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1. Introduction. Recently H.-E. Richert [10] introduced a new method of summability,
for which he completely solved the " summability problem " for Dirichlet series, and which
led also to an extension of our knowledge of the relations between the abscissae of ordinary
and absolute Rieszian summability. This non-linear method, which may best be characterized
by the notion " strong Rieszian summability " f, depends on three parameters, on the order K,
the type A, and the index p. While Richert's paper deals almost exclusively with the appli-
cation of that method of summability in a specialized form (namely the case p = 2, Xn =log n)
to Dirichlet series, it is the object of the present paper, to consider the general theory of strong
Rieszian summability.

I wish to thank Dr Richert for suggesting this problem to me and for his valuable com-
ments. I am also indebted to the referee for valuable suggestions, according to which
I have modified my paper.

Strong Rieszian summability, i.e. the | R, A, K |p-method, is defined as follows :
CO

DEFINITION 1 [10, pp. 96, 98 and 109]. A series Scn is summable \ R, A, K \V of order K,
n=l

where K> — and is real, of index p, ivhere 0<p<oo, and of type A, where 0<A1<A2<...

< An -»• oo, to the sum c, if there exists a number c such that, as w tends to infinity continuously, the
relation

r
J 0
J U

, where

We denote this by
Ecn=c \R, A, K|".

The assumption that Kp> - 1 is essential.J Otherwise, on account of

C1(T) I—> cn{r — Xn)
K as T—>A,,+0 (cn^0),

the integral

taken over any interval including An, does not exist.
2. Notation and lemmas. In Holder's inequality q denotes a number conjugate to p > 1 ;

i.e.
1 1 , p
- + - = 1 or q=-p q p-1

Moreover we define q to be oo if p = 1.

f A. V. Boyd and J. M. Hyslop [1] were the first to study strong Rieszian summability. Their definition,
however, is not equivalent to Definition 1. Cf. § 5.

% This restriction is identical with that imposed on K in [1], if the results given there are translated into
our notation.
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124 MARTIN GLATFELD

0- and o-symbols will be understood to relate to a variable tending to + oo continuously
(discretely in the proof of Theorem 9 only).

Empty sums, i.e. E where a~$J>, are to be interpreted as zero. The terms of the series
^<b

m

are indexed from 1 onwards, and E written without limits means E .
n=l

Capital letters, denoting the Rieszian sums (2), correspond to the small letters used for
the terms of the series.

The following lemmas will be required.
LEMMA 1 [11, p. 153]. Iff(r) is positive and continuous for 0 < T < O J , then

linJ (f(r))ydr\ = max/(T).
!/-»-oo {J 0 J O^T^OJ

LEMMA 2. / / x(T)^0 and <x> - 1 , then the two assertions

r
J 0

X{r)ttr=0{w) (3)
)

and -r»x(T)dT=o(aj"+1) (4)
J 0

are equivalent, it being assumed that both integrals converge at the origin.
Proof. That (3) implies (4) follows on integrating (4) by parts. The converse follows in

the same way, if the integrand in (4) is multiplied by T~".
LEMMA 3 [4, Theorem 4]. Letp>l, 0</x<l /p , p' =pj{\ -pp), f{t)^O and

Iff(r) e L»(0, w), thenf^r) e L»'(0, w) and

where K depends on /x and p only.
3. Consistency in p and K. Multiplication theorem. We now consider some properties

of strong Rieszian summability, which concern, among other things, relations between
different values of p (or K), where A and K (or p) are fixed.

First of all we notef that the | R, A, K |p-sum of a series is unique. J For it follows from
the elementary inequality (a+b)p^2v(a7' + bp), where a > 0 , 6 > 0 , p>0 that, if (1) holds for c
and c', we have the relation

C-C' ("\ (C5(T)-CTK)-(C5(T)-C'T«) |pdr
J o

= 0 ( P | CJ(T) - CT" I > dr + J " I C;(T) - C'T" I' dr\ =

Hence c=c'.
In the following proofs we may suppose the sum of the given series to be zero by trans-

forming the terms cn into

t This result and Theorems 1 and 2 are already known for the | R, log n, K |2-method (K^O). Cf. [10,
§9].

% If nothing else is said about K and p, the restrictions imposed in Definition 1 apply.
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ON STRONG RIESZIAN SUMMABILITY 125

,_K-c when n = l,
n~\cn when n>2 . W

This is a consequence of the simple result that

Zan=a \B,\,K\* and £&„ = & I-R.A

imply that
Zcn = Z{<xan+pbn)=*a + pb \R,\,K\*.

This follows from the relation

THEOREM 1. Jor 0<p'<p,

2cn=c | i2, A, #c I*
implies that

Scn=c \R,\,*\*-

Proof. Let p=p' +r and r>0 ; then

±- =£- + - = 1 and i r
p p p P

Therefore Holder's inequality gives

|CJ(T) 1 " ' ^ ^ |C*(T) | P ( P / P ) CZTI (IT =

THEOEEM 2. J o r p ^ l and K>K,

Scn=c \R,\K\J>

implies that
Scn=c \R,\K'\:

Proof. As is well known [5, Lemma 6], we have, for K> - 1 and /n>0,

(6)

On applying Holder's inequality, it follows, if p>\ and K =K +/X, /U>0, that

I CA
K'(r) |" = 0 | J j CJ(<) |»(T - i)""1 * ( £ (T

and, furthermore,

Pi CJ'(T) i2>^T=o-fo)^-1) p i C^O i"d« p ( T -
J o L J o J t

For p = 1 we obtain, from (6),

£ | Cr(«) | dr = 0 I J ™ I OJ(t) I d< J " (T - f)""1 dr} = 0 (

THEOREM 3. Let p and p'be positive numbers such that {\lp) + (\jp')^\. If

San=a \R,X,K\P and Ebn = b | i?,/>lft |»', (7)
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126 MARTIN GLATFELD

Scn=ab (iJJ

where cn— Z ambs.

Proof. For K> - 1, /*> - 1 the relation [5, p. 64]

is well known.
We suppose first that p' =g, and consider the series (7) transformed according to (5).

Thus, by Holder's inequality, we obtain from (8)

Y p | J3'"(CO-T) \"dr\1''\=o(ojl'+^1) (9)

It is easy to see that

(>)=C'v
K+»+1(co) +abcuK+"+1

which combined with (9) proves the assertion in the special case.
The weaker condition on the indices follows from Theorem 1.

4. Connexions with ordinary and absolute Rieszian summability. We have the follow-
ing familiar definitions of the ordinary and absolute Rieszian summability [5, pp. 21-22 ; 9].

A series Ecn is said to be summable (R, A, K) of order K^O and type A to the sum c, namely

Ecn=c (R..X.K),

if

The same series is summable | R, A,K | of order «^0 and type A, if there is a positive number
A such that

J:
It is natural to define strong Rieszian summability forp = co as follows :
DEFINITION 2. A series Zcn is summable \ R, A, K |°° of order *>0 and type A to the sum c,

if there exists a number c such that

lim i\ \
( UP

lim i\ \

The series is summable | R, A, 0 |°° to the sum c, if it converges to c.
We now prove the following equivalence.
THEOREM 4. The assertions

Zcn=c \R,\,K\* (10)
and

Zcn=c (S,X,K) (11)

are equivalent.
Proof. Since the Rieszian method of order zero means convergence, we need only con-

sider the case K > 0 . On account of the continuity of G^(T) for K>0, Lemma 1 gives, if we
again take c = 0,

f Compare this notation with the definitions in the following section.
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ON STRONG RIESZIAN SUMMABILITY 127

limJ \CUT)\*eh\ = max | CJ(T) |. ...' (12)

Hence we see that (11) follows from (10). Conversely, if (11) is assumed, i.e. if, to a given
6>0,

| OS(T) I <er" forT>T0,

then there exists a constant M such that

| Cl(r) | <M + ET" for all

This inequality together with (12) implies (10).
The results proved above (in §3) also remain valid for p = co. Theorem 1 states that

summability | R, A, K |°° of a series implies its summability | R, A, K |P for any p>0. For the
proof the relation CA (T) = CT" + o (TK) may be substituted in (1). As Richert has pointed out by
an example [10, p. 98], the converse of this theorem is not true. Finally we note that the
regularity of summability | R, A, K \V for K ^ O is a consequence of Theorems 1 and 2.

Since in the theory of Dirichlet series the abscissa of summability | R, A, K \l coincides with
that of absolute Rieszian summability of order K +1 and type A,f the question of the equi-
valence of these methods is of particular interest. We prove the following theorem, the
converse of which is not true.

THEOREM 5. Any series which is summable \ R,\,K + 1 \ is also summable \R, A, K |XJ

Proof. Using the abbreviation

we have

C > ( T ) - CTK = r Y ( 7

and, furthermore,

f™| CJ(T) -CT" I d r < - i - T 7 ^ 1 I X(r) I dr + ("r"1 | Cl+1(r) -Cr*+i | dr
JO K + lJ A J A

say.
Writing the hypothesis in the form

J AA

and integrating It by parts, we obtain

A = - ^ - r t " K + 1 f" I x W \dt~ I r K d r \ \ x ( t ) \dt=o(aiK+1).
K + 1 J A J A J A

t Cf. [10, p. 109]. The relations given there hold for every type.
t The index 1 cannot be replaced by any p> 1. Cf. [6, p. 20].
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128 MARTIN GLATFELD

Summability | R, /\, K +1 | of a series implies its summability (R, A, K +1) [9, p. 376]. Thus,
substituting C"+1

 (T) - CT"+1 = o (T"+1) in I2, we have 72=o(a>"+1) ; furthermore / 3 = 0 ( l ) .
Hence the theorem follows.

Feketef has shown by an example that, if we use the terminology of Rieszian summability,
a series summable (R, n, K), need not be summable | R, n, K +77 | for any 77 >0. Taking into
consideration that the (R, n, /c)-method is weaker than the | R, n, K ^-method, we have

THEOREM 6. For any p, summability \ R, A, K \P of a series does not imply its summability
I R, A, K +7) |, ivhere 77 is an arbitrary positive number.

5. Connexions with Boyd and Hyslop's definition of strong Rieszian summability.
According to A. V. Boyd and J. M. Hyslop [1] a series Ecn is summable to the sum c in the
sense of strong Rieszian summability, namely

Ecn=c [R;x,p]
if

Ecn = c (R, n, K)

andj

r
Jo

_ dT = o(u>).
dr TK

THEOREM 7. Let p^l, Kp> -1. Then the methods \ R, n, K \V and [R ; K +1, p] are equi-
valent.

Proof. With the help of Minkowski's inequality and the following identity

~Tdt—?

it can be seen that the relation

oH (13)I:
is necessary and sufficient for summability [R ; K +1, p]. From (13) and Lemma 2 (putting
a = Kp) we immediately obtain the theorem.

6. Cross-relations between K and p. By Theorems 1 and 2 we are led to the question,
whether in the | R, A, K |"-method K and p may both be changed simultaneously (either
increased or decreased) within certain bounds, without disturbing the summability of the
series. The following two theorems deal with this.

THEOREM 8. Let K =K + H, /X>0. Then

Ecn=c \B,\,K\> (14)

implies that
Zcn-=c \R,\,K |"' (15)

under the following conditions :

Kp<co; M = - - y > P'<«> or >

—, p'<(X> or

t[2]. Cf.[7,p. 28].
J In the Rieszian sums the argument here is T +1, because the terms in ournotation are indexed from 1, in

[1], however, from 0 onwards.
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ON STRONG RIESZIAN SUMMABILITY 129

Proof. We first consider the case p>l, p = (l/p) + e>l /p . Since (n - l)q +1 = eq>0, we
obtain from (6) and (14) the relation

I/J,

I I

i.e. summability (R, A, K + (l/p) + e) of the given series.
In the ca sep> l , /u,<l/p, Lemma 3, together with (6) and (14), gives

i
drJo

-°{(J>>I-*)'
i.e. (15) holds for j>''

N o w l e t p > l , )j. = \jp. With regard to the preceding case, for fi = (l/p) -c thevaluep ' = l/e
is admissible in (15) and, by Theorem 2, this index can also be taken for fj, = l/p. Since, by
a suitable choice of e, 1/e represents a number, arbitrarily large, we see that p ' may assume
every finite value. As can be inferred from a remark of B. Kuttner [8], p' = oo is not admissible
here. Because of its interest, this limiting case may be explained by the following example :f

Let JB{,1^ denote the binomial coefficient f I ) anc^ take, for instance, W;=4*, n\ =|4*,

EV = (log v)~i. Then the series, the partial sums of which are

integral),
>g %

I 0

is not summable (R, n, I), although it is summable | R, n, 0 |2.
If p = l, /x>l, it follows immediately from (6) that p'<oo.. It may be noted that for

/x<l summability (R, \,K+fx) cannot be deduced from summability | R, A, « |X.J
Finally there remains the case p = 1, ^.< 1. As it suffices to take p '> 1, we have, from (6)

and Holder's inequality,

and hence

T l CJ+"(T) |p'dT = o(t>+1><»'-1>r| CJ(«) I d« r ( T -
Jo L Jo J t

on the assumption that
The prooof of the theorem is now completed.
The analogous statement for a decrease in the order does not hold. We prove

THEOREM 9. There is no number P such that for any 8>0

2cn=c \B, A, K + S |"

11 am indebted to A. Peyerimhoff for communicating this example to me.
I This follows immediately from Theorem 5 and the fact that a series summable | B,n,K | need not be

summable (R,n,K -T;) for any T)>0, which was proved by E. Kogbetliantz. Cf. [7, p. 28].
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implies that
Zcn = c \B,\, K\V',

ivhere p' ^P<'p.

Proof. Let us first consider the (more important) part of the index interval, i.e. the part
which is bounded below by 1. For this we show that there does not exist a number P for any
K + 8, and hence, a fortiori, there is no number P, which is independent of the order.

Since for p^l strong Cesaro summabilityf [C ;K + 1,P] is equivalent to the | R,n,K \v-
method,J it is sufficient to look for an example of strong Cesaro summability.

Let p^l and K> - 1/p. The series

is summable (C, K + 8) for any S>0 [3, Theorem 79] (and thus summable [C; K + S + l,p]).
It therefore satisfies the hypothesis of the theorem.

Let C^ define the nth Cesaro mean of order K of the series (16) :

V n j n , ^ i \ n + l - v J "

then we deduce from the identity

« In - 1 + K\ M _ _x « _ _ . . „ _ !

n=l \ «• - 1 / 11-̂ 1

the following relation

{n odd),

= c + o(l) (c#0, w even).

We now see that the series (16) is not summable [0; K + l,p'] for anyp' (i.e. not summable
\ R,n, K \pl for any p'^l), because

| l | | | | |
v=0

however s may be chosen.
For a special order we have thus also obtained a statement concerning the whole index

interval,—namely that in the case K = 0 the series (16) is summable (R,n, 8) for every 8>0,
but not summable | R, n, 0 |p' for any p', if we keep in mind that the methods [G; l,p'] and
| i?, n, 0 I"' are trivially equivalent for all p'.

7. The case p< 1. Strong Rieszian summability for 0<p< 1 is quite different from what
it is in the case p^l. Theorem 8 is no longer true and no connexions with higher indices can
be established.§ There are series, which are summable | R, n, 0 | p for 0<p< 1, but not sum-
mable (R, n, K), however large K may be. As a concrete example, the series consisting of the
terms

f For strong and ordinary Ces&ro summability the notations of [6] are used.
t Cf. [1] and § 5.
§ This remark is contained in a much more general theorem of B. Kuttner [8].
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ON STRONG RIESZIAN SUMMABILITY 131

in' when n — g', \
cn = -v - (71 - 1)' when n = g" +1, V (g^-2 a fixed integer, i/Jsl integral, l< j< l /p ) ,

10 otherwise, J
may be taken.

For 0 < p < 1 the | JR, A, K |"-method does not seem to be very important for applications.
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