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Certain Exponential Sums and Random
Walks on Elliptic Curves

Tanja Lange and Igor E. Shparlinski

Abstract. For a given elliptic curve E, we obtain an upper bound on the discrepancy of sets of multiples

zsG where zs runs through a sequence Z = (z1, . . . , zT ) such that kz1, . . . , kzT is a permutation of

z1, . . . , zT , both sequences taken modulo t , for sufficiently many distinct values of k modulo t .

We apply this result to studying an analogue of the power generator over an elliptic curve. These re-

sults are elliptic curve analogues of those obtained for multiplicative groups of finite fields and residue

rings.

1 Introduction

We denote by Zm the residue ring modulo an integer m ≥ 1 and by Um the group of
units of this ring, that is, the collection of residue classes which are relatively prime
to m. We identify Zm with the set {0, 1, . . . ,m − 1}. For q = pγ a power of a prime
p, let Fq denote the finite field of q elements.

As in [6, 7], we say a sequence Z = (z1, . . . , zT) of T elements from Zt is K-in-

variant if there exists a set K ⊆ Ut such that the sequence kz1, . . . , kzT , taken modulo

t , is a permutation of the original sequence z1, . . . , zT for each k ∈ K.

Let E be an elliptic curve over Fq, given by an affine Weierstraß equation of the

form

Y 2 + (a1X + a3)Y = X3 + a2X2 + a4X + a6,

with coefficients a1, a2, a3, a4, a6 ∈ Fq, such that the partial derivatives a1Y − 3X2 −
a2X − a4 and 2Y + a1X + a3 do not vanish simultaneously at points of the curve
(x, y) ∈ E(Fq) over the algebraic closure Fq of Fq, see [2, 27]. We put h(X) = a1X +a3

and f (X) = X3 + a2X2 + a4X + a6, thus the Weierstraß equation becomes

Y 2 + h(X)Y − f (X) = 0.

For p > 2 one can always take h = 0 and for p > 3 also a2 = 0; for p = 2 at least
one of a1, a3 must be nonzero.

It is known, see [2, 27], that the set E(Fq) of Fq-rational points of E forms an
Abelian group under an appropriate composition rule, which we call addition and
denote ⊕, and with the point at infinity O as the neutral element. Thus, given a point

Q ∈ E(Fq) and an integer z we write zQ for the sum of z copies of Q. We also recall
that

|#E(Fq) − q − 1| ≤ 2q1/2,
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where #E(Fq) is the number of Fq-rational points, including the point at infinity O.
Given a point Q ∈ E(Fq) with Q 6= O we denote by x(Q) and y(Q) its affine compo-

nents, Q =
(

x(Q), y(Q)
)

.
Let G ∈ E(Fq) be a point of order t , that is, t is the size of the cyclic group 〈G〉

generated by G.
Let us denote by X the set of all additive charactersχ of Fq. It is useful to recall that

X consists of the functions χa(z) = exp(2πi Tr(az)/p), where a ∈ Fq and

Tr(u) =

γ−1
∑

j=0

up j

is the trace of u ∈ Fq = Fpγ in Fp, see[21]. The character χ0 is called the trivial

character. Accordingly, we denote by X∗ the set of all nontrivial additive characters.
For an additive character χ of Fq, we consider exponential sums

SZ(E,G, χ) =

T
∑

s=1

χ (x(zsG))

with a sequence Z = (z1, . . . , zT) of nonzero elements of Zt (thus zsG 6= O and x(zsG)
is always defined). If Z is K-invariant for a sufficiently large set K, we obtain an upper

bound on these sums which is analogous to those of [6, 7] obtained for multiplicative
groups of residue rings and finite fields, that is, for character sums with gzs , where g

is a fixed element of multiplicative order t . Similar results can also be obtained for
sums with y(zsG), or more generally with linear combinations ax(zsG) + by(zsG).

We apply our results to studying the distribution of the power generator on el-
liptic curves. Namely, given a point G ∈ E(Fq) of order t , we fix an integer e with
gcd(e, t) = 1, put W0 = G and consider the sequence

(1) Wn = eWn−1, n = 1, 2, . . . .

In a more explicit form we have Wn = enG. Traditionally this generator has been
considered over residue rings, thus producing sequences of the form gen

, see [3, 17,
22]. However, recently elliptic curve analogues of several pseudo random number

generators have been considered, see [1, 4, 10, 11, 14, 15, 18, 24, 26]. Here we obtain
some analogues of the results of [6, 7, 9] and show that the sequence (1) is rather
uniformly distributed, provided t and the multiplicative order T of e modulo t are
large enough.

Our approach follows the path of [6], and thus relates exponential sums
SZ(E,G, χ) to certain exponential sums with rational functions of controlled de-
gree. However, studying when these rational functions degeneralise takes signifi-
cantly more effort than in the case of [6] (where this issue does not cause any com-

plications at all). In particular, we must study linear combinations of division polyno-

mials on elliptic curves. We also remark that some of the parameters involved in this
method behave differently compared to [6], so we must optimize them in a different
way which in turn leads to a different bound.
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We also show that our basic arguments combined with some modifications of
the approach of [12, 25] lead to a lower bound on the linear complexity of the se-

quence (1).
We recall that the linear complexity of an infinite sequence un of a ring R is the

length s of the shortest linear recurrence relation

(2) un+s = as−1un+s−1 + · · · + a0un, n = 0, 1, . . . ,

with a0, . . . , as−1 ∈ R, which is satisfied by this sequence, see [3, 22].
The sequence (1) as well as other sequences from the aforementioned works pre-

sent an attempt to imitate a “random walk” on an elliptic curve. Certainly cryptogra-

phy could be one of the main “consumers” of such streams of random, or pseudo ran-
dom, points. Other transformations T of points on E can be considered, which can
be iterated to generate sequences of points of the form Vn = T (Vn−1), n = 1, 2, . . .,
that may lead to a number of new interesting number theoretic questions as well as to

new useful cryptographic constructions. These constructions can also be generalized
to Jacobians of larger genus curves and more general algebraic varieties.

Throughout the paper, the implied constants in the symbols “O”, “≪” and “≫”
may sometimes depend on the integer parameter ν ≥ 1 and are absolute otherwise

(we recall that A ≪ B and B ≫ A are equivalent to A = O(B)).

2 Preparations

We start with the following simple statement which is Lemma 2 of [6].

Lemma 1 For any set K ⊆ Ut of cardinality K = #K, any fixed δ > 0 and any

integer J ≥ tδ there exists an integer r ∈ Ut such that the congruence

rk ≡ j (mod t), k ∈ K, 1 ≤ j ≤ J − 1,

has Mr( J) ≫ JK/t solutions.

We also need some properties of division polynomials on elliptic curves (for more
details see for example [2, 19, 23, 27].)

We put b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6, and b8 = a2
1a6 + 4a2a6 −

a1a3a4 + a2a2
3 − a2

4.
The division polynomials ψm(X,Y ) ∈ Fq[X,Y ]/(Y 2 + h(X)Y − f (X)), m ≥ 0, are

recursively defined by the relations

ψ0 = 0, ψ1 = 1, ψ2 = 2Y + h(X),

ψ3 = 3X4 + b2X3 + 3b4X2 + 3b6X + b8,

ψ4 = (2X6 + b2X5 + 5b4X4 + 10b6X3 + 10b8X2

+ (b2b8 − b4b6)X + (b4b8 − b2
6))ψ2,

ψ2k+1 = ψk+2ψ
3
k − ψk−1ψ

3
k+1, k ≥ 2,

ψ2k = ψk(ψk+2ψ
2
k−1 − ψk−2ψ

2
k+1)/ψ2, k ≥ 3.

https://doi.org/10.4153/CJM-2005-015-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-015-8


Certain Exponential Sums and Random Walks on Elliptic Curves 341

If q is even or both q and m are odd then ψm(X,Y ) ∈ Fq[X] is univariate and
ψm(X,Y ) ∈ ψ2(X,Y )Fq[X] if q is odd and m is even. Therefore, as ψ2

2(X,Y ) =

4 f (X) + h2(X), we have ψ2
m(X,Y ), ψm−1(X,Y )ψm+1(X,Y ) ∈ Fq[X]. In particular, we

may write ψ2k+1(X) and ψ2
m(X).

The division polynomials can be used to state multiples of a point. Let Q =

(x, y) 6= O, then the first coordinate of mQ is given by

x(mQ) =
θm(x)

ψ2
m(x)

, where θm(X) = Xψ2
m − ψm−1ψm+1.

The zeros of the denominatorψ2
m(X) are exactly the first coordinates of the nontrivial

m-torsion points, that is, the points Q = (x, y) ∈ Fq
2

on E with mQ = O. Note, that

these points occur in pairs Q = (x, y) and −Q = (x,−h(x) − y), which coincide
only if 2Q = O, that is, if x is a zero of ψ2

2(X).

We recall that the group of m-torsion points E[m], for an elliptic curve E defined
over a field of characteristic p, is isomorphic to Z

2
m if p 6 |m.

If m is a power of p then E[m] is either isomorphic to Zm or to {O}. In the second
case the curve is called supersingular, otherwise non-supersingular or ordinary.

On supersingular curves the discrete logarithm problem is much weaker than on

ordinary curves, and thus these may probably introduce some weaknesses in the
pseudo random number generator (1) too. In the sequel, we therefore concentrate
only on the non-supersingular curves.

By induction one can show that θm(X) ∈ Fq[X] is monic of degree deg θm = m2.

Lemma 2 Let E be a non-supersingular elliptic curve defined over Fq. For any integer d

we have that there exists at least one point Q ∈ E
(

Fq

)

of exact order d.

Proof Let d = d0 p j with integers j ≥ 0 and gcd(d0, p) = 1. For an integer m =

m0 pi with integers i ≥ 0 and gcd(m0, p) = 1, there are Mm = m2
0 pi points of order

dividing m. Thus for the number Nd of points of exact order d, by the inclusion-
exclusion principle, we have

Nd =

∑

m|d

µ
( d

m

)

Mm =

∑

m0|d0

j
∑

i=0

µ
( d

m0 pi

)

m2
0 pi,

where µ(k) is the Möbius function.

If j = 0, thus d = d0, m = m0 in the above sums, we obtain

Nd =

∑

m|d

µ
( d

m

)

m2
= d2

∑

m|d

µ
( d

m

)( m

d

) 2

= d2
∑

m|d

µ(m)

m2
= d2

∏

ℓ|d
ℓ prime

(

1 −
1

ℓ2

)

.
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If j ≥ 1, only the terms with i = j and i = j − 1 are present in the above sum.
Hence,

Nd =

∑

m0|d0

(

µ
( d

m0 p j

)

m2
0 p j + µ

( d

m0 p j−1

)

m2
0 p j−1

)

=

∑

m0|d0

(

µ
( d0

m0

)

m2
0 p j + µ

( d0 p

m0

)

m2
0 p j−1

)

=

∑

m0|d0

(

µ
( d0

m0

)

m2
0 p j − µ

( d0

m0

)

m2
0 p j−1

)

=
(

p j − p j−1
)

∑

m0|d0

µ
( d0

m0

)

m2
0 = d2

0

(

p j − p j−1
)

∏

ℓ|d0

ℓ prime

(

1 −
1

ℓ2

)

.

Thus in each case Nd > 0.

The following statement deals with linear combinations of multiples of a point G.
It is similar to Lemma 6 of [26] (which treats the special case of D < p = q). In fact
the degree bounds are straightforward, only the non-vanishing of the polynomials is
not immediately obvious.

Lemma 3 Fix integers 1 ≤ d1 < · · · < ds ≤ D and fix elements c1, . . . , cs ∈ Fq with

cs 6= 0. Let E be a non-supersingular elliptic curve defined over Fq. Let us consider the

following rational function

L(X) =

s
∑

i=1

ci
θdi

(X)

ψ2
di

(X)
∈ Fq(X).

There are nonzero polynomials H1,H2 ∈ Fq[X] with deg H1, deg H2 < sD2 such that

L(X) =
H1(X)

H2(X)
.

Furthermore, L(X) has a pole of multiplicity one.

Proof We have

L(X) =

s
∑

i=1

ci
θdi

(X)

ψ2
di

(X)
=

H1(X)

ψ2
d1

(X) . . . ψ2
ds

(X)
=

H1(X)

H2(X)
.

Obviously,

deg H1 ≤ d2
s +

s−1
∑

i=1

(d2
i − 1) < sD2 and 0 < deg H2 =

s
∑

i=1

(d2
i − 1) < sD2.
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By Lemma 2 there exists a point Q ∈ E(Fq) of exact order ds. Then θds
(X)/ψ2

ds
(X)

has a pole at x(Q), while none of the other θdi
(X)/ψ2

di
(X), 1 ≤ i < s, can have a

pole there. Hence, L(X) has a pole at x(Q) and hence it cannot be constant on E.
Moreover, this pole is of multiplicity one.

We also need the following upper bound which is a special partial case of Corol-
lary 1 of [16].

Lemma 4 Let E be a non-supersingular elliptic curve defined over Fq. Let f (X) be a

rational function of degree N having a pole of multiplicity one. Then the bound

max
χ∈X∗

∣

∣

∣

∣

∑

Q∈H
f (x(Q))6=∞

χ( f (x(Q)))

∣

∣

∣

∣

= O
(

Nq1/2
)

holds, where H is an arbitrary subgroup of E(Fq).

In particular, Lemma 3 and Lemma 4 imply the following result which forms the
basis of our arguments.

Corollary 5 Fix integers 1 ≤ d1 < · · · < ds ≤ D and fix c1, . . . , cs ∈ Fq with cs 6= 0.

Let E be a non-supersingular elliptic curve defined over Fq. Then the following bound

holds:

max
χ∈X∗

∣

∣

∣

∣

∑

Q∈H
Q6=O

χ
(

s
∑

i=1

cix (diQ)
)

∣

∣

∣

∣

= O
(

sD2q1/2
)

,

where H is an arbitrary subgroup of E(Fq) of order t = #H such that

gcd(t, d1 . . . ds) = 1.

Finally, we need the following simple statement:

Lemma 6 Let a sequence un, n = 0, 1, . . . , satisfy a linear recurrence relation of the

form (2) over Fq. Then for any s + 1 pairwise distinct non-negative integers h1, . . . , hs+1,

there exist c1, . . . , cs+1 ∈ Fq, not all equal to zero, such that

s+1
∑

i=1

ciun+hi
= 0, n = 0, 1, . . . .

Proof The set of all solutions of any linear recurrence relation over any field F is
a vector space of dimension s over F, for example, see Chapter 8 of [21]. There-
fore, any s + 1 solutions are linearly dependent. In particular, the s + 1 sequences

un+h1
, . . . , un+hs+1

, n = 0, 1, . . . , are linearly dependent.
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3 Main Result

The following bound is an analogue of Lemma 4 of [6]. Accordingly our proof fol-
lows along the same lines as that of [6]. However, the proof is also based on the results
of Section 2 which are new and use special properties of elliptic curves. Thus the final

result is different.

Theorem 7 Let Z = (z1, . . . , zT) be a K-invariant sequence of nonzero elements of

Zt with respect to the set K ⊆ Ut of cardinality K = #K and let N be the number of

solutions of the congruence zr ≡ zs (mod t), 1 ≤ r, s ≤ T. Let E be a non-supersingular

elliptic curve defined over Fq. Let G ∈ E(Fq) be of order t ≥ q1/2+ε for some fixed ε > 0.

Then for any integer ν ≥ 1 the following bound holds:

max
χ∈X∗

|SZ(E,G, χ)| ≪ N1/2νT1−1/νt(ν+1)/ν(ν+2)K−1/(ν+2)q1/4(ν+2).

Proof Fix some ε > 0 and put

J =
⌈

t(ν+1)/(ν+2)K−ν/(ν+2)q−1/2(ν+2)
⌉

.

In this case J ≥ t1/(ν+2)q−1/2(ν+2) ≥ qε/(ν+2), thus Lemma 1 applies.
We select r as in Lemma 1. Let M denote the subset of K which satisfies the

corresponding congruence and let M = #M.

Define R(u) as the number of elements z ∈ Z with z ≡ u (mod t). Note that
∑

u∈Ut

R(u) = T and
∑

u∈Ut

R(u)2
= N.

We also have R(ku) = R(u) for any k ∈ K since repetitions in Z are preserved under
the permutation of Z generated by multiplication by k ∈ K. Therefore

SZ(E,G, χ) =

∑

u∈Ut

R(u)χ (x(uG)) =
1

M

∑

k∈M

∑

u∈Ut

R(ku)χ (x(kuG))

=
1

M

∑

k∈M

∑

u∈Ut

R(u)χ (x(kuG)) =
1

M

∑

u∈Ut

R(u)
∑

k∈M

χ (x(kuG)) .

By the Hölder inequality we have

|SZ(E,G, χ)|2ν ≤ M−2ν
(

∑

u∈Ut

R(u)
∣

∣

∣

∑

k∈M

χ (x(kuG))
∣

∣

∣

) 2ν

= M−2ν
(

∑

u∈Ut

(

R(u)2
) 1/2ν

R(u)(ν−1)/ν
∣

∣

∣

∑

k∈M

χ
(

x(kuG)
)∣

∣

∣

) 2ν

≤ M−2ν
(

∑

u∈Ut

R(u)2
)(

∑

u∈Ut

R(u)
) 2ν−2 ∑

u∈Ut

∣

∣

∣

∑

k∈M

χ
(

x(kuG)
)

∣

∣

∣

2ν

= M−2νNT2ν−2
∑

u∈Ut

∣

∣

∣

∑

k∈M

χ(x(kuG))
∣

∣

∣

2ν

.
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Let G = 〈G〉 be the cyclic group generated by G and let G∗
= G\O. Then,

∑

u∈Ut

∣

∣

∣

∑

k∈M

χ (x(kuG))
∣

∣

∣

2ν

≤
t−1
∑

u=1

∣

∣

∣

∑

k∈M

χ (x(kuG))
∣

∣

∣

2ν

≤
∑

l1,...,lν∈M

∑

k1,...,kν∈M

∑

Q∈G∗

χ
(

ν
∑

i=1

(x (liQ) − x (kiQ))
)

≤
∑

l1,...,lν∈M

∑

k1,...,kν∈M

∑

Q∈G∗

χ
(

ν
∑

i=1

(x (rliQ) − x (rkiQ))
)

because gcd(r, t) = 1. For the case that (k1, . . . , kν) is a permutation of (l1, . . . , lν),
we must use the trivial bound and this gives a contribution O (Mνt). In case this
does not happen (there are at most M2ν ways), the inner sum above is a character
sum with a rational function of degree at most 2ν J2. By Corollary 5 each of these

terms contributes at most O
(

J2q1/2
)

. Thus

|SZ(E,G, χ)|2ν ≪ M−2νNT2ν−2
(

Mνt + M2ν J2q1/2
)

= NT2ν−2
(

M−νt + J2q1/2
)

and so

SZ(E,G, χ) ≪ N1/2νT1−1/ν
(

M−1/2t1/2ν + J1/νq1/4ν
)

.

By Lemma 1 we have M ≫ JK/t thus

SZ(E,G, χ) ≪ N1/2νT1−1/ν
(

t(ν+1)/2νK−1/2 J−1/2 + J1/νq1/4ν
)

.

Substituting the chosen value of J, after simple calculations we obtain the stated re-
sult.

In the most interesting case when

ln K ∼ ln N ∼ ln T ∼ ln t

the bound of Theorem 7, taken with ν = 1, yields

max
χ∈X∗

|SZ(E,G, χ)| ≪ t5/6+o(1)q1/12,

which is nontrivial for t ≥ q1/2+ε.

In another interesting special case when Z is a subgroup of Ut we can select
K = Z, so we have N = K = T, and the bound of Theorem 7 takes the form

(3) max
χ∈X∗

|SZ(E,G, χ)| ≪ T1−(3ν+2)/2ν(ν+2)t(ν+1)/ν(ν+2)q1/4(ν+2).
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One easily verifies that if T ≥ t2/3q1/6+ε and t ≥ q1/2+ε, then taking sufficiently
large ν, makes the bound (3) nontrivial. To see this, it is enough to remark that

T−(3ν+2)/2ν(ν+2)t(ν+1)/ν(ν+2)q1/4(ν+2)
=

(

T−1tανqβν
)(3ν+2)/2ν(ν+2)

,

where

αν =
2

3

(

1 +
1

3ν + 2

)

and βν =
1

6

(

1 −
2

3ν + 2

)

.

4 Power Generator on Elliptic Curves

Let E be a non-supersingular elliptic curve defined over Fq and let G ∈ E(Fq) be of
order t .

Let Wn, n = 0, 1, . . . , be a sequence generated by (1). It is clear that this sequence
is periodic with period T which is the multiplicative order of e modulo t .

Fix a basis {ω1, . . . , ωγ} of Fq = Fpγ over Fp. For two integer vectors α =

(α1, . . . , αγ) and β = (β1, . . . , βγ) with 0 ≤ αi < βi < p, i = 1, . . . , γ, we consider

the box

B[α,β) = {ξ ∈ Fq | ξ = ξ1ω1 + · · · + ξγωγ , ξi ∈ [αi , βi), 1 ≤ i ≤ γ}

of volume

volm B[α,β) =

γ
∏

i=1

(βi − αi)

and denote by N(α, β) the number of points Wn, n = 0, . . . ,T − 1, satisfying
x(Wn) ∈ B[α,β).

Let B denote the set of all such boxes B[α,β).
We now denote by ∆e(E,G) the largest deviation of N(α, β) from its expected

values, that is,

∆e(E,G) = sup
B[α,β)∈B

∣

∣

∣
N(α, β) −

volm B[α,β)

q
T
∣

∣

∣
.

Theorem 8 Let E be a non-supersingular elliptic curve defined over Fq. Then for any

integer ν ≥ 1, the following bound holds:

∆e(E,G) ≪ T1−(3ν+2)/2ν(ν+2)t(ν+1)/ν(ν+2)q1/4(ν+2)(ln p + 1)γ .

Proof We have
∑

χ∈X

χ(ξ) =

{

0 if ξ = 0,

q if ξ ∈ F
∗
q .

Therefore

N(α, β) =
1

q

T−1
∑

n=0

∑

ξ∈B[α,β)

∑

χ∈X

χ(x(Wn) − ξ)

=
1

q

∑

χ∈X

T−1
∑

n=0

χ(x(Wn))
∑

ξ∈B[α,β)

χ(−ξ).
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Separating the term T volm B[α,β)/q, corresponding to χ0 we derive

∣

∣N(α, β) −
volm B[α,β)

q
T
∣

∣ ≤
1

q

∑

χ∈X∗

∣

∣

∣

T−1
∑

n=0

χ(x(Wn))
∣

∣

∣

∣

∣

∣

∑

ξ∈B[α,β)

χ(ξ)
∣

∣

∣
.

We remark that the set Z = {1, e, . . . , eT−1} is a subgroup of Ut , thus the bound (3)
applies to the first sum. Hence, for any integer ν ≥ 1,

∣

∣N(α, β) −
volm B[α,β)

q
T
∣

∣ ≤ T1−(3ν+2)/2ν(ν+2)t(ν+1)/ν(ν+2)q1/4(ν+2)

×
1

q

∑

χ∈X∗

∣

∣

∣

∣

∑

ξ∈B[α,β)

χ(ξ)

∣

∣

∣

∣

.

Using this bound and then the inequality

∑

χ∈X

∣

∣

∣

∣

∑

ξ∈B[α,β)

χ(ξ)

∣

∣

∣

∣

≤ q(1 + ln p)γ

(see [5] or [28, Lemma 6]), we finish the proof.

Let Le(E,G) denote the linear complexity of the sequence x(Wn), n = 0, 1, . . . ,
given by (1).

Theorem 9 Let E be a non-supersingular elliptic curve defined over Fq. Then the

following bound holds:

Le(E,G) ≫ Tt−2/3,

Proof Let s = Le(E,G).

Put J =
⌈

t1/3
⌉

. Thus by Lemma 1, there exist r ∈ Ut and Mr( J) ≫ JT/t values

of h, 0 ≤ h ≤ T − 1 and j, 0 ≤ j ≤ J − 1, with reh ≡ j (mod t). If s ≥ Mr( J), then
the bound immediately follows.

Otherwise, for these values of r, let us fix any s + 1 ≤ Mr( J) such pairs (h, j) of

them which we call (hi , ji), i = 1, . . . , s + 1. By Lemma 6 we see that there exist
c1, . . . , cs+1 ∈ Fq, not all equal to zero, such that

0 =

s+1
∑

i=1

ciWn+hi
=

s+1
∑

i=1

cix
(

en+hi G
)

=

s+1
∑

i=1

cix
(

ehi enG
)

, n = 0, 1, . . . .
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Therefore, the equation

s+1
∑

i=1

cix
(

ehi Q
)

= 0, n = 0, 1, . . .

is satisfied by at least T points Q ∈ 〈G〉. Taking into account that for r ∈ Ut , the map

Q → rQ is a permutation on 〈G〉, we obtain that the equation

s+1
∑

i=1

cix
(

jiQ
)

=

s+1
∑

i=1

cix
(

rehi Q
)

= 0, n = 0, 1, . . .

is satisfied by at least T points Q ∈ 〈G〉. Using Lemma 3 we derive

T ≤ (s + 1)( J − 1)2

which implies the desired result.

5 Remarks

We have already remarked that the sequence (1) is an elliptic curve analogue of the

power generator in finite fields and residue rings. Unfortunately, as in that case, we
do not know how to study the distribution of the s-tuples (x(Wn), . . . , x(Wn+s−1)),
except for the case when e is small (for example e = 2), see [9].

Elliptic curve analogues of the more traditional linear congruential generator have

been studied as well, see [1, 4, 10, 11, 14, 15, 18]. In this case, one selects a point
G ∈ E(Fq) of order t and an arbitrary initial value U0 ∈ E(Fq) and then computes

(4) Un = Un−1 ⊕ G, n = 1, 2, . . . .

Thus one gets a sequence (4) of period t at the cost of one addition on E(Fq) per

point. Obtaining pseudo random points by using (1) is, generally, more expensive.
However, for e = 2 the addition of distinct points in (4) is replaced by one point
doubling. This operation is equally expensive in even characteristic and needs only
one extra squaring in Fq for p ≥ 3. Thus, provided that the order of 2 modulo t is

large, the power generator offers a good alternative. Furthermore, in even character-
istic to obtain Wn = enQ directly, one can use explicit formulas [13] which save some
operations.

There are several more natural questions about the sequence (1) which would be

interesting to study. For example, in the case q = p, it would be desirable to show
that for a random choice of the prime p, a curve E, a point G ∈ E(Fp), and an integer
e, the period T of the sequence (1) is likely to be large, in particular, is likely to be
above the nontriviality threshold of Theorem 8. For the classical power generator

such results are provided by [8]. It seems that combining the upper bounds of [8] on
the number of elements of small multiplicative order in “random” residue rings with
the results of [20] on the distribution of the number of points on “random” elliptic
curves, one can get such results.
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