiplicative character sums have recently
been estimated in [16]; see also [7]. Moreover, in [16, Corollary 4.2] the following
multiplicative character sums over primes:

T,(N; x)= Y x(qp(®)

L<N
£ prime
are estimated as
I Ty(N: x)| < (Np~'/% + N7 p¥ Ty N, (D

as N — oo.

Here we use an idea of Garaev [6] and derive a new upper bound on the sums
T,(N; x) which is, as in [16], nontrivial provided that N > p3+8, for some fixed
& > 0, but improves (1).

As in [16], we first estimate related sums with the von Mangoldt function

log ¢ if nis a power of a prime ¢,
0 otherwise.

A(n) = {

THEOREM 1. For any integer N > 1 and nonprincipal multiplicative character x
modulo p,

> A(n)x(qp(n»’ < (Np~'/2 4 NO/6p1/2) yoD),
n<N

as N — oo.
Via partial summation, we immediately derive the following corollary.

COROLLARY 2. For any integer N > 1 and nonprincipal multiplicative character x
modulo p,
T, (N5 )1 < (Np~ '/ 4+ N/ pl/2NoW,

as N — oo.

Throughout the paper, £ and p always denote prime numbers, while k, m and n (in
both upper and lower case) denote positive integer numbers.

The implied constants in the symbols ‘O’ and ‘<’ may occasionally depend on the
integer parameter v > 1 and are absolute otherwise. We recall that the notations U =
O(V) and U K V are both equivalent to the assertion that the inequality |U| <cV
holds for some constant ¢ > 0.
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2. Vaughan identity
We use the following result of Vaughan [17] in the form given in [3, Ch. 24].

LEMMA 3. For any complex-valued function f(n) and any real numbers U, V > 1

with UV < N,
D TAMFN) K T+ Ty + T3 + Ty,
n<N

where

> Am)fm),

n<U
Ty =(ogUV) Y | Y

k<UV'm<N/k
23 = (log N) Z max
k<v = w<m<N/k
%y = ‘ D Am ) M(d)f(km)‘-
km<N dlk,d<V
k>V .m>U

We apply this identity with f(n) = x (n) for a nonprincipal multiplicative character
x modulo p.
3. Sums with consecutive integers

We need some estimates of single and double character sums from [16]. First we
recall a special case of [16, Theorem 3.1].

LEMMA 4. For every fixed integer v > 1, for any integers M > 1, nonprincipal
multiplicative character x modulo p,

M
- 2
> X(qp(km))‘ < MI=1/v v/ 4o(D)

m=1

as p — 0o, uniformly over all integers k with gcd(k, p) = 1.
Next we present the following special case of [16, Theorem 3.3].

LEMMA 5. Given two positive integers K and M and two sequences oy, 1 <k <K,
and B, 1 <m < M, of complex numbers with

A= max |or| and B = max [Bml,
1<k<K

for any nonprincipal multiplicative character x modulo p,

DY aBux(gpkm) < AB(K +K”2> (% +M1/2)p3/2.

k<K m<M
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We now use the idea of [6] to derive a version of Lemma 5 for the case where the
summation limit over m depends on k.

LEMMA 6. Given two integers K and M, a sequence of positive integers My with
M <M, 1 <k <K, and two sequences oy, K <k <2K, and By, | <m <M, of
complex numbers with

A= max |ax| and B = max |Bul,
1<k<K 1<m<M

for any nonprincipal multiplicative character x modulo p,
K M

3 Y wBux(gpkm) < AB(— + K1/2> (— + M1/2> P24,
k<K m<M;y )4 P

PROOF. For a complex z we define ey;(z) = exp(2wiz/M). We have

Y aBux(gptkm))

mek
1
= ) abux(@pkm) D) ew(sim—w)
m=M —(M—1)/2<s<M /2 w<Mj
1
=0 Y Y euCsw) Y axBuen(sm)x(@pkm)).
—(M—1)/2<s<M/2 w=My e

Since for |s| < M /2 we have

M

ey(—sw) = _,
> em(—sw) s T

w<Mjy

for some complex numbers 7 s < 1, see [13, Bound (8.6)], we conclude that for
|s| < M/2 and k < K there are some complex numbers i s = 0k s0 such that

DD auBux(gpkm))

k<K m<M;j

= ) 1 3 vesBuem(sm)x(gpkm)).

—M-tyaes<mp ST VSR =

Using Lemma 5, we derive the desired result. O

As in [16], our main technical tool is an estimate of different double sums
with a ‘hyperbolic’ area of summation. We now derive a stronger version of [16,
Theorem 3.4].

LEMMA 7. Given real numbers X, Y, Z with Z > Y > X > 2 and two sequences oy,
X <k<Y,and By, 1 <m < Z/X, of complex numbers with

A= max |ox| and B= max |Bul,
X<k<Y 1<m<Z/X
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for any nonprincipal multiplicative character x modulo p,

D cuBux(gpkm))

X<k<Y m<Z]/k
< AB(ZP—2+Y1/221/2])—1 +X—1/ZZP—1 +Zl/2)p3/220(1).

PROOF. Defining some values of oy, as zeros, we write

D awBux(gpkm) =Y > > aBux(gpkm)),

X<k<Y m<Z/k J=I e <k=eit! m<Z/k

~

where I = |[log X ] and J = [log Y ]. So, by Lemma 6,

Yo aBux(gptkm))

X<k<Y m<Z/k
J . _
< ABp¥?z°M Z(ﬁ + ej/2> (Ze_J + Zl/Ze—j/2>
j=1 p
K ABpPzoW(yzp2 4+ &' P72 p  p e 12z 4 g2/,

Since X < el <el « Y, we immediately obtain the desired result. O

4. Proof of Theorem 1

Since the bound is trivial for N < p?, we assume that N > p3.
Let us fix some U, V > 1 with UV < N and apply Lemma 3 with the function
f () = x(gp®n)).

We estimate X trivially by the prime number theorem,

Si=| Y Amf®)

1<n<U

< > AmKU. )

1<n<U

To bound X, we fix some parameter W and write
T = (Za,1 + TN, (3)

where

’

Yo = Z

k<W

Yoo = Z

W<k<UV

> x(gpkm))

m<N/k

> x(qp(km))‘-

m<N/k
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We now estimate the inner sum in X5 | by Lemma 4 (with v = 1) if ged(k, p) =1
and also use the trivial bound O (N /k) for p|k, getting

3 | N1+0(1)

1<k<w 1<k<Ww
ged(k, p)=1 plk

To estimate X 5, we apply Lemma 7. Thus

Sha < (Np~'2 £ NV2UV2VI2 12 L Nw=12p12 4 N2 32 NoD) | (5)

< Wpd/rroh L yl+oh =1 (4

Clearly, all the term N'*°()p=1 in the bound (4) is dominated by the term
N1+ p=1/2ip (5), thus choosing W = N?/3p=2/3 we see from (3) that

Sy < (Np~ V2 4 NV2U 12y 12 p102 L N213 516 4 N 1/2 p3/2) po).

Since NV2p3/2 > N2/3p3/6 for N < p* and Np~1/2 > N2/3p3/¢ for N > p*, this
bound simplifies as

) <« (Np—l/z + N1/2U1/2V1/2p1/2 + N]/2p3/2)N0(]). (6)
Similarly to (4), we also obtain
B3 L (Vp? + Np~HNoW. )

It remains only to estimate

T4 = Alm) Y u(d)x(gpkm))|.
V<k<N/U U<m<N/k dlk,d<V
Since
Z u(d)| < Z 1=k°D and A(m) <logm,
dlk,d<V dlk

see [10, Theorem 315], Lemma 7 yields
4 < (Np~2 4+ NV2(NJU) 2p=t £ NV—1/2p=1 1 N1/2) p3/2 o)
8
< (Np~V2 £ NU-12p1/2 4 NV=172p1/2 1 N1/2 p3/2y NoD), ®)
We now choose U and V to satisfy
U=V and NV2UV2V12pl2 = Ny=1/2pl/2
in order to balance the terms that depend on U and V in the bounds (6) and (8), that is,
U=V =N'"7,
With this choice recalling also (2) and (7), we obtain

n<N

Clearly the result is trivial for N < p3. On the other hand, N>/®p!/2 > N1/2p3/2 for
N > p3. The result now follows.
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