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ABSTRACT. A new ocean wave/sea-ice interaction model is proposed that simulates how a directional
wave spectrum evolves as it travels through an arbitrary finite array of circular ice floes, where wave/
ice dynamics are entirely governed by wave-scattering effects. The model is applied to characterize the
wave reflection and transmission properties of a strip of ice floes, such as an ice edge band. A method is
devised to extract the reflected and transmitted directional wave spectra produced by the array. The
method builds upon an integral mapping from polar to Cartesian coordinates of the scattered wave
components. Sensitivity tests are conducted for a row of floes randomly perturbed from a regular
arrangement. Results for random arrays are generated using ensemble averaging. A realistic ice edge
band is then reconstructed from field experiment data. Simulations show good qualitative agreement
with the data in terms of transmitted wave energy and directional spreading. In particular, it is observed
that short waves become isotropic quickly after penetrating the ice field.
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INTRODUCTION

The polar oceans are changing in response to climate change,
particularly the Arctic sea-ice cover during the summer
season. Over the past few decades, Arctic sea ice has thinned,
shifted from predominately perennial ice to seasonal (first-
year) ice, and declined in extent at a rate of 13% per decade
relative to the 1979-2000 average at the end of the summer
melt period (Jeffries and others, 2013). The resulting increase
in the absorption of shortwave radiation by the ocean tends
to induce additional melt, and forms the basis of the positive
ice albedo feedback. Severe storms, such as that of early
August 2012, which destroyed 400 000 km? of sea ice in just
a few days (Parkinson and Comiso, 2013), are also occurring
more often at high latitudes in both hemispheres, with
increased fetches apparently triggering amplified wave
activity within the marginal seas and along newly exposed
coastal borders (Young and others, 2011). It is therefore
crucial to determine whether a changing wave regime could
further enhance ice retreat and thinning, through increased
melt rates due to floe breakage and water movements, acting
as an additional positive influence on ice albedo feedback.

Driven by these observations there has been a resurgence
of interest in understanding how ocean waves interact with
sea ice. The goal is to improve the accuracy of ice/ocean
models, which have been unable to predict the recent fast
decline of the Arctic sea-ice cover (Jeffries and others, 2013).
The WIFAR (waves-in-ice forecasting for Arctic operators)
project was a first attempt to integrate ocean waves into a
coupled ice/ocean model (Squire and others, 2013; Williams
and others, 2013a,b). Momentum exchanges between ocean
waves and sea ice are largely based on conservative physics,
where ocean wave scattering by ice floes governs the
dynamics of the system. This is achieved using the methods
described by Bennetts and Squire (2011), who consider wave
propagation in a single horizontal dimension. While several
wave vectors at different angles can be accommodated, they
are independent so that transmission and reflection by ice

https://doi.org/10.3189/2015A0G69A556 Published online by Cambridge University Press

floes is constrained to a single direction. This is a major
simplification that is reasonable deep into the ice interior
(Squire and others, 2009), but is likely to be imprecise within
the marginal ice zone (MIZ), where the waves are thought to
be multiply scattered in all directions by the constituent ice
floes (Wadhams and others, 1986). Each floe present will
produce circular wavefronts that interact with the floes
around it, to quickly produce a confused sea state that tends
towards being isotropic in its directional composition,
particularly when wave periods are low.

Three-dimensional (3-D) models, which incorporate mul-
tiple 2-D wave scattering, have been developed to study the
attenuation of ocean wave energy in the MIZ (Bennetts and
Squire, 2009; Peter and Meylan, 2009; Bennetts and others,
2010). Wave attenuation is induced via linear conservative
scattering processes only, producing an effective decay of
the wave energy with distance from the ice edge, with no
other nonlinear dissipative phenomena considered. How-
ever, these models had unrealistic periodicity imposed on
the floe size distribution (FSD). Peter and Meylan (2009), in
particular, developed a model in which small modules of
floes are repeated periodically in one horizontal direction.
The interaction theory employed within the modules bears
some resemblance to the method used here.

In this paper we describe an energy-conservative model
with no periodicity limitation and full randomization of the
FSD. We use it to characterize wave reflection and
transmission properties of a row composed of a few tens of
circular floes, after averaging over many random realizations
of the FSD, allowing us to eliminate features that relate to a
particular realization. Our approach extends the single-row
models proposed by Peter and others (2006) and Bennetts
and Squire (2008), which are based on a periodicity
condition that causes the scattered waves to travel only at
a finite number of angles determined by the floe spacing. For
an arbitrary array, however, the full directional spectrum
must be considered. The main mathematical challenge is to
compute reflection and transmission wave characteristics for
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Fig. 1. Schematic of a typical band of ice floes with width L.

scattering by circular floes. We use an integral transform-
ation to recast the circular waveforms into plane waves
travelling at different angles, utilizing and extending methods
originally developed for acoustic and electromagnetic wave
scattering (Twersky, 1962; Cincotti and others, 1993; Frezza
and others, 2010). The approach is new for water waves
travelling through an ice field and is particularly efficacious,
as it allows the attenuation and directional evolution to be
found simultaneously, by dividing up the propagation
medium into strips. The theoretical aspects of the method
are described in the following section.

The version of the model presented here is suitable to
replicate the behaviour of ice edge bands, i.e. consolidated
structures that form off the ice edge of the MIZ, which
aroused considerable interest during the marginal ice zone
experiment (MIZEX; Martin and others, 1983; Wadhams,
1983). While the origin and causal mechanism of ice edge
bands are reasonably well understood (Wadhams, 1983),
few data exist that quantify band interactions with pene-
trating wave trains. Accordingly, this work is of geophysical
interest, as bands are a frequent resident off the ice edge of
certain MIZs. Useful data regarding the FSD of ice bands are
provided by Wadhams and others (1986), which we use to
parameterize realistic ice conditions and simulate the propa-
gation of a directional wave spectrum through the band.

After describing the numerical model in the next section,
we conduct an analysis for a single row of floes with random
perturbations from the regular array arrangement. We test
the effect of randomizing the FSD and increasing the extent
of the row on the transmitted wave energy. Results for a
realistic ice band are then given, and qualitative agreement
with the experimental data reported by Wadhams and
others (1986) is found.

MODEL

Consider a coherent band of sea-ice floes herded together at
the surface of the ocean, which is assumed to have infinite
horizontal extent and a finite constant depth, h. Cartesian
coordinates x = (x, y, z) are used to position points in the
fluid domain, with the z-axis pointing vertically upwards
from the origin located on the fluid surface at rest. We
assume that the ice floes are circular and vertically uniform,
although we let their size, i.e. radius and thickness, and their
position be arbitrary, with the restriction that they do not
overlap. We conjecture that the idealized circular floe
model represents a realistic ice cover if randomness is
included and the results are averaged over many simula-
tions. It is supposed that the wave/ice dynamics are
governed entirely by conservative scattering effects, so that
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dissipative phenomena (e.g. friction, floe collisions, rafting,
ice fracture and overwash) are not considered at this stage.
The wave energy is therefore redistributed spatially due to
scattering, but conserved for the whole system. Figure 1
shows a diagram of a typical ice band FSD. The lowermost
floe has its centre located at the origin, without loss of
generality, and we define the width of the band, denoted by
L, as the x-coordinate of the centre of the uppermost floe.
We let M denote the number of floes in the band and (x;, y;)
be the coordinates of floe j, 1 <j < M.

Governing equations

Under the standard assumptions of potential flow, for an
incompressible fluid with density p=1025kgm=3, and
assuming periodic motion with angular frequency w, we
describe the fluid motion using a potential function defined
as the gradient of the velocity field. It is written as
®(x, t) = Re{(g/iw)p(x)e '}, where g~ 9.81ms~2 is ac-
celeration due to gravity. The complex-valued function ¢
satisfies Laplace’s equation

(V2 +22)¢=0 (1)

everywhere in the fluid, with V = (9, 9,).

Boundary conditions must be imposed on the seabed and
on the fluid upper surface. Assuming no flow through the
seabed, we have 9,¢ =0 on the plane z = —h. The fluid
upper surface comprises both open water and ice-covered
regions. We invoke linear water wave theory at the free
surface, which provides the condition

0,0=a¢p (z=0), (2)

valid in open-water regions, where a = w?/g is the deep-
water wavenumber. We account for the flexural motion
experienced by the ice floes under wave action, but neglect
any form of horizontal motion. A standard hydroelastic
model, based on thin-elastic plate theory, provides the
corresponding condition

BV +1—ad)d,¢p=ad (z=-d), (3)

valid in the ice-covered fluid regions, for an ice floe with
thickness D, density p;~922.5kgm= and draught
d = (pi/p)D. The stiffness parameter, 8 = F/pg, is defined
in terms of the flexural rigidity, F = ED3/12(1 — 1?), where
E ~ 6 GPa is the effective Young’s modulus for sea ice and
v ~ 0.3 is Poisson’s ratio. Further boundary conditions are
applied to ensure that the bending moment and vertical
shear stress of the floes vanish at their edges (e.g. Montiel
and others, 2013). A radiation condition is also imposed in
the far field, to ensure the decay of scattered wave
components (e.g. Montiel and others, 2013).

Directional wave spectrum

A key goal of the present study is to analyse how angular
spreading is affected by a band of ice floes. We consider a
monochromatic wave forcing with normalized angular
distribution, incident on the ice band from the negative
x-axis. We set the directional spread of the incident wave as
a standard cosine-squared directional spectral density
function, S(7), —7/2 <7 <w/2, i.e.
/2

S(r)ydr=1, (4)

/2

S(t) = % cos’(1), such that /

where 7 is the angle with respect to the x-axis. The incident
wave potential, ¢, can then be defined as a continuous
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superposition of plane waves travelling in different direc-
tions in (—n/2,7/2). The following integral representation
follows naturally as

cosh k(z + h)

In _
o7 (x) = cosh kh

/2
/ Aln(T)eik(xcosr+ysin7) dT/ (5)
/2

where k is the open-water wavenumber, i.e. the solution of
the dispersion relation ktanhkh = «. The incident wave
amplitude spectrum is defined as A"(7) = /S(7).

Given the representation of the wave field used in Eqn (5),
it is sensible to define the reflected and transmitted com-
ponents that arise from scattering by the band, in the form

#(xy 2) =
coshk(z + h)
cosh kh

8 (v, 2) =
cosh k(z + h)
~ coshkh

/2 ) )
/ , AR(X)e|k(fxcosx+ysmx) dX (X < 0), (6)

/2 ) )
/ , AT(X)e'k[(X*L)COSX*YS‘HX] dX (X > L), (7)

where AR(x) and AT(x) are the reflection and transmission
spectra, respectively, which are unknowns of the problem
and depend continuously on the wave direction, ¥,
—n/2 < x <m/2. Note that the validity of the these
expressions comes from the validity of the integral mapping
used to derive the reflection and transmission spectra
(Egn (11) further below). We further decompose the
transmitted spectrum into a scattered wave component,

AT(x), and the contribution from the ambient field, such that

AT(x) = AT(x) + ektcosxAln(y) . Also note that we have
neglected the effect of the evanescent wave components
in these representations, as we are only interested in the
reflected and transmitted energy.

Solution method

We first solve the multiple scattering problem in the band,
using a standard interaction theory (e.g. Kagemoto and Yue,
1986; Peter and Meylan, 2004), which states that the wave
field incident on a floe j, 1 <j < M, is the superposition of
the ambient wave forcing and the scattered wave field from
all the other floes present. We use local cylindrical
coordinates (r;, 0;, z), with origin at the centre of floe j, to
parameterize the incident and scattered wave fields for floe
j. The ambient wave forcing given by Eqn (5) is then
expressed in terms of cylindrical harmonic functions as

N
cosh k(Z+h) Z a )Jn(kr/)ein(?//

Inc. n. ~
(1.6, 2) coshkh =
with (8)
/2
ag) _ In/ Aln(T)e—inTeik(x/ Cos T+y;sinT) d7',
—/2

where J,, is the Bessel function of the first kind of order n and
the infinite sum has been truncated to 2N+ 1 terms for
computational purposes. N describes the number of angular
modes. We also represent the scattered wave field for each
floe j in the form

coshk(z + h)

S(r. 0. ~
¢j (r]/ glfz) ~ COSh kh

E:MH (krj)e™, — (9)

where b %, —N<n<N, 1<j<M, are unknown coeffi-
cients and H,, denotes the Hankel function of the first kind of
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order n. We have also assumed that the evanescent modes
are negligible; the so-called wide-spacing approximation.
The validity of this approximation was tested for the kind of
geometry sketched in Figure 1, and we found an accuracy of

four significant digits on the value of the coefficients bY,
which is more than sufficient for the analysis conducted in
this paper.

At this point, solving the scattering problem for a single
circular floe is necessary to map the total incident wave field
on floe j to the scattered wave field. We use a standard
eigenfunction-matching method, which provides reasonable
numerical accuracy for the present problem. The method is
described by Montiel and others (2013), and also provides a
solution in the ice-covered region. Note that evanescent
modes were included to compute the single floe responses
with sufficient accuracy.

Using the superposition principle from the interaction
theory and Graf’s addition theorem yields a mapping

between the unknown amplitudes, bY, and the forcing
amplitudes, a,({), —N<n<N, 1<j<M, given by the
matrix equation (Montiel, 2012)

b = Da. (10)

The column vectors a and b have length M(2N + 1) and
contain the amplitudes ay and bY, respectively. The
mapping matrix, ®, is usually referred to as the diffraction
transfer matrix of the array. We have used a self-consistent
approach, properly accounting for all the interactions
between floes. The diffraction transfer matrix, ®, differs
from that derived by Peter and Meylan (2009) for a module,
however, as the scattered field components due to each floe
are expressed in the local coordinate systems of each floe, as
opposed to being expressed in a global system, as was done
by Peter and Meylan (2009).

The solution given by Eqns (9) and (10) is not compatible
with the plane wave expression of the scattered field
described by Eqns (6) and (7). Therefore, we use a plane
wave representation of the cylindrical harmonic functions,
H,(kr;) exp (in;), to obtain the necessary change of co-
ordinates. Cincotti and others (1993) give such a representa-
tion in the context of electromagnetic wave scattering.
Adapting their expression to the present context, we have

(kr) |n€

l_ /7r/2 ico e~ IMX @ik(=xcos x+ysinx) dy, (X < Xj)/
T J—x/2+ico
(_i)n /2o inx Lik(x cos x+y sin x)
-——/' eme A, (x>x)
™ —7/24i00
(1)

for each floe j. These expressions are valid along infinite
lines parallel to the y-axis (i.e. for fixed x). In particular, we
can express the reflected components from each floe on the
line x = 0 and the transmitted components on the line x = L.
Also note that the range of integration in Eqn (11) spreads
into the complex plane. It can be shown, however, that for
complex x the plane wave term decays exponentially. It is
then reasonable to limit the integration range on the real line
o (—n/2,7/2), by neglecting the contribution of the
evanescent components.

We are now in a position to express the scattered wave
field in the form of Eqns (6) and (7). Substituting Eqn (11)
into Egn (9) and using Eqns (10) and (8), we can obtain the
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integral mappings

/2
AR(X) = R(x: T)Aln(T) dr
o (12)
and  AT(y) = T (x: 7)A™ (1) d7,
—7/2

where R(x:7) and T (x:7) are the reflection and transmis-
sion kernels, respectively. The kernel functions, R/7, map
an incident wave with angle 7 to a reflected/transmitted
wave travelling at angle x. After some algebra, we obtain
analytical expressions for the kernels

Rix:7) = (VR(x))"®V"(7)

tr (1 3)
and T(x:7) = (VT(x)) DV"(7),

where VR(x), VT (x) and V""(7) are column vectors of length
M(2N + 1) with entries

n
o elk(X/ cos x—yjsin X)e*l”)(/

R —
[V (X)} (—1)2N+1)+N+n+1""

.
V()] (=) @N+T)+N+n+1"
1<j<M, —=N<n<N,

and

™

[Vin(r)] (M=1)(2N-+1)+N+s+1 i*ik(m cosTHymsinT) g 7isT,

1<m<M, =N<s<N, and the superscript tr indicates
matrix transpose.

We obtain a numerical solution by discretizing the
angular variables, x and 7, in the range [-7/2,7/2]
with 2N, + 1 evenly distributed samples {x; = in/2N,,
—Na <i<N,}. We refer to N, as the angular sampling
parameter. The reflection and transmission kernels then
become square matrices R and T of size 2N, +1,
with entries

[gqp,q: R(pr/\/af1 *Xg—N,—1 )
and [Cs]p/ q: T(prl\ldf1 *Xg—N,—1 )/

1 <p, g <2N,+ 1. The discretized reflection and transmis-
sion spectra are calculated from Eqgn (12) using standard
numerical integration techniques (e.g. a trapezoidal rule).

RESULTS

The model imposes no assumptions on the FSD in the band,
except that the number of floes must be finite. This allows us
to define the FSD randomly and generate results using
ensemble averaging, given a certain ice concentration
(relative surface area covered by sea ice). However, the
computational cost increases significantly with the number
of floes, thus limiting the extent of the MIZ that can be
considered (solving the problem for >300 floes generally
becomes impractical). Nonetheless, the present model is
well suited for the ice band problem, which has a limited
extent by nature. In this section, we first analyse the effect of
both randomness and increasing the number of floes in a
simple band setting, and then show results for more-realistic
ice bands.

The amplitude spectra, AR(x) and AT(x), calculated from
Eqn (12), provide information on both the angular distri-
bution and energy intensity of the reflected and transmitted
wave components. The total reflected and transmitted
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energies are given by

/2 /2
ER:/ ARG dy  and ET:/ ATOF dy, (14)
—7/2 —7/2

respectively, and are defined relative to the normalized
incident energy. Energy conservation in the system yields
ER+ ET =1, and provides a useful numerical check for
convergence with respect to N,. Convergence of the results
with respect to N, and N will be assumed throughout,
ensuring an accuracy of four significant digits. The water
depth is considered fixed at h =200m, which provides
deep-water conditions for wave periods T < 20s.

Single row: randomness and band extent

We consider first a single row of identical ice floes (with
radius a and thickness D) with centres aligned along the
y-axis and with constant centre-to-centre spacing,
S = 300 m. We assume that there is an odd number of floes
M =2N; + 1. The case Ny = 0 corresponds to a single floe
centred at the origin and, for positive N;, we add Ns floes on
either side of the x-axis, so the problem is symmetric with
respect to the x-axis. This regular array defines the reference
geometry, from which random arrays are obtained by
introducing a perturbation on the radius, thickness and
position of each floe. We denote by ¢, a uniformly distributed
random parameter taking values between —1 and 1. Then for
each floe, j, —N; < j < N, we define the radius a; = a + €a,
the thickness D; =D + eD and the centre position
(x;,¥;) = (0,jS) + €(X,y). The parameters a, D, X and y
control the variance of the associated distributions. In the

following, results given for randomized arrays of floes are
averaged over 50 simulations, unless otherwise specified.

Transmitted energy
We analyse the effect of randomizing the FSD and increasing
the number of floes on the transmitted energy, (ET), where
(X) refers to the ensemble average of a quantity X. We
consider first an array with low concentration (~20%). We
set a=75m, D=15m, 3=25m, D=05m and
X =y = 50m. Figure 2a shows the transmitted wave energy
plotted against wave period in the range T = 515, corres-
ponding to wavelengths 40-350 m. Results are given for the
regular array configuration (i.e. a=D=X=y =0) and
the random case, with the same mean properties as for the
regular case. In each case, we vary the number of floes in
the band with Ny =0, 1 and 50. Randomizing the FSD and
averaging over many simulations removes the local max-
imum observed for the regular case at T = 6.8s. The
transmitted energy then gradually decreases for shorter
periods without resonance or near-resonance effects, which
characterize the response in the regular array problem.
Increasing the number of floes in the array, we see that
the transmitted energy converges surprisingly fast to the
long-array response for both regular and random cases. The
single floe case (N;=0) already provides a reasonable
approximation, and for three floes (N; = 1) the transmitted
energy is very close to the response for 101 floes (N; = 50).
This suggests that the spatial repartition of the scattered
energy for a single row of floes is mostly governed by the
single floe response. Multiple interaction effects within the
row have little influence on how much wave energy travels
through the row. However, the situation may be different
when we consider multiple adjacent rows (future work), and
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Fig. 2. Ensemble average of transmitted wave energy plotted against wave period for a floe concentration of (a) 20% and (b) 50%. We
compare the responses of the regular and random arrays, for different values of Ny, i.e. Ny = 0 (dash-dotted and solid), Ny = 1 (dotted and

dashed) and N; = 50 (circles and squares).

will probably require us to take more floes to obtain a
converged response.

In Figure 2b, we consider a denser FSD with a = 120 m,
D=15m,a=10m, D=0.5m and X=y=20m. In this
case, the ice floe concentration is ~50%. The response for
the regular array case exhibits significant near-resonance
features with local maxima at T~ 5.2 and 7.9s and a
minimum at T = 6.2s. Randomizing the FSD removes all
these features, as in the previous example. We again
observe that the single floe response is the main factor
determining the amount of wave energy transmitted through
the array, and only three floes are needed to account for
multiple scattering effects.

The results obtained here suggest that wave-scattering
properties in newly formed pancake ice fields, characterized
by fairly regular floe sizes and thicknesses, differ from those
in MIZ-type ice fields that have undergone significant erosion
and which have a more diverse floe size distribution. A more
thorough analysis of ocean wave propagation through differ-
ent ice types is needed to understand these processes better.

Directional spectra

The total reflected and transmitted energies are average
quantities over the whole directional spectrum. We now
characterize the effect of randomizing and increasing the
number of floes on the directional spreading properties of
the transmitted energy, i.e. (|AT(x)[*). For a random
configuration, the symmetry with respect to the x-axis is
broken in general, but taking an ensemble average over
many simulations restores symmetry. To limit the number of
simulations required to obtain symmetry, we only random-
ize the position of the floes, leaving radius and thickness
fixed, i.e. 2 = D=o0.

We consider the low ice concentration case (~20%) first,
with a, D, x and y as before. In Figure 3a and b, the
directional spectrum of the transmitted energy, (|AT|?), is
plotted over the angular range —n/2 < x < /2, for the
regular and random array cases, respectively. For each case,
we vary the band extent (number of floes in the band), from
1 floe (Nf=0) to 51 floes (N; = 25). For the regular array
arrangements, increasing the number of floes generates an
oscillatory behaviour in the spectrum, which converges to
the long finite array response quickly, i.e. for only 7 floes
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(Nf = 3). The oscillatory behaviour makes sense, as it is well
established that for an infinite regular array, the transmitted
waves travel only at certain angles, called the scattering
angles, determined by the spacing between the floes (e.g.
Peter and others, 2006).

In the random array case, the oscillations disappear due
to the averaging process. As a consequence, the conver-
gence is quicker, with only 3 floes (Nt =1) required to
approximate the long array response over most of the
angular domain. We observe a quasi-flat spectrum in the
angular range (—1,1) rad, suggesting that an isotropic
transmission of the energy occurs there. This means that,
statistically, there is no preferred direction of propagation
in this sub-domain. Outside this angular range, the
transmitted spectrum follows the incident spectrum closely,
so that the array does not influence wave transmission in a
statistical sense.

Figure 3c and d show the same transmitted spectra for an
ice concentration of 50%. For the regular array case, we
again observe the oscillatory behaviour associated with the
scattering angles of the periodic structure, but unlike the low-
concentration example, the oscillations persist when we
randomize the FSD, although they are significantly dam-
pened. We conjecture that this is due to the lower variance of
the random perturbation in the high-concentration case
(X =y =10m), so that the floes have less freedom to be
positioned away from the mean value compared with the
low-concentration arrays, for which we have x =y = 50m.
The difference in variance also influences the number of
simulations required to approximate the ensemble average
accurately. In practice, the convergence was determined, so
the symmetry of the transmitted spectra inherited from the
symmetry of the average FSD would be preserved. For the
low-concentration case, we had to perform 3000 simulations
to obtain symmetry, while for the high-concentration case,
only 500 simulations were required. It is remarkable that,
again, the long array response can be approximated with
only 3 floes for the random array case. However, we expect
that more floes will be needed for incident directional
spectra that are less smooth than the one considered here.

Realistic band

We now model the propagation of a directional wave
spectrum in a band of ice floes, reconstructed from field data
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Fig. 3. Ensemble average of the transmitted energy directional spectrum, (|AT|?), for four different band extents, Ny = 0, 1, 3, 25, under an
incident spectrum (dotted curve) of period T = 65. Spectra are given for the regular array configuration in (a) and (c), for ice concentrations
20% and 50%, respectively. Likewise, the corresponding spectra for random arrays are plotted in (b) and (d).

provided by Wadhams and others (1986). The data are used
to approximate a realistic ice band and test it for energy
transmission using our model. We do not perform a
quantitative comparative analysis between experimental
data and numerical results in this paper, as morphological
and physical property data are not presented to a sufficient
level of detail by Wadhams and others (1986).

The experimental measurements were conducted as part
of the MIZEX-84 campaign and took place in the Greenland
Sea in June-July 1984. A band experiment was performed,
in addition to more traditional attenuation experiments in
the MIZ. The authors placed a wave buoy on each side of
the band to record the incoming spectrum and the
transmitted spectrum. The ice band extent (in the y-direction
in our model) was ~15km, and its width varied between
230 m (narrowest) and 1.3 km (widest). A schematic diagram
provided by Wadhams and others (1986) suggests that the
wave buoys were located around the narrowest part of the
band, which was composed of about six rows of floes. In
their paper, the FSD is provided after binning the floe
properties into five categories for computational purposes.
The bins are defined by their characteristic radii, 6.25, 12.5,
17.5, 27.5 and 50m, and proportions of the total ice-
covered surface area, 20, 30, 30, 10 and 10%, respectively.
The thickness is set to D = 2 m for all floes. No information
is given regarding the ice concentration in the band,
although we expect that it will be high (>80%), as ice
edge bands are known to be densely packed structures
(Wadhams, 1983).

In our model, we construct the arrangement of floes using
a rectangular grid of 6 x 15 square cells. We then randomly
place 1 floe per cell from the FSD defined earlier, although
we discard floes with radii 25.7 and 50m, as they only
account for 1.5% and 0.4% of the total number of floes,
respectively. Choosing the cell size to be 35 m, we obtain an
array of floes with 35% ice concentration. We acknowledge
that our rectangular grid method is not ideal to define highly
concentrated arrangements of floes, but it allows us to
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include randomness relatively easily. The incident direc-
tional wave forcing is the same as that considered in the
previous section.

Figure 4a shows the ratio of transmitted to incident-plus-

reflected energy, denoted E, by the ice band in the range of
wave periods T =3-10s. This is the quantity plotted by
Wadhams and others (1986) to analyse wave energy
attenuation by the band. The solid curve is the averaged
energy ratio from 50 random realizations of the band,
specified by the FSD described above. We observe a
relatively smooth increase in the transmitted energy from
~10% for short waves to full transmission for long waves.
Qualitatively, our results are similar to those provided by
Wadhams and others (1986, fig. 18), as the transition from
full reflection to full transmission occurs in the same
frequency range. Quantitatively, however, our results seem
to consistently overestimate the transmitted energy, which is
likely to be explained by the difference in ice concentration.
Higher ice concentration tends to magnify scattering effects
and therefore lowers the transmitted wave energy, which is
consistent with our conjecture for the discrepancy.

We compare our results with the response provided by
the 2-D model of Bennetts and Squire (2011) (dotted line),
calibrated using binning in the FSD, as described above. We
observe a general good agreement in the mid- and low-
frequency range. The models differ significantly for low
periods (T < 4s), however, as the 2-D model predicts
~100% reflection, while our 3-D model allows for a small
proportion of transmitted energy, which is more consistent
with observations reported by Wadhams and others (1986).
In addition, including wave directionality in the model
eliminates certain features, such as the local maximum in
transmitted energy at T = 5.2 s seen in Figure 4a for the 2-D
model. More work is needed to fully understand the
influence of wave directionality on the attenuation of ocean
wave energy in the MIZ.

We then analyse how the wave directional spectrum is
affected by travelling through the ice band. Figure 4b shows


https://doi.org/10.3189/2015AoG69A556

Montiel and others: Wave spectrum through an ice band

321

a1 b o7
0%,
0.6F 000/‘ %
s "?0
. ol
05 W] 1|—L=2a
CANYAVAYATE! _
s AWMk ||—r=s5s
1) e H 1% e =1
3 < § | % o T=10s
—03 | [
~— /. &)
0.2
107
0.1
3 4 5 6 7 8 9 10 % 2

Wave period (s)

X (rad)

Fig. 4. Analysis of the transmission properties of the wave energy averaged over many random representations of the ice band. (a) The ratio

of transmitted to incident-plus-reflected energy, (), plotted against wave period. Responses obtained from our 3-D model and the 2-D
model of Bennetts and Squire (2011) are compared. (b) The directional spectrum of the transmitted energy for wave periods T = 3, 5, 7 and

10s. The incident spectrum (dotted line) is shown for reference.

the directional spread of the transmitted energy for different
values of the wave period, each of which is averaged from
200 simulations. For long waves (T = 7 and 105), the wave
field travels through the band almost unaffected, as
suggested by Figure 4a ((E) > 90%), and the transmitted
spectrum is similar to that of the incident waves. For T =55,
the directional spread of the transmitted energy has an
oscillatory nature, similar to that observed for regular arrays
in the previous section. Evidently, the wave field responds to
an underlying regular structure of the FSD at this frequency,
but we cannot provide a conclusive explanation for this
behaviour. We note, however, that the wavelength (~39 m)
is similar to the mean spacing between the floes (35m),
which could explain the strong interaction between the
wave field and the band.

For short waves (T = 3's), much of the wave energy has
been reflected ((ET) ~ 10%). We also observe that the
transmitted directional spectrum becomes almost isotropic,
although it still peaks around the normal direction. This
phenomenon is typical of wave propagation in the MIZ, as
reported by Wadhams and others (1986). For such short
waves, multiple scattering effects become chaotic within the
band, and the ensemble average does not favour a particular
direction at which the transmitted wave will propagate. For
wider regions of sea ice, we expect all frequency com-
ponents will eventually become isotropic at a certain
distance from the ice edge, along with a concomitant
reduction in wave amplitude.

CONCLUSIONS AND FUTURE OUTLOOK

We have devised a new model of wave scattering by a small
array of arbitrary circular ice floes, which provides the
angular characteristics of the waves reflected and trans-
mitted by the array. Important new features are (1) the ability
to consider an ambient wave forcing with a realistic
continuous directional spread and (2) the possibility of
computing the ensemble average of the reflected and
transmitted wave properties by randomizing the floe size
distribution in the array. The solution method combines the
self-consistent interaction theory for 2-D multiple scattering
and the plane wave integral representation of circular wave
components. We express the reflected and transmitted
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waves as a continuous superposition of plane waves
travelling in all directions of the angular range. A numerical
solution is obtained by discretizing the angular spectrum.

We analysed results for a single row of floes perturbed
from the regular arrangement. The main findings are
summarized as follows:

Computing an ensemble average for the perturbed array
over many random simulations eliminates near-reson-
ance features of the transmitted energy and dampens the
oscillatory behaviour of its directional spread, both of
which are observed in the regular array case.

The long array response can be approximated surpris-
ingly well with just a small number of floes for both
regular and random arrays. This suggests that the spatial
repartition of the scattered energy is mainly governed by
the single floe response, i.e. multiple scattering has very
little effect for the single row geometry. We conjecture
that it is a feature of the smooth incident wave spectrum,
which peaks along the normal direction, with much less
energy travelling at large angles. We expect that more
floes will be needed for more perturbed spectra. This
behaviour may also be different for non-circular floes.

Results were also obtained for a realistic ice band,
parameterized using data provided by Wadhams and others
(1986). Qualitative agreement has been found for the
transmitted energy in the swell-wave frequency range, while
significant discrepancies in ice floe concentration did not
allow us to reproduce the experimental data quantitatively.
For short waves, we showed that the transmitted directional
spectrum becomes nearly isotropic, in agreement with
observations reported by Wadhams and others (1986).

The present paper is a first step towards constructing a
cell-based wave/ice interaction model with 2-D scattering
for use in integrated Arctic system models such as TOPAZ
(Sakov and others, 2012) and oceanic general circulation
models such as that in the NEMO framework. NEMO
(Nucleus for European Modelling of the Ocean) is a state-of-
the-art multinational modelling framework for oceano-
graphic research, operational oceanography seasonal
forecast and climate studies (http://www.nemo-ocean.eu/).
In future studies, our goal will be to extend the single row
approach to include multiple strips of ice floes. This will
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effectively allow us to study large-scale MIZs composed of
thousands of floes, under the same deterministic framework.
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