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Summary

Two groups of methods are being developed to fine-map quantitative trait loci (QTLs) : identity-

by-descent methods or methods using historical recombinations, and genetic chromosome

dissection methods or methods utilizing current recombinations. Here we propose two methods

that fall into the second group: contrast mapping and substitution mapping. A QTL has

previously been detected via linkage mapping in a half-sib design (granddaughter or daughter

design), and sires (grandsires) likely to be heterozygous at the QTL have been identified. A sire

(grandsire) and its recombinant offspring are then genotyped for a series of ordered markers

spanning the initial marker interval. Offspring are grouped by paternal multi-marker haplotype

with haplotypes differing in the location of the recombination event. In the contrast method,

contrasts between the phenotypic averages of haplotypes or offspring groups are calculated which

correspond to marker intervals within the original interval. The expected value of the contrast for

the true QTL interval is always maximum, hence the interval with maximum observed contrast is

assumed to contain the QTL. Alternative statistics for determining the interval most likely to

contain a QTL are presented for contrast mapping, as well as a bootstrap estimation of the

probability of having identified the correct interval. For an initial marker bracket of 20 cM and 10

additional equidistant markers, the probability of assigning the QTL to the correct 2 cM marker

interval or to a combined 4 cM interval was calculated. For substitution effects of 0±093, 0±232,

0±464, 0±696 and 0±928 (in additive genetic SD), power values near 0±14, 0±26, 0±48, 0±67 and 0±80

(0±25, 0±53, 0±86, 0±97 and 0±99) are achieved for a family of 200 (1000) sons, respectively. In

substitution mapping, QTL segregation status of recombinant sons must be determined using

daughter genotyping. Combinations of two haplotypes with their segregation status are required to

assign the QTL to an interval. Probabilities of correct QTL assignment were calculated assuming

absence of the mutant QTL allele in dams of sons. For a 2 cM interval and a QTL at the

midpoint of an interval, power near 0±95 (0±90) is reached when the number of recombinant sons is

70 (60), or total number of sons is 424 (363). For QTL positions away from the midpoint, power

decreases but can be improved by combining marker intervals. For a QTL located halfway to the

midpoint, and 182 sons in a family resulting in 30 recombinant sons, probability is 0±94 for

assignment to either a 2 cM or a combined 4 cM interval. Effect of type I and type II errors in

segregation status determination on power of QTL assignment was found to be small. Errors in

segregation status due to QTL segregation in dams have an impact if the frequency of the mutant

QTL allele is intermediate to high.
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1. Introduction

Linkage mapping of QTLs in half-sib families leads to

the assignment of a QTL to a region of 10 to 20 cM

or larger (e.g. Zhang et al., 1998), with the smallest

region achievable in a large grand-daughter design in

dairy cattle. Assignment of a QTL to a smaller region,

possibly 1 to 2 cM or less, is desirable and important

for several reasons. Fine-mapping of a QTL reduces

the problem of establishing marker-QTL phase, which

in turn increases the accuracy of QTL parameter

estimation and increases the efficiency of marker-

assisted selection. Fine-mapping also enables a dis-

tinction between pleiotropy and linkage in a multiple

trait context. Finally, fine-mapping is a prerequisite

for gene isolation via (comparative) positional can-

didate cloning or pure positional cloning, as a region

of 1 to 2 cM still contains about 25 to 50 genes in

mammals.

Two groups of methods for the fine-mapping of

QTLs can be distinguished: identity-by-descent

methods or methods using historical recombinations,

and genetic chromosome dissection methods or

methods utilizing current recombinations. Both

groups of methods rely on prior assignment of the

QTL to a confidence region of, say, 20 cM length, and

on the saturation of this region with ordered markers.

Group 1 methods (for theory see Xiong & Guo, 1997)

have been used predominantly for fine-mapping of

human disease genes (e.g. Hastbacka et al., 1994),

have recently been used to fine-map a gene affecting

milk fat percentage in dairy cattle (Riquet et al.,

1999), rely on the assumption of a unique ancestral

mutation in a defined population, and utilize linkage

disequilibrium between the gene and very close

markers. Group 2 methods utilize recombinant chro-

mosomes derived from a heterozygous individual

(Thoday, 1961 ; Darvasi, 1997; Soller & Andersson,

1998). Within the two groups, different variants of

methods exist. These methods are based on different

assumptions, and no method will work in every

situation, necessitating the development of alternative

approaches. Below we present two methods, referred

to as ‘contrast mapping’ and ‘substitution mapping’,

which both belong to group 2. The two methods are

closely related. Both rely on prior QTL detection via

linkage mapping in half-sib families (daughter or

granddaughter design), and identification of those

sires (grandsires) that are heterozygous at the QTL.

These methods are used after a confidence region

(say 10–20 cM) obtained from the initial linkage

analysis has been saturated with additional markers

(at, say, 1–2 cM intervals). To further reduce the

initial confidence region using current recombinations,

only additional recombinant (for the initial flanking

markers) offspring should be genotyped for additional

markers in the region. Although a more sophisticated

method for linkage analysis such as Composite

Interval Mapping (Zeng, 1994) or Bayesian analysis

(e.g. Ulimari & Hoeschele, 1997) could in principle be

used to fine-map a QTL in this region, it seems

appropriate to consider simpler approaches that only

assign a QTL to a marker sub-interval within the

initial confidence, because there should be little

information to further localize the QTL within a sub-

interval.

2. Methods

(i) Contrast mapping

(a) Basic contrast mapping

Basic contrast mapping utilizes current recombin-

ations which occur within the designs used for linkage

mapping, e.g. half-sib (daughter or granddaughter)

designs in cattle, and is illustrated in Fig. 1a. First,

information from linkage mapping is used to identify

individual sires which are heterozygous at the QTL

with high probability. All methods for linkage

mapping in granddaughter designs provide infor-

mation about whether a sire is heterozygous or

homozygous at the QTL (for a review of these

methods see Hoeschele et al., 1997). Least squares

(LS) analysis estimates regression coefficients within

sires (a two-sided t-test can be used to test whether

the regression coefficient for a specific sire is zero

indicating homozygosity). Variance components (VC)

methods provide estimates of the sire’s allelic effects,

with similarity of the effects relative to the variance at

the QTL indicating homozygosity. Maximum Like-

lihood (ML) and Bayesian analyses directly provide

genotype probabilities for the sires, assuming a bi-

allelic QTL. A sire’s genotype at the QTL and its

closest, informative flanking markers is denoted by

M
"
-Q-M

#
}m

"
-q-m

#
, with the ‘}’ separating the par-

ental chromosomes in the sire, and with Q (q)

representing the ‘mutant ’ (‘normal ’) QTL allele.

Based on the large numbers of sons in granddaughter

designs (" 30), the sire’s marker haplotype containing

Q can usually be determined with high accuracy. For

example, in LS the sign of the regression coefficient

indicates the haplotype including Q, or in ML and

Bayesian analyses, genotype probabilities are cal-

culated separately for the Qq and qQ heterozygotes.

Depending on the distance between M1 and M2,

measured by recombination rate r, a proportion r of

the offspring are expected to be recombinant, having

received either M
"
-m

#
or m

"
-M

#
from their sire, while

a proportion (1®r) are non-recombinant and supply

no information for finer localization of the QTL. The

sire and its recombinant offspring are genotyped with

additional, ordered markers between M1 and M2.

With fully informative markers, 2(m®1) different

haplotypes from the sire are possible in the offspring,
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M1-A: ( 1 + 2 ) – (5  +  6 )
  A-B : ( 1 + 4 ) – ( 3 + 6 )
B-M2: ( 4 + 5 ) – (2 + 3 )

Grandsire
(Q+)

M1-A-B-M2
m1-a-b-m2

(Q–)

1  M1-A-B-m2
2  M1-A-b-m2
3  M1-a-b-m2

4  M1-A-B-M2
5  m1-a-B-M2
3  m1-a-b-M2

(a) (b)Recombinant groups

interval      contrast

Recombinant sires

Test for segregation – daughter contrasts

2  m1-A-b-M2
µ1-α-β-µ2

5  m1-a-B-M2
µ1-α-β-µ2

2  M1-A-b-m2 vs µ1-α-β-µ2
5  m1-a-B-M2 vs µ1-α-β-µ2

Fig. 1. Contrast and substitution mapping are based on recombinant offspring of known QTL-heterozygous grandsires.
Differences between recombinant groups designed for putative QTL intervals are used in contrast mapping to assign the
QTL (a) ; single recombinant sires are tested for segregation at the QTL, as certain combinations of recombinant
haplotypes and segregation status lead to QTL assignment to a specific marker interval in substitution mapping (b).

Table 1. Offspring groups by paternal haplotypes

differing in location of recombination e�ent

Offspring group Haplotype from sirea

1 M
"
-A-B-C-D-m

#
2 M

"
-A-B-C-d-m

#
3 M

"
-A-B-c-d-m

#
4 M

"
-A-b-c-d-m

#
5 M

"
-a-b-c-d-m

#
6 M

"
-A-B-C-D-M

#
7 M

"
-a-B-C-D-M

#
8 M

"
-a-b-C-D-M

#
9 M

"
-a-b-c-D-M

#
10 M

"
-a-b-c-d-M

#

a M1 (alleles M
"

and m
"
) and M2 (alleles M

#
and m

#
) are

initial flanking markers ; A (alleles A and a) to D (alleles D
and d) are additional markers placed between initial
markers.

where m is the number of markers including M1 and

M2. These haplotypes represent the different marker

intervals within the M1–M2 interval, where a re-

combination event occurred. For m¯ 6 and with A,

B, C and D denoting additional markers between M1

and M2, the resulting haplotypes or offspring groups

are listed in Table 1.

We will temporarily assume that the QTL is always

situated at the midpoint of an interval formed by two

adjacent markers of the set including the initial

markers (M1, M2) and the additional markers (A,…).

Let a(®a) be the mean of offspring inheriting Q (q)

from the sire. Table 2 contains the means for the 10

offspring groups, defined in Table 1, as a function of

the true interval containing the QTL, and lists

appropriate phenotypic contrasts (last rows), assum-

ing that the QTL is in a given interval (1–5), and their

expected values.

Table 2 shows that the expected value of a contrast

(E(c)) is maximum for the true QTL interval, and that

contrasts are not independent, because they involve

some of the same haplotype groups. Given that the

true interval is i, the expected value of contrast i is 2a.

The expected value of contrast i®k or i­k is

2a(m®1®2k)}(m®2) for 0!k! i and 0!k!
(m®1®i), which reduces to the expected values of

contrasts in Table 2 for m¯ 6. For a given true

interval i, these expected values from the mean vector

of the contrasts, E(c)¯µ
i
, where c¯ [c

"
, c

#
,…, c

m−"
].

Assuming constant sample size across haplotype

groups are setting the variance of a single group mean

equal to σ#, variance of a contrast equals 2σ#}(m®2),

and covariance between contrasts i and i­k is

2σ#(m®1®2k)}[(m®2)#]. These elements form the

variance–covariance matrix of the contrasts, V.

In reality, interval i (the true interval containing the

QTL) is unknown. Based on E(c), we expect to find
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Table 2. Meansa of the haplotype groups in Table 1 and expected �alues of contrasts deri�ed from these groups

for different true QTL inter�als

Group}True
interval QTL: M1–A QTL: A–B QTL: B–C QTL: C–D QTL: D–M2

1 a a a a 0
2 a a a 0 ®a
3 a a 0 ®a ®a
4 a 0 ®a ®a ®a
5 0 ®a ®a ®a ®a
6 0 a a a a
7 ®a 0 a a a
8 ®a ®a 0 a a
9 ®a ®a ®a 0 a

10 ®a ®a ®a ®a 0
"

%
(1,2,3,4)® 2a 2$

%
a 2"

%
a 2(®"

%
) a 2(®$

%
) a

"

%
(7,8,9,10)b

"

%
(1,2,3,6)® 2$

%
a 2a 2$

%
a 2"

%
a 2(®"

%
) a

"

%
(5,8,9,10)

"

%
(1,2,6,7)® 2"

%
a 2$

%
a 2a 2$

%
a 2"

%
a

"

%
(4,5,9,10)

"

%
(1,6,7,8)® 2(®"

%
) a 2"

%
a 2$

%
a 2a 2$

%
a

"

%
(3,4,5,10)

"

%
(6,7,8,9)® 2(®$

%
) a 2(®"

%
) a 2"

%
a 2$

%
a 2a

"

%
(2,3,4,5)

a a(®a) : Mean of offspring inheriting Q (q) from the sire.
b Average phenotype of groups 1 through 4 minus average phenotype of groups 7 through 10 (other contrasts defined
similarly).

the largest observed contrast in interval i. Hence, one

way of identifying the QTL interval is to determine

the interval associated with the largest contrast. We

want the probability that c
i
is larger than all other

contrasts, given that i is the true interval, to be at least

90% or 95%. For given family size N, recombination

rate r, number of markers m, and parameter a,

standard deviation of individual records σ
y
, and true

interval i, we can calculate V and µ
i
and subsequently

the probability that c
i
is larger than the other contrasts,

which is

P(ci " sup(cj; j¯1,m®1, j1 i rV,µi)¯

&
¢

−¢
&

¢

−¢
&

¢

−¢
&

¢

j=",
m−"

sup(c
j
)

j1i

P(c rV,µi) dc. (1)

For calculating this probability at various values of N,

r, m, a, σ
y

and i, the integration can be avoided by

sampling contrasts from N(µ
i
,V), counting the num-

ber of samples where c
i
is maximum, and dividing by

sample size, to obtain a Monte Carlo estimate of (1).

Up to this point we have assumed that the QTL is

located in the middle of an interval. Now we are

investigating the effect of a QTL position different

from the midpoint of an interval. When considering

the case of m¯ 6 in Table 2, the means in this table

change as follows. For the first 10 rows corresponding

to the haplotype groups, values of 0 are replaced by

a(r
#
®r

"
)}r for groups 1–5 and by a(r

"
®r

#
)}r for

groups 6–10, where r
"
(r

#
) is the recombination rate of

the left (right) marker with the QTL. For the contrast

rows, 0±5a(r
#
®r

"
)}r is added to all terms above the

diagonal (all diagonal elements equal to 2a remain

unchanged), while 0±5a(r
"
®r

#
)}r is added to all

elements below the diagonal. In general, the expected

value of contrasts i®k or i­k is now 2a(m®1®2k)}
(m®2)­[2}(m®2)]a(r

"
®r

#
)}r. The expected values

of the contrasts no longer decline symmetrically

around the maximum value. If the QTL is located

closer to the left marker in the true interval, then there

is a smaller difference between the expected values of

contrasts i and i®1, and hence the power of assign-

ing the QTL to the correct interval decreases (see

Table 3).

The above QTL interval identification relies on

equal sample size in all recombinant groups. This is

not true in practice, and the effect of unequal sample

sizes on the probability of identifying the correct

interval could be examined as follows. For given N, r

and m and hence a sample size of Nr recombinant

offspring, group sample sizes are drawn from the

multinomial distribution with equal probabilities of

1}[2(m®1)] for the recombinant haplotype groups of

offspring. Then we need to calculate V and µ
i
for these

data. Vector µ
i
, is the same as before for the balanced

case, but V is different. For example, when m¯ 6,

then m®2¯ 4, variance of contrast c
"
¯ ( y

"
­y

#
­

y
$
­y

%
)}4®( y

(
­y

)
­y

*
­y

"!
)}4 is σ

y
#}[(m®2)#]¬
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Table 3. Power of test for symmetry of declining contrast �alues around

the maximum, and power of identifying the true inter�al and its adjacent

inter�als

QTL positiona QTL effectb
Power t-test
symmetry Power max. contrastc

Midpoint 1 0±514 1±0 (0±0, 0±0)
0±25 1 0±815 0±994 (0±006, 0±0)
0±05 1 0±999 0±694 (0±306, 0±0)
Midpoint 0±25 0±710 0±777 (0±105, 0±108)
0±25 0±25 0±149 0±697 (0±266, 0±028)
0±05 0±25 0±028 0±544 (0±440, 0±009)

a 0±25, 0±05: fraction of distance between left and right markers starting at the left
marker.
b t-test statistic¯ absolute value of difference between contrast values of intervals
left and right to interval with maximum contrast value divided by standard
deviation of this difference.
c Frequency of samples where the true interval has maximum estimated contrast ;
frequency of samples where the left or right interval has maximum contrast is
given in parentheses.

(1}n
"
­1}n

#
­1}n

$
­1}n

%
­1}n

(
­1}n

)
­1}n

*
­1}n

"!
),

the y
i
are averages and the n’s are group sample sizes,

and the covariance between, e.g., c
"

and c
%

is σ
y
#}

[ (m®2)# ]¬ (1}n
"
­1}n

"!
®1}n

$
®1}n

%
®1}n

(
®1}n

)
).

With V and µ
i
calculated, we proceed as above for the

balanced design.

(b) Minimum RSS criterion

Another way of inferring the QTL interval is to

determinewhichmodel best fits the observed contrasts.

Denote by y
i
the average phenotype in group i, and by

c
j
the jth contrast. Then, m®1 weighted LS analyses of

the contrasts are performed, one for each putative

QTL interval. The model is

c¯x
k
a­e ; E(c)¯x

k
a¯µ

k
,

Var(c)¯V, k¯1,…,m®1. (2)

We solve m®1 linear equations corresponding to the

x
k

for postulated intervals k¯1,…,m®1, and cal-

culate the residual sums of squares (RSS) as

RSS
k
¯ c«V−"c®aW #x

k
V−"x

k
. (3)

For example, for m¯ 6 and interval k¯ 2 (A–B

interval in Table 2), x¯ [2$
%
, 2, 2$

%
, 2"

%
,®2"

%
].

The model resulting in the smallest RSS determines

the QTL interval. The probability of identifying the

correct interval is obtained by sampling contrasts as

before, determining the minimum RSS for each sample

vector of contrasts, and counting the number of

samples in which RSS is minimum for the interval.

(c) Multiple marker regression

Our basic contrast mapping uses pairs of flanking

markers. Although this approach is better than

calculating contrasts at individual markers, it is less

suitable for detecting the presence of multiple QTLs

in different sub-intervals. Detecting multiple QTLs

requires simultaneous consideration of more than two

markers. Therefore, our third approach for assigning

QTLs to sub-intervals consists of regressing either the

phenotypic averages of the haplotypes, or the in-

dividual phenotypes of all members of the haplotype

groups, on the marker alleles (coded ‘1 ’ for those

associated with the mutant QTL allele in the sire and

‘®1 ’ for others) at all markers in the initial confidence

region, or at three consecutive markers at a time.

Sliding regression on three markers at a time, described

below, was considered after we noticed a substantial

reduction in power when multiple marker regression

was compared with basic contrast mapping.

Zeng (1993) showed that with multiple marker

regression, the partial regression coefficient of marker

i has a non-zero expected value if and only if there is

at least one QTL located between markers i®1 and i,

or between i­1 and i. Hence, if there is a single QTL

in the region being examined, then only the two

markers flanking the sub-interval containing the QTL

have non-zero expected partial regression coefficients.

If there are two QTLs in well-separated sub-intervals

between markers 2 and 3 and between 5 and 6, then

only those four markers have non-zero expected

partial regression coefficients. If two QTLs are in two

adjacent sub-intervals between markers i®1, i and

i­1, then only these three markers have non-zero

expected partial regression coefficients. Last, if QTLs

are in two sub-intervals separated by one empty

interval, i.e. between markers i®2, i®1 and i, i­1,

then only these four markers have non-zero expected

partial regression coefficients. In the last case, more

markers must be placed in the region to discriminate
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among the three sub-intervals involved. The same

results can be found when three consecutive markers

are analysed simultaneously (or two markers at the

end of the linkage group), but only the estimate or test

for the intermediate marker is considered. More

specifically, first markers 1 and 2 are fitted jointly to

estimate and test the partial regression coefficient for

marker 1. Subsequently, markers 1, 2 and 3 are fitted

jointly to estimate and test the partial regression

coefficient for marker 2, etc. The partial regression

coefficient for the intermediate marker has the same

expected value as the corresponding regression co-

efficient in the all-marker model. For sub-interval i

containing a QTL of effect a, with flanking markers i

and i®1, and flanked by empty sub-intervals, expected

values of the partial regression coefficients are (r
#
}r) a

and (r
"
}r) a, respectively. We will refer to the two

approaches as all-marker regression and (sliding)

three-marker regression below.

Obviously, multiple marker analysis requires testing

of multiple partial regression coefficients, hence the

problem of appropriate significance tests arises.

However, here we are conducting fine-mapping in a

region already ‘known’ (from initial linkage analysis)

to contain at least one QTL. Hence, we suggest

assigning aQTL to the sub-interval flanked by markers

i and i­1 with the largest partial F- (or equivalently t-)

values. This procedure is analogous to basic contrast

mapping, where we do not test but rather select the

interval with the highest contrast. We will refer to this

approach as three- or all-marker regression with the f-

max criterion. For comparison, we also present results

for the f-sig criterion, where we require both flanking

markers of the true interval to be significant (at the

0±05 level) and at least one marker next to the flanking

markers to be not significant.

(d) Impact of dominance

Up to this point, haplotype means (or deviations) of

offspring inheriting Q (q) were arbitrarily set to a

(®a), and the maximum contrast value was 2a.

Individuals receiving a paternal haplotype containing

Q (q) have genotypes QQ and Qq (qQ and qq) with

probabilities of p and (1®p), respectively. Therefore,

and in the context of average effects of alleles (Falconer

& Mackay, 1996), deviations of the Q- and q-

haplotypes are pa­(1®p) d and pd®(1®p) a, re-

spectively, where a is half the difference between

homozygotes at a biallelic locus, and d is dominance

deviation. These average effects are expressed relative

to the population mean as α
"
(α

#
) with a difference of

α¯α
"
®α

#
, which is equal to a in the absence of

dominance.

Variances due to the QTL among individuals

with a Q- or q-haplotype are, respectively, σ
Q
#¯

p[q(a­d )]#­q[p(d®a)]# and σ
q
#¯ p[q(a­d )]#­

q[p(d­a)]#. These variances are equal in the absence

of dominance (d¯ 0). Earlier, we defined σ# to be the

variance of a single haplotype group mean, which was

constant across groups in the balanced case. Since

we do not know which haplotypes contain Q or q,

variance of the group mean must be allowed to differ

among groups. Now we define σ# as the average

variance of all group means included in a specific

contrast. Then, variance of a contrast is still 2σ#}
(m®2), which differs, however, among contrasts.

Covariances among contrasts must also be computed

by allowing for different variances of group means.

For example, covariance among contrasts 1 and 3 in

Table 2 is (σ
"

#­σ
#

#­σ
*

#­σ
"!

#®σ
%

#®σ
(

#) } (m®2)#,

where m¯ 4, and σ
i
# is the variance of the mean of

group i (estimated from the within-group variance).

Unless the QTL is a major gene with dominant gene

action, difference in variance due to the QTL between

Q- and q-haplotype groups should be small and may

be ignored. For multiple marker regression, different

variances of individual haplotype means should be

incorporated if these appear to differ noticeably.

In Section 3, power values will be interpreted in

terms of the substitution effect in additive genetic SD

(α}σ
A
) and, hence, results will be valid with or without

dominant gene action. When considering jointly the

impact of QTL position and dominance, values of 0 in

Table 2 for groups 1–5 (6–10) are to be replaced by

α
"
r
#
­α

#
r
"
) }r instead of a(r

#
®r

"
) }r((α

"
r
"
­α

#
r
#
) }r

instead of a(r
"
®r

#
) }r). For contrasts, we add

"

%
α(r

#
®r

"
) }r above and "

%
α(r

"
®r

#
) }r below the di-

agonal. For α¯ 2a, changes are identical to those

given earlier, and again results interpreted in terms of

α are valid with and without dominance.

(e) Confidence of correct sub-inter�al identification

While we can evaluate the power of maximum

contrast, minimum RSS and multiple marker re-

gression via data simulation as the frequency of

correct assignments across replicates, for real data

analysis we can compute the probability that the sub-

interval identified actually contains the QTL, via

bootstrapping. For minimum RSS and marker re-

gression, prior to bootstrapping regression coefficients

are estimated from the real data (contrasts and marker

haplotype averages or individual phenotypes, re-

spectively). Then, means of the (n) phenotypes are

estimated from these coefficients, and residuals are

estimated as the difference between phenotypes and

means. Bootstrapping is then performed by sampling

n residuals with replacement and adding those to the

n means previously estimated. This step is performed

repeatedly to obtain the bootstrap samples. Each

bootstrap sample is analysed in the same way as the
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Table 4. Recombinant haplotypes for m¯ 6 markers and corresponding

QTL region depending on segregation status

QTL intervala

Type of
recombinant Haplotype of With Without
sire recombinant sire segregation segregation

1 M
"
-A-B-C-D-m

#
[M1–M2[ ]D–M2]

2 M
"
-A-B-C-d-m

#
[M1–D[ ]C–M2]

3 M
"
-A-B-c-d-m

#
[M1–C[ ]B–M2]

4 M
"
-A-b-c-d-m

#
[M1–B[ ]A–M2]

5 M
"
-a-b-c-d-m

#
[M1–A[ ]M1–M2]

6 m
"
-A-B-C-D-M

#
]M1–M2] [M1–A[

7 m
"
-a-B-C-D-M

#
]A–M2] [M1–B[

8 m
"
-a-b-C-D-M

#
]B–M2] [M1–C[

9 m
"
-a-b-c-D-M

#
]C–M2] [M1–D[

10 m
"
-a-b-c-d-M

#
]D–M2] [M1–M2[

a [X–Y], region with markers X and Y included; ]X–Y], region with markers X
and Y excluded and included, respectively ; [X–Y[, region with markers X and Y
included and excluded, respectively ; ]X–Y[, region with markers X and Y
excluded.

real data, and the number of samples with the same

QTL interval identified as for the real data is counted.

When working with individual phenotypes, an alter-

native bootstrap technique of sampling (with re-

placement) sets of phenotypes and corresponding

covariates can be used, and only this approach is

suitable for the maximum contrast method, where are

no covariates to carry along in the bootstrap, but

rather marker haplotypes. Properties and performance

of this bootstrap application will be evaluated in

Section 3.

(ii) Substitution mapping

(a) Basic substitution mapping

Basic substitution mapping was first proposed by

Paterson et al. (1990) for backcross type designs in

species where inbred lines are available. It is closely

related to contrast mapping, but uses one additional

generation as shown in Fig. 1b. Here we investigate a

potential application of this approach to half-sib

families in a segregating population. The starting

point is again the granddaughter design where a QTL

has been found to be segregating in some grandsires

and has been mapped to a region of, say, 20 cM. We

again select one or several grandsires from this design,

which are very likely to be heterozygous at the QTL.

The recombinant sons of these grandsires (sub-

sequently referred to as ‘sires ’) are then genotyped for

additional, ordered markers located between the

original markers flanking the QTL region. For a QTL

segregating in the grandsires, we will distinguish

between the mutant and the normal allele, assuming a

biallelic QTL. In analogy with the backcross design,

we will initially employ the assumption that dams of

sires do not carry the mutant allele. Deviation from

this assumption will be considered later.

We begin with the same groups of recombinant

offspring (here, sires) as for contrast mapping, e.g. the

10 groups listed in Table 1 for m¯ 6 markers. Table

4 contains all types of recombinant sires, with their

respective haplotypes and their QTL segregation

status, for the case of m¯ 6 markers. We assume that

a sufficient number of daughters of each sire have

been genotyped, so that segregation status of a sire

can be determined with high probability (segregating

¯heterozygous, not segregating¯homozygous for

the normal allele). Note that due to our assumption of

a zero frequency for the mutant QTL allele in the

dams of sires, any sire that is found to be segregating

has inherited the mutant allele from the respective

grandsire. Then, determining the segregation status at

the QTL for an individual of a given recombinant

haplotype leads to the assignment of the QTL to a

sub-region within the original M1–M2 confidence

region. These sub-regions of QTL location are listed

in columns 3 and 4 of Table 4.

Table 4 shows that in a few cases the occurrence of

a single haplotype and the knowledge of the seg-

regation status of the sire carrying the haplotype can

lead to the assignment of the QTL to a specific

interval formed by two adjacent markers, e.g. haplo-

type 5 segregating or haplotype 6 not segregating lead

to the assignment of the QTL to the M1–A interval.

For the other flanking marker interval (D–M2), a

single haplotype and its segregation status are also

sufficient for QTL assignment (1 not segregating, 10

segregating). For all other intervals, however, a single

haplotype and its segregation status do not contain

https://doi.org/10.1017/S0016672300004638 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300004638


G. Thaller and I. Hoeschele 94

T
a
b
le

5
.
Q

T
L

a
ss

ig
n
m

en
t

b
a
se

d
o
n

co
m

b
in

a
ti
o
n
s

o
f

d
iff

er
en

t
re

co
m

b
in

a
n
t

h
a
p
lo

ty
p
es

to
g
et

h
er

w
it
h

th
ei

r
se

g
re

g
a
ti
o
n

st
a
tu

s

1
2

3
4

5
S
eg

re
g
a
ti
o
n

H
a
p
lo

ty
p
e

st
a
tu

s
Y

es
N

o
Y

es
N

o
Y

es
N

o
Y

es
N

o
Y

es
N

o

6
Y

es
]M

1
–
M

2
[

]D
–
M

2
]

]M
1
–
D

[
]C

–
M

2
]

]M
1
–
C

[
]B

–
M

2
]

]M
1
–
B

[
]A

–
M

2
]

]M
1
–
A

[
]M

1
–
M

2
]

N
o

[M
1
–
A

[
E

rr
o
r

[M
1
–
A

[
E

rr
o
r

[M
1
–
A

[
E

rr
o
r

[M
1
–
A

[
E

rr
o
r

[M
1
–
A

[
]M

1
–
A

[
7

Y
es

]A
–
M

2
[

]D
–
M

2
]

]A
–
D

[
]C

–
M

2
]

]A
–
C

[
]B

–
M

2
]

]A
–
B

[
]A

–
M

2
]

E
rr

o
r

]A
–
M

2
]

N
o

[M
1
–
B

[
E

rr
o
r

[M
1
–
B

[
E

rr
o
r

[M
1
–
B

[
E

rr
o
r

[M
1
–
B

[
]A

–
B

[
[M

1
–
A

[
]M

1
–
B

[
8

Y
es

]B
–
M

2
[

]D
–
M

2
]

]B
–
D

[
]C

–
M

2
]

]B
–
C

[
]B

–
M

2
]

E
rr

o
r

]B
–
M

2
]

E
rr

o
r

]B
–
M

2
]

N
o

[M
1
–
C

[
E

rr
o
r

[M
1
–
C

[
E

rr
o
r

[M
1
–
C

[
]B

–
C

[
[M

1
–
B

[
]A

–
C

[
[M

1
–
A

[
]M

1
–
C

[
9

Y
es

]C
–
M

2
[

]D
–
M

2
]

]C
–
D

[
]C

–
M

2
]

E
rr

o
r

]C
–
M

2
]

E
rr

o
r

]C
–
M

2
]

E
rr

o
r

]C
–
M

2
]

N
o

[M
1
–
D

[
E

rr
o
r

[M
1
–
D

[
]C

–
D

[
[M

1
–
C

[
]B

–
D

[
[M

1
–
B

[
]A

–
D

[
[M

1
–
A

[
]M

1
–
D

[
1
0

Y
es

]D
–
M

2
[

]D
–
M

2
]

E
rr

o
r

]D
–
M

2
]

E
rr

o
r

]D
–
M

2
]

E
rr

o
r

]D
–
M

2
]

E
rr

o
r

]D
–
M

2
]

N
o

[M
1
–
M

2
[

]D
–
M

2
[

[M
1
–
D

[
]C

–
M

2
[

[M
1
–
C

[
]B

–
M

2
[

[M
1
–
B

[
]A

–
M

2
[

[M
1
–
A

[
]M

1
–
M

2
[

E
rr

o
r
:
th

is
fi
n
d
in

g
is

n
o
t

p
o
ss

ib
le

u
n
d
er

th
e

a
ss

u
m

p
ti
o
n
s

em
p
lo

y
ed

.

sufficient information to assign the QTL to a single

marker interval. A QTL can be assigned uniquely to

one of these intervals, e.g. to interval A–B, if two

recombinant sires of the same type are found, e.g. of

type 4 in Table 4, one of which is segregating and the

other is not. In addition, Table 5 presents com-

binations of different haplotypes from the two

recombinant haplotype groups (1–5, 6–10) together

with their segregation status for assignment of the

QTL to a specific marker interval.

From Table 5, using certain combinations of two

different haplotypes and their segregation status, the

QTL can now be assigned to individual intervals (e.g.

A–B) that are not at the ends (M1–A, D–M2). For

example, haplotype 4 segregating and haplotype 7

segregating leads to the assignment of the QTL to

interval A–B. The same interval is found when

haplotypes 4 and 7 are both not segregating. In

general, the occurrence of a recombinant event within

a specific interval X–Y both for a M1–m2 and a

m1–M2 recombinant sire leads to the assignment of a

QTL to the X–Y interval if the two sires are found to

be both segregating or not segregating. In addition,

two individuals of the same recombinant haplotype

(either both M1–m2 or both m1–M2), with the

recombination event occurring in interval X–Y, allow

us to assign the QTL to the X–Y interval if one of the

two sires is segregating and the other is not.

Cells which contain the outcome ‘error ’, pertain to

combinations of haplotypes with segregation status

that are not possible under the assumptions employed.

Assumptions are that (i) the segregation status of each

sire can be determined with certainty, and (ii) that the

QTL is not present in the dams of the sire, so that a

sire can inherit the mutant allele only from a grandsire.

For example, haplotypes 1 and 6 not segregating leads

to an error, which is likely to be caused by a false

segregation status. Haplotypes 2 and 10 segregating

also leads to an error, which is either due to a false

segregation status or inheritance of the mutant QTL

allele from a dam. Errors found in real data can

therefore be used to verify segregation status and,

given correct status, to indicate a deviation from the

assumption of a zero frequency of the mutant QTL

allele in dams.

In practice, one would start by genotyping recom-

binant sires for the additional, ordered markers. Once

a suitable haplotype (1, 5, 6 or 10) or a pair of

haplotypes (e.g. 4 and 4, 4 and 7) is found, the

segregation status of the individuals involved will be

evaluated.Determining segregation status will proceed

as follows. First, the genotype of the grandsire,

partitioned into its paternal and maternal contri-

bution, is M
"
-A-B-C-D-M

#
}m

"
-a-b-c-d-m

#
, where

M1–M2 is known to carry the mutant QTL allele. The

genotype of the sire is M
"
-A-B-c-d-m

#
}µ

"
-α-β-χ-δ-µ

#
,

where µ
"
-α-β-χ-δ-µ

#
is the chromosome segment
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inherited from its dam. To determine segregation

status of the sire, one could genotype a sufficient

number of daughters of this sire for the M
"

and M
#

loci, and compare the phenotypes of the two non-

recombinant daughter groups M
"
-m

#
and µ

"
-µ

#
.

Alternatively one could genotype daughters for the

M
"

and C loci which flank the segment in the sire

derived from the M
"
-M

#
chromosome in the grandsire

known to contain the mutant QTL allele. Using M
"

and C would somewhat increase the fraction of non-

recombinant daughters among all daughters, as M
"

and C have a smaller recombinant fraction than M
"

and M
#
. If, based on the resulting haplotype¬

segregation status combination, the QTL interval can

be determined, the process can stop. Otherwise, more

recombinant sires need to be genotyped for the

additional markers and their segregation status de-

termined.

We would like to obtain an idea about how many

recombinant sires (and their daughters) need to be

genotyped on average until the QTL is assigned to a

marker interval (e.g. A–B). Suppose that interval A–B

contains the QTL. Then, for a given number of

recombinant sires, we evaluate the probability that at

least two desired recombinant types are present (4 and

4, 4 and 7, or 7 and 7), i.e. that there are n
%

and n
(

recombinants of types 4 and 7, respectively, such that

n
%
­n

(
& 2. This probability is computed using the

multinomial distribution as

3
nX+nY

&
#

n !

n
X

!n
Y

!(n®n
X
®n

Y
) !

p(nX+nY)(1®2p)(n−nX−nY)

with p¯1}[2(m®1)], (7)

where m is the number of markers, and X¯ 4 and Y

¯ 7 in our example. The number of recombinant sires

(n) can be obtained from the total number of sires

times the recombination rate (r¯ 0±16484 for a 20 cM

M1–M2 interval and Haldane’s mapping function).

Now given that n
%
­n

(
& 2, there are four cases in

which assignment of the QTL to a given interval

(A–B) is not possible : (1) n
X

¯ 0, n
Y

& 2 and all sires

of type Y are segregating or not segregating; (2) n
X

&
2, n

Y
¯ 0 and all sires of type X are segregating or not

segregating; (3) n
x
" 0 and n

Y
" 0 with all X sires

segregating and all Y sires not segregating; (4) n
X

"
0 and n

Y
" 0 with all X sires not segregating and all Y

sires segregating. The probabilities attached to these

four cases are denoted by q
i
, i¯1,…, 4. As an

example, q
$

is computed as

q
$
¯ 9(1®r

A
) r

B

r
AB

:nX+nY

, (8)

where r
AB

is the recombination rate for the marker

interval A–B, while r
A

and r
B

are recombination rates

between the QTL and the markers A and B,

respectively. X is a haplotype of type M
"
–m

#
(X¯ 4),

and Y is of type m
"
–M

#
(Y¯ 7). The other q

probabilities are computed similarly. Each term in the

summation in (7) is multiplied by the probability

(1®Σ
i
q
i
) for given n

x
and n

Y
, resulting in the

probability of QTL assignment to a single marker

interval.

Consider Table 5 again, and suppose that a QTL is

located in the interval B–C. In this case, all individuals

with haplotypes 1, 2, 6 and 7 will be segregating, and

all individuals with haplotypes 4, 5, 9 and 10 will not

be segregating. Assignment to interval B–C can be

made if one of the following cases is observed: (1)

one individual of haplotype 3 is segregating and

another individual of haplotype 3 is not (3­, 3®) ;

(2) one individual of haplotype 8 is segregating and

another individual of haplotype 8 is not (8­, 8®) ;

(3) one individual of haplotype 3 is segregating and

another individual of haplotype 8 is also segregating

(3­, 8­) ; and (4) one individual of haplotype 3 is

not segregating and another individual of haplotype

8 is also not segregating (3®, 8®). If none of these

cases is observed (e.g. there are no individuals with

haplotype 8 and all sires with haplotype 3 segregate),

it may still be possible to assign the QTL to either the

A–C combined interval or the B–D region.

Assignment to A–C occurs when one sire with

haplotype 3 segregates and another sire with haplotype

7 also segregates, or when one sire with haplotype 4

and another sire with haplotype 8 both do not

segregate. Similarly, assignment to B–D occurs when

one sire with haplotype 2 segregates and another sire

with haplotype 8 also segregates, or when one sire

with haplotype 3 and another sire with haplotype 9

both do not segregate. Additional assignment to the

A–C region is possible if a sire with haplotype 3

segregates and a sire with haplotype 4 does not

segregate (note that both haplotypes are of the type

M
"
–m

#
and have a recombination event in A–C), or if

a sire with haplotype 7 segregates and a sire with

haplotype 8 does not segregate. Similarly, assignment

to the B–D region is possible if a sire with haplotype

2 segregates and a sire with haplotype 3 does not

segregate, or if a sire with haplotype 8 segregates and

a sire with haplotype 9 does not segregate.

(b) Testing for segregation status

Up to this point we have assumed that segregation

status of sires is determined without error, i.e. if an

individual is found to be segregating or not segre-

gating, it carries one or no mutant (Q) allele from its

sire with certainty. In reality, segregation status must

be inferred from the daughters of a sire by contrasting

daughters which inherited alternative, non-recom-

binant marker haplotypes from the sire. These marker
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haplotypes consist of the two markers forming the

sub-interval which contains the recombination event

in the sire. If either of these two markers is not

informative (daughter has the same marker genotype

as the sire), the daughter’s paternal marker allele may

be determined from other, nearby markers. We assume

that a one-sided t-test can be used, based on the

daughters’ phenotype contrast, to test for a sub-

stitution effect of zero versus a positive effect. This test

assumes that if the sire inherited the favourable allele

from its grandsire, then it will also be the favourable

allele in the sire. The a priori probability that the sire

inherited Q versus q from the grandsire is 0±5, since we

are assigning a QTL to a sub-interval rather than to a

particular position within the interval. Hence, a simple

t-test as described appears to be appropriate for

determining sire segregation status. If the t-statistic

exceeds a certain threshold value (null hypothesis :

sire is not segregating), the sire is assumed to be

segregating. Consequently, both type I (sire declared

as segregating although it is not) and type II (sire

declared as not segregating although it is) errors will

occur. The influence of such errors on the power of

assigning QTLs to specific regions was therefore

investigated as follows.

QTL assignment to a single interval (e.g. B–C)

occurs when one of the following cases (defined

earlier) is observed: (1) 3­ and 3®, (2) 8­ and 8®,

(3) 3­ and 8­, and (4) 3® and 8®. When segregation

status is not known with certainty, then for example

case (1) above must be replaced with 3Q­ and 3q®,

where 3Q­ refers to a sire with marker haplotype 3

and QTL allele Q (inherited from its sire), which is

also correctly identified as segregating (­). Note that

for case 1, QTL assignment occurs if at least one 3Q

and one 3q individual occur, and both are correctly

identified as segregating and not segregating, re-

spectively, or if at least one 3Q and one 3q individual

occur and both are misclassified as not segregating

and segregating, respectively. The latter event should

have low probability and was not considered here (i.e.

was not accounted for as a correct assignment in the

power calculations, because it is based on wrong

decisions regarding the segregation status). We define

p(® r q)¯1®α and p(­ rQ)¯1®β, where α is the

type I error and β the type II error, with α

predetermined by the investigator and power 1®β

affected by the size of the experiment.

As α is predetermined by the investigator, β can be

controlled via sample size. When testing whether the

difference between two group means is zero versus

positive, the following equation gives the approximate

sample size to control both errors (Neyman et al.,

1935, in Snedecor & Cochran, 1980, p. 104) :

n¯ 20σWδ1
#

(tα,#n−n­tβ,#n−#
)# (9)

where n is sample size in one group with n
"
¯ n

#
¯ n,

σ# is the variance of the individual observations, δ the

difference between the two group means and tα,#n−#
as

well as tβ,#n−#
are values for one-sided t-tests. Here, σ#

corresponds to Var(YD r sire)¯ (1}h#®0±25)σ
A
#, and

δ is the difference between daughter groups, or the

gene substitution effect α which is also measured

in σ
A
.

Finally, we note that Table 5 can serve as a control

to verify the power of detecting segregation. For

example, it is not possible that haplotypes 3 and 7

both do not segregate, given the knowledge that there

is a QTL between markers M1 and M2 (the cell

corresponding to this combination in Table 5 is

marked ‘error ’). However, an ‘error ’ is not necessarily

due to a misclassification of segregation status (see

below).

(c) QTL segregation in dams

Another factor reducing the power of QTL assignment

to a marker interval is the segregation of the QTL in

the dams of the sires. Up to this point we have

assumed that the dams are homozygous normal (qq),

i.e. that sons found to be segregating (genotype Qq)

have inherited the mutant Q allele always from their

heterozygous sire and never from their dam. If the

QTL is segregating in the dams, an incorrect QTL

assignment decision will be made if a sire that inherited

Q both from its sire and the dam (genotype QQ) is

not found to be segregating and hence not to have

inherited Q from its sire, or if a sire that inherited q

from its sire and Q from its dam is found to be

segregating and hence assumed to have inherited Q

from its sire. As an example, case 1 above (3Q­,

3q®) must now be replaced with (3Qq­, 3qq®), and

the probability of this case is obtained by multiplying

the probability of (3Q­, 3q®) by (1®p(Q))#, where

p(Q) represents the frequency of the Q allele in the

dams.

There are two ways of assessing the frequency of Q

in the dams. It may be possible to estimate allele

frequency in the dams when performing linkage

analysis (using Maximum Likelihood or Bayesian

methods), or some of the cells in Table 5 containing

‘error ’ can be used again. In the latter approach, for

example, haplotypes 4 and 8, or 3 and 7, cannot both

be segregating under the assumption that the Q allele

can only be inherited from the sire of sons but not

from their dams. Potential causes of ‘errors ’ are

incorrect assignment of segregation status or homo-

zygosity (QQ instead of Qq).

It is quite likely that a particular dam has a father

which has a granddaughter design himself. Then, one

should check whether the dam’s father is segregating

at a QTL located in the same (M1–M2) marker

interval as the one being investigated here. If the
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answer is no, then probably the dam did not transmit

the Q allele to her son (unless its frequency is high),

and the son’s segregation status has probably been

determined correctly.

3. Results and discussion

(i) Power of contrast mapping

Simulation studies were conducted to compare the

statistics maximum contrast and minimum RSS for

inferring the correct QTL interval, and to evaluate

power as a function of number of offspring (N ), effect

of the QTL (a), recombination rate between flanking

markers, and spacing of markers within the region

investigated. As described above, contrasts were

sampled from the appropriate distribution, and the

two statistics were calculated for each sample. For

each situation, 10000 samples were drawn from N(µ
i
,

V), and power was determined for both test statistics

as the proportion of samples where the true interval

was inferred. In general, total number of offspring and

QTL effect are the most critical factors for fine-

mapping. Therefore, power values in Table 6 were

estimated for different values of these parameters,

assuming an initial marker bracket of size 20 cM and

10 additional, equidistant, ordered markers. QTL

effect (a) is defined according to Table 2 and measured

in standard deviations of the observed variable y (σ
y
),

and the true position of the QTL is assumed to be at

the midpoint of interval A–B.

The result that minimum RSS was inferior in power

to maximum contrast, in particular for smaller

numbers of offspring and smaller QTL effects, was

initially surprising, as minimum RSS seems to use

more information. However, minimum RSS needs to

find the correct order of the contrasts, which is more

error prone than just finding the maximum contrast.

We replaced the minimum RSS criterion by the

maximum a estimate obtained from regression model

(2) for all intervals. Within this criterion, virtually the

same power was achieved as with the maximum

contrast approach. As an example, for a QTL with

effect of 0±25σ
y

and 500 (1000) offspring, power was

0±3838 (0±5284) for maximum contrast, 0±3837 (0±5284)

for maximum a estimate, and only 0±3590 (0±5152) for

minimum RSS.

Power of the all-marker and sliding three-marker

regression methods was also evaluated by simulating

haplotype means using the same parameter values as

for the simulation of the contrasts. These results are

also included in Table 6. When the f-max criterion

was used, then three-marker regression had the same

power as basic contrast mapping, while the power of

all-marker regression was less, in particular for cases

with moderate to low power. We initially expected to

find the same power for all-marker and three-marker

regression when both are implemented with the f-

max criterion. However, we noticed that regression

coefficient estimates from the all-marker analysis

(expectedly) had higher SE compared with the

three-marker analysis, and that the corresponding

F-statistics were more variable across replicates.

When three- or all-marker regression was imple-

mented with the f-sig criterion, then power was much

less compared with basic contrast mapping. We

verified the results for the power of marker regression

with the f-sig criterion by performing analytical power

calculations with the non-centrality parameter evalu-

ated at different expected values for the regression

coefficients of the two markers flanking the QTL for

various values of QTL effect a and sample size.

Generally, the analytical calculations supported the

low power values in Table 6.

The results in Table 6 were calculated for parameter

definitions given earlier and can be interpreted quite

generally. However, for fine-mapping in cattle, the

design consists of sons or daughters of QTL-

heterozygous sires, and it is necessary to relate the

more general parameters to the properties of actual

data. First, parameter 2a corresponds to the allelic

substitution effect α (Falconer & Mackay, 1996).

Secondly, α is typically measured in additive genetic

standard deviations (σ
A
) instead of σ

y
. The following

relationships allow us to relate results in Table 6 to

real data.

For a granddaughter design, the phenotypic ob-

servations pertaining to sons are Daughter Yield

Deviations (VanRaden & Wiggans, 1991), or

DYD. Variance of DYD within a sire family can be

partitioned as

Var(DYD r sire)¯
1

REL
0±25σ#

A
®

1

16
σ#

A
¯

3

16

σ#
A
­

1®REL

REL
0±25σ#

A
, (10)

where REL is Reliability (VanRaden & Wiggans,

1991), and Var(DYD r sire) corresponds to σ
y

used

earlier. Table 7 contains the allelic substitution effect

in additive genetic standard deviations as a function

of parameters a}σ
y

and REL.

For reliabilities around 0±9 (achieved by dairy sires

with sufficient numbers of daughters), QTL effects

in Table 6 correspond quite closely to the allelic

substitution effects α (in σ
A
) in Table 7. Hence, power

values for a}σ
y

closely approximate power values for

α}σ
A
, e.g. for α}σ

A
equal to 0±0928 (0±232, 0±464,

0±696, 0±928), a power value near 0±14 (0±26, 0±48, 0±67,

0±80) is found in a family of 200 sons, while a power

value near 0±25 (0±53, 0±86, 0±97, 0±99) is achieved in a

family of 1000 sons. The lower the reliability, the

lower is the power to detect a QTL of a given effect :

i.e. for reliabilities of 0±7 and 0±5 instead of 0±9, allelic
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Table 6. Power of inferring the true QTL inter�al, as a function of the total number of offspring and QTL

effect, for the following statistics: maximum contrast and three-marker regression ( f-max criterion2) in the first

row;a minimum RSS in the second row; all-marker regression ( f-max}f-sig criterion2) in the third row; three-

marker regression ( f-sig criterion2) in the fourth row

QTL effect
No. of
offspring 0±1 0±25 0±5 0±75 1±0

100 0±124 0±201 0±353 0±508 0±639
0±113 0±163 0±318 0±491 0±633
0±099}0±015 0±104}0±015 0±113}0±013 0±145}0±014 0±196}0±014
0±009 0±011 0±009 0±008 0±009

200 0±139 0±261 0±045 0±669 0±804
0±122 0±220 0±458 0±666 0±803
0±098}0±015 0±114}0±013 0±140}0±013 0±212}0±017 0±331}0±040
0±009 0±011 0±008 0±009 0±026

300 0±164 0±309 0±568 0±763 0±886
0±137 0±274 0±559 0±762 0±886
0±103}0±014 0±116}0±014 0±161}0±014 0±283}0±029 0±464}0±079
0±011 0±009 0±010 0±017 0±069

400 0±169 0±349 0±639 0±828 0±931

0±144 0±319 0±637 0±827 0±931

0±106}0±015 0±121}0±012 0±194}0±018 0±363}0±046 0±576}0±138
0±012 0±008 0±009 0±036 0±126

500 0±186 0±396 0±694 0±873 0±957
0±155 0±368 0±691 0±873 0±957
0±102}0±015 0±119}0±012 0±237}0±022 0±430}0±071 0±666}0±206
0±010 0±009 0±010 0±061 0±203

1000 0±244 0±528 0±853 0±971 0±995
0±207 0±514 0±853 0±971 0±995
0±111}0±016 0±149}0±011 0±396}0±060 0±725}0±256 0±910}0±568
0±009 0±007 0±043 0±257 0±609

1500 0±285 0±621 0±922 0±991 1±00
0±250 0±615 0±922 0±991 1±000
0±108}0±014 0±190}0±016 0±554}0±124 0±864}0±468 0±976}0±808
0±011 0±008 0±108 0±493 0±851

2000 0±314 0±692 0±957 0±998 1±000
0±283 0±690 0±957 0±998 1±000
0±116}0±013 0±233}0±018 0±664}0±209 0±933}0±640 0±992}0±920
0±010 0±013 0±213 0±689 0±945

2500 0±352 0±747 0±976 0±999 1±000
0±322 0±745 0±976 0±999 1±000
0±119}0±014 0±271}0±027 0±763}0±292 0±967}0±776 0±998}0±963
0±008 0±017 0±313 0±812 0±982

3000 0±388 0±784 0±986 1±000 1±000
0±362 0±783 0±986 1±000 1±000
0±124}0±013 0±311}0±034 0±831}0±394 0±982}0±865 1±000}0±981

0±008 0±024 0±415 0±898 0±993
5000 0±480 0±890 0±998 1±000 1±000

0±464 0±890 0±998 1±000 1±000
0±139}0±012 0±478}0±088 0±952}0±706 0±999}0±978 1±000}0±989
0±009 0±075 0±740 0±992 1±000

10000 0±641 0±978 1±000 1±000 1±000
0±637 0±978 1±000 1±000 1±000
0±192}0±014 0±762}0±306 0±998}0±966 1±000}0±990 1±000}0±992
0±009 0±314 0±982 1±000 1±000

15000 0±734 0±995 1±000 1±000 1±000
0±733 0±995 1±000 1±000 1±000
0±265}0±023 0±893}0±523 1±000}0±991 1±000}0±992 1±000}0±991

0±015 0±562 0±999 1±000 1±000
20000 0±808 0±999 1±000 1±000 1±000

0±808 0±999 1±000 1±000 1±000
0±335}0±041 0±951}0±711 1±000}0±993 1±000}0±992 1±000}0±991

0±027 0±742 1±000 1±000 1±000

a These two methods give exactly the same power values.
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Table 7. Allelic substitution effect α}σ
A

corresponding to QTL effect a}σ
y

for �arious

Reliabilities (REL) of Daughter Yield De�iations

(DYD) of sons

REL

QTL effect a}σ
y

0±5 0±7 0±9

0±1 0±1323 0±1086 0±0928
0±25 0±3307 0±2714 0±2320
0±5 0±6614 0±5428 0±4640
0±75 0±9921 0±8142 0±6960
1±0 1±3228 1±0856 0±9280

Table 8. Allelic substitution effect α}σ
A

corresponding to QTL effects a}σ
y

(in Table 6) for

�arious heritabilities of Yield De�iations of daughters

Heritability

QTL effect a}σ
y

0±1 0±3 0±5

0±1 0±6245 0±3552 0±2646
0±25 1±5612 0±8780 0±6615
0±5 3±1225 1±7560 1±3229
1±0 6±2450 3±5120 2±6458

substitution effects must be larger (1±0856 and 1±3228

instead of 0±928) to achieve a power value of 0±80.

Similarly, the phenotypic observations of daughters

are Yield Deviations (VanRaden & Wiggans, 1991),

YD, with variance within sire equal to

Var(YD r sire)¯
3

4
σ#

A
­Var(e)¯ 0 1

h#

®
1

41σ#
A
, (11)

where h# is the narrow-sense heritability of the trait

under investigation. Now we can relate the QTL effect

a in Table 6 to the allelic substitution effect α (in σ
A
)

as a function of the narrow-sense heritability in the

daughter design. Table 8 shows that QTL effects in

Table 6 correspond to much larger allelic substitution

effects in the daughter design. For a substitution effect

of 0±3552 σ
A

(heritability of 0±3 in Table 8) and 5000,

10000, 15000 and 20000 offspring, power values are

near 0±48, 0±64, 0±73 and 0±81 (maximum contrast,

Table 6), respectively. For a substitution effect of

0±878σ
A
, power values of 0±89, 0±98, 0±99 and 1±0 are

achieved for 5000, 10000, 15000 and 20000 offspring,

respectively. For the QTL effect sizes and offspring

numbers considered, often a desired level of power

(0±9, 0±95) cannot be achieved. Furthermore, the

number of large son or daughter half-sib families in

real populations is limited, and therefore combining

information across families may be necessary.

Darvasi & Soller (1997) proposed a simple method

for calculating confidence intervals in backcross and

F2 designs. For an ‘ infinite ’ number of markers (e.g.

markers every 0±1 cM), the confidence interval corres-

ponds to the resolving power of a given design.

Resolving power (95% confidence interval) is calcu-

lated by the simple expression CI¯ 3000}[Nmδ#],

where N is sample size, m¯1 for the backcross design

or a half-sib family, and δ¯α is the QTL substitution

effect in residual SD. For the half-sib design, residual

variance equals σ
p
#®0±25α#. To compare their re-

solving power with our results in Table 6, we define

the QTL effect (a¯α for an additive QTL) in Table

6 as f¯α}σ
p
. In residual SD, this effect is re-scaled

using δ¯ f}(1®0±25f #)!±
&. Resolving power was cal-

culated for those cases in Table 6 where the power of

assigning the QTL to a 2 cM interval was around 0±95,

i.e. for N¯ 2000 and f¯ 0±5 (δ¯ 0±5164), for N¯
1000 and f¯ 0±75 (δ¯ 0±8090), and for N¯ 5000 and

f¯1±0 (δ¯1±1547). Resolving power for these three

cases was 5±625 cM, 4±58 cM and 4±50 cM, respect-

ively. Although resolving power assumes a higher

marker density than the 2 cM marker spacing used to

calculate Table 6, the results in Table 6 are favourable,

but this finding might be due to the assumption that

the QTL is located at the midpoint of a marker

interval. If the QTL is located at positions 0±25 and

0±05 (in units of length of the marker interval), then

for N¯ 500 and f¯1, the power of locating the QTL

in the correct interval (2 cM) is 0±845 for position 0±25

and 0±583 for position 0±05, while the power of

locating the QTL either in the correct interval or in the

next interval to the left (4 cM interval combined) is

0±999 for both positions (0±25, 0±05). For N¯ 2000

and f¯ 0±5, the power of locating the QTL in the

correct interval (2 cM) is 0±848 for position 0±25 and

0±580 for position 0±05, while the power of locating the

QTL either in the correct interval or in the next

interval to the left (4 cM interval combined) is 0±999

for both positions (0±25, 0±05). These results are still

favourable when compared with the resolving power

for linkage mapping of Darvasi & Soller (1997).

When investigating heterogeneity within an interval

McMillan & Robertson (1974) also achieved the

highest power for QTLs lying in the middle of the

interval and a strong decrease in power for QTLs

close to the markers, which is in agreement with our

results.

(ii) Bootstrap power estimation for contrast mapping

An additional simulation study was conducted to

evaluate the bootstrap procedures described earlier.

Initially we noticed that the bootstrap power estimates

did not agree well with the power figures determined

by simulation or analytically. To understand the

properties of the bootstrap, we first considered a

much simpler data structure. Forty data points were
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generated as a group mean plus a normal deviate.

There were two groups containing 20 observations

each. The difference between the group means ranged

from 0 to 2 within-group SD, and group 1 always had

the higher true mean. For each group mean difference,

10000 data sets were simulated, and the power of

identifying group 1 correctly as having the higher

mean was estimated as the number of replicates,

where group 1 had a higher estimated mean.

For group mean differences of 0, 0±1, 0±2, 0±3, 0±4,

0±5, 1±0 and 2±0, power was 0±497, 0±623, 0±738, 0±827,

0±899, 0±942, 0±999 and 1±0, respectively. For each

group mean difference, 1000 data sets were randomly

chosen among all replicate data sets for which the

correct group 1 had been identified. Bootstrapping

was then performed on each of these data sets, by

counting the number of bootstrap samples for which

group 1 was identified also. This power estimate was

averaged across all 1000 data sets. For example, when

the group difference was 0±5 (0±1) SD, the average

bootstrap power was 0±902 (0±781) and hence lower

(higher) than the expected value of 0±942 (0±623)

above. Bootstrapping all 10000 data sets (including

those where the wrong group 2 was identified as

having a higher mean) did not eliminate the bias of the

bootstrap estimates.

Next, bootstrap power estimates from the selected

1000 data sets were averaged within classes formed by

the simulated group mean difference (given the same

true group mean difference). Then, for a true difference

of 0±5 SD and class mean differences (in SD) of

0±1, 0±2, 0±3, 0±4, 0±5, 0±6, 0±7, 0±8, 0±9 and "1±0,

corresponding frequencies of the classes were 0±060,

0±101, 0±110, 0±104, 0±122, 0±114, 0±104, 0±080, 0±055

and 0±083, and average bootstrap power estimates

were 0±643, 0±751, 0±838, 0±904, 0±947, 0±974, 0±986,

0±995, 0±998 and 1±0. Similarly, for a true difference of

0±1 SD and class mean differences (in SD) of ! 0±05,

0±1, 0±2, 0±3, 0±4, 0±5, 0±6, 0±7, 0±8, 0±9 and "1±0,

corresponding frequencies of the classes were 0±060,

0±142, 0±118, 0±109, 0±085, 0±063, 0±036, 0±020, 0±007,

0±005 and 0±005, and average bootstrap power

estimates were 0±540, 0±636, 0±747, 0±837, 0±900, 0±947,

0±972, 0±983, 0±994, 0±998 and 1±0. These results show

that irrespective of the true group mean difference (0±5
SD or 0±1SD), average bootstrap power estimates are

the same within the classes of simulated class mean

differences. The expected power values (from simu-

lation or analytical calculation) for class mean

differences of 0±5 and 0±1 are 0±942 and 0±623,

respectively. Irrespective of the true group mean

difference, the two classes representing group mean

differences of 0±5 and 0±1, respectively, have average

bootstrap power estimates of 0±947 and 0±643 (0±636),

respectively, which are very close to the expected

values. Therefore, the bootstrap provides practically

unbiased power estimates when the data closely reflect

the underlying true parameter(s), requiring sufficient

sample size.

The above property of the bootstrap was also

investigated for contrast mapping. The situation

considered was 1000 offspring and a QTL effect of

0±75 (in σ
y
), where the power for contrast mapping or

minimum RSS is near 0±97 according to Table 6. This

design was replicated 10000 times and, for each

replicate, bootstrapping was performed. The average

bootstrap power, averaged over all data sets or only

over data sets where the correct sub-interval was

identified, was 0±84 or 0±85, respectively. The true sub-

interval was interval 2 with expected contrast of 1±50,

and expected contrasts of adjacent intervals 1 and 3

were both 1±33. Then, only those replicates (20 in

10000) were considered where the differences among

contrasts of intervals 1 and 2 and of intervals 2 and 3

were both between 0±1636 and 0±1696, given an

expected difference of 0±167¯1±50®1±333. For those

data sets, the average bootstrap power was approxi-

mately 0±97, hence unbiased.

(iii) Substitution mapping

Probabilities of QTL assignment to a single marker

interval were computed using equations (7) and (8) as

described earlier, and are given in Table 9 for

increasing total number of recombinant sires and

different positions of the QTL within the interval (the

interval is not at the ends of the region, i.e. not M1–A

or D–M2).

Table 9 shows that the numbers of recombinant

sires needed to assign a QTL to a single interval are

high even for situations where the QTL is located in

the middle of the interval (the best case). Only few

families in the existing GDDs are sufficiently large to

achieve a power value of at least 90%. For QTL

position 1 cM, a power value near 0±95 (0±90) is

reached when the number of recombinant sons is 70

(60) ; hence the total number of sons is 70}(r¯ 0±165)

¯ 424 (363). Because power decreases substantially

when the QTL is located closer to one of the flanking

markers, power may be increased by assigning a QTL

to a region consisting of two adjacent intervals (4 cM

instead of 2 cM in Table 9) rather than to a single

interval, similar to what was done to improve the

power of contrast mapping.

Probabilities of QTL assignment to A–C or B–D,

given that B–C is the true QTL interval and assignment

to B–C is not possible, were calculated using simu-

lation with 1000000 replications per case (number of

recombinant sires and position of QTL in B–C).

Results are in Table 10. When adding, for a particular

case, both values in Table 10 (for A–C and B–D) to

the corresponding figure in Table 9 (for B–C), the

total probability of assigning the QTL (with true

location in B–C) to either B–C, A–C or B–D, i.e. to a
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Table 9. Probabilities for assignment of a QTL to a marker inter�al of

2 cM in dependency of number of recombinant sires and QTL position

within the marker inter�al

QTL position relative to left marker
No. of
recombinant sires 1 cM 0±5 cM 0±25 cM 0±125 cM

10 0±151 0±114 0±067 0±036
15 0±279 0±212 0±126 0±068
20 0±405 0±309 0±185 0±100
25 0±517 0±399 0±242 0±132
30 0±613 0±479 0±295 0±163
35 0±693 0±548 0±343 0±191

40 0±758 0±608 0±387 0±218
45 0±810 0±660 0±428 0±244
50 0±851 0±704 0±465 0±268
55 0±884 0±742 0±499 0±292
60 0±910 0±774 0±531 0±314
65 0±930 0±803 0±560 0±336
70 0±946 0±827 0±588 0±357
75 0±958 0±848 0±613 0±377
80 0±967 0±867 0±637 0±396

Table 10. Probabilities for additional assignment of a QTL to region

A–C (roman) or B–D (italic) gi�en that the QTL cannot be assigned to

the true inter�al B–C, in dependency of number of recombinant sires and

position of the QTL in B–C

QTL position relative to left marker (B)
No. of
recombinant sires 1 cM 0±5 cM 0±25 cM 0±125 cM

10 0±161}0±161 0±272}0±071 0±338}0±034 0±373}0±016
15 0±206}0±206 0±378}0±084 0±490}0±038 0±554}0±018
20 0±209}0±209 0±424}0±079 0±575}0±035 0±665}0±016
25 0±192}0±192 0±427}0±006 0±611}0±028 0±726}0±013
30 0±166}0±166 0±410}0±052 0±615}0±021 0±752}0±010
35 0±138}0±138 0±378}0±039 0±603}0±015 0±758}0±007
40 0±112}0±112 0±343}0±029 0±579}0±011 0±751}0±005
45 0±090}0±090 0±310}0±021 0±554}0±008 0±739}0±003
50 0±072}0±072 0±276}0±015 0±525}0±005 0±722}0±002
55 0±055}0±055 0±246}0±010 0±496}0±003 0±703}0±001
60 0±044}0±044 0±217}0±008 0±466}0±002 0±681}0±001
65 0±034}0±034 0±192}0±005 0±439}0±002 0±663}0±001
70 0±027}0±027 0±170}0±004 0±413}0±001 0±643}0±000
75 0±021}0±021 0±150}0±003 0±386}0±001 0±623}0±000
80 0±016}0±016 0±132}0±002 0±364}0±000 0±604}0±000

region of 4 cM or less containing the true location, is

obtained. For example, for 30 recombinant sires and

QTL position 0±5 cM, the total probability is 0±410­
0±052­0±479¯ 0±941, which is a much more favour-

able figure than the value of 0±479 in Table 9.

Simulations with 1000000 replicates were used to

determine the influence of different type II error rates

(β), given a type I error rate of α¯ 0±05, on the power

of QTL assignment to a single marker interval (these

values should be compared with Table 9, column for

QTL position 1 cM). Results in Table 11 indicate

that the influence of error rates on power of QTL

assignment is quite small.

The formula for n in equation (9) can be partitioned

into (σ}α)**2, which is due to the QTL effect and the

variance of YD, and (tα­tβ)**2, which results from

the error rates. Some realistic values for the com-

ponents (assuming h#¯ 0±3) are given in Table 12

(t values for DF¯ infinity) as well as the required

sample sizes for various scenarios.

The above calculations show that power can be

increased by increasing the number of sires per family
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Table 11. Influence of type I and type II error rates for QTL segregation

status on power of QTL assignment to a single marker inter�al

α¯ 0±05
No. of
recombinant sires β¯ 0±0 β¯ 0±10 β¯ 0±20 β¯ 0±30

10 0±146 0±136 0±121 0±110
20 0±391 0±365 0±341 0±317
30 0±600 0±571 0±541 0±511

40 0±745 0±719 0±690 0±661

50 0±840 0±818 0±795 0±770
60 0±903 0±887 0±868 0±846
70 0±940 0±926 0±914 0±898
80 0±964 0±955 0±945 0±932

Table 12. Contribution of QTL substitution effect in

additi�e genetic SD (α
S
}σ

A
), �ariance of obser�ations

(σ) and type I (α) and type II (β) error rates to

sample size of daughter groups due to (9)

σ
S
}σ

A

0±25 0±5 1±0
(σ}α

S
)#

α β (tα­tβ)# 49 12±25 3±06

0±05 0±2 6±15 602 150 38
0±1 8±53 836 208 52

0±01 0±2 9±99 980 244 60
0±1 12±96 1270 318 80

(hence the number of recombinant sires) and by

typing additional daughters of sires to increase the

accuracy of declaring segregation status. The former

factor seems more important and more limiting in the

success of fine-mapping using substitution mapping.

Finally, simulations with 1000000 replicates were

used to determine the influence of segregation of the

mutant QTL allele in dams of sires, for given type I

and type II error rates, on the power of QTL

Table 13. Influence of frequency of the mutant allele in dams of sires

( pjQ) on power of QTL assignment to a single marker inter�al for gi�en

type I and type II errors in segregation status

α¯ 0±05}β¯ 0±10
No. of
recombinant sires pjQ¯ 0±0 pjQ¯ 0±1 pjQ¯ 0±2 pjQ¯ 0±3 pjQ¯ 0±5

10 0±136 0±112 0±091 0±073 0±040
20 0±365 0±321 0±273 0±226 0±135
30 0±571 0±515 0±454 0±390 0±250
40 0±719 0±666 0±603 0±534 0±365
50 0±818 0±774 0±718 0±649 0±473
60 0±887 0±849 0±802 0±740 0±567
70 0±926 0±900 0±862 0±809 0±647
80 0±955 0±934 0±905 0±861 0±716

assignment to a single marker interval. The results in

Table 13 show that power is little affected when the

frequency of the mutant allele is low (0±2 or less), while

power is reduced substantially when the frequency is

intermediate to high.

(iv) General considerations

All the results presented above are based on the

assumption that markers are fully informative in the

sons of grandsires and daughters of sires. A marker is

not informative when an offspring has the same

genotype as its parent. For contrast mapping, only

those offspring (sons) which are informative at both

markers forming a sub-interval should contribute to

the calculation of the contrast for that sub-interval.

Similarly, for substitution mapping only those sons

which are informative at both markers of a sub-

interval should be classified as having or not having a

recombination event in that sub-interval. Suppose

that the genotype of the grandsire at the markers

forming a sub-interval is A-B}a-b. Given that a son

inherits the A-B haplotype, inheritance at the first

marker will not be known if the son inherits allele ‘a ’

from the dam, which occurs with probability p
a
.

Similar for the other marker. Hence, a fraction of
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(1®p
a
) (1®p

b
) of the sons will be informative for this

interval. Consequently, the number of sons needed

has to be increased by a factor of 1}[(1®p
a
) (1®p

b
)]

relative to the numbers given in Tables 6, 9, 10 and 13.

The number of daughters needed to determine the

segregation status of sires in substitution mapping is

less affected, because if a flanking marker is not

informative, the next marker (further away from the

QTL) can be used in many cases.

The impact of multiple linked QTLs on the methods

proposed depends mainly on the tightness of the

linkage. In contrast to genome-wide or chromosome-

wide linkage mapping, here only a small chromosomal

region is being examined. The smaller the region, the

less likely the existence of multiple QTLs that are not

so tightly linked that they act as one QTL. Clusters of

very tightly linked QTLs, with hardly any recom-

bination between them, are considered as one QTL

(see McMillan & Robertson, 1974). If several distinct

QTLs existed in the original (e.g. 20 cM) interval, then

contrast mapping, especially three-marker regression,

should be able to fine-map multiple QTL with the

existing marker data or indicate where additional

markers are needed.

To obtain an assessment of the probability of

having identified the correct sub-interval in contrast

mapping, we propose (i) performing data simulation,

using the same design as the actual design, to evaluate

the power of correct assignment, and (ii) performing

bootstrapping as described earlier. We recommend

use of both methods, because both have potential

disadvantages. With data simulation using the same

design, one can capture sample size but not other

(unknown) features of the data. For the same reason,

data permutation is preferred over data simulation for

determination of significance thresholds in linkage

mapping (e.g. Churchill & Doerge, 1994). The boot-

strap gives accurate power estimates only if the data

closely reflect the underlying true parameters.

To investigate limits to fine-mapping based on

current recombinations, we could have performed

linkage mapping using LS, VC or Bayesian analysis.

However, for a simple design such as the half-sib

design considered here, linkage mapping has at most

two potential advantages : (i) an estimate of the QTL

position within a sub-interval is obtained, but this

estimate will probably be rather inaccurate given the

small size (2 cM) of the sub-intervals and hence not

useful ; (ii) a confidence interval is obtained for the

QTL position, but these confidence intervals are often

not very accurately determined (asymptotic conditions

do not hold; different bootstrap techniques may yield

different results ; e.g. see Zhang et al., 1998). In

practice, for a given size of the actual design and

estimate of QTL effect, we suggest conducting a

simulation similar to those performed here to evaluate

the power of correct QTL assignment to the sub-

interval identified. A potential advantage of sub-

stitution mapping is that genotyping can be terminated

if, after evaluation of only a few sires (two in the most

favourable case), a combination of haplotypes and

segregation states leads to QTL assignment to a sub-

interval.

4. Conclusions

Methods for the fine-mapping of QTLs can be

assigned to two groups: identity-by-descent methods

or methods using historical recombinations, and

genetic chromosome dissection methods or methods

utilizing current recombinations. Up to now, methods

using historical recombinations (or linkage disequi-

librium, LD) have been successfully applied to the

fine-mapping of Mendelian disease genes. Whether

similar methodology can be developed and applied

successfully to quantitative traits is still uncertain.

Here, we have described twomethods for fine-mapping

using current recombinations: contrast mapping and

substitution mapping. These methods may in some

cases produce a sufficiently small region for a QTL,

but in most situations should probably be used as

an intermediate step between initial linkage analysis

and LD mapping, in populations with large half-sib

families.

While contrast mapping requires the identification

of sires which are heterozygous at a QTL (information

available either in a daughter or a granddaughter

design), substitution mapping requires identifying

both sires and sons which are heterozygous at the

QTL (information available in a granddaughter

design). Substitution mapping also works best when

the mutant QTL allele is not carried by the dams of

the sons, an assumption likely to be violated if the

design derives from a single, segregating population.

Both methods require, on average, large sire families,

limiting their application to a few families in Holstein

dairy cattle. Genotyping large numbers of individuals,

needed especially for daughter contrasts, is a major

effort but should become feasible from the standpoint

of technology and costs (SNPs and DNA-chips,

recent advances in DNA sampling in connection with

tagging animals). However, we have shown that with

both methods it is feasible to map a QTL to a region

of 2–4 cM, a result that, if achieved in practice,

represents a large step from linkage mapping towards

positional cloning or (comparative) positional can-

didate cloning. A method based on historical recom-

binations has been used recently with success to map

a QTL to a 5 cM region in Holsten cattle (Riquet et

al., 1999). The assumptions of this method, such as

QTL allelic homogeneity, will not always be met.

Consequently, several methods employing different

assumptions are needed, and here we have described

two alternative methods that should be considered
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when attempting to fine-map QTLs previously iden-

tified via linkage mapping.
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