ON SIGNED BRANCHING MARKOV PROCESSES
WITH AGE

TUNEKITI SIRAO

To Professor Kiyoshi Noshiro on the occasion of his 60th birthday

§1. Introduction. Many authors have considered branching Markov
processes for the probabilistic treatment of semi-linear equations. Recently
J.E. Moyal [11], [12] gave a formulation for a wide class of branching
processes. A similar idea was used in A.V. Skorohod [18] and N. Ikeda-M.
Nagasawa-S. Watanabe [4]-[7]. Applying their method, we shall consider in
this paper the following problems (A) and (B).

(A): Let E be a compact Hausdorfl space with the second axiom of
countability and assume the following are given: (1) H,: a strongly
continuous semi-group on C(E) = {f; continuous function on E}, (2) ¥ :
the infinitesimal operator of H,, (3) k(x), ¢,(%), »=0,1,2, - -+, are con-
tinuous functions on E such that #k(x) =n§‘;,0qn(x) and ﬁ]olqn(x)l < oo. How

can we interprete probabilistically the following equation?

(1. 1) 3“<;;ﬂ — Zult, o) + kz)Fla;ult,a)), z€E, t=0,
where

P - "
1. 2) F(z;¢) = ) nzoqn(x)é s ze E, £ R.

(B): How can we interprete probabilistcally the following equation?

Out, ) o 1 gyt 0) + Glult,x), @< RY >0,

(1.3) ot 5

where 4 denotes the Laplacian in 2z and G(&) satisfies

(1. 4) G0) =G(1) =0, G(&) >0 and G’(0) > G'(8), 0<é<,

Received April 17, 1967.
1) R% denotes the d~dimensional Euclidian space.
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The equation (1. 3) for more general G was discussed by A. Kolmogoroff-
1. Petrovsky-N. Piscounoff [9].

We first consider the problem (A4). Among others, Ikeda-Nagasawa-
Watanabe [4]-[7] have shown that (1. 1) can be interpreted probabilistically
by means of branching Markov processes when the g¢,(x) are non-negative,
@(x) =0 and

(1. 5) Fla;€) = ﬁ‘&% 4(@)E™ — £}, veE, £ R.

Hence, problem (A) becomes a question of eliminating the restrictions con-
cerning positivity of ¢,(z), ¢,(z) =0 and the term —¢ in the right hand side
of (1. 5).

Let us next consider the following special case of (1. 1): (1) E=R*U{c}
be the spade obtained by the one-point compactification of R?, (2) ¢,=¢,=0

. * 1
and the other ¢,s are non-negative constants, (3) Xg,=1, (4) <& =5 4
n=2

and
F(g) = 2qg.6"— €.
n¥#l

Then (1. 1) becomes a special case considered by Ikeda-Nagasawa-Watanabe
[6], and is written as follows:

ou(t, x)

57 = —% du(t, 2) + F(u(t, x)), x € R% t=03

where F(0)=F(1)=0. If we put «(¢,2) =1—v(t,2) and G(&) = —F(1—¢),
then the above equation turns out to be the following equation

au(t, x)

Lol — L it @) + Gllt, @), v e R 120,

where G satisfies (1. 4). This means that problem (B) can be solved by
means of a branching Markov process in the special case stated above.
Now, we shall sketch here the contents of §§2-8. In §2, we shall give
the notations which are used in the later discussions and give also the
definitions of a branching Markov process with age and a signed branching

2) We can not regard here ¢,(x)=—1 because k(x) =n§lq,,(x).

8) The one-point compactification of R* was used to apply the general theory and hence
we omitted the point o because we are interested in the equation whose variable domain
is R%,
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Markov process with age after introducing extenced state spaces S and S.

In §3, we shall consider a branching Markov process with age Y, on
8 satisfying Condition 1 stated there. Then, for a given system
{ga(%); » =0,2,3, - - -} of non-negative functions, k(x) =n§}1qﬂ(x) and F(x; &)
defined by (1. 2) where g,(x) =0, we can discuss an integral equation which
corresponds to the one called “S-equation” in [7]. Under certain condi-
tions, the integral equation can be transformed into the equation of type
(1.1). In this case, u(¢, x) =Tz@(x, 0)» is a solution of (1.1) with
(0, %) = f(x) if u(t,«) is finite. This shows that we can eliminate the term
—¢ in the right hand side of (1. 4) by introducing of the notion of age.
Moreover, for G(¢) =&", the notion of branching Markov processes with
age will serve to answer the question as to the existence of a non-trivial
solution of (1.3) which does not blow up in [0,0). (See §6 and M.
Nagasawa-T. Sirao [14].)

In §4, we shall consider a signed branching Markov process with age
Z, on 8§ satisfying Condition 2 which is essentially identical to Condition 1
except for the difference of branching (splitting) law caused by the differ-
ence of the state spaces § and S. After making the similar considerations
as in §3, we can interpret (1. 1) probabilistically. That is to say u(¢,x) =
U,%(x,0,0)-” is a solution of (1.1) with «(0,x) = f(x) if u(f,x) is finite.
This means that we can solve the problem (A4) by means of signed branch-
ing Markov processes with age. (The existence of such (signed) branching
Markov processes with age discussed in §§3-4 will be shown in §§7-8.)

In §5, we shall give a sufficient condition called Condition 3 in this
paper which includes Condition 2 and makes a given Markov process Z,
become a signed branching Markov process with age on §. This part of
the present paper, Ikeda-Nagasawa-Watanabe [7] and Nagasawa [13] overlap
in some respects, because the proof of Theorem 5.1 is essentially the same
as one given in [7].

In §6, we shall consider a Markov process Z, satisfying Condition 3
whose existence is shown in §§7-8. According to the discussions in §5, Z,
is a signed branching Markov process with age. Let f be a positive con-~

4 T, denotes the semi-group induced by Y, f-\2 is a function of special type defined
by (2. 1) and (,0) € S.

5) U, denotes the semi-group induced by Z,, }\/2 is a function of special type defined by
(2. 2) and (2,0,0) € S.
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tinuous function on R¢ with | fll=sup{|f(x)];2 € R*}<1 and a< R!.

When we consider u(e;¢,2) =UM/\-/2(x,0,0), where U, denotes the semi-
group induced by Z, and xz € R?, u(a;t,x) can be expressed in the power
series of a if u(a; t,2) is finite. But the solution of (1. 3) with initial value
af, in general, can not be expressed in the power series of a. Accordingly,
if G(¢) is not an analytic function of &, then we can not obtain the solution
of (1. 5) with initial value f directly by means of signed branching Markov
processes with age as in the case of analytic G. However, if G is con-
tinuously differentiable on [0,1] and satisfies the condition (1. 4), then we
can express the solution u(¢,z) of (1. 3) with initial value f as the uniform
limit of #,(¢,%) in the wide sense where u,(¢,z) is of the type considered in
§4, i.e. there exists a sequence of signed branching Markov processes with
age Z¢” on S and corresponding semi-groups U$” such that

u(t,z) =limu,(¢,2), x € R?,
where
~
u,(t, ) =Uf-2(x,0,0), xe RY t=0.

In §7, we shall construct a certain Markov process Y, which will be
used in §8 in the constructions of branching Markov processes with age and
signed branching Markov processes with age. We can regard this Markov
process Y, as corresponding to the creation of mass in the following sense.
Let k(x) be a bounded continuous function on E and consider the equation

e LD gy Lkt e,  zeE, 120,

where & is a infinitesimal operator of a semi-group H, corresponding to a
Markov process X, on E. If k(x) is non-positive, we can treat (1. 6) by
killing X;. So we may consider (1. 6) as the equation corresponding to the
killing when k(z) is non-positive. On the other hand, we may consider
(1. 6) as the equation corresponding to the creation of mass when k(x) is
non-negative. In the theory of Markov processes, there are, as far as I
know, two methods of interpreting (1. 6) when k(x) is non-negative. One of
them has been indicated by G.A. Hunt [3]. The other method is based
on the theory of a branching Markov process, where (1. 6) appears' as the
mean number of particles. (cf. K.Ito-H.P.McKean [8] and Ikeda-
Nagasawa-Watanabe [6] or [7]. ) Our method of describing the creation of
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mass uses age as an auxiliary variable. Let N be all the non-negative
integers. We shall construct a strong Markov process [X,, N on the state
space E x N and consider the corresponding semi-group V.. Then, for a

given bounded continuous function f on E, u(t,2) =th>(x,0) is the
solution of (1. 6) with the initial value f.

In §8, we shall construct a Markov process Z, satisfying Condition
3. Then, by the discussions in §5, Z, is a signed branching Markov
process and the existence of the processes in §§3-4 is proved. We here
note that the method of J.E. Moyal [10] will play an essential role in the
construction of the processes dealt with in §§7-8.

The author wishes to express his hearty thanks to Professors N.Ikeda,
M. Nagasawa and S. Watanabe who sent him preprints of their papers [4]-[7]
and gave him various advice. The author also expresses his deep gratitude
to Professor K. Ito who gave him valuable advice, too.

§2. Notations and Definitions. A branching process is one of the
typical mathematical models used to describe the growth of the number of
particles of a population in which each particle either produces new particles
of the same character or dies out, and there is no interference among them.
In order to describe the state of » particles, it seems to be natural to use
the n-fold symmetric direct product space of the state space of each
particle. Following [4], we here introduce some notations along this line.

Let E be a compact Hausdorfl space satisfying the second axiom of
countability. We denote the n-fold product space of E with itself by E™
and say that (x/,23, - -, z;) € E™ is equivalent to (%, %y * + +, &,) € E™ if
and only if (x{,25,---, %/, is obtainable from a permutation of
(%1, %9y + =+, 2,). The E" is defined as the quotient space of E™ by the
above equivalence relation. By the quotient topology, E™ is compact. A
point x in E" is also denoted by [z, 2, -+ -, 2,] as a collection of n-points
#; € E disregarding order. E° is considered as the set of the single point 3,
where 9 denotes an extra point.

Let N={0,1,2, - - -} and N™ be the n-fold product space of N with
itself. A point (pl,ps - -, pi) of N™ is said to be equivalent to
(D1 D2y + + *5 Du) € N ,ﬁ}l“ Zi%% p;.© The quotient space of N™ by the

n
6) In the future discussions, 2} p; is essential in the role of (p;, P ***, P») and hence
iz1

we used here this equivalence relation.
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above equivalence relation is denoted by N®. A point p in N*, n=1, is
a collection of equivalent points in N™ and is denoted by [p,, Dy * * *5 Pal
if it contains (py, s * + +, 2,)EN™. |p| denotes i‘_Z.‘Ipi for p=[py, psy + + *, Dal
Let S=E X N be the topological sum of Ex {p}, p€N. Then S is a
locally compact Hausdorff space satisfying the second axiom of countability.
S™ is defined as the n-fold product space of S with itself and ((x{,p7),
(5, %) + = +» (%], p7)) is said to be equivalent to ((2;, 1), (%2 D2)s * * *5 (Xns D))
if [xf,2%, +++, 2;] is identical to [, %, -+ -, z,] as a point of E* and if
[p1, 0%+« +, p] is identical to [p,, Py - -+, ;] as a point of N*. S™ is
defined as the quotient space by the above equivalence relation. Then S™
is locally compact with respect to the quotient topology. A point z in S
is denoted by [[®, 25 « * *5 2,1, [Py Dss = +5 D,]] or, for short, [x, p] when
x =22, 2,] € E" and p=1[p;, s+ + +, p] EN".

Let us consider the topological sum :QOS" where S° denotes {3} X N, @
being an extra point. This topological sum is denoted by S. Then S is
a locally compact and non-compact Hausdorfl space satisfying the second
axiom of countability. If we consider the mapping g from S to (nt_joE")xN
defined by

9([x, pl) =[x, | P11,

then § is isomorphic to (nEJ:OE") x N, where :QOE“ denotes the topological
sum of E*. 8 =8 U {4} is defined as the space obtained by the one-point
compactification of . When A and B are subsets of E and E™ respect-
ively, the sets A xX{p} and B X {p} are denoted by [A4,»] and [B, p]
respectively.

Let J be the set {0,1,2,3} and S be the topological sum of 8§ x {j},
jeJ. A point in § is denoted by [x,p,jl, [x,pl€ S, but {4} x J is
considered as one point and is denoted simply by 4. Then we may
consider § is the space obtained by the one-point compactification of §x J.
For a subset [B, p] of 8, the set [B, pl X {j} is denoted by [B, p,J].

Now let 2° be a compact or locally compact Hausdorfl space. We
shall introduce the following function spaces which are supposed to be real.

C(%”) = the set of all bounded continuous functions on 2°,
B(%°) = the set of all bounded Borel measurable functions on &#°,
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CH2) ={f; f C(2) and || f]| = sup | f(@)] <13,
B*(:2°) ={f; f€ B(2°) and | flI<1}.

When 2 is a locally compact Hausdorff space, let X = 27V {o} be the
space obtained by the one-point compactification of 2 and set

i) ={f; f € C(X), lim f() =0},

CHZL)={f; f€C(Z) I flII<1}.
C|(2°) and C#¥2°) are denoted by C,X) and C¥X) occasionally. The

subclass of each function space introduced above formed of all non-negative
elements is denoted by “+7, eg. C(2)*, B(Z)* ---., etc. We shall
denote by “—’ the closure with respect to the norm | ||, so
CH2)={f; feC(Z) and || flI<1},
BXZ) ={f; f€ B(Z) and | fI=1},

and so on.

The set of all Borel subsets of .27 is denoted by Z(2°).

Now we shall define several operations on functions which will play an
important role in the future discussions. First of all let us define a mapping
from B(E) into the space of all measurable functions on 8§ by

ar, if z=1[0,p]l€S°
N 7 .
2.1)  fealz) =" 1 f(z;), if z=[x,p]€S" and x =[wy, @+, 2al,
0, if z=4,
0 N
where 21=0. If feC*E) and 0<21<1, then QEC%‘(S’), while f-2

is unbounded for 2>1.

Next we shall define a mapping ~ from B(E) into the space of all
measurable functions on § by

@2  Foalx i) = (<07 o), v, pjle 8,

where 2=0 and [ ] denotes Gauss’ symbol.
For any function g on 8, we define a function g|; on E by

(2. 3) gl x(x) = g([=,0]), zE€E.
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We define also %], for any function on § by

(2. 4) k| () = h(x,0,0), x€E.

Remark 1.  Let (EJjOE") U {4} be the space obtained by the one-point

compactification of f_joE”. Ikeda-Nagasawa-Watanabe [4]-[7], used a map-

ping -~ from B(E) into the space of all Borel measurable functions on
( 0L_jOE") U {4} defined by

1 , if x=2a,
2.5 f={ T f@), if x=[a,m,: -, zlcE
0

, if x=4.

Then the linear hull of the set {f; f € C*E)*} is dense in Cy CJ_OIE") (cF.

Lemma 1. 4 in [7]). Accordingly, the linear hull of the set {f‘\z; FECHE),
0=<21<1} is dense in C,(8) because the linear hull of {1; 2A(p)=2", 0<<1<1,
p» € N} is also dense in C,(N).

Comparing the two mappings -~ defined by (2. 1) and (2. 5), we have

71 (% B) = (%) .

71

So we need not distinguish between and f if there arises no danger of

confusion.

Now we shall consider a Markov process X ={X,,¢, %, P,; x € 2}
on 2°. Let _Z. be the smallest s-algebra which contains all elements of
B, for any t =0. A non-negative random variable ¢ is said to be a (. %;-)
Markov time if

{w; c(w) =tk € %,
for any ¢+ =0. For each Markov time z, we set
F.={A;Ae Z. and AN {w;c(w) <t} ZF, for any ¢t =0}.

Then it is easy to see that Z. is a cs-algebra. A measurable Markov pro-
cess X is called a strong Markov process if for any Markov time - and for

any t=0, x € 2°, f€ B(2) and A € %,
E[f(Xeie); AN{c < &} = E[Ex [f(X)]; AN{z <},
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where E, denotes the integral by P,.

In this paper, with the exception of §§7-8, we shall assume that each
sample- function of a Markov process is right continuous in ¢ and has its
left limit at any ¢ >0. We also use the same letter ¢ for the terminal
times of different Markov processes X and Y and the same letter &, for
the corresponding s-algebras which make X, or Y, measurable if there arises
no danger of confusion.

Let Y={Y,=[X,N)], {, B P, ,;lx, ple 8} be a strong Markov pro-
cess on 8§, where [X,(w), N,w)] =[x, p] means X,(w)=x and N,w)= p.
We shall define the functionals of ¥ by

n, if [X,(w), N(w)l € S", n=0

Ew) = .
oo, if [Xi(w), Ni(w)]= 4,

o(w) = inf{t > 0; &,(w) # &(w) or 52? | Ny(w)| =0},

o(w) = inf {# < z(w); |N,(w)| # [No(w) |},
Tow) =0, ,(w) = t(w), Tpu(w) = t,(w) + Or,c(w), (n=1),
aow) = 0, a,(w) = o(w) and o,,,(w) = g,(w) + Os,0(w), (n=1),
where 6 denotes the shift operator (cf. E.B. Dynkin [1]).
Further let Z={Z, =[X,,N,, J.}, ¢, %, P[x'w.];

Markov process on S, where [X,(w), N,(w), J.(w)] =[x, p, j] means X,(w) = x,
N/ w) = p and J,(w) =j. Then we define the functionals of Z by

[x, p,j]1 € 8) be a strong

7(w) = inf{t >0; Jo(w) # Jo(w) or sup | N|(w)| =0},
o(w) = inf {t < 7(w); |N(w)| # | No(w)!3,

2.7
7o(w) = 0, 7 (w) = 9(w), Ppii(w) = 7,(w) + G0(w), (n=1),

ao(w) =0, o,(w) = o(w) and 6,.,(w) = g,(w) + s,0(w), (n=1)9

Evidently z,, 7, and ¢, are Markov times.

7 In this paper, we regard that inf ¢=co where ¢ denotes the empty set.

8) Two functional ¢’s defined for Y and Z are denoted by the same letter because the
definitions are identical except for the conditions ¢<z and ¢<7p, and this notation is con-
venient for the later use. Also, Y and Z are different Markov processes on the different state
space S and S, and accordingly there arises no danger of confusion when we use the same
letter a.
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Now we shall give here the definitions of a branching Markov process
with age on § and a signed branching Markov process with age on §.

DEerFiniTION 2. 1. A strong Markov process Y ={Y, =[X,,N,], {, F,,
P ;[x,pl€ 8} is said to be a branching Markov process with age, if the semi-

[x,p)?

group {T;; t =0} on B(S) induced by Y satisfies

o~ T~
2. 8) Tifea=Tf Dlg-2, fecCcxE),

where t=0 and 0<a< 1.

DEeriniTION 2. 2. A strong Markov process Z = {7, =[X,,N,, ]}, &, B
P plxpile S} is said to be a signed branching Markov process with age, if

the semi-group {U,; t =0} on B(S) induced by Z satisfies

~~~ /—/b—/
(2. 9) Uef+2=(US D512, feCXE),

where t =0 and 0<2< 1.

In both processes Y and Z, |N,| is considered as the total age of the
particles and hence s, is called the nth jumping time of age N,. <7, and
7, are called the nth branching times of ¥ and Z respectively.

Remark 2. As was mentioned already, the linear hull of {J{-};
f€C*E), 0=<21<1}is dense in C,(S). Hence the process on S is uniquely
determined by the values of th-\,z considered in (2. 8). But, unfortunately,
the same unique insistence does not hold for the case of U, (cf. Remark 2
in §4).

Remark 3. When Y, =[X,N,] is a branching Markov process with
age, [d,p], p € N, and 4 are traps because

PN —
th-z(a,p)=(th-2)lE-2(a,p)=2”, PEN,
and
/\

P N\
Tof +2(d) = (Tef-|g-2(4) =0,
for any f€ C*E)* and 0<1<19

9 cf. [6], Theorem 2.1.
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Remark 4. For any bounded continuous function f on E, af € C*E)
if || <_1/||f|| . So, if (2. 8) holds then we have for f e C(E)— C*E)

N~ —
(2. 10) Twf-2=Taf g2, lal <1/ f1l.

On the other hand, both sides of the above equation can be expressed in
the power series of a. So, if we put

P o P oo
Teaf-2x, p) = B E, ,laf-2Yy); Y € S = 3 a.([x, pla”

and

= -
(Tiaf * Dz A0 B) = 3 0allx, o™,

then (2. 10) shows that
(2° 11) an([x9 p]) = bn([x1 p]) ’ n =0, 1, AN
Since the finiteness of T.f-1 and (T,.f:2)|z+ 2 implies that

21,12, pD1 < o0, 3 [b ([, P < o0
and

T.F e ) = Saullx o)),

= o
(T.F - Dla- 2l B) = X ballx, B,

we have from (2. 11)

TFA=TF De-1, FecB), 0=1<1,

if both sides of the above equation are finite. By the same way, we may
consider that if U, satisfies (2. 9) and both sides of the following equation
are finite then we have

10) For any semi-group T, on B(.%”) induced by a Markov process X; on 27, we

denote E,[f(X;)] by T,f(x) in this paper even if f is unbounded but E.[| f(X,)|] is finite. (E,
denotes the integral by the probability measure P, of X,.)
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~ T
Uef+2=UefDe-2, feCE).

Similarly, we can see that

(2. 12) TF A= TF s 2, feCE), 0=2,
and

~ T
(2- 13) Utf’1=(Utf'2)lE'29 fEC(E)a O_S_X’

if each member of (2. 12) and (2. 13) is finite.

§3. Branching Markov process with age. In this section, we
restrict our attention to a branching Markov process with age Y={V,=[X,, N,],
& F., P, lx,ple 8} satisfying the following condition (Condition 1),

because it is sufficient to consider such a process for the probabilistic inter-
pretation of equations of type (1. 1).

Let {g.(z);n=0,2,3,+-:} be a given system of bounded continuous
and non-negative functions on E, let k(x) = X}¢,(x) also be a non-negative
n+l

bounded continuous function on E, and set

@1 w2215 (Bal) = 33 8 0,(0x, b, (B9,

[x,p] € S, [B,ql € ﬁ(s) ’
where 4§, is defined by

1, f x=[x,2,-++,2]€BNE" |gl=p, n+1
o[z, 0], [B,q]) = .
0, otherwise.

Now we shall state the following
Condition 1. (1)
(3.2 P, (X,€A Ne=p+gq t<c)=F,, (X.€4, N,=¢q, t<c),
[x,pl€ S, g€ N, A Z(F).

(i) There exists a conservative Feller process'> X’ ={X}, &},P,; x€E}
on E such that

11) A right continuous strong Markov process on 2 is said to be a Feller process if
the corresponding semi-group T, maps C(.2°) into itself.
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P[:t,O] (Xr- €A, r€ dt’ On =t< o'nﬂ)
t n
8. 9) ~aftxpas ([ B(X 2 ds)
= E,[e —i—%,—‘—k(X;)[A(X:)dt]
and
—zj(’)k(x;ms
(3. 4) P (X, €A, oedt)=E,le E(X)I(X5)dt],

[,0]
[#,0le S, x€ E, Ac #(E),

where E, denotes the integral by P, and I, denotes the indicator function
of A.

(iii) For any « >0,
E[:c,p] [e=*" 5 [ Xes N.] € [B,qll
(3. 5) = B, le*"x(Xeey NoJ; [B,q)l,
[x9p] €S, [BrQ] € ..@(S) ’

E[x,o] [e™*; [ X5 No] €[4, ql]
(3. 6) =E, gqle* 8, n, (4],
[z,0]€ S, Ae #(E), g€ N,

where E, . denotes the integral by P, ., = is given in (3. 1) and

(4 dl 1, ifxed, p=g
0 ql) =
] 257 0, otherwise.

For the process X’ considered in (ii), we give the following

DeriniTion 3. 1. The process X’ is called the basic Markov process of Y.
In the following, we consider the process Y? =[X? N?¢] defined in the

following way:
Yiw) = { .
4 , if t=<w).

The probability measure for Y¢ is denoted by Pp.,; and the integral by

]
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is denoted by E7 The semi-group on B(S) induced by Y? is

P’ .
[x. ] ]
denoted by T?. Accordingly, we have for any g & B(S) with g(4) =0

Tig(x, p) = EY, [0(Y9)] = E,, [o(V); £ <<],
[x, pl € S.

DeriniTION 3. 2. When we restrict the starting points of Y} on S, Y?
is called the non-branching part of Y. '

Now we shall return to the discussion of Condition 1. (i) of the
condition states that if we consider the process [X, N? —p] for the non-
branching part Y =[X?, N?!] started from [x,p]€ S, then [X{,N?—p] is
stochastically equivalent to the one started from [x,0lS. (i) of the
condition states the relation between the first branching time = and the nth
jumping time ¢, of N,. This condition holds if we consider a process such
that (a) if we set, for Y, =[X,, N,] starting from [2,0] € S,

Xty if ¢+ < O‘(W) A T(w)IZ)

X! =
4, if t=olw) A <(w),

then X? is stochastically equivalent to the exp (——28: k(X ;)ds> sub-process of
X" as a process on E, (b) each path of Y, jumps from [Xv(w) AcCy—? 0] to

either one of [X| 1] or some point in § — S at the time ¢ Az with

(COVNICHES
probability 1/2.  On the other hand (iii) states the branching law at the
first branching time ¢ and the jumping law at the first jumping time ¢ of
N;. (We shall show in §8 that there exists a branching Markov process
with ~age on § which satisfies Condition 1.) Moreover, if we combine (iii)
with the stochastic equivalence of [X?, N? — p] where N§=p» and the non-
branching part where N§ =0, then the strong Markov property of Y yields

that for any n=1
P[x'p](Ndn#Ndnl—i_l’ Un<?) =0
or for any n=1 and Ce &%,,,

(3. 7) P[z,p] (C,Na,, = Na,,-; + 1, O'n< 'Z‘) = P

[v, 5] (C9Gn<7), [x9 p] eSS,

E[x,p] [e_ad; [Xs N, € [A,ql]

(3. 8)

= E[x,p] [e_“a[X,,_,N,,_+1] ([A9 q])]’ a >O’ [x’ p] € S’ A € %(E) ’

12) g(w) At(w) denotes the minimum of o(w) and r(w) .
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and

3.9 P, ,(X.NJ€[B p+4ql) =P, (X, NI B,

8

[z,p]€ S, Be Z(

n

I

E"),
0

where p+ q denotes [p + g, g2y * - -, ga] for @ =[g1,05 + + *, gal-
We have also from (ii) and the stochastic equivalence of [X{,N{ — N{]
stated above

P[x,p] (X,.€ A redt, 0, =<t <0p41)
t n
(8. 10) ~2 ¢ kxas (S k(Xg)ds>
=E,[e °° ﬁo—n,—k(Xﬁ)IA(X?)dt]
and
P[x,p] (X”nd"e A’ On+1 € dt)
t 3
(8. 11) —25; k(X7 )ds <§ k(Xg)ds)
=E,[e — L k(X)) (X 7)dE],

n!
ngo; [x7p]esy Ae %(E)o

Now we shall consider a family of measures K([%,0]; -, -) on Z([0, )X S)
defined as follows: let Y} be the non-branching part of Y, and set

(3. 12) K([x,0]; dt, [A,p]) = Po, g (c € dt, Y €[4,9]),
[z,0]e S, A Z(E), pE N.
Evidently K([#,0]; -+, +) is a measure on % ([0,) x S). Moreover, by (3. 7)

and (3. 10), K([#,0]; -, +) can be expressed in the following form:

—2 ¢ ’ds lk X§ d !
819 K(z0%;dt, [A,p)= Efe k<X3>d(—S°~(p—')i>~k<Xz>lA<X:>dt],

PEN, Ae Z(F).

Further let T} be the semi-group on B(S) induced by Y} and F be a func-
tion defined by

CA 4n(2) sn 1
(3. 14) F(x,&)—;}l 76 E", re E, £€ R,

where ¢,(x) and k(x) are functions considered in Condition 1 (or in (3. 1)).
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For a given system (T%, K, F), consider the following equation:

t

6.15)  ult, ) = T2F- Az, 00 + | | K(w,00; ds, 1y, p)2Fly; ult — 5,90,

fecCkE), 021, 05t<T, x€FE,

0

where T is a positive constant.
Then we have

LemMA 3.1, Let T, be the semi-group on B(S) induced by a branching
Markov process with age Y, on S satisfying Condition 1 and let T? be the semi-
group on B(S) induced by the non-branching part 'Y of Y,.  Let also f be a

bounded continuous function on E. If u(t,z) = (T.f-2)| () ts finite for any x€E
and 0t <T, then u(t,z) satisfies (3. 15).

P . .
Remark 1.  With the exception of §6, “(T.f-2)|z(®) is finite’ means
in this paper that
S
E[,,'O][lf'll(Yt)]< o,
(cf. Foot-note 10)). Let us set for any Borel measurable function g on 8§

g([x, pl), if |g(x, P)|<n,
g.([x, pl) = .
0 , otherwise.

If it holds that
(3‘ 16) E[x‘p]([g(yt)t)< o 9

then, by the strong Markov property of Y,, we have for any Markov time

o
E oY)l e<t]
=lmE_ L [10.(Y)]; 0< 1]
=lim B (T lgal(Yo); 0 < £1®

=E, Teslgl(Y,);0<t],

T Tlxp)
Hence, if (3. 16) holds, then we have

By pllail; o< t]< oo

18) Ty 49(Y,) or Ey[g(Y,-,)] denote Ey [9(Y,_,)] at s=q.
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and

(3' 17) E[x.p] [g(Yt); 0'< t] = E[x,p] [E[X,,-, Na'] [g(Yt—a)]; G< t] .

Proof of Lemma 3.1. By the strong Markov property of Y, and (3. 17),
it holds that

N N
u(t, ) = E, ([f-2Y); ¢ <z]+ E, [f-AY); 7 = 1]

[=,0]

(3. 18)
= T0F - Al2,0) + By g [ By fF - A¥ o)l e = 1.

If we apply the branching property (2. 12) to the second term of the right
hand side of (3. 18), then we can see
PN N
E[XT,NT][f‘X(Y‘_T)] = Tt—rf'l([Xr’Nr])

N
= (To- 7 Dlp A(Xe N2

= ANt — 2, « ) (X)W,
Combining (3. 1), (3.5), (3.12) with the above equation, we have

PN
E[x’()] [E[Xr:Nr] [f' ](Yt—r)]; T é t]

¢
= SoSSP[x,O] (reds, X. €dy, N.= p)A"Pli(t —s, - ) ()

(3. 19) ¢
= (| K(=,01; a5, 19,0027 5 -8Y_ui — 5,4
o) s n#1 k(x)
= | k(2,015 s, 1ay, 022 Flysutt — 5,00
Now (3. 18) and (3. 19) prove the lemma. Q.E.D.

Next, we shall prove

LemMA 3. 2. Let T} be the semi-group on B(S) induced by the non-branching
part Y? of a branching Markov process with age Y, satisfying Condition 1 and let
H, be the semi-group on B(E) induced by the basic Markov process X, of Y,. Then
we have

(3. 20) 7.7 3w, 0)) = H.f(x), feCE), z<E.

Proof. Using (3. 7) and (3. 11), we can see that

) cf. (2.5).
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PO

S qX9€ A NY=p)=P, (X, €4 o, t<ops Ac)

2 L‘) K(X7,)ds (S: k(X’s)ds>p
e

=E,le I(X7)],
for any Ae #(E). Consequently, we have
N =
TS - 2([%,0]) = ,EOE[M] [27f(X,); Nt = p]

o —aftworpas (2] HX0ds)
(3. 21) = 2 E,le - f(X7)]

=0 p:

—(2~— x)f k(X" )ds
= Ee SO, fecC(E).

If we put 2= 2, then (3. 20) follows from (3. 21) immediately. - Q.E.D.

Now let H, be the semi-group on B(E) and F be the function given
in (3.14). For a given system (H,,k, F), consider the following equation:

3. 22) ult,2) = Hofla) + § HECOFC 5 ult = s, - Dwds,
fEC(E), x€E, 0£t<T,

where T is a positive constant.
Then we have

TueoreM 3. 1. Let T, be the semi-group on B(S) induced by a branching
Markov process with age Y, on S satisfying Condition 1 and let H, be the semi-group
on B(E) induced by the basic Markov process X of Y,. Further for, feC(E), set

AN\
u(t, ) = (Tef - 2)|x(2) rE€E.
If u(t,x) ts finite for any x € E and 01t <T, then 1t satisfies (3. 22).

Proof. It follows from (3. 13) that
t
|\, Ko 005 ds, 1y, 2022 Fly; wit — s,9))

S —2 jz k(X7 )do (g: kX {,)dv)p

R ks
S” ERX)F(XY; ult — s, X)lds
= {, B

Il

uMS

127 E e KXOF(X05 u(t — s, X))lds

o~ o

OF(e 5 ult — s, - ))(@)ds

0
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Then the theorem follows from Lemma 3.1, Lemma 3. 2 and the above
equation. Q.E.D.

Rémark 2.  For any fe C*E), there exists ¢ >0 depending on | f|l

N
such that (7.f-2)|g(x) is finite for ¢ €[0,¢) (cf. Nagasawa [13], Proposition
5.16 and also, for special cases, see Lemma 6. 1).

§4. Signed branching Markov process with age. We have con-
sidered the case where ¢,(2)=0 and g¢,(x) = 0 in the last section. In this
section, we shall remove such restrictions.

Let {(gi(), gn(x)); n =0,1,2, - - -} be a system of pairs of non-negative
bounded continuous functions on E such that

q;(xﬁb—l(x) = 0! n= 0’ 1’2; .
Further let %(x) defined by

() = 3} {gi(e) + qala)}

be a non-negative bounded continuous function on E. Then we shall
define the system {=( -, - )} by

([, p,0], [B,q,1]) = ([, p,1], [B,q,0])
=n([x,p,2], [B,q,3]) = =(x,p,3], [B,q,2])

= 3 GE; (2,91, (B,a),

(4. 1) =([=, p,0], [B,q,3]) =n=(x,p,3], [B,q,0)
= n([x, D, 1], [B,q,2]) = =((x, »,2], [B,q,1])

=35 (2,01, 18,40,

n=0
n([2,P,5], [B,a,j’])=0 for the other pairs of (j,;"),
[x,p1€ S, j, i€ ], [B,ql€ #S),

where &, is defined by

1, if x=[z,2,:---,2]€BNE" |q|=p, =0,
5»([‘”9?]! [B,QD={

0, otherwise.
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For a given system {(gi(2), ¢a(%)); n=0,1,2, * . -} and k(z) =§}0(z}$(x)+q;(x)),
Jet us consider a signed branching Markov process with age Z={Z, = [Xo
Ny )& B P, 530 mil € 8} on § satisfying the following condition.

Condition 2. (i) For any fixed j € J, the process {Y{ = [X;, N}, {, B
Pnitd ix, B 8 35 a strong Markov process on S and it satisfies (i) and
(i) of Condition 1 for given k(x), but where ¢ and ¢ for Y are replaced

by ¢ and 7 for Z. Also Y9, j €], are stochastically equivalent to each
other.

(i) 1t holds that for any a >0
E [e_aﬂ 5 [Xm N‘ﬂ’ ]ﬂ] S [B’ q, 71

4. 2) [2, 2, 41
=E, , 1le*" (X, Nyoy T3], [Bogs 501,

and
E,, 13 X, N,y ) € [A,q,51]
@3 = By, 0167 Ox, vy (A D15
isi'e ], @oplES, [bsql e #8) 4de FE),
where E , . denotes the integral by ) S is given in (4. 1) and 5[1’1’](-)

denotes the d-measure assigned to [z, p]. .

The existence of a signed branching Markov process with age satisfying
condition 2 will be shown in §8. '

(i) of the condition states that two processes satisfying Condition 1
and 2 have the same character until their first branching, while (i) gives
the new branching law attached to the new space S.

Similarly as in the case of a branching Markov process with age, we
shall give the following

DEFINI'TION 4.1;  The process X’ considered in (i) of Condition 2 (or
(ii) of Condition 1) is called the basic Markov process of Z.
Let us set

Z(w), if ¢t < 2(w)
4 , if-t Zn(w).

Z%w) =

https://doi.org/10.1017/50027763000026635 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000026635

ON SIGNED BRANCHING MARKOV PROCESSES WITH AGE 175

Then the probability measure for Z? is denoted by P/

[x.p. 71
by P{, , . is denoted by Ef .. The semi-group induced by Z? is denoted
by U¢. . Then we have

(4. 4) USh(lx, ;i) = EL,,  IWZ)] = B, [Th(Z); <7],.
[x,p,j1€ S, he B(S).

and the integral-

DerFINITION 4. 2. When we restrict the starting point of Z¢ on S X J,
Z! is called the non-branching part of Z.
Now ‘we shall define K and F as follows:

(4. 5) K(=,p,4l; ds, [A,q, i) = P, , (1€ ds, Z,- € [A,q,5)),
z 1€ S, je,

and ,

(4. 6) ( ) i {qﬂ(x) qn(x)}_ E“

T k@) xe E, £ R.

Then K(x,p,7]; +, - ) is a'measuré on Z([0,00) X(S X J))' and it follows
from (i) of Condition 2 and (3..13) that

—eftacxpas ([ BOXDASY"

T HXDLX a1,

(4. 7) K([x’oyfl; ds, [A,p,4)) = E,[e

Ae F(E)]

where E, denotes the integral by the probablhty measure P, of the basxc
Markov process X’.. "Also, we can see 'that (3. 7) (3. 11) Hold if we i‘dplace
= by 7. Then we have

LemmA 4. 1.  Let U} be the semi-group on B(S X J) induced by the non-
branching part Z9 of a signed branching *Markov process with age Z; safisfying
Condition 2 and let H, be- the semi-group on B(E) induced ' by' the basic Markoy
process- X4 of Z,. Then we have
(4. 8) U°f 2([=, 0,01 = H, f (), f-eC(E), ®€ E-

Now, for a given system (U}, K, F)," consider the following equation:

.9 ult,x) = UL 2,000 5 [ Kilz,0,01; s, [dy, 3,002 Flagutt—s, v),
fecCckE), 02, 0t<T, z€ E,
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where T is a positive constant.

Then we have

LEmMMA 4. 2. Let U, be the semi-group on B(S) induced by a signed
branching Markov process with age Z, on S satisfying Condition 2 and let U} be
the semi-group on B(S X J) induced by the non-branching part Z9 of Z,. Let also

S be a bounded continuous function on E. If u(t,z) = (Ucf/\-/z)lz(x) is finite'™® for
any x € E and 0=t <T, then u(t,x) satisfies (4. 9).

Proof. Let us assume that u(t,) is finite for x € F and 0<¢<7T. By
the strong Markov property of Z,, it holds that

(4.10) (U Dsla) = By [F 2205 8 <11+ By Ueeaf -AZp); 1< 1],

On the other hand, we have from the signed branching property (2. 13) of
Z,

UF 2 i) = (—0EF Jamag, < (),

and hence, by (4. 2), (4.5) and (4. 6), we have

E, oqlUe-nS- 3( 23 1= t]

t

S‘,S 0.0 (7 € d55 Zy & [dy, p, iVU.c-if~ 2, 7D
], x20,00; ds, tay, 5,002 £ ut—s5, 9"~ $-G8- u(t—s,91)

1l

Il

[ K((2,0,01; ds, [y, p,002F(y; ult — 5,9).

Thus the lemma is obtained from (4. 10) and the above equation. Q.E.D.
Now let H, be the semi-group on B(E) and F be the function given
n (4.6). For a given system (H,,k, F), we consider the following equation

(4. 1) u(t, 2) = HA(@) + | HEOFC 5 ult = s, ) (@)ds,
feC(E), x€E, 0=t<T,

~ ~
15) (U7, f+2)| g(x) is finite” means that Ep, ; of| f*2](Z,)]1< 0.
16) cf. Remark 1 in § 3.
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where T is a positive constant. Then we have

THEOREM 4. 1.  Let U, be the semi-group on B(S) induced by a signed
branching Markov process with age Z, on S satisfying Condition 2 and let H, be
the semi-group on B(E) induced by the basic Markov process X} of Z,. Further,
Sor fe C(E), set

~~~~

u(t,z) = (U.f-2)] (), zeE.
If u(t, ) is finite for any x € E and 0<t <T, then it satisfies (4. 11).

Proof. By the same method as in the proof of Theorem 3.1, we have

from (4. 7)
[, x2,0,01; ds, [ay, 5,002 Fy; u(t = 5,4)
= | B FCs ut — s, ) @)ds.
Then the theorem follows from Lemma 4.1 and Lemma 4. 2. Q.E.D.

Now let E= R*U {0} be the space obtained by the one-point com-
pactification of R® and consider the standard Brownian motion X’ on
R’.  Considering the point co is the trap of X’, the process X’ can be
regarded as the process on E. Then we can consider a signed branching
Markov process with age Z, on § corresponding to the basic Markov pro-
cess X’. But when we take a starting point of Z, in R* a branching law
at o is not needed because almost all sample paths do not reach .
Hence it is sufficient in the present case that g¢j(x), ¢z(x) and k(x) are
bounded and continuous in R?, and we may consider g;(c0)=gz(co)="Fk(c0)=0.

Remark 1. For the case stated above, Theorem 4. 1 holds for feC(R?)
with f(0) =0. The proof is given as follows: let ¢,(z), » =1, be bounded
continuous functions such that

pu(2)=1 if lall<n
P.(x)=0 , if |zll>n+1o0r x=0,

Then p,f< C(E). On the other hand, if U,ﬁ is finite! we have by
Lebesgue’s convergence theorem

17 cf. Foot-note 10).
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~ . . ~~~
U.f-2(x, p,j]) = }pl_)l'gU;P,‘f'l([x, P,j]) ’ [x, p’]] es.

Hence it follows from (2. 13)

T~
~ ~~
Uf2=UfDle-2,
provided each side is finite, because it holds for p.f. Then we can see,
as in the proof of Lemma 4. 2, that Lemma 4. 2 holds for fe C(R? with

Sflo0) =0, 'Evidently Lemma 4. 1 holds for our f and accordingly we can
see that Theorem 4. 1 holds for our f. '

CoROLLARY 4. 1. Let Z, be a signed branching Markov process with age
satisfying Condition 2 whose basic Markov process is a standard "Brownian motion
on R® and let U, be the semi-group on B(S) induced by Z,.  Let us assume that
E(x)F(x; &) satisfies Lipschitz’s condition:

[K(w,) F(@y; &) — k(@) F(255 &) | < K{I| # — % || + [&, — &1},

Ty %y € RY, £ ERY,

where K is a positive constant and || %, — x, || denotes the Euclidian distance between

x, and x,. If, for fe C(E), ult,z)= (U,%)IE(x) is bounded for any x € R*
and 0=t <T, then u(t,x) is the bounded solution of parabolic equation

au(att, x) _ % du(t, x) + k(x)F(x; u(t, z)), ze R 0<t<T,

with the initial condition u(0+,x) = f(x).
Now we shall give a simple remark on a signed branching Markov
process with age.

Remark 2. Let Z, be a signed branching Markov process with age
on § satisfying Condition 2 and let U, be the semi-group induced by Z,.
If, for instance, we replace = in (4. 2) by =, defined by

([, p, 0], [Baq,l])=,7f1([x;p,1], [39Q10])
= m ([, p,2], [39Q93]) = ([, P,3], [B9Q92])

= 545 (0,5l [Boa) (= (29,0} [B,g,1D),

’71([37’ P,O], [39Q92]) = 72'1([-’”:]’92]’ [37Q90])

https://doi.org/10.1017/50027763000026635 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000026635

ON SIGNED BRANCHING MARKOV PROCESSES WITH AGE 179

= r (2, 0,1], [B,4,3) = m([z,2,3], [B,q,1)

= 505 (a0l (B,a) (= (20,0, (B3,

n',([w, ?’j]y [B9ij,]) =0 for the other PairS of (j;j’)y
x,pl€ S, j,7’€ ], [Bqle #(S),

then we- have a new process Z; and the corresponding semi-group U+%.
Evidently Z/ is not stochastically equivalent to Z,, but it holds that

~~ ~ . . .
U f-2=U,f+-2 for any fe C(E) provided each side exist. Therefore

~~ I~ . B . .
U.f+2=Uj}f-2 does not imply the stochastic equivalence of the processes
Z, and Z/.

§5. A sufficient condition. Let Z={Z,=[X,,N,J.l, ¢, %,

P [x, p,j1€ 8} be a strong Markov process on S which is not assumed

[x,p.J'];
a priori to be a signed branching Markov process with age. In this section,

we shall give a sufficient condition which makes the process Z, on S a
signed branching Markov process with age on §.
Now let us define U and ¥ by

(5. 1) Uth(lx, p,jl) = E, , [W(Z}); £ <7],

[x.,p, 3.

(. 2) ¥(x, p,jl; ds, [B,p',j']) = P neds, Z,€(B,p,J),

" [xp, ]
x,pj1€ 8, [B,p,j'le Z(S),

where % is a Borel measurable function on 8, 7(w) = inf{t >0; J.(w) #= J,(w)
or ilsil? | Ny(w)| = o} agd E[x'p'j] denotes the integral by P o ¥(x, p, j1;
+,+) is a measure on Z([0,0) x §). Then we conside;r‘ the following

Condition 3. (1) Cbndition 2 holds.

(i)

~ o~

(6.3)  Uif-ax,p, i) = ULSf -2l 2x, p,j]), fEeCHE), [x,pjleS.

(i) - For f e B*([0,») x E), set

I~
f”)'l p—

N
f(ts')')w
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where f(t, -) denotes the function on E for fixed #=0. Then it holds
that for any t =0, m=n—1

¢ ~
6. 4 [ Ssuxisy 20w 211s s, 1dy, 0, 507200 0,77D

< . L~ ‘
= 2 S S ([xi9 Dy ]]; ds, [dll, o, J'])f(”'l([y, p, ]'])
i=1J0JSm-n+lix ()
I~
.IE' Usf - a2, 2., 0D), m=n—1,

where x = [2,, 25, * + +,2,] and p=[p,, D5 * * *, Da].

(iv) 4 and [3,p,5], p €N and j € J, are traps.
(v) Let

7, = lim 7, e,=inf {t >0; Z, = 4},

where 7, is given in (2. 7). Then it holds that

P o=y 1.<O=P, (.<8, [omiles.

(i) requires the independence of the motions of #n-particles starting
from [2,, D15 71, [%29 D2y 7]y * * *» [%n» Pns 7] and ending at the minimum of their
first branching times inf {# >0; J,(w) = Jo(w) or sup | N(w) | = o}, while (5. 4)
means that only one of them branches at the ﬁrst branching time 7 and
the others do not. ((ii) and (iii) of Condition 3 correspond to the property
BIII in [7].) The existence of a strong Markov process satisfying Condi-
tion 3 will be proved in §8.

Now our purpose is to prove the following

THEOREM 5. 1.  If a strong Markov process Z = {Z, =[X,,N,, J:}, & B

P s [, p,j1€ 8} on S satisfies Condition 3, then Z is a signed branching

[x,p, 1]
Markoy process with age.
First we shall prepare some lemmas. Let U, be the semi-group on

B(S) induced by Z, and set

(6.5 UPh(x mil) = By, j[h(Z); 7, <t <1,4), 720, [x,pil€ 8,

for a Borel measurable function 2 on S provided that E, , a(hZY) exists.
In the following lemmas, it is always assumed that Condition 3 holds,
fECHE) and 0<1<1.
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LemMA 5. 1.  For any r =0, we have
5. 6) UCF3x 2, i) = (—DFPUrF A1x,0,00,  [x,p il S.

Proof. (5. 6) holds for » =0 and hence it suffices to prove (5. 6) for r+1
under the assumption that (5. 6) holds for 7.

Now it follows from (5. 4) and (i) of Condition 2 that for any [x, pl€S
and [B,ql € Z(8)

¥([x, p,0]; dt, [B,q,1]) = ¥(x, p,1]; dt, [B,q,0])
= ¥([x, p,2]; dt, [B,q,3]) = ¥(x, p,3]; dt, [B,q,2]),
.7 ¥(lx, p,0]; dt, [B,4q,3]) = ¥([x, p,3]; dt, [B,q,0])
= ¥([x, p,1]; d¢, [B,q,2])) = ¥(x, p,2]; dt, [B,q,1]),
¥(x, p,jl; dt, [B,q,j']) =0, for other pairs of (j,;’),
¥(x, p, j1; dt, [B,q,j'l) =¥(»,0,7]; dt, [B,a— p,j']), 4,7"€ ],

where g — p denotes p’ with |[p’| = |q] — |p|. Then we can see from
(5. 7) and the strong Markov property of Z, that

UHF2(lx, py i)
=S:S§W([x, p,jl; ds, [dy,aq, j'])U(,'_)sf/:-\Z/([y, a,7'1)
[ :IH ¥([x,0,00; ds, [dy,a, /NS 2y p+ a5 4]),

where |p+q| = |p| + |g|. By the assumption of induction, we have from
the above equation

UeT2(lx b, )

(—0l e[ [ w0, 0,00; s, 1y, 0, 70027 2w, 007D

—1)[%szugf+“f“-‘z([x, 0,0,

as was to be proved. Q.E.D.

LemMMA 5. 2. For any r =0 and [x, p] = [[%,, %, * * *, %a], [P1s P2y + + <, Dally
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t n

> (2000 71; ds, 1y, @, iDULT - Awr 0 57

(5. 8) =2
Pi+retecetr,=rJ0r=1

: I~
lgi UEU(tr—l)sf ke 2([xl9 D 0])

=l m U T w p o).

ri+reteetr=r+li=1

Proof. According to (i) of Condition 2 and Lemma 5. 1, it holds that

~

U, Az, 9, 0]) = 22U U, 7~ 2((,0,0]) , [v,pl€S.

Hence, by (5. 7) and,Lemma 5.1, it suffices to prove (5.8) for the case
p=0and j=0.

Now let us put g7¢(s) = UU ‘[_»”,_/f\:;([xi,o, 0). Then g*(s) is indépen-
dent of s by the semi-group property of U?. Further we can see from the
strong Markov property of Z, that for r=1

~~ . t=s . . —~ .
U(tr-)sf"l([x’ p,J]) = So S§ ¥((x,p, .7]; dv, [dy,q, ISR f - Ay, q’ 1,
and hence we have

~~

g72(s) = { [ (12,,0,00; dv, 1dy, @, 7DULEOF 20w, 7D

Then the left hand side of (5. 8), where p=0 and j=0, is equal to

t n

| 23 du—gro () g2 (s)
r1+rafeeetr,=r J01=1 1£3%

Writing 7; + 1 as r; and noting d,9®(s) =0 and g“?(¢)=0 for ;,=1, the
above expression is equal to

t

5 [ S e (s
Y1+¥ateestr,=r41J01=1

1£:3)
n N - n ( ~
= 2] IL g2 (0) = 2] 2 U2 f-2a([=4,0,0]) ,
r1+rateeetr,=r+l i=1 Y1+7r2tece+¥p=r+1l 1=1
as was to be proved. Q:E.D.

LEMMA 5.3. For any r=0, [x, bl = [[%1, %s * * = X, [P Das * * *5 Dl
and j € J, we have
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6.9 UYF s p i) = (-] I Uo7 a0 2,00

ritreteentr,=r i=

and
D Sogsmx, ¥([x, p,j1; ds, [dy,q,7'])
(5. 10) -{(41)[ 1 > ﬁ U ‘[_%ﬁ([yi, 4:, 0]}
ridrotecefr=7 i=1

~

3 (¥ (w0pail; ds. 1dy, 2, 7DUGET 21w 22 5D

St
r1+rvoteeetr,=rJ0 =1

o~
ll;[iUgU(tﬁ)sf°2([vxu ?,00),

where Yy =Yy, Yz ***y Ynl and @ =1[qiqs * * *» qnl -

Proof. For r =0, (5.9) follows from Lemma 5.1, and (5. 10) follows
from Lemma 5.1 and (iii) of Condition 3. Hence we shall prove the
validity of (5. 9) and (5. 10) for r 4+ 1 under the assumption that (5. 9) and
(5. 10) hold up to . Further, by Lemma 5. 1, we may assume p=0 and
j=0.

By Lemma 5. 2 and the assumption of induction, we have

n ~
n U7 f-alx;,0,0])

r1$rgteectr,=r41 i=1

=, 3 [ ou 105,0,03; ds, 14y, B 1)

m

(-l s U e pe ol

ri+rotecctra=r i=

=S:Ss"fﬂx’ 0,01; ds, [dy, piDUS.F 2w, b, 1)

= USF 2([x,0,0]) .

So (5. 9) holds for »+1.

Now we note that for any (m,m)-matrix A= (a; ;)7 -,

ﬁ ﬁ m . m m—1
T apuy = @ 2 — : . I a
(. 11) B L o= L (Z o ke By iy (2 P
: rlr_lI m—2 . m
@i,i) — ¢ o+ (1) II a,;
(s kg, o hg) =1 (jg ke +,( ) (%i:l i
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holds, where 3}, denotes the summation over all permutations (z(1), #(2), « - *,
n(m)) of (1,2,+--,m) and E(k;,k;,---,k,) , r=<m—1, denotes the summation
over all (k,ky, ¢+, k) such that 1<k <m and all k, are different.!®

Let ;€ B*([0,0) X E), i=1,2,+-+,m. Considering ’?f’\';([?/i, P4, 00)
in the place of a;,; in (5. 11), we have for [x] = [2, 25, * =+, 2,]

S:SM}WM ol; ds, [dy, b, ) {(~1)LF ]2 I kilsy- < 2([War P OD}

(5. 12) =gl(—l)y(k1.kz,§"l- . _DS:SSM{ L ¥1x,0,0]); ds, [dy, , )

—1)[;27*] ,-I:i1 {'::;: h/ﬁ)\';([yi’ Pis 0])}~

According to Lemma 5.1, and (5.4), the right hand side of the above
equation is equal to

m— t
2,0, B (e, 700,005 ds, [dy, )
o~

(S ) 2w, p, ]
—S’ o j U((2,,0,01; ds, [dy, p, i) (—D)FH T (=1 =
- 0§1 Sm=n+1x{ j} » 0l 45 v pJ y=0 (kg gy oo, bommy)

Ty
(Elh%i’)-Z([y,p,O])lEi (Eh“’ 2) ([(%,,0,0D)} .

r=1

NOW nOting that fOI‘ = [yla Yoy * * *» ym-n+1]’ D= [pn Dags * * *» pm—nH]
T
(Elhﬁé’) [y, p,0)) = H 5_,‘ h‘” A([Y 0 2,5 0))

and applying again (5. 11) to the integrand { }, the above expression is
equal to

33 (gmonvin gy ¥ 020,015 ds, [dy, B, )
5. 13) So =1 SS {7}

j m—n+l " Vo
—E e T R A 200D LU A([2,,0,0),
T u=

T T

where {g;;1=l<n, l+=i}={m—n+2 m—n+3,-+-,m} and n is a per-
mutation on (1,2, - - -, m). If we use the following notations:

18) cf. Ryser [15], Th. 4.1 (p. 26)
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: the sum over all choices (k, ks, * * *5 kn_pss) from (1,2, - - -, m),

<ki, kg, ooe, bm-ns1>
P : the sum over all permutations = on (K, kz + * 5 kmns1) s
T

I : the sum over all permutations 7 on (o boyy + + +y kney) which is
#

the remainder of (1,2, - - -, m) excluding (k;, %z + * + 5 km—ns1) 5

then (5. 13) is equal to

t n A
(&) (k) . ;
(2 = mose ., ¥(.0,01; ds, [dy, 1D

t=1 <ky, kg, ve0,kn-ni1> 7

(T e T o) LUK < A([2,,0,0
( k a ([y,wp/n ]) i s kﬁ(#) 1([3719 y ]).

u=1 n
~
Now putting A’ = (U®,f-2)]|z, we can see from (5. 9) for r,<r+1

[ons g 700,00 ds, [dy, )

0

gl w 1L U2 F2(ye s O}

ri+rgtesetra=r+1 i=1

t n r+l .
= S > P SSm*ﬂHx{j} ¥([x;, 0, 0]; ds, [dy, p, 1))

02=17;=0 7F1+F2tecetFp-1=7r+1-7;

[L] m—n+l ~
-{(—=Dtz 2 O USe fea([YuwDw 0D}

r1+72tece+Pnpi1= 7 f=1 ¢
@ ~
* ll;el‘ Ug U :T_'if * 2([‘”“ 0, 0])

¥ ([0, 0]; ds, [dy’ D, ]])

2 Sc ”
- ri4ratocetr,=r+l Joi=1 SS”‘""“X {7}

.Um)/\./ M- 10 U°U"t’/\-/ 0
vof - Aly, b, 7] ALU: v S« A([%,,0,0]) .

Summing up both sides of the above equation over all m=#n —1, we have

(5. 10) for r +1. Q.E.D.
LEmMMA 5. 4.
U 2%, i) = U Al b)), [ pile s,

Proof. By (iv) and (v) of Condition 3, we have
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U e pi) = By, j(F 2205 t<nd + B (722205 t =]

[x.p, ]

oo I~~~ ~~~
=D E )l 220 =t <)+ B 5 WUy fo2(4); £ 27
oo ~~ )
= D UPS2(x 24D - Q.E.D.

We are now in a position to prove Theorem 5. 1.

Proof of Theorem 5.1. It suffices to prove (2.9). By Lemma 5.4 and
9), we have

U 2% B i) = 2 UCT Al by )

= (— 1)[‘;_]1”” r:.:;‘o r1+7 §-+r =7 ilzllU(tri) ﬁ([x" 0’ 0])
= (-olhe 3 5 B T U, 0,00
r1=0 7= rp=01=

= olslem 1 3 0o e, 0,00

= ol it @77 D)5t

//\/\/
= (Utf'l)lE°x([x’pyj])9 fe C*(E); 0§2<1,
‘here x =[x, 25, + + +, 2,] ‘and_p=[p,, 03, - - +, p.]. Q.E.D.

§6. Semi-linear equation. ) In this section,” we shall consider an
pplication of Corollary 4. 1 to a probabilistic' interpretation of the following
'mi-linear equation:

1) Dulb®) — 1 guit,w) + Kx)F (o3 ult, o),

‘here k(x) is a non-negative bounded continuous function on R? and F(z; €).
wisfies the following conditions: there exists a positive constant K such that

e 2) |k(2)F(x; &) —k(x)F(a'; &) < K{||a — 2" || + | £=¢12},
x,x" € RY, &€ €[0,1],

19) Semi-linear equations of this type are discussed in Kolmogoroff-Petrovsky-Piscounoff

3].
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where ||z — x’|| denotes the Euclidian distance between xz and 2, and it

also holds that

(6. 3) F(x;0)= F(z;1)=0 and 0= F(x; &) for 0<<é<1.

Throughout this section, we shall consider a strong Markov process Z,
satisfying Condition 3 (and hence, by Theorem 5.1, a signed branching
Markov process with age) whose basic Markov process is a standard
Brownian motion on E = R U {0} which is obtained by the one-point com-

pactification of R?.20
We first consider the special case satisfying Condition (Q): -

(@) Let gi(x) and gz(x) be functions given a priori in Condition 3
(through the part (i)). Then gi(x)= g5(x) =0 and there exists an integer

M >0 such that gi(z) = gu(x) =0 for n >M.
(b) Set

where kz)= 5 (g(s) + ¢:(@). Then

n=1
0L F(z;8), =zeR% £€(01),

and also there exists a positive constant K such that

[ B(x)F(x; f)—l;(ac')F(x'; N <K{l|lz—a' || +16—¢1}, z,2" € R?, &,¢€[0,1] .

M S .
© 2 {aia) — gile)} = 0, xR

Condition 3 is called “Condition 3 with (Q)” when g¢; and g; satisfy

Condition (Q).
LemMa 6.1. Let Z={Z,=[X,,N,,J.}, &, B, P

[x,p,i];

[x,p,j1€ 8} be a

signed branching Markov process with age on S satisfying Condition 3 with (Q) and
let U, be the semi-group on B(S) induced by Z?D.  Then there exists a positive

1~ L : _ ,,
number &, such that U.f-2([x, p, j]) exists for any 0<t<34,, any fe C*RY

with f(oo) = 022 and [x, p,jl€ S.

20) cf. §4. . » )
21) In Lemma 6.1, (8) and (¢) in Condition (@) are not necessary.

~/ ~~
22) “U,f+2 exists” means that Ep, , 71[1f+2[(Z;)]<o . Also the condition “f() = 0”

does not have any influence in the sequel, because oo is a trap of X} and almost all sample

functions of X/ with X4(w) = oo do not reach « in ény finite time interval.
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Proof First of all, we shall prove the existence of §,>0 such that
Ucll 2|([%,0,0) = E, ,, 01[11-21(2;)] is finite for any ¢ < 4§, and z € R?, where
1(z)=1.

By the same method as in the proof of Lemma 5. 4, we have

~ ©0 I~
(6. 4) Uc|1'2|([x,P,i])=rgoUi"ll@I([x,p,j]), [x,pjl€ S,
where

UL 2l((x, b i) = [”,][Il-ZI(Zg); 1, <t <7,.], r=0.
Then, by (ii) of Condition 3, Lemma 5.1 and Lemma 4. 1, we have
~S ~~ 3
(6. 5) Utli-2|(x, p, 7] = 2"*'U? |1-2{([x,0,0]) = 2'"! .I_Il E, [1(XD]= 2",
x=[x1’x29 Sty xn]’ xiERd9 jE]’

where E, denotes the integral by the probability measure of a standard
Brownian motion X{. Accordingly, it follows from the strong Markov pro-
perty of Z, that

UPIL2l([x,0,0) = E, [V, 11 21(Z); 1< 1]
(6. 6)

oo t
53 2 BN, = b, 1 ds).

|p|=0
On the other hand, if we apply (5. 4) to f(¢,-)=1, then we have
P, (N, = p, 7€ds)

[x.0.0]
n M4n—-1 3
(6. 7) Z 2 2 ¥([;,0,0]; ds, [E™, Py, 7))
i=1 z:m+|ml Ip| m=1 j=0
[E Y
. 1'[ (Ne =Py, s<7).

[:,0,0]

Since Z, satisfies Condition 2, (4. 7) holds and hence we have

M+in—-1 3

’?‘:1 Jgo w([xiy 09 0]) dS, [Em, Py ]])
(6' 8) = I’[,ho.o] (Xrl- € Rd, 7E dS, Nw)— = lpbl’ Glpl = S<:0'Iml+1)

-z[ k(X')dv(g KXs)d )IM

=E.e
¢ AR

k(X?)ds],

https://doi.org/10.1017/50027763000026635 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000026635

ON SIGNED BRANCHING. MARKOV PROCESSES WITH AGE 189

and by (3. 11)

e—2 f; MX;’””M

D! I

(6‘9) [:l: oo](N pl! S<7])=E[

Now let us consider an nd-dimensional standard Brownian motion
(X, X, - + -, X¢°) and denote by E, .
the probability measure ) corresponding to (X, X®, « .., X™).2
Also we set

the integral with respect to

é(xu Loy ¢ vy xn) = igl g(xi) ’ g€ B(Rd) .

Then it is obtained from (6. 7), (6. 8) and (6. 9) that

P[x'o'ol (Nﬂ = p’ v € dS)

( |p:l
- o200 Xy <S Xv)dv ) ,
- E'l z?,+§l=lp| Ele b [pl! k(X5)ds]

. IIE,[e —ka(X/ )dUMdv> ]
e pz!

(6. 10) — E( )[e._zfzE(X%l),X%Z),...,X%n))dv
21,03, 000, Ty

(So (X‘,,”)dv) }I;(Xf,”, X®, .o, X®™)ds]

n
I 1
¢ zn=lpl i=1 Per
8
= By gy ooy Lo RO i L (X0, X, -, X)do]
1,%2,°°%, Tp

kXS, XP, - -, XP)s].
Applying the above result to the right hand side of (6. 6), we have
~~ ¢ v i
UP|1-2]([x,0,0]) = S e, zn,ove, 2] LE(X 87y X2y e e o) XP)]ds
= 3 | B, k(xX)ds
=nllklt.

2) X¢ are mutually independent and equivalent standard d-dimensional Brownian
motions and z;€R%, i=1,2,++-, n.

https://doi.org/10.1017/50027763000026635 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000026635

190 TUNEKITI SIRAO

Now we shall assume that for any x = [z, 2, - - -, 2,] and r=1
s - (&l &)

(6. 11) Ul 2/([x,0,0) = n(n + M)« - -(n + (r =) M) —— .

Since we have by the same method as in the proof of Lemma 5. 1

6. 12) UL 21w, p,7) = 25101+ 21([y,0,00),

it follows from (6.11) and the strong Markov property of Z, that for

x=[2, %, 2]
T~
U(tr+1)l1 '21([xy 03 0])
¢ T~
=SOS§W([&0, 01; ds, [dy, p, i1)2PU 11 - 2]y, 0, 0])

<[] 7, 0,00 ds, (dy, B, V2! (n+-M) (nk28) - - - (i) LELE=SD

r! ’

because, by the assumption that g¢i(x)= g:(x) =0 for n>M, ¥(x,0,0]; ds,
[E™, pjl) =0 for m>n+ M. Applying (6. 10), the right hand side of the
above inequality equals

(A M)nt2M) -+ -t B THx, X, o, xS g

(%1, %2, 000,
Wkl (¢ .
S+ M)- - oo+ M) (¢ —9)ds

=nn+M). - .(n+rM)%

Thus (6. 11) holds for any =1 because it stands for r =1.
Now, by (6. 4) and (6. 5), we have

UI1-21(2,0,0) = 1 + 2 UPI121([=,0,0)

§1+§1(1+M)(1+2M). . .(1+(r_1)M)ﬂkr_l!]_£_
<1+ 3 M1k, zeE.

This shows that Utl/l\-gl ([x,0,0])) is finite for any 0<¢t<1/M| k| =4, and
xe E.
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Next we prove the finiteness of U,If-\z/l([x, p,jl) for any t<4, and
[x,p,j1€ §. As in the proof of (5.9), we may obtain

U121, 0,0]) = Y U [1-2((x,0,0])

r1+rotecetr, =7 i= 1

r =0, x=[%,% -, xn]’ 1 <6,

Applying (6. 11) to this equation, we have
~~
UPl1-2[(x,0,0]) < > (Mllkll )" t<dy.

r1+ratecetry=r i=1

Hence it follows from (6. 4) and (6. 12) that

~~ . ~~

U:|1-2|([x, p, 7)) = 21U, |1-2]|([x,0,0])
©o ~
= 207l 20U‘¢”|1°2]([x,0,0])

<271 {3 (M k1) 1))

<o, 0=t<3d, [x,pjle 8§,

as was to be proved. Q.E.D.
Next we shall consider the following integral equation which turns out

to (6.1):

. ||y—2 ]2

=2
(6. 13)
. ) 4y
+ as( ()t e Ky)F(y; u(t — 5,9))dy,
t=0, x € R%,

where kF is bounded and satisfies (6. 2) for all z,2’ € R* and &,¢ € R! and
also (6. 3). Further set

a4 _ ly—=l®
wit = ()T ey
. 4 _ [ly-z|
sty @) = wa(2) + (o (GE) T T OF @5 walt = s,v)dy,

t=0, x € R% n=0.
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Then the following result is well known.29

LemmA 6. 2.  For a given f € C*RY*, the following holds:

(1) Let u(t,x; f) be the unique solution of (6. 13) with initial value f. Then
we have
(6. 14) 0<ult,z; =1, t=0, x = R*.

(i) For any positive constant T,u,(t,x) defined above converges to wu(t,z; f)
uniformly in (¢,%) € 10,71 X R".

Let Z, be a signed branching Markov process with age on § satisfying

Condition 3 with (Q) and let U, be the semi-group induced by Z,. If we
consider the integral equation (6. 13), where kF is given by

HoF@; ) = 3 (gie) — G} ¢, ze R, R,

then it follows from the uniqueness of the bounded solution of (6. 13),
Lemma 6.1 and Theorem 4. 1 that

(Uif2)la(@) = ult, =3 £), fe CHRY, 0<1t<dy w< R,

where u(t,z; f) denotes the solution of (6. 13) with initial value f. On the
other hand, by Lemma 6. 2, the solution #(¢,2; f) of the integral equation
(6. 13) where kF is replaced by

M

2 {gn(x) — ga(@)} &7, .z € R £e]0,1],
k(x)Fy(2; §) = =t .

0 , otherwise,

satisfies ‘0 < a(t,x; /)<1’ for f e C¥RY*, because kF, satisfies the condition
(6. 3) and (6. 2) for all z,2” € R® and &,& € R'. Since F(x; &) = F,(x; &) for
£e€[0,1], we have u(t,x; f) = a(t,x; f) € C*[0,0) x RY)*, Hence, using
Lemma 6. 1 again, we can consider the following:

~ o
U.U.f2) ([%,0,0]) = Us((U.f - 2)| £ 2) ([, 0,0])

=u(t,x; uls, 5 ) =ult +s,2; f),
fe CHRY, 0<t,5<6, xR,

But, in general, we can not express the left hand side of the above equation

24) cf. Kolmogoroff-Petrovsky-Piscounoff [8], theorems 1, 4 and 6.
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~~S ~
by (Uissf+2)|s(x) because it may happen that E[x’“][l f2l(Z)]=c. Even
so, still we have the following

TueoreM 6. 1.  Let Z={Z,=[X,,N, ]}, {, Z. P,

x,p,j1°

[x,p,jle 8} be

a signed branching Markov process with age on S satisfying Condition 3 with (Q)
and let U, be the semi-group on B(S) induced by Z. Then, for f e C*R"*, we

can define U ,%([x,o, 0]) with the following properties:

@) U,f2(02,0,0) = Usf D) s(@) if Usf -2 exists, f & CHRY)".

@) wu(t,x) =l)',f/-\/2([x,0, 0]) is the unique solution of (6. 13) with initial value
f e C¥RY*, where kF is given by

Ho)F(a; § = 3 {aio) — G2} & s R £ R

T~
Proof. According to Lemma 6. 1, there exists ,>0 such that U,f -2([x, p, /1)
exists for f e C*R%*, 0=<t< 3§, and [x,p,j1e §. Set

U.f~2(x,0,0) = Uf-2(x,0,0]), fe CHRY), 0=t<34, z€E.

Since (U,/f\-é)l @) = u(t,x; f) € C*(0,5,) x R®)* as was mentioned already,
(.72 5(x) belongs to €*([0,3)) x R)* and also (0.7 2)|s(c0)=0. Using
Lemma 6. 1 again, set

~ /'/\_/\-/
(6. 15) Usief - 20,0,0) = (UU.f - 2|2+ 2)|el@), f € CHRYY, 0=t,5< 4,

because the right hand side of the above equation is equal to

I~

”(t9x; (Usf'z)lE) = u(t + S, %5 f) )
and hence the right hand side of (6-15) depends only on ¢+ s for given
feC¥RY* and z<€E. Repeating this procedure, we can see that

(7,%([9:,0,0]) can be defined for all ¢=0 and it is the unique solution of
(6. 13) with initial value fe C*R%*. The property (i) of the theorem is

evident by the definition of U, and the semi-group property of U,. Q.E.D.
In the sequel of this section, we shall use the notation U, instead of

A ~ A NS . ~ .
U, because (U,f-2)|g(x) =U,.f-2(x,0,0]) if U,f-2 exists.
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Let {k:(), (gfn(®), gin(@);m=1,2, « -+, M;<o}, i=1,23, +---, be
systems satisfying Condition (Q) and Z¢ be signed branching Markov pro-
cesses with age on § satisfying Condition 3 with (Q) for given {k;(x), (g}..(%),
Gax); n=12,+-+, M}. Let also U;, be the semi-group induced by
Z¢P and set

M; + — g7
6. 16) mm;a=g§“”&%w?“”tén i=1,23---.

According to Theorem 6. 1, if kF; satisfies

6. 17) |ki(x)Fo(x; &) — k(@) Fy(a"; )| < K{llx —2' ||+ |6—¢17},
z,a’ € R, &¢ €[0,1],

where K is a positive constant independent of i, then #®“(t,z) = (Ui,,%)l (%)
is the solution of the integral equation (6. 13) with initial value fe& C*(R"*
where kF is replaced by k;F;. Then we have

THEOREM 6. 2.  Let {k;(x), (gin (), gin(@); 0 =1,2, ««+, M} be systems
satisfying Condition (Q) and let k,(x)Fi(x; &) given in (6. 16), i = 1,2,3, « « +, satisfy
6. 17). If k,F; converges to kF considered in (6. 13) uniformly in (z,&) € R* x [0,1],
then {u(t,x) = (U;,, ff-\é)l g(%); i =1,2,3,---} is a uniformly convergent sequence
in (¢,2) € [0,T1X R* for any given T >0.  Moreover, u(t,z)= }Lrg u(¢, 2) is
the unique solution of the integral equation (6. 13) with initial value f & C*R)*.

Proof. According to (i) of Lemma 6. 2, we may regard Fk, (x)F;(x;¢) =
k(x)F(x; &) =0 for £€[0,1] so far as we consider the solution of integral
equation of type (6. 13) with initial value fe C*R"*, because F, and F
satisfy (6. 3) and (6. 17), and hence we may apply Lemma 6. 2 in the present

case.

Let us set

1 d  _lly—=|?
) _ 2 2t
wP(t, @)= () e fwdy,

. 1\ _Hyz-zH’

) (D) 4 S . g s O —
usu(t, @) = wt, @) + § ds§ (G) % e (W) Fiy; w05, 9)dy ,

n=0, i=1,23---

For any given ¢ >0, we take also N, so large as
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(6. 18) Vki(@) Fi(x; &) — k(@) Fy(x; )| < e, ® € R, € R D

holds for any i, =N,. Noting that #{’(¢,x) is independent of i, we can
see by (6. 18)

_lly—2]

d
. @
(7)) D —‘]:-'" ? ”
lu (t x) Uy (t,x)l ésods SRd( ors > ¢

Nk Fiy s uP(y, t — s,9) — ki(y)Fily; ud>(t — s,9))|dy < et,
rxe R i,j=N,.

Assume

(3) ) nt (Kt)?’ d s 4
(6. 19) lu(t, @) — ud(t, 2)| < tZ] , ze R’ i,j=N,,
=0

and it follows from (6. 17), (6. 18) and (6. 19) that

| w2 (8, 2) — w2y (2, x) |

. a  _lly—=|?

sl asfu(E) T e ™ CR@Fdys wlt—s,9)—k@Fiy; wlt—s,9)|dy
. _a  _lly—=|l®

<fasf (o) Te T M@ w25, 0)~kW)Fy; uPt—s,v)]

+ k() Fiy; us(t — s,9)) — k() Fsly s us(t — s5,9) | 3dy

_y—=|?

¢ 2 s
get+sodsSRd( Zis ) fe T KUt —s,y) — ut —s,9)ldy
n '4
Set+et R N (Kt)
p!
= et Eno (Kt) x € R, i,j =N, .
=

Therefore, by induction, (6. 19) holds for any #=0. Then (ii) of Lemma
6. 2 shows that

]u(i)(t9x)—u(j)(t9x)l §5teKL9 i»j%NO'

Since ¢ >0 is arbitrary, the above inequality proves the first half of the
theorem.

25) We regard k;(®)F;(x; &) = k(@) F(z; §) = 0 for § & [0, 1].
26) Assume K = 1, if necessary.
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On the other hand, #“(¢,%) is the solution of

Hy-zH’

u?(t, ) = ufd (¢, x) +§ S s ) k(y)Fiy; u®(t — s,9))dy .

Letting ¢ tend to infinity in the above equation, we can see that u(t,z)=
lim #®(¢,2) is the unique solution of (6. 13) with initial value fe C*R%*.
1—>00

Q.E.D.

Transforming (6. 13) into the corresponding differential equation, we
have

COROLLARY 6. 1.  Let k(x)Fy(x,u), u(t, x) and k(x)F(x,u) be functions as
in Theorem 6.3.  Then u(t,z) = lim uP(t,u) is the bounded solution of the
parabolic equation

ou(t, x)

o) - % du(t, x) + k(x)F(z; u(t, x)),

with initial value f € C*RY*.
In the following corollary, we consider the case where k(x) is a positive
constant and F(x; €) is a function of ¢ alone.

COROLLARY 6. 2. Let F(€) be a function which is continuously differentiable
on [0,1] and F'(0) >0. Let also F(§) satisfies the condition:

(6. 20) F(0)=F(1)=0 and 0< F(§) for 0<é<1.

Then the unique solution wu(t,xz; f) of the parabolic equation

6. 21) %t“) = % dult, @) + Flu),

with initial value f € C*R®)* is expressed as the limit of u™(t,x) of the type which
appeared in Theorem 6. 2.

Proof. Since F’(¢) is continuous on [0,1], there exists a sequence of
polynomials g/(¢) converging to F’(¢) uniformly on [0,1]. Set

§
Gi®) = | gi(o)ds + e, i=1,23--

where ¢; is chosen so that G,(1)=0. Then ¢; tends to zero as i increases,
because F(1) =0 and g}(§) converge to F’(§) uniformly on [0,1]. Hence
the polynomials G;(€) converge to F(¢) uniformly on [0,1] and G/(¢) is uni-
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formly bounded. Moreover, &; = inf {€ >0; G;(§) =0} tends to 1 as i increases
because F’(0) >0 and F(§) >0 for 0<&é<1, Expressing G,;(&) in the
following form:

M;
Gi(e) = 2 (q;.n - CIF.n)E", i=1,23,-- .+,

n=1

where ¢}, and g7, are non-negative constants such that g}{.¢7.=0 and

M;

2 (q;m - q;,n) =0, we set

n=1

M,
k= ;1 (q;.n + qzm) ’

1=1,2,3, ¢,
1 M n
F; (&) = k; 2 (gin— q7n)E",

n=1

Since k,F; = G;, k.Fi(§) converges to F(§) uniformly on [0,1], and there exists
a positive constant K such that

lkzFi(S) - kze(E,)I _S_ K! E— E,I s 515’ (S [0’1]’ f= 1y2,3’ hERREY
Also it holds that

0< Fy(8), <<,
k;Fi(0) = k:Fi(€) = 0,

t=1,23,---.

Now let Z® be signed branching Markov process with age on S
satisfying Condition 3 with (Q) for {(g}.s g7.); 7 =1,2,+ « +, M} given above
where the condition 0< F(x;&), 0<&<1, is replaced by 0< F;(¢) for
0<é<ég, and let U;, be the semi-group induced by Z®. Then, by

Theorem 6. 1, #®(¢,x) = (Ui,,?\--é)l z(x) is the solution of the integal equation
of (6.13), where kF is replaced by k/F;, with initial value fe& C*R%*
whose norm || || is less than &. Moreover, it holds that

0=<u(t,2) <& <1

Since k;F;(&) converge to F(¢) uniformly on [0,1], we can see, as in the
proof of the convergence of #)(¢,x) in Theorem 6. 2, that #®(¢,2) converges
to the solution of (6. 21) with initial value fe& C*R%*, where || f| <inf
{&;i=1,2,3,++ -}, because the integral equation of type (6. 13) is equiva-

21) Since G;(0) = 0, the constant term of G;(§) is zero.
28) k3 F3(0) = ks F(§;) =0 and k:F(§) >0for 0 <§ <§&;. So we may consider §; instead
of 1 in Theorem 6.1.
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lent to (6. 21) in the present case. On the other hand, & tends to one as
i increases, and hence the same assertion holds for any fe C*R%*.
Q.E.D.

§7. Construction of signed branching Markov processes with
age (I). (Non-branching part.)

In this and in the next section, we shall construct the process discussed
in the previous sections. Although such a process can be constructed by
continuation of sample paths,2 we shall here construct them by an analytic
method originated by J.E. Moyal [10].

In this section, we shall deal with a process corresponding to a non-
branching part. For this purpose, we construct a process which is able
to describe the creation of mass, i.e. using the process, we can interpret
probabilistically the parabolic equation:

au%t;_ag)_ = %— Au(t, ) + k(x)ult, ), x e R%,

(7. 1)

where k(x) is a bounded continuous continuous function on R®.

First, we shall state some known results which are useful for the const-
ruction of our processes. Let S be a locally compact Hausdorff space
satisfying the second axiom of countability and let x,(¢, 2, -) and ¥ (x; ¢, ) be
measures on Z(S) for fixed xS and #=0. Let also x,(¢, -,B) and
¥(.; t,B) be Borel measurable functions for fixed ¢+ and B&(S). Let the
pair of ¥, and ¥ also satisfy the following conditions:

(7. 2) %t + s, %, B) = Ss 1(t, %, dy)2y(s, ¥, B) »

(7. 3) tlirg Uix; t,S) =1~ }Lrg Xo(t, x, B),

(7. 4) Was t+5,B) = U(as t,B)+ | n(t,2,d900; s, B),
(7. 5) ¥(x;t,S) is continuous in ¢,

xeS, Be #(S), t,s=0.
Then it is said that x, and ¥ satisfy the % ¥-condition.?®» When %, and ¥

29) cf. M. Nagasawa [13].
30) Moyal’s X% —condition is stated for non stationary Markov processes. The condition

stated here is the one for the stationary case and is strengthened in the part of (7.5). (cf. Moyal
[10].)
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satisfy the 2,%-condition, by (7. 4), ¥(x; ¢,B) is nomotone non-decreasing in
t. Let ¥(x;dt,B) be the measure induced by ¥(x;t,B) for fixed « and
B. W¢é define ¥, and %, by

¥ (x;dt,B) =¥(x;dt,B),

(7.6) V.. (x;dt,B) = S:SS ¥, (x;ds,d2)¥(z; d(t —s),B), r=0,
wr(x>t’B)=S:wr(x,ds’B)9 ’;1’
7.7 %,(t,%,B) = S:SS ¥, (x; ds,d2)t,(t — s,2, B), r>1.

Then we have the following

LEmma 7. 13D (J.E. Moyal) If the x¥-condition is satisfied, then it holds

that: (i)

(1.8) ¥,on(wsdt, B)= | ¥ (a;ds,dyW, (y;dt—5),B),  nrzl,
(7.9) Aper(t, @, B) = S:Ssqf,(x; ds, dy)t,,(t — s,9, B) , r=1, >0,
(7. 10) x,(¢t +s,z,B) =WZr=}o L Lo (ty 2y dy)Xreyi (S, 9, B), r=0,
(7. 11) g}oxr(t,x,S) = 1-lim¥,(s; £,5), veS, Be B(S), t,s=0.

(1) The function x defined by

(7. 12) «(t, , B) =§:ox,(t,x,3), vxeS, Be FS), t=0,
satisfies

(7. 13) 1t +s,2,B) = SS (¢, ¢, dy)x(s, y, B)

and

(7. 14) At 7, B) = 0,(t,2, B) + | | W(a; ds, )t — 5,9, B).

3D cf. J.E. Moyal [9], theorems in §§2-8.
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(i) For given X, and ¥, X is the minimal non-negative solution of (7. 14), and
i
(7. 15) Im?, (x; £,S) =0

holds, then % is the unmique solution of (7. 14).
Now let us set

TOf (@) = | 1.t 2,d9) ), r=o,
(7. 16) fe ).
Tof(@) = | 1t 0,d9) @),

According to (7. 2) and (7. 13), there exist two Markov processes (but we do
not assume the right continuity of sample paths here) X{ and X, whose
semi-groups are given by T¢ and T, respectively. When we consider that
there exists a Markov time z of X, and X} is the process obtained by
the killing of X, at the time 7, it is expected that ¥(z; dt,B) denotes
P,z € ds, X, € B) under certain conditions, where P, denotes the probability
measure of X;. About this, we quote from Sirao [17] the following

Lemma 7. 2320 Let ¥,, %, and 2 be the jfunctions defined by (7.6), (7.7)
and (7. 12).  Let them also satisfy the following conditions: (a) T given in (7. 16)
is strongly continuous on Cy(S). (b) TS given in (7. 16) maps Cy(S) into itself and
also we have

lim || 795 || = 0, r=1, feCyS).

Then it holds that (i) there exists a strong Markov process X={X,, ¢, %, Ps; € S
corresponding to the semi-group T, given in (7. 16) whose sample paths are right
continuous and quast left continuous3® (i) there exists a (Bi-) Markov time = of
X, such that there exists a strong Markov process X* ={X{,z, # %, P3; x € S} cor-
responding to the semi-group T and X° is the killed process of X at the time <,
and (iii) setting

32) cf. [17], Theorem 1.
33) A right continuous strong Markov process X; on 2 is said to be quasi left continu-
ous if, for any monotone non-decreasing sequence {r,; # = 0} of Markov times,

P, (lim Xr, = Xz, 7<) = P,y(r <), z€ 27,
n—o

holds, where = = lim 7, and ¢ denotes the terminal time of X,.
P
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TYy=Ty Ty =170y Tr4y =Tp + 0,7, =139
we have
(7. 17) P(X,€ B, 7, =t <c,y) = 2(t,2,B)
(7. 18) P.(Xr, € B, z,€dt) =", (x;dt,B),

xeS, Be #(S), t=0, r=0.

Now let us apply the above lemmas for our case. In the sequel of
this section, let E be a locally compact Hausdorff space® satisfying the
second axiom of countability and X’ ={X}, #/,P,; x € E} be a conservative
Feller process. Then the semi-group H, induced by X/ is strongly continu-
ous on C,(E).3 Asin §2, we shall consider the topological sum S=:_ljoE x{p}
=E X N, where N={0,1,2,---}. Then S U {6}, 6 being an isolated point,
is a locally compact Hausdorff space satisfying the second axiom of counta-
bility. A point of S and a Borel sub-set of S are denoted by [z,p] and
[A, p] respectively, where Ae Z(E).

Let k(x) be a bounded continuous function on E and let k(x)=k*(x)—k (x)
where k*(x) = max (k(x),0) and %k (x) = max (— k(x),0). Then

o) = || KX ()1 ds,
(7. 19 piu) = | (Xiw)ds,
o) = | F(X1(w)ds,

are non-negative additive functionals of X’ and hence we can consider the
exp(—¢,) sub-process of X’, which will be denoted by X°={X?,s, &, P:; x<E}.
Then it trivially holds that

(7. 20) P{(X?e B)=PYX}€ B, t<o)=E,[e*; X{ € B],
x€ E, Be Z(E),

31 z,’s are Markov times. cf. Ito-McKean [7], p. 87.

35) In this section, we do not assume that E is a compact space, because we consider the
equation of type (7.1) with initial value f€C(E) and the assumption of non-compactness
does not cause any difficulty in the discussions of this section.

36) When we consider H; on Cy(E), H, may be regarded as the semi-group on C(EU{~})
where EU{>} denotes the one-point compactification of E. Then it is known that the con-
vergence of H,f(x) to f(x) at any x€E implies the strong convergence of H,f to f, i.e.
[|Hyf — fll—>0as t -0. (For instance, cf. Dynkin [2], Theorem 5.)
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where E, denotes the integral by P,.
Now let us set
3,,P3(X?e B), x € E,
(7. 21) Xo(t, [, p],[B,q)) = { O , if [x,p1=6 and & & [B,q],
1 , if [x,p]=06 and &6 €[B,q],
and
Em[e“’tl%L dt; X} e B], if xz€E and ¢g=p+1,
7. 22 Tz pl db B )= g [0 990 g, if v E and 5 < (B,q),
0 , otherwise,3"
[z,p1€ S, [B,qle ZF(SU{)),

where §,, denotes Kroncecker’s delta. Then 2, is a measure on Z(SU{s))
with parameters ¢ and [z, p] € SU{é6} and ¥ is a measure on Z ([0, ) xSU{s})
with parameter [z,p] € SU{6}. Moreover x(¢,[z, ], [B,p+ql) and ¥z, pl;
dt,[B,p + q+11) are independent of p and vanish for g% 0. Let also set

(7. 23 ¥ (2, 5); 1, 1B,q) = | ¥z, 2); ds, [B,a),

[2,pl€ SU{d}, t=0, [B,gle F(SU{s}].

Then we have

Lemma 7. 3. Let x,(x,p), t,+) and ¥(x,pl;t,-) be measures given in
(7. 21) and (7. 23) respectively.  Then they satisfy the Moyal’s x,.¥-condition.

Proof. By the definition of X, and ¥, x,(¢,6,{6})=1 and ¥(;¢,S) =0
for any #=0. So it suffices to show that the conditions (7. 2) — (7. 5) hold
for [z,ple S.

Since X} is a Markov process and x,([x, p], ¢,[+,p]) corresponds to the
transition function of X9, (7. 2) holds evidently.

Combining (7. 22) and (7. 23), we can see that

¥ (e, 013 ,S UL = . [ | e dlor + o7)]

do dei do7
37) ¢

at 0 —ar 24 g d
Radon-Nikodym respectively.

enote the derivatives of ¢,, ¢} and ¢7 in the sense of
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= B[ (~de*]
= E,[1—¢e*]
=1-—1x¢,[2,p],SU{}), [=,pl€ S,

which proves (7. 3).
Now set B*=BNn{z;klz)=0} and B = Bn{z;kz)<0} for any
Be Z(E). Then we have

([, p); t +5, [B,p +1])
= B[ [Ments () det]
= B[ [ el (Xt agi] + B e By [ [ e, (X0 a0i]|
= U, 21 t, [B,p + 1)+ |_n(t, (2,0, [y, )0y, p); 5, [B,p +1)
=¥([=,pl;¢, [B,p +1]) + SSU{B}xo(t,[x,p], [dy, 0¥y, q);s, [B,p +1]),
[x,p]€ S, t,s=0, Be #(E),
where I, denotes the indicator function of B. Similarly we get
U([w, p1; ¢ + s, {3})
= ¥((2, 213 1, {00) + [, olts [0, ), [y, DY (W, s s, {0)).

The above two equations prove (7. 4), because 2,(¢,[x, 7], [B,q]) = ¥([x, pl;
t,[B,q+1]) =0 for p#q, Be Z(E).
Since (7.5) is evident by the definition of ¥, we have proved the

lemma. Q.E.D.
Now let us set

wl([x’ p]a dt9 [Br Q]) = w([xy p]s dt, [B9 KI]) )

¥, (2, p]; dt, [B,q)) = S:SSU{B}Wr([x,p]; ds,[dy, p)¥([y, »'); d(¢—s),[B, ql),

¥.(z,81; 1, [B,d) = ¥.(02,1; ds, [B,a)),
(7. 24)

2,04,z 73, (Bya) = [ ¥.(a, 83; ds, [y, pD0lt — 5, 19,97, [B,aD),

Su{s}
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A(t, L2, P, [B,q) = 3}%.(t,Lv, 7}, (B, D),

r=1, [x,p1€ SU {3} [B,qle F(SU{o}], t=0.

Then we may apply Lemma 7.1 for our %,, ¥, and 1.
LEMMA 7. 4. Let U, be defined in (7. 24).  Then we have

(7. 25) lﬁ’i, v, ([x,p1;t,S U {o}) =0,

Sor any t =0.

Proof. When [x,p]1=346, (7.25) is evident. Let [x,p]1€ S and let
Be #(E). First we shall prove

(7. 26) ¥,([x,pl;t, [B,p+7]) = Ez[S:St

t
-, et hXi)doi doi, - - -dot, |,
sy Sp-1 r 1 2 4
r=1.

By the definition of ¥, (7. 26) holds for »=1. Assume that (7. 26) holds
for .. Then we can obtain from Lemma 7.1 and the strong Markov
property of X’ that

¥, =z, 0]; ¢,[B,p + 7+ 1))

= S:S:SSU{J} wf([x' p1; ds, [dy, Q¥ .y, ql; dv —s), [B,p +7+1))
=F

LferdoEn (707 [ ernnxidgnde, - - den |

0 Sy S,-

= Bf[ - [ enatax Daptdon, - -dsi,]

001

which shows the validity of (7.26) for »+1. So we can see inductively
the validity of (7. 26) for any »=0.
Similarly we get

¥, ([x,p]; ¢,{6})

= Ex[stse .. 'S:,_le_(ox'd?;‘dp:’ .. ‘d?’?,-,d?’?r], r=>0.

0Jsy

Combining (7. 26) with the above equation, we have
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¥, (=, pl; t,S U {e})

= EI[ S”S” e S:Me'%,dgo‘s“l des, -« - dS"}',_ld%,] , r>1.

0dsy
Since k(x) is bounded on E, it follows from the definitions of ¢,, ¢!, ¢35

and the above equation that

(7. 27) ¥, (2,01 1,5 U op = LIELOT r>1,

which proves the lemma. Q.E.D.
Here we note that

xt,[2,pl,SU{} =1, [x,p]1€ S U {6},

which follows from (7. 11), (7. 12) and (7. 25).
Let us now consider the function space

CoS U} ={f; f(0) =0, fls € Cu(S),

where f|s denotes the restricted function of ¥ on S. Let also ¥, be the
operator defined by

(7. 28 Vise, o) = [, 1L, p), [dy,d) (v, D,

Then we have

THEOREM 7. 1. Let H, be the semi-group on C(E) induced by the Feller
process X;.  Then V, mentioned above is a strongly continuous and non-negative
contraction semi-group on C(S U {0}).

Proof. Let us set

(7.29)  Ver(w, 0D = |, 0ltsl2, 0], [dy,0)f(w,a), e CuS U@, t=0.

Su{é}
Then it holds by the definition (7. 21) that

(7.30) VS (x,p]) = Elle~fo* Ol £(x1, 1)1, [z,p]1€ S,

where f([x,p]) is considered as a function on E for fixed p. Since H, is
strongly continuous on C,(E) and k(x) is bounded continuous on E, the
right hand side of (7. 30) belongs to C,(E) as a function of x € E. Hence
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the semi-group V! is strongly continuous on C,(SU{d}), because V1 (3) = f(5)
for t =0.

On the other hand, we can see from Lemma 7.1 and Lemma 7. 3 that

1V =Vl = sup ({0 w(tw,51; ds, [dy, et — s, W, 4}, S U o)

[z, pleSY0

oo

= sup 3 ([ w.(te,0; ds, tay, Dttt — s, Wy, 41, S UGN

[z,p]€S »=1Y0

= sup 5‘: 7, (=, p]; ¢,S U {6}).

[z,p]€S r=1

Applying (7. 27) to the right hand side of the above inequality, we have

(7. 31) we—veis 3 WO ey, £=0.
Next we shall prove that V, maps C,(S U }8}) into itself. Set

Vi f(x, p]) = 2. (¢,[2, 2], [dy,q)) fly,q)), f & C(SU{a}), r=0, t=0.

SSU{ﬁ}

As was proved already, V{ =V{ maps C,(S U {6}) into itself. Accordingly,
we may use the mathematical induction. Assume that V{” maps C,(S U {5})
into itself. Setting k*([z,p]) = k*(2) for 2 € E and k*(d) = 0, we can see from
(7. 9) that

Vit f(l=, p))

Fsvios Vi loy o, 20es 835 ds, [dy, a),it = s, [y, ), 42,4 DF (2 4D

Il

l

Ssm} ([x, p); ds, [dy, aV2s f(y,ql)

|| Eotem Sl ox, p + 10V FUXL, p + 1Dds

i

0
t

0V (V2 ) [z, p + 1)ds, feC(Su{a, [z,ple S.
Since [V, fIl<|fll and VIEV2f) e CyS U {6}), the above equation
shows that (V9*® f)]ls € Cy(S). Also ¥(5;+,+)=0, and hence the above
equation shows that Vi feC,(SU{s}). Thus we can see that V{°feC,(SU{s})
for any fe Cy(SU{8}) and r=1.
Now the function
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VS, 5D = 3 VO 5), Fecsua, t=o,
belongs to C,(S U {d}), because V{’f e C,(S U {d}) and, by (7. 27),

7. 32) e sl WELDT 7y

holds for any »=1. Hence the strong continuity of V? on C, (S U {3},
(7. 31) and (7.13) prove that V, is a strongly continuous semi-group on
Cy(S U {o})-

The non-negative property of V, follows from the definitions of ¥ and
%, and the contractive property of V, follows from (7. 11). Q.E.D.

New let us consider Markov processes on S U {6}. Since V¢ and V¢
satisfy the conditions (2) and (b)) in Lemma 7.2, there exist two strong
Markov processes Y ={Y, = [X;, Ni], {, B, P, 5 [v,01€ S U {6}} and
Yo ={Y?=[X! N8, F, Pbn;lz,pl€ S U{}} corresponding to the semi-
groups V, and V¢ respectively and a Markov time = of Y, such that

Y (w), if t<<t

7.33 Y (w) =
(7. 33) t(w) itz

Also, we may assume that the sample paths of Y, are right continuous and
quasi left continuous and, by Lemma 7.1 and Lemma 7.4, Y, is a con-
servative Markov process. Let us set

(7. 34) o-(w) = 1nf {¢ >0; N,(w) = Ny(w) + r}, r=0.
Then we have

TuEOREM 7. 2, Let X, and ¥, be measures given in (7. 2). Let also
Y ={Y,=[X;, N)}, B P, ,;lz,p1€ S U{3}} be the strong Markov process
mentioned above and let o, be the Markov time given in (7. 34).  Then we have
7. 35) P[x,p](Yt €EB, o, =t<0,4) = X, (t, [z, P], B)

(7. 36) })[x,p](Y"r € B, o, €dt) =¥ (x, p]) dt,B),

[x9p]es U{5}9 BE‘_@(SU{G}), r;()-

Proof. 1If [x,p] =5, then (7. 35) and (7. 36) hold evidently. So we shall
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prove them for [z,p] S. Since it follows from the definitions of %, and

¥ that
X, (¢, [z, p), [E,p]) =0, [x,p1€ S, r=1,
we have
P, Y.€B, t<o)=P, (Y, € B,N,=p, t<a)
é Xo(t> [x’ p]’ B)
= P[x,p](Yt = B’ < T)9 Be ﬁ(s U {5}),
and hence
(7. 37) Pogoi=t=1 [z,p] € S.

On the other hand, x,(¢,[x,p], -) vanishes on S U {6} — E x {p} for any
fixed t=0. Hence we have

P[x,p](Nt =p,t<z)=P° (NY=9p,t<<7)= P[x,p](t<7) ,

0
[ 7]
[#,p]€ S,

which means

P[x'p](f = 01) =1, [x9 p] eSs.

Combining (7. 37) with the above equation, we can see that

P[x‘p](‘t =g) =1,

and accordingly

P["?-I’]<TT =0,) = 1, [x, P] es, r ;0,

where r7,=0, r, =7 and 7, =7, + Oc.7.

The theorem follows from Lemma 7. 2 immediately. Q.E.D.
Let us now consider the function defined by

Pf@), [meles,
Fimey = 0 F
’ [x,p]=59

for any fe B(E) and 2=0. Then it follows from (7. 12) and (7. 32) that
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VAT 2@ 00 = 3 [, 2 5L Wy, 2+ F 210, p 41D
(7. 38) <217l r{;‘o (2 lllﬂl t)’

=2 || £l etll¥lt < oo

THEOREM 7.3. Let V3§, V, and ¥ be semi-groups and measure given in
(7. 29), (7.28) and (7.22) respectively.  Let also Y ={Y, =[X,,N.), B B
[x,p1€ S U{6}} be a conservative strong Markov process corresponding to V,.
Then the function u(t,x)=V,f-2(x,0]) is a solution of the following integral
equation

N ¢
(7. 39) ut,2) = V27242 [ ult 590,00 ds, (49,10,
x€E, t=0, 2=0, f & C\(E),

with initial value u(0 + , ) = f(x).

Proof. By (7. 38), Vf-}([x,()]) is bounded on [0,7] X {S U {8}} for any
given T>0. Then we have

VF A, 00 = Ey, o [F-A¥0); t < 0l + Ep,  Vees T 2V,); 0 < 1]

N ¢ Py
= ViF 2w, 0) + | [, 702, 01; ds, 1y, V.. 72w, 1D
Since V,f-?([w,p])=2”V,ﬁ([x,0]), we can see that u(t,x)=V,f>([x,0])
satisfies (7. 39). Moreover, V7 is a strongly continuous semi-group on
C,(S U {6}) and hence we have

. RN . PN PARN
(7. 40) m  V.f-a(=z,0)= lim V{f-a(le,0]) = f- a2, 0]) = f(=,).
(t,2) > (0,20) (£,) > (0,20)
Thus we have proved the theorem. Q.E.D.

CoOROLLARY 7. 1. Let X’ be a standard Brownian motion on R®. If k()

is a bounded continuous function on R®, then wu(t,x)=V,f-2([x,0]) is a solution
of the following differential equation
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(7. 41) a”(a’t ¥) - L duit, @) + ka)u(t, 2), v e RY, t=0,

with initial value f € C(RY).
Proof. By the definition of ¥, we have
t 14
¥([a,0; dt, [B,1]) = E,Le” $o"¥% prx 1 (X at
v e RY, Be F(RY,

where E, denotes the integral by the probability measure of a standard
Brownian motion X4. Then it follows from Theorem 7. 3 that

ult,2) = Vi 73,00 +2 [, 0,00 dit ~ ), [ay, 1Duts,9)

(7 42) Ex{1}
= uy(t, ) +o(¢, %),
where
¢ 7
uilt, 1) = E e oM 5]
and

Y kX)) do

ot 0) = 2 Ege™ o B uls, X1-0Ws

On the other hand, by Kac’s theorem,®® we have

LD~ L gut, 2) — k@) uolt, ),

and
t t-s 'V do
T = okt (w)ult, @) + SOAEx[e‘Zfo N (X1 Yu(s, X i=)ld's
— lk(x)|o(2, x) .
Combining (7. 42) with the above two equations, we have

Dub2) = L fuy(t, @)= (@) | uolt, ) + 2 (@at, @) + L dult, 2)— | kl) o, @)

[

= - du(t, ) + 2k*(2) — k() )u(, z)

Adu + k(2)u(t,x) .

N‘H &

88) cf. Ito-McKean [7], pp. 54-55.
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Since #(0 +, z) = f(x), the above equation proves the corollary.
Q.E.D.

§8. Construction of a signed branching Markov processes with
age (II).

According to Theorem 5.1, a strong Markov process on S satisfying
Condition 3 is a signed branching Markov process with age. We shall
construct such a process in this section.

Let E be a compact Hausdorff space satisfying the second axiom of
countability, and consider S™, S®, § and S defined in §2. We shall

define the mapping 7 from U S™ into § by
n=0

T((xu p1)9 (x27p2)9 DR (xm pn)) = [[xly Loy = * *y xn], [ply Doy * * °,y pn]] e S”.

Let {(gi(%), ga(®)); n =0,1,2, - - -} be a system of pairs of non-negative
continuous functions on E such that

@ 1 Kz) = 3 {alfa) + a:(@)}, ek,

is bounded continuous on E, and
(8' 2) (I;(x)q;‘(x) = Or HASS E’ n = 09 11 AR

Further let X, be a conservative Feller process on E, H, be the strongly
continuous semi-group on C(E) induced by X{, and let Y = {Y, = [X,,N,],
B, P, sz, ple S}, where S=E x N, be the strong Markov process con-
structed in §7 from the system {k(x), X/}. (Since k(z) is non-negative, the
extra point é is not needed.) Then, by (i) of Lemma 7. 2, we may assume
that almost all sample paths of Y, are right continuous and, for any given
Markov time ¢z >0, they have their left limit Y:- at the time <.

Let us set

k[, p)) = k(x), [x,p]1€ S,

and

o0 (w) = [ k¥, 0)ds .

0

We shall denote the exp(—¢,) sub-process of Y, by Y*={Y?=[X?,N?], 7,
e, P[‘;'p];[x,p] €S} Letalso Y},, i=12,---,n, be Markov processes
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such that their fundamental spaces are identical to the one for Y¢, each of
them is stochastically equivalent to Y{ and they are mutually independent
to each other. Then the probability measure of the joint process (Y9,,,Y3..,

., Y3,,) starting from ((2,, D)), (%3 Ds), * * + (2, P)) € S™ is given by the
product measure Pp, , X Pp o ,.X «-+ X PP ... Using this product mea-
sure, we shall define a measure x,(¢,[x, ], -) on Z(S) by

Xo(t, [x’ p]’ [B9 Q])

(8. 3) Phoaa X Phpn X e X Pp (Y8, Y8, -+, Y0.) €77(B,q)),
if [x, pl # 4, [9, 7],
=11 , if [x, pl = [9,p] and [3,p] € [B, q],
1 , if [2,pl=4 and 4€[B,q],
0 , otherwise,

where x = [2, %, +* +, ), P=[PyPs * -+, ] and Be F(S).

Let us next define a measure ¥([x, p,j]); -, ») on F([0,0) x §). Using
a given system {(gi(x), gn(x)); n=0,1,2, - - -}, we shall define z([x, p, 7], [B, g, /']
by (4. 1). Then a measure ¥ ([, p, j1; dt, [B, q, j']) on Z([0,)x &) is defined
by

®.4  U(w,p5];dt, [B,q, i) = B, ,@(X;_, N, il, [B,a,i"); 1 € dt)

[¢,p,/1€ S x ], [B,q,7'1€ Z(S),

‘where Y9 = [X?},N?] is the Markov process mentioned above, E[‘; - denotes

the integral by the probability measure Pl of Y? and J ={0,1,2,3}. Then

‘we shall extend the parameter space of ¥ to § as follows:
{8. 5) ¥4, dt, S) =7([9, p, jl; dt, S) =0, [3,p] € S,
and for [x, pl = ([}, 255 - - -, xn], [pl’ Pas * * *y pn]] e s”

¥(x, p,j1; dt, [B,q,5"))

= igl SS ZF(I:x'u piy .7]3 dt, [dyy P’, j’])xo(t’ [x;y p:]’ [By’ q,]) ’

(8. 6)
[B,ale #(S), j,i'e ],

yf([x, pyf]; dt’ {A}) =0,

where X, is given in (8. 3), x]=[®y, *+**, Timgy Bgury * > *y %al, Pi=[0y > * +,
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Dict, Dissy * * *» Pal, and [B,,q’] denotes the Borel set {{z,r1€ 8;7( (g, p'))
X 17Yz,r] € [B, ql}.
Now we shall define %, %,, X and ¥, by

¥,(x, p,j1; dt, [B,q,7']) = ¥(Ix, p, j1; d¢, [B,q,7'])

7,ulx, B, 7); dt, 1B, 4, 7)) = | |0, (e, B,3D; ds, [du, B, DV (o, P, i1;
d(t - 3)7 [By q, ]’]) ’

7,(x, b, 713 1, 1B, 0, ) = { ¥, (x, b, 1; ds, [B,a, 7D,
®.7) %t lx, p il [B,q,i') =651 [x bl [B,ql),
2.(t,Lx, B3}, [B,a, D= | (2. 0x, b, 1; ds, 1y, 2/, 1)
wt = s, [y, 25, B, 7,
A(t,Ix, p,7), [B,q,5']) = go 1,(t,[x, p, 7}, [B,q,i'),
%, pjle S, [Bya,j 1€ #(S), r=1, t =0.
Then we have

Lemma 8. 1. %, and ¥ mentioned above satisfy the Moyal’s X ¥-condition,
i.e. 1t holds that for any [x, p,j1€ S, [B,q,5’1€ F(S) and t,s=0

(80 8) xo(t + s, [x, D, .7], [B,q, ],]) = Sg Xo(t, [xy D, ]]9 [dy’ p” l])

° Xo(s, [y,P', l], [B; q, j,])y
(8. 9) ¥([x, p,jl; 0, 8)=1— %i_gloxo(t,[x, pi S,
(8. 10) ¥(x, pjl; ¢t +s, [B,a,5']) = ¥(x, p, i1; t, [B,a,5'])

+ (s lt, [x, B, 71, [dy, p', iV, P, il; 5, [B,a, /),
(8. 11) U(x, p,j1; t, S) is continuous in t.

Progf. Since (8. 8) is evident from the definition of ¥, and also (8. 9)-
(8.11) are evident when [x,p,jl1=4 or [x,p,jl=1[d,p,j], we shall prove
(8. 9)-(8. 11) for [x, p, 1€ 8§ —(S* X J) U {43}.

Let Y?,., i=1,2,---, n, be Markov processes and let P[‘;"MXP[‘;Z, 2 X
*++Xx Py .. be the probability measure used in (8.3). Then it follows

from (8. 6) that
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¥([x, p, j1; dt, S)

n

> Sgwxi, po i1; dt, [dy, a, /W%, (%, p%,0, 8)

= —d,P’

ey, ?’l] XP[O,; p]((Y(l’,zy t Yg.z)e r—lS’)’
[x,P]= [xnxzs ] xn]s [Pnpz, * Ty pn]e Sn’ n;]-‘

Hence we have
V(e b1 1, 8) = — | AP X X PY (Ve YO € T8
=1—1x(¢, [x, p, i1, S), [x,p,jle 8, t=0,

which proves (8. 9).
We shall next show (8. 10).  Considering the process (Y9,,--+, Y3,)
mentioned above, we have for [x, pl = [[%;, %3, = * *, %], [P, D2y = * *» Dall

¥(ix, p, 413 ¢ + 5, By, ')
= ¥(x, ,); t,1B, 0, 7D + | ¥(x, b, 415 dv, [B,q, 17
= ¥(lx, p, ]]; t, [B,q,5'])

t+s n
+§, 2 (w0 pa il; dv, Wy, 2, 700, Ll P77, [Bind's77)

t 1=

= ¥ (x,p %5 4 (Boa, 7D+ ) 3 [ QoW (X L, N2, 13 do, [dy, 2/, 7D

E[xi piI][XO(v’ [Xi ty i, “]’], [By’q 9] ])]
where E[(; rl [x1, Pl] . X P[ox 2] for [x, p]l= ([, 25,
s %aly [P1y D2 ¢+ ¢, Pa1] and [X72, N79] denotes [V, -, Y., Vi,
-, Y7..1. Then the right hand side of the above equation is equal to

denotes the integral by P?

¥(x, p, 1; ¢, [Bya, 7)) + j Sl 2 (T (X N2, 15 v, [y, 9, 57)

(09 [Xz t 9 z t ’0]’ [Bw Q', 0])]
=¥(x, p,jl; t,[B,q,5))

+S [x, p][w([[Xl ts 2 ty * "y Xz.z]y [N?.t 9N(2’,t sy Ng.t]’j];dv9 [B9Q9],])]

= qf([xy D, .7]; t1[39 q9j’])
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+ {06, 0%, p,71, 14y, B, DV, B, 1; 5,[B, 0,77

So we have (8. 10) for any [x, p,jle §S.

Now Fk(x) is bounded continuous and hence ¥([x, p, j1; -, S) is absolutely
continuous with respect to the Lebesgue measure on [0,c0). Then (8. 6)
proves (8. 11) for any [x, p,jl€ S. Q.E.D.

Now we shall consider the linear operators U¢” and U, on B(S) defined
by

UPh(lx, p,7]) = Ss 1. (t,[x, p, 51, [dy,q,7'Dh{y,q,5')),

8. 12) [x,p,jle S.
Uh(ix, b, ) = [ 1(t,1x, B, ), (4w, 0, D Rw, 0,77,

Further set

F 3w, . 7)) = £ -4z, 2, 0D, feBE), [xpiles.

Then we have

LemmA 8. 2.  Let UY be the operator defined above.  Then U is strongly
continuous on C,(S).

Proof. By Theorem 7. 1, the semi-group V, corresponding to the process
Y, =[X,,N,] on S is strongly continuous on C,(S), while k([x,p]) = k(z) (=0)
is bounded and continuous on S. Hence U is strongly continuous on
Cy(S).

Now suppose & € C(S) and set

n| 0 1 h(x, p,jl), if [x,ple S", n=0,
ase 1 \LXs Py 71) =
i , otherwise.

Then we have

(8. 13) UPh(x, p, 7)) = Ullklg,, ;) (%, p, 7)), [x,pjl€ S" X {j}, n=0.

On the other hand, the linear hull of {7-3; f& CXE), 0=<2<1} is dense

in C,8) and U‘,‘”ﬁls"xme C,(S™ x {;}) which follows from U%“?-\zls,,xm
/\

= (U@O?\z)u-zls"x{j} and U‘f’?}lEeCo(S). So, for any ¢>0, =0 and

je J, we can find constants «,;, f;€ C*E) and 0<4,<1, i=1,2, .-
which may depend on ¢, # and j, such that

*y lny
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in S
(8. 14) A — gl a;(fi+2) ”S"x{j}< €39,

Then (8. 13) and the contraction property of U imply that Uk € C((S).
Next we shall show the strong continuity of U{” on C,S). As was
stated already, U is strongly continuous on C,(S). Hence we have
NN
(8. 15) NULf-2—f+2llgy ;>0 as t 0,

feCxE), 0=i<1.

Then, for any [x, pl =[x, 25, « * +, 2], [0, 05+ -+, P,]] and j € ], it follows
from the definitions of U$® and x, that

\USF A, p, D) — F - A%, 2, 7|

< | [ UPF Ao p,0) — 1 70z, 2, 0D

)

* 2([”1" Dry 0]) - f'\l([x'r’ Dry 0])}

M:

(8. 16)

l

v

e

<

Il
=

r—1 n N
° i]—}l f z([xu Dis 0)] i=11;[+1 U(tO)f * X([xu Dis O]) l

NN
=CHNUPSf-2—f-2lgy, FECHE), 0=2<1,

where C(f,2) is a constant defined by

N
Clf ) =sup{n | F-Ql5,; n=1,23-- ).
Combining (8. 15) and (8. 16), we have

. AN
(8. 17) Um [ UPf -2~ S-2ll3=0, fecCXE), 0=£2<1,

because UPF - i([0,p, 1) = 7 -39, p, 7)) and UPF-3(4) = F-4(4) = 0. Then it
follows from (8. 14) and (8. 17) that for any fixed #=0 and j& J

(8' 18) lti—rj)l ” U(tO)hISnX{j} - hlsﬂx{j} ”§ = 0’ he CO(S).

39 For any function f on a topological space _2”?, we denote in the sequel

sup {| f(#)]; 2€ AC 27} by || fll4.
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On the other hand, % and Uk are elements of C,(S). Hence there exists
an n, such that

IUCh~hlz= max [ULk s, = hslls-

Therefore we can see from (8. 18) that U$ is strongly continuous on C,(S).
Q.E.D.

Now let Y;,=[X., N, ¢=1,2,--+, n, be Markov processes on S

such that their fundamental spaces are identical to the one of Y,, each of

them is stochastically equivalent to Y, =[X;,N,] and mutually independent

to each other. Then the probability measure of the joint process (Y;,;, Ys.s,

+y Y..) 1is given by the product measure P, X Pm,pz] X+ XP, .
The integral by the probability measure P, XP, X -+ XP, . Is

denoted by E(x,,,) when x =[2,,%,, ++ -, 2,1 and p=[p, Dy * * *, P.). Then

the process Y9, mentioned already can be considered as the exp (—¢,) sub-
process of Y, ;.
We shall next define the set D, by

Dn ={x;x=[x,x, M '9x]E En}-
Then, by (8. 4), ¥((=,p,0];ds, [-,q, -]) vanishes outside of ( Q’ D,) x {1,3}.

Hence it follows from (8.6) and (8.7) that for [x, p]=[[%;, %z * * *, %],
[Py D25 = = +5 D4l

¥([x, p,0]; dt, [B,q,1))

= 3 (¥ (a0 2,015 dt, [dy, ', (8, [x4, 2,01, [Byy 50D

= 3 | B (Y2, N2, 0, [dy, p,1D); 7 € df]

=1
. 0 . o o 0 0 e o 0
Pomy X X Pr e X Plana X0 0 X Py
(8' 19) ((Yg»t 9 * "%y Yg—l.t’ Y(i)+l.t st %y th) S r—l([Bw q,]))

n (¢ s
= 31 { Eqppole 1M MY, (X, 10 Ner O, [y, 27,10

1=1

B [0 K¥ s

-2
(xs’.m’)[e "

’Ir’l([B,,»q’]) (Yl.t’ Sty Yi—l.t, Yi+1,n ) Yn.c)]dt

https://doi.org/10.1017/50027763000026635 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000026635

218 TUNEKITI SIRAO

= (s e E10800% 31053 (X, )30l [, 27D

L1 d Vi o o 0y Yo Yieer o v s Yn.t>}]dt

where [x:’ p:] = [[xly f vy Xy Liwry * 00y xn], [pla * 0y Diety Pivrs 0 %y Pn]]
and [B,, ¢'1={lz, 1e 8;70 [y, p') x 7' (2, r) € [B, qI}. Similarly, we

have

¥(x, p,0]; dt, [B,q,3))

(8. 20) _—_S (x,,)[e lz §okvands _‘2{

i=1 m

qn(X:,0)0m(Ys,ey [dy, P'])

0

Ms

'IT"([B,,,q'D (Yl,t) c Yi—l,t’ Yi+1.t9 Sty Yn,t)}]dt .
Then we have

LemMmA 8. 3.  Let U be the operator on B(S) given in (8. 12).  Then U
maps C(S) into itself. Moreover it holds that

(8. 21) ltinol USR] =0, he C,8S), r=1.

Proof. We shall first prove that Uk € C(S) for any %< C/(S). By
Lemma 8. 2, U is strongly continuous on C,(S). So it suffices to prove
that for & e C,8) U¢*Yh is continuous in (¢,[x, p,j]) as a function on
[0,00) X § and U{*Ph € Co(S) for any fixed # =0 under the assumption that

Uh satisfies the same properties.
Now, by (8. 7) and (8. 12), we have

Uz, p,0) = | 20x, p,03; ds, 1y, 0, DU (0,4, ) -

Applying (8. 19) and (8. 20) to the right hand side of the above equation,
we can see that for [x, p] = [z, %z, - + =, 2al, (D1, P+ + 5 Pall

Uy h([x, p,0)

¢ 3 k( X;00 NioDd
=S E [e i= 1 %, Dav

0 (x p)

.igl mEZO{Q:n(Xi.s)UEtT—)Sh([XI.n Sty Xi-—l.s’ Xi,sa b '9Xi,39 AX;ZH.xa R ’Xn.S]’
m

[NI,S’ ) Ni-—1,n Ni.x’ an’ ) 0’ Ni+1.s, C Nn.s]’ 1])
~ -
m—1
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+ q;z(Xi.s)U(tr—)sh([[Xl.n MR Xi—l.sy Xi.s9 Tty Xi,n Xi+l,:s A Xn,s]9

~——
m

[Nl.89 c Nt—l,s, Ni.s, 0,0, ) 0, Ni+1.n M) Nn.s]9 3])}]ds .

To prove the right hand side of (8. 22) is continuous in (¢,[x, p]) and
also belongs to C,(S) for any fixed ¢t =0, we consider the following function

g(s; [x, pl)

[ee]
= 2 ﬁo{q;(xz)U({)h([[wu oty Xyegy Ly * 00y XLy Xipgy * * xn]’
i= = N R
m

-

(8- 23) [pn s ety Dimgy Dis Oy v v vy 0y Diyyy v v v,y pn], 1])
—_—
m—1
+ q;t(xz)Ugr)h([[xly ottty Liogy Lyt vty Ly Lyggy * ¢ % xn]’

S —
m

[p19 00y Di-1y Diy 09 Tty O’ Dit1s * * * pn]v 3])}9
e ———
m—1
where [x, pl = [[®, %3 ** 5 5], [D1s D2y * * ¢, D]l By the assumption of
induction, Uk is bounded and continuous on [0,7]x § for any given T >0

and belongs to C,S) for any fixed ¢=0. On the other hand,
% {gn(x) + gn(x)} converges to k(x) uniformly on the compact space E be-
ycn;)lse {gn(®) + gn(x)} =0 and k(x) is continuous. Hence the right hand side
of (8. 23) is the sum of uniformly convergent series of continuous functions,
and accordingly g¢(s;[x, pl) is continuous in (s,[x, pl). Moreover we can
see that g(s; [, pl) belongs to Cy(8) for any fixed ¢ =0.

Now we have from (8. 22) and (8. 23)

U7 h([x, p,0))
_( ~ [ MIXow YinDdo
- So E(xvp) le = !‘0
'g(t - S, [[Xl.s’ Xz.s’ M) Xn.s], [Nl,sy N2,37 oty N,,,,]])]ds.

Since the semi-group V, corresponding to Y. =I[Xi. N;.] is strongly
continuous on C,S) and g(s; [x, pl) is bounded and continuous on [0,7]x S,
the integrand of the right hand side of the above equation is also continuous
on [0,7]x 8. Hence UY*“h([x, p,0]) is continuous in (¢,[x, p]) and belongs
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to C,(8) for any fixed ¢ =0 because g(¢,[x, p]) € Co(8) for fixed ¢ =0. Simi-
larly, we can see that U{*Vh(lx, p,jl), j J, are continuous in (¢,[x, p])
and belong to C(8) for any fixed #=0. Hence U{*“k is continuous in
(¢,[x, p, 7)) and belongs to C,(S) for any fixed ¢ =0.

Next we shall prove (8. 21). Let »=1. Since U{#k is continuous on
a compact set [0,71x § as a function of (¢, [x, p, j) and vanishes on
[0,T]1 x {4}, it holds that for any e >0, there exists an #n, such that

(8. 24) sup U ||

n=ny

< & 0=t<T.

On the other hand, it follows from (8. 22) that

UPh(x, p, D]
t n t X P
= B, te” EJHCwNeDRS S (X, ) + g(X,) sup |UYPh|ds
0 P i=1m=0 0<s<t
t n s n
B2 = sup |Us2n 1], B,y te™ B MO NeD® S gy, N, as
0 s<t o VEP =1
= sup [[UY™Ph|[(1— "), [x,pjle S, t=0.
0ssst

Since UY™h is bounded on [0,7] x 8§, there exists a constant M such that

sup UV ™R =M<,
0<sST

Then (8. 24) and (8. 25) show us the following inequality.
”U(tr)h”éM(l__e-nollkllt)_i_e, Ogth.

This proves (8. 21) because ¢ is arbitrary. Q.E.D.
We are now in a position to state the following

THeOREM 8. 1. Let {(gi(=), ga(®));n =0,1,2, -} be] a given system of
pairs of non-negative continuous functions on E such that

k(x) = ngo (gn(®) + gu(2) , x € E,
is bounded continuous on E, and

Qf?(x)q;(x) - 0’ n = 01 1’ 29 Y

Then there exists a signed branching Markov process with age Z = {Z, =[X;, N, J:l,
& B P, % pjlE 8} on S satisfying Condition 3 for a given {(gi(%), g7(2));
n=0,1,2,«++}.
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Proof. According to Lemma 7. 2 and Lemma 8. 2-8. 3, there exists a
right continuous strong Markov process Z ={Z, =[X;, N, J.}, §, % P, , 5

[x, p,j1& 8} on S corresponding to the semi-group U, given in (8. 12) and
a Z,-Markov time 7 such that

P[-"'p..i] (Z"' € B’ 777 —é ¢ < 771’-#1) = Z,(t, [xa D, .7]’ B) ’

(8. 26)
P pi1\Zy, € B, 1, € dt) = ¥.(x, p, jl; dt, B),
[x,p,j/1e §, Be Z(§), r=0, t=0,
where
=0, %=1, Vs =7, + 02,7, r=1.
Let us set

f(w) = inf {¢ >0; J.(w) # Jo(w) or 823 [ Ny(w)| =0}
Since we can see from (8. 4), (8. 6) and (8. 26) that

P, , 2z =1To or sup |N,uw)| = =) =0, lx,pile S,
s<7y

we have
P[x,p,j](ﬁ>77)=0’ [x,p,j]ES'.

On the other hand, %,(¢,[x, p, 7], -) vanishes outside of § x {;}. Hence we
have

P[x,p,j](]t#:]o’ t<”) =0)

which means

p

epgJs=Jo for any s<t<n) =P, (<7,
because J, is right continuous. So we have
P, oali#F=n=0, [x,pjle S,
which means that we may regard 7, is the rth branching time of Z,.
Now we shall check the conditions in Condition 3 for our process.

(@) () of Condition 1 follows from (8. 4), (8. 26) and the definition of
Y? which was used to construct %,.
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(b)) Let X/ be the conservative Feller process on E and let Y,=[X,, N;]
be the strong Markov process on S which are mentioned in the first part
of this section. Then it follows from the way of constructions of %, and ¥,

that
P, o 71X Ny 1€ [B,n], 7 € di)
= B, y[e 5o MDA x, NI, (X, Nt
¢ n
= Ez[e_zf;"(X's)dsk(Xﬁ)IB(X;)Wi |dt, ©<E, je ], Be B (E).
where E[x,p] and E, denote the integrals by the probability measures of Y,

and X/ respectively, and k([x,p]) = k(z). So (3. 3) holds. Similarly, (3. 4)
holds. Moreover, by the definitions of %, ¥ and ¥,, we have
Xo(t,[x, p, 71, [B,q,]]) = %(¢,[x, p, i), [B,a,]]),
¥([x, p, j1; dt, [B,q,]]) = ¥(x, p,j']; d¢,[B,q,]]),

and hence

v.(x, p,jl; dt, [B,q,])) =¥,(, p,j']; dt, [B,q,]]),
x,ple8, j,i’e], [Bgle Z(S).

So we have

1(t,[x, p, 7, [B,q,]J]) =(t,[x,p,J'], [B,q,])),
[x’p]e S’ j’j,e ]’ [B’q]e %(S)‘

Thus our process satisfies (i) of Condition 2.

(¢) (4. 2) follows from (8. 26) and (8. 4). (4. 3) follows also from Theo-
rem 7.2 and (7. 22).
Combining (a) - (¢), we can see that our process satisfies (i) of Condition

(d) (ii) of Condition 3 follows from (8. 3), (8. 7) and the definition of

<€ bR
.

(e) (ii1) of Condition 3 follows from (8. 6).
(f) dv) of Condition 3 follows from (8. 3), (8. 5) and (8. 7).
(9) By the definition of x and (8. 26), we have
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P, ,q1Ze8) =3 UlIi(x, p 1))

=0

N

=2 P[x,p,j] 1, = E<17y4y)

r=0

=P

e,y g1 (£ < W) 5

[x,p,/1e S.
Therefore we may consider that

P

[x,?’,f](yl“’<§) =0’ [x9pyj]e S'o

If we consider a new process Z, defined by

J Zyw), if t<n.(w) A Ew),

H(w) = .
| 4 , if t=7.(w) Atw)),

and Borel field %, induced naturally from %), then Z, satisfies (v) of
Condition 3.
We shall denote Z, by Z, again. Then (a)-(g) implies that our process
Z, satisfies Condition 3.  Moreover, by Theorem 5.1, Z, is a signed
branching Markov process with age on S. Q.E.D.
CoRrROLLARY 8. 1. Let {(gi(2), qu(x)); n =0,1,2, -+ -} be a given system

o

of pairs of non-negative continuous functions on E such that k(x) = Eo (gi(z) + gn(s))
s bounded continuous on E and gi(x)gy(x) =0, n =0,1,2, . Then there exists
a signed branching Markov process Z ={Z,, &, B P, 13 [x0,51€ Sy om S

satisfying Condition 2 for a given {(qi(x), gn(2)); n =0,1,2, - + + }.

CoroLLARY 8. 2. Let {q,(x);n =0,2,3,+--} be a given system of non-
negative continuous functions on E such that k(x) = n};,‘l q.(x) 15 bounded continuous
on E.  Then there exists a branching Markov process with age Y ={Y, =[X,,N,],
¢ B P, il ple 8} on S satisfying Condition 1 for a given {g,(z);n =0,2,
3, .

Proof. Let us consider in Theorem 8. 1 the special case where g;(x)=0,
n=012---, and gi(x)=0. Let Z={z,=[X,, N, J.1, ¢, Z,, P o i
[x, p,j1€ S} be the process obtained in Theorem 8. 1 for the present case.
Setting
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n, if [X,(w), N,(w)l e S*, n=0,
oo, if [X,(w), N.(w)] =4,

E(w) =

and

o(w) = inf {t > 0; &,(w) # &(w) or sup |N,(w) | = =},
st

we have
P[x,p.o] (r#7) =0, [x,ple S.

Also it follows from the definition of ¥ that

P[x,p,o](]tzzor 3) =0, [x,ple 8, t=0,
and hence we have
I~ /\
P g 2Z)="F-22Z), t<O =P, ,t<l, [xpeS.
So, if we disregard J, in Z, =[X,,N,, J.] and define P[x,,,] by
P, (X, N1€[B,q) = P, (Z €[B,q]),

then the process Y ={Y, =[X,,N,], ¢, Z, P, pxpe S8} satisfies Condi-
tion 1 and

AN =
th-/'l([x, p]) = (th'l)!E°2([x9 p]) ’ [x,P] € Sy fE C*(E)! =< 1,

where T, denotes the semi-group on AB(S) induced by Y. Q.E.D.

REFERENCES

[1] E.B. Dynkin: Markov processes. Springer 1965.

[2] ——————: Markov processes and semi-group of operators. Th. of Prob. & its appl.
Vol. 1 (1956), pp. 22-33.

[3] G.A. Hunt: Markov processes and potentials II. III. Jour. Math., Vol. 2 (1958), pp.
151-213.

[ 4] N. Ikeda, M. Nagasawa and S. Watanabe: Foundation of branching Markov processes.
Seminar on Probability, Vol. 23 (1966), (in Japanese).

[5] ——————: On branching Markov processes. Proc. Japan Acad. Vol. 41 (1965),
pp. 816-821. ’

[6] —————: Fundamental equations of branching Markov processes. Proc. Japan
Acad. Vol. 42 (1966), pp. 252-257.

[7] —————: Branching Markov Processes. (to appear).

https://doi.org/10.1017/50027763000026635 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000026635

ON SIGNED BRANCHING MARKOV PROCESSES WITH AGE 225

[8] K. Ito and H.P. McKean, Jr.: Diffusion processes and their sample paths. Springer,
1965.

[9] A. Kolmogoroff, I. Petrovsky and N. Piscounoff: Etude de I’équation de la diffusion
avec croissance de la quantité de matitre et son application & un probléme biologique.
Bull. I'Univ. Moscou, Vol. 1, Fasc. 6, pp. 1-25.

[10] J.E. Moyal: Discontinuous Markov processes. Acta. Math., Vol. 98 (1957), pp. 221~
264.

[11] —————: The general theory of stochastic population processes. Acta. Math.,
Vol. 108 (1962), pp. 1-32.

[12] ——————: Multiplicative population processes. Jour. Appl. Prob. Vol. 1 (1964),
pp. 267-283.

[13] M. Nagasawa: Construction of branching Markov processes with age and sign (to
appear).

[14] M. Nagasawa and T. Sirao: Probabilistic treatment of blowing up of solutions for a
non-linear integral equation (to appear).

[15] H.J. Ryser: Combinatorial Mathematics. John Wiely Sons, 1963.

[16] T. Sirao: A probabilistic treatment of semi-linear parabolic equations. Proc. Japan
Acad. Vol. 42 (1966), pp. 885-890.

[17] Remarks on the Moyal’s construction of Markov processes. (to appear).

[18] A.V. Skorohod: Branching diffusion processes. Th. of Prob. & its appl. Vol. 9 (1964),
pp. 492-497. '

Nagoya University

https://doi.org/10.1017/50027763000026635 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000026635



