ON STRONG RIESZIAN SUMMABILITY

by MARTIN GLATFELD
(Received 5th November, 1956 ; revised 10th January, 1957)

1. Introduction. Recently H.-E. Richert [10] introduced a new method of summability,
for which he completely solved the *‘ summability problem ™ for Dirichlet series, and which
led also to an extension of our knowledge of the relations between the abscissae of ordinary
and absolute Rieszian summability. This non-linear method, which may best be characterized
by the notion “‘ strong Rieszian summability ” ¥, depends on three parameters, on the order «,
the type A, and the index p. While Richert’s paper deals almost exclusively with the appli-
cation of that method of summability in a specialized form (namely the case p =2, A, =log =)
to Dirichlet series, it is the object of the present paper, to consider the general theory of strong
Rieszian summability.

I wish to thank Dr Richert for suggesting this problem to me and for his valuable com-
ments. I am also indebted to the referee for valuable suggestions, according to which
I have modified my paper.

Strong Rieszian summability, i.e. the | R, A, « |P-method, is defined as follows :

DeriviTION 1 [10, pp. 96, 98 and 109]. A4 series > ¢, ts summable | R, A, x |7 of order «,

n=1

where x> —% and is real, of index p, where O0<p<oo, and of type A, where 0<CTA, <A<,

<A, —> 00, to the sum ¢, if there exists a number ¢ such that, as w lends to infinity continuously, the

relation .
fo | Ci(r) —cr|Pdr =0(@*P*1) oivviiiiiiiii s (1)
holds, where )
Cir)= 2 ey =A% i (2)
Ap<t

We denote this by
Ze,=c |R, A x|

The assumption that xp> -1 is essential.] Otherwise, on account of
Ci(r) ~ e, (r—A)¢ as 72,40 (en #0),
the integral

J“ C:\‘(T) —-cT* |”d’r,

taken over any interval including A,, does not exist.
2. Notation and lemmas. In Hélder’s inequality ¢ denotes a number conjugate to p>1 ;
ie.
11 P
—+4+—-=1 or =t
P g =p-1
Moreover we define ¢ to be oo if p=1.

T A. V. Boyd and J. M. Hyslop [1] were the first to study strong Rieszian summability. Their definition,
however, is not equivalent to Definition 1. Cf. § 5.

1 This restriction is identical with that imposed on « in [1), if the results given there are translated into
our notation.
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O- and o-symbols will be understood to relate to a variable tending to + co continuously

(discretely in the proof of Theorem 9 only).

Empty sums, i.e. X where a>b, are to be interpreted as zero. The terms of the series

agn<b
-]

are indexed from 1 onwards, and X written without limits means X .
n=1

Capital letters, denoting the Rieszian sums (2), correspond to the small letters used for
the terms of the series.

The following lemmas will be required.

Lemma 1 [11, p. 153].  If f(7) is positive and continuous for 0<<r<w, then

s {J, e arf = s o

Levma 2. If () =0 and a> -1, then the two assertions

f XV T=0(0) oo 3)
and J-:r“x (T)dr=0(w™1) oo t(4)

are equivalent, it being assumed that both integrals converge at the origin.

Proof. That (3) implies (4) follows on integrating (4) by parts. The converse follows in
the same way, if the integrand in (4) is multiplied by v—=.

Levma 3 [4, Theorem 4). Let p>1, 0<u<1/p, p’ =p/(1 - up), f(t)=0 and

1.6 =f}7;) f 10 -y,
If f() € L?(0, w), then ful7) € L0, w) and

f )" d~r<K{f rdf} :

where K depends on p and p only.

3. Consistency in p and «. Multiplication theorem. We now consider some properties
of strong Rieszian summability, which concern, among other things, relations between
different values of p (or «), where A and « (or p) are fixed.

First of all we notet that the | R, A, « |P-sum of a series is unique.} For it follows from
the elementary inequality (a +b)?<<27(a? +b?), where a >0, b0, p>0 that, if (1) holds for ¢
and ¢’, we have the relation

| c-¢ I”a)"”+1 =(kp+1) J:] (Cy(z) =€) = (C%(7) —c'1%) I”df

=0 <le Ci(r) —cr~ |Pdr + fwl Ch(r) —c'm<|? d‘r) =0(w*Pt1),
0 0

Hence ¢=c'.

In the following proofs we may suppose the sum of the given series to be zero by trans.
forming the terms ¢, into

t This result and Theorems 1 and 2 are already known for the | R, log n, « |*-method (x20). Cf.[10,

§9).
I If nothing else is said about « and p, the restrictions imposed in Definition 1 apply.
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o fuc when n=1,
" lc, when n>2.

......................................

This is & consequence of the simple result that
Za,=a |R,A\k|? and  Zb,=b |R,A«]|?
imply that
2o, =2(aa, +pb,)=0a+8b |R,Ak|?.
This follows from the relation
O5(r) =ad}(r) + BBj(r)
THEOREM 1. For 0<p'<p,

Ze,=c¢ |R,\k|?
implies that
Ze,=c¢ |R,Ak|?.
Proof. Let p=p’+r and r>0; then
par_p
p P
Therefore Holder’s inequality gives

f | O+ |p' d‘r<{J‘ | Cx(r ]p(p/p)dr}pl {f d’r} o{w"P'+1),

THEOREM 2. For p=1 and «'>«,
Ze,=¢ |R,\«k|?

’

+£=1 and £>1.
P p

implies that
Ze,=c | R, A K |2

Proof. As is well known [5, Lemma 6], we have, for «> -1 and x>0,

Flk+p+1)

0K+“(T f CK t) - t)“~1 dt b4 =m‘1—)r—(”) s veveressnsssstestaronues

On applying Hélder’s inequality, it follows, if p>1 and «’ =« +p, u>0, that

| C¥(r) |p—0{f | Cx(t) T—t“"ldt<f;(‘r—t)“_ldt>p_1},

and, furthermore,

f:| C;’(’T) |” dr=0 {w“(’"l) f:| as(t) I” dt fw(T — )1 d‘r} =0 (wX'?H),
¢

For p=1 we obtain, from (6),

f:l Cy(t) | dr=0 {f:| Cyt) | dt Jtu (r -t d,r} =0(w*+).

TarEorEM 3. Let p and p’ be positive numbers such that (1/p) + (1/p")<1. If

Za,=a |B,Mk|? and Zb,=b |R,p,p|", .oerviiiiiinnn
then
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Ze,=ab (Ryv,xc+p+1),T

wherec,= X a,b.
Mntps=vy

Proof. For kx> -1, p> -1 the relation [§, p. 64]
I'k+p+2)

x+p+1 -
) = R DM+ T

f A Bj{w=7)dr oo (8)

is well known.
We suppose first that p’ =¢, and consider the series (7) transformed according to (5).

Thus, by Holder’s inequality, we obtain from (8)

Cletet () =0 {(f:| A’ (7) [pdﬁ,-)1/1)<f:| B'*(w-7) |t dr)llq} =o(w trtl). . (9)

It is easy to see that
Ot () = C 1t () + abw HH] 4 o (@ Fetl),
which combined with (9) proves the assertion in the special case.
The weaker condition on the indices follows from Theorem 1.
4. Connexions with ordinary and absolute Rieszian summability. We have the follow-
ing familiar definitions of the ordinary and absolute Rieszian summability [5, pp. 21-22 ; 9).
A series Zc,, is said to be summable (R, A, «) of order x>0 and type A to the sum ¢, namely
Ze,=¢ (R, A ).
if
Ch(w) =cw* +0 (w*).
The same series issummable | R, A, « | of order x>0 and type 4, if there is a positive number
4 such that
fxl

It is natural to define strong Rieszian summability for' p = oo as follows :
Dermvirion 2. A series Zc,, is summable | R, A, k |* of order x>0 and type A to the sum c,
of there exists a number ¢ such that

w 1/p
lim {f | C5(r) —cr* l"(l‘r} =0 (w").
poe (J 0

The series is summable | B, A, 0 | to the sum c, if it converges to c.

C3(r)

,TK

< 00.

We now prove the following equivalence.
THEOREM 4. The assertions

Z0,=0 [ RyAK|® oo, (10)

and
26, =C (B, A K) e (11)

are equivalent.
Proof. Since the Rieszian method of order zero means convergence, we need only con-

sider the case k>0. On account of the continuity of C§(r) for x>0, Lemma 1 gives, if we
again take ¢ =0,

1 Compare this notation with the definitions in the following section.
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p]ixx;{f:|c;(f) |vdf}”"= N L (12)

<<
Hence we see that (11) follows from (10). Conversely, if (11) is assumed, i.e. if, to a given
e>0,
| C5() | <ere for r>7,,
then there exists a constant M such that
| C5(7) l <M +erx for all +=0.
This inequality together with (12) implies (10).

The results proved above (in §3) also remain valid for p=0c0. Theorem 1 states that
summability | B, A, x |* of a series implies its summability | R, A, « |? for any p>0. For the
proof the relation C%(7) =cr* +0(7*) may be substituted in (1). As Richert has pointed out by
an example [10, p. 98], the converse of this theorem is not true. Finally we note that the
regularity of summability | B, A, x |? for x>0 is a consequence of Theorems 1 and 2.

Since in the theory of Dirichlet series the abscissa of summability | R, A, « |! coincides with
that of absolute Rieszian summability of order « +1 and type A,} the question of the equi-

valence of these methods is of particular interest. We prove the following theorem, the
converse of which is not true.

THEOREM 5. Any series which is summable | R, A, k+1| is also summable | R, A, « |*f
(k> -1).

Proof. Using the abbreviation

d C§+1 (7)

x(7) =T (k + D)7~ H{Cx(r) =71 C¥FY(7)},

we have
C(7) - e T —1(OH (1) — gretl
§(r) = or* =T x(r) 77 (G5 (1) —er),
and, furthermore,
fwl Ci(r) —cre|drg _l__J‘".,.«u | x(7) | dr +J 1| CFL(r) —erett | dr
0 k+1 4 A
* A
+f | C5(r) —er<|dr =1, + I, +1,,
0

say.
Writing the hypothesis in the form

f“ | x(t) | dt=C +o(1)

4

and integrating I, by parts, we obtain

o [0 1= [t [ ot
4 4 4

1 Cf. [10, p. 109]. The relations given there hold for every type.
1 The index 1 cannot be replaced by any p>1. Cf. (6, p. 20].
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Summability | R, A, « +1 | of a series implies its summability (R, A, « +1) [9, p. 376]. Thus,
substituting Ct1(7) —cr*+l=o0(r*+!) in I,, we have I,=0(w**1); furthermore I3=0(1).
Hence the theorem follows.

Feketet has shown by an example that, if we use the terminology of Rieszian summability,
a series summable (R, 7, «), need not be summable | R, n, x +7 | for any >0. Taking into
consideration that the (R, n, «)-method is weaker than the | R, n,  [1-method, we have

THEOREM 6. For any p, summability | R, A, k |? of a series does not imply its summability
| R, A, k +7 |, where 7 is an arbitrary positive number.

5. Connexions with Boyd and Hyslop’s definition of strong Rieszian summability.
According to A. V. Boyd and J. M. Hyslop [1] a series Zc,, is summable to the sum ¢ in the
sense of strong Rieszian summability, namely

Ze,=c [B;x,p] (p=1, p(k-1)>-1),

if
Ze,=¢ (R,n,«)
and}
f‘” L 20+ r dr=o0(w).
0 dr ™
THEOREM 7. Let p=1, kp> —1. Then the methods | R,n,« |? and [R ; « +1, p] are equi-
valent.

Proof. With the help of Minkowski’s inequality and the following identity
d Cptl(r+1) Cetl(r+1) Ci(r+1)
T(?t_——n EPTST =(K+1){ n_r,(+1 - }

it can be seen that the relation

TK

fwf‘”’ | Cr(r+1) =% |Pdr =0(®) oeverniiininieiiie, (13)
0

is necessary and sufficient for summability [R ; «+1, p]. From (13) and Lemma 2 (putting
o =«p) we immediately obtain the theorem.

6. Cross-relations between « and p. By Theorems 1 and 2 we are led to the question,
whether in the | R, A, « |?-method « and p may both be changed simultaneously (either
increased or decreased) within certain bounds, without disturbing the summability of the
series. The following two theorems deal with this.

THEOREM 8. Let k' =« +pu, p>0. Then

Zepn=¢ | R, A k|P o (14)
implies that

under the following conditions :

’

l<p<oo; L p'<o or >1 L p'<oo
;IJ‘ p pl, ,u' p p;: ~= 3

1 .
p=1; p,>1—§-,, p'<eo or pz=l, p'<co.
$[2). Cf.[7, p. 28].

{ In the Rieszian sums the argument here is 7 + 1, because the terms in our notation are indexed from 1, in
[1], however, from 0 onwards.
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Proof. We first consider the case p>1, p=(1/p) +¢>1/p. Since {(x—1)q+1=e¢>0, we
obtain from (6) and (14) the relation

Cyt3+ () =0 {( IREET d,)""( [} @-myusn df)""} owr e,

i.e. summability (R, A, x + (1/p) + ¢) of the given series.
In the case p>1, u<1/p, Lemma 3, together with (6) and (14), gives

p/(1—up)
dr

[l1exm iy pro-mmar - | “’\ v [L oo
0 0 0

© 1/(1-up)
=0 {<J | Citr) |p dT) } =0 (wltr) D/(l—up)+1):
0

i.e. (15) holds for p"<p/(1 - up).

Now let p>1, p=1/p. With regard to the preceding case, for u=(1/p) — ethe value p’ =1/e
is admissible in (15) and, by Theorem 2, this index can also be taken for p=1/p. Since, by
a suitable choice of ¢, 1/¢ represents a number, arbitrarily large, we see that p’ may assume
every finite value. As can be inferred from a remark of B. Kuttner [8], p’ = o0 is not admissible
here. Because of its interest, this limiting case may be explained by the following example : ¥

Let B9 denote the binomial coefficient ( Vl_ %) and take, for instance, n;=4%, n; =147,

n—v
1
g, =(log v)~t. Then the series, the partial sums of which are
%
_ -2 (loqj)‘e" (ny<v<n,, 1221 integral),
1 (ny_y<v<ng)

is not summable (R, n, 1), although it is summable | B, », 0 |2

If p=1, p>1, it follows immediately from (6) that p’<{co. It may be noted that for
p<l summability (R, A, x + ) cannot be deduced from summability | B, A, « |*.1

Finally there remains the case p =1, u<<l. As it suffices to take p'>1, we have, from (6)
and Hélder’s inequality,

. - —1
e =0{[ s ¢ ~awvwar( [ es 1 a)) )
0 0
and hence

f °| oxtE(n) | dr =0 {w(x+1)(p'—1) f “loswy | de f “(r — ) u-w d,} — o (wltnIr+)
0 0 t

on the assumption that p'<<1/(1 —p).
The prooof of the theorem is now completed.
The analogous statement for a decrease in the order does not hold. We prove

THEOREM 9. There is no number P such that for any 8>0
Ze,=¢ | R, X\ k+38]?

t I am indebted to A. Peyerimhoff for communicating this example to me.
1 This follows immediately from Theorem 5 and the fact that a series summable | R,n,« | need not be
summable (R,n,k —7) for any #>>0, which was proved by E. Kogbetliantz. Cf. [7, p. 28].
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implies that
Ze,=c | R, Ak,
where p' <P <p.

Proof. Let us first consider the (more important) part of the index interval, i.e. the part
which is bounded below by 1. For this we show that there does not exist a number P for any
« + 8, and hence, a fortiori, there is no number P, which is independent of the order.

Since for p>1 strong Cesaro summabilityt [C;«+1, p] is equivalent to the | R, n, « |?-
method,} it is sufficient to look for an example of strong Cesaro summability.

Let p>1 and «> —-1/p. The series

n-1+«
(-1 1( -l )

is summable (C,« +38) for any 8>0 [3, Theorem 79] (and thus summable [C; « +3 +1, p]).
It therefore satisfies the hypothesis of the theorem.

Let C% define the nth Cesiro mean of order « of the series (16) :

<n+K) C;:)="2,1 (n+1 —V+K> ¢
n vl \ 7+l -v
then we deduce from the identity

© -1 ©
z (" '_+ VoW, an=1 = (1 —z) 1 Z ¢ an=t=(1 —a?)~*1
n=1 n-1 n=1

the following relation
0 (n odd),

(%)
HAY L)oo o

We now see that the series (16) is not summable [C; x +1, p'] for any p’ (i.e. not summable
| R, n, « |* for any p'>1), because

n
E 1005 =gus |7 +4n] s |¥ +o(m) £o(n),
v=0

however s may be chosen.

For a special order we have thus also obtained a statement concerning the whole index
interval,—namely that in the case « =0 the series (16) is summable (R, n, §) for every §>0,
but not summable | R, #,0 |* for any p’, if we keep in mind that the methods [C'; 1, '] and
| R,n,0 |* are trivially equivalent for all p'. .

7. The case p<1. Strong Rieszian summability for 0<p<<1 is quite different from what
it is in the case p<{l. Theorem 8 is no longer true and no connexions with higher indices can
be established.§ There are series, which are summable | R, %, 0 |? for 0<p<]1, but not sum-
mable (R, n, k), however large « may be. As a concrete example, the series consisting of the
terms

t For strong and ordinary Cesaro summability the notations of (6] are used.
1t Cf. [1] and § 5.
§ This remark is contained in a much more general theorem of B. Kuttner [8].
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‘n" whenn =g,
Cp=3 —(n -1y whenn=g"+1, (922 a fixed integer, v=>1 integral, 1 <j<<1/p),
10 otherwise, J

may be taken.
For 0<p<1 the | R, A, k |?-method does not seem to be very important for applications.
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