If both $p \leq \frac{1}{2}$, $q \leq \frac{1}{2}$, the lattice point (a, β) serves our purpose. Suppose then that $q > \frac{1}{2}$. The inequalities above yield

$$-\frac{1}{2}a < p_1 < \frac{1}{2} - \frac{1}{2}a, -\frac{1}{2} < q_1 < 0,$$

and the lattice point $(\alpha, \beta - 1)$ satisfies our requirements. If $p > \frac{1}{2}$, the same reasoning yields $(\alpha + 1, \beta)$ as a suitable lattice point.

- 3. It is possible to give another geometrical interpretation. We observe that |u(x,y)| represents the distance between (x,y) and the line u=0 measured parallel to the axis of x. Similarly |v(x,y)| is the distance between (x,y) and v=0 measured parallel to the axis of y. We seek therefore a lattice point (α,β) such that neither of these distances exceeds $\frac{1}{2}$. Suppose, as we may, that $0 \le \xi \le 1$, $0 \le \eta \le 1$. In the case $0 \le \alpha < 1$, $0 \le b < 1$, it is easy to see from a figure that one of the lattice points (0,0), (0,1), (1,0), (1,1) must have the property desired.

CORRIGENDA: L. J. Mordell.

Some applications of Fourier series in the analytic theory of numbers*.

Page 589, equation (3:10), after "k > 0" insert "and 0 < R(s) < 1," and for " $2n\pi i/k$ " read " $2n\pi ix/k$."

Page 589, equation (3.11), for "
$$\int_{-\infty}^{\infty}$$
" read " \int_{0}^{∞} ."

Add also "The evaluation of the integrals given in (3.11) is obvious when 0 < R(s) < 1, and then holds also for 0 < R(s) < 2 by the theory of analytic continuation."

^{*} Proc. Camb. Phil. Soc. 24 (1928), pp. 585-596.