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Abstract

The Hilbert scheme X [a] of points on a complex manifold X is a compactification of the
configuration space of a-element subsets of X . The integral cohomology of X [a] is more subtle
than the rational cohomology. In this paper, we compute the mod 2 cohomology of X [2] for any
complex manifold X , and the integral cohomology of X [2] when X has torsion-free cohomology.
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For a complex manifold X and a natural number a, the Hilbert scheme X [a]

(also called the Douady space) is the space of 0-dimensional subschemes of
degree a in X . It is a compactification of the configuration space B(X, a) of
a-element subsets of X . The Hilbert scheme is smooth if and only if X has
dimension at most 2 or a 6 3 [3, equation (0.2.1)]. The integral cohomology
of the Hilbert scheme is more subtle than the rational cohomology. Markman
computed the integral cohomology of the Hilbert schemes X [a] for X of dimension
2 with effective anticanonical divisor [10]. In this paper, we compute the mod 2
cohomology of X [2] for any complex manifold X , and the integral cohomology of
X [2] when X has torsion-free cohomology.

In one way, things are unexpectedly good: the Hilbert scheme X [2] has torsion-
free cohomology if X does (Theorem 2.2). On the other hand, the details are
intricate, and it was not clear that complete answers would be possible. The
behavior of the inclusion of the exceptional divisor EX into X [2] is related to the
Steenrod operations on the mod 2 cohomology of X (Theorem 2.1). To explain
one difficulty: some cohomology classes on X [2] can be defined as the classes
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of Y [2] in X [2] for complex submanifolds Y of X , which we study in Lemma 6.1.
But because the Hilbert scheme is only defined for complex manifolds, it is harder
to construct ‘interesting’ classes on X [2] associated to arbitrary cohomology
classes on X , for example to odd-degree cohomology classes.

Why look at two points? Configurations of two points come up naturally in
geometry, but one especially relevant use of the Hilbert scheme X [2] is in Voisin’s
paper on the universal C H0 group of cubic hypersurfaces [22]. The background
is that major recent advances have been made in determining which algebraic
varieties are stably rational, that is, become birational to projective space after
multiplying by projective space of some dimension [5, 19, 21]. These papers are
based on the observation that if a smooth projective variety is stably rational,
then its Chow group of 0-cycles is universally trivial, meaning that C H0 does not
increase when the base field is increased.

The Chow group C H0 ⊗ Q is universally trivial for all rationally connected
varieties, and so proving that varieties of interest are not stably rational requires
looking at torsion in the Chow group, with the best results coming from 2-torsion.
As a result, Voisin’s work on cubics X uses information on the integral or mod
2 cohomology of the Hilbert scheme X [2], including results from this paper [22,
proof of Proposition 2.6]. A typical application is that smooth cubic 3-folds in
CP4 have C H0 universally trivial for at least a countable union of codimension-3
subvarieties in the moduli space of cubics [22, Theorem 1.5]. (Smooth cubic 3-
folds are all nonrational by Clemens and Griffiths [4], but it is wide open whether
all, or some, smooth cubic 3-folds are stably rational.)

Since the Hilbert cube X [3] of a complex manifold X is again a complex
manifold, it is natural to ask whether the results of this paper extend to that case.
In particular, does X [3] have torsion-free cohomology if X does? The explicit
geometric description of X [3] by Shen and Vial should help [16, Section 4].

1. Torsion-free cohomology in even degrees

Here we give a short proof that the Hilbert scheme X [2] of a compact complex
manifold has torsion-free cohomology if the cohomology of X is torsion-free and
concentrated in even degrees. We show this without the restriction to even degrees
and without assuming compactness in Theorem 2.2, but that proof is considerably
harder.

THEOREM 1.1. Let X be a compact complex manifold whose integral
cohomology is torsion-free and concentrated in even degrees. Then the
cohomology of the Hilbert scheme X [2] is also torsion-free and concentrated
in even degrees.
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Integral cohomology of the Hilbert scheme of two points 3

Proof. Nakaoka and Milgram computed the integral homology of the symmetric
product Sa X , the quotient of X a by the symmetric group Sa , for any finite CW-
complex X and any natural number a [13]. We now state their result on S2 X when
the homology of X is torsion-free; Theorem 4.1 will give their computation of the
mod 2 homology of S2 X for any X . For an element u in H j X , we write |u| for the
dimension j , and likewise for a cohomology class.

THEOREM 1.2. Let X be a finite CW-complex such that H∗(X,Z) is torsion-free.
Let u0, . . . , us be a basis for H∗(X,Z) as a free graded abelian group. Then
H∗(S2 X,Z) is the direct sum of one copy of Z in dimension |ui | + |u j | for each
0 6 i 6 j 6 s except when i = j and |ui | is odd, together with one copy of Z/2
in degrees

|ui | + 2, |ui | + 4, . . . , 2|ui | − 2

for each i with |ui | even and greater than 0, and one copy of Z/2 in degrees

|ui | + 2, |ui | + 4, . . . , 2|ui | − 1

for each i with |ui | odd.

Let X be a compact complex manifold whose integral cohomology is torsion-
free and concentrated in even degrees. The universal coefficient theorem implies
the same statement for the integral homology of X [9, Theorem 3.2]. Then
Theorem 1.2 gives that H∗(S2 X,Z) is also concentrated in even degrees, although
it may have torsion.

A point of the Hilbert scheme X [2] represents either an unordered pair of distinct
points in X or a point x in X together with a complex line in the tangent space
Tx X . As a result, the Hilbert scheme X [2] is related to the symmetric square S2 X
by a blow-up square:

EX
//

��

X [2]

��

X // S2 X.

Here X → S2 X is the diagonal inclusion. For a (real or complex) vector
bundle V , we use Grothendieck’s convention that P(V ) means the (real or
complex) projective bundle of hyperplanes in V , and O(1) means the quotient
line bundle on P(V ). Then the exceptional divisor EX is the complex projective
bundle P(T ∗X) of lines in the tangent bundle T X . (To say that this is a blow-up
square means that it is a Cartesian diagram with X → S2 X a closed embedding,
X [2]→ S2 X a proper morphism, and X [2] − EX → S2 X − X an isomorphism.)
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The blow-up square gives a long exact sequence of integral homology groups:

Hi EX → Hi X ⊕ Hi X [2]→ Hi S2 X → Hi−1 EX .

(This follows by showing that a blow-up square is a homotopy pushout diagram,
and applying the Mayer–Vietoris sequence [11, Lemma, page 78].) We know
that H∗(X,Z) and H∗(S2 X,Z) are concentrated in even degrees. Since EX is
the projectivization of a complex vector bundle over X , its homology is also
concentrated in even degrees. So the long exact sequence gives that H∗(X [2],Z)
is concentrated in even degrees.

We also want to show that the integral homology of X [2] is torsion-free.
Let n be the complex dimension of X . Because X [2] is a closed oriented real
manifold of dimension 4n, Poincaré duality gives a duality between the finite
abelian groups Hi(X [2],Z)tors and H4n−1−i(X [2],Z)tors [9, Theorems 3.2 and 3.30].
Since Hodd(X [2],Z)tors = 0, it follows that Hev(X [2],Z)tors = 0. By the universal
coefficient theorem, the integral cohomology of X [2] is also torsion-free and
concentrated in even degrees. Theorem 1.1 is proved.

Let X be a compact complex manifold of dimension n. Let X̃ × X be the blow-
up of X × X along the diagonal. The exceptional divisor EX in X [2] is known to
be 2 times an element e in H 2(X [2],Z). This follows from the existence of the
double covering g from S := X̃ × X to T := X [2], ramified along EX . Namely,
we can define e to be −c1 of the holomorphic line bundle (g∗OS)/OT . (When X
has torsion-free homology, the fact that the class of EX in X [2] is divisible by 2
can also be seen from Theorem 1.2 and the blow-up sequence, above.) We also
write e for the associated element of H 2(X [2],F2).

The restriction of e to the exceptional divisor EX = P(T ∗X) is e = c1 O(−1).
The cohomology of EX with any coefficient ring is a free module over H ∗X with
basis 1, e, . . . , en−1. Let i : EX → X [2] be the inclusion, and let π : EX → X be
the projection. To simplify notation, we omit the symbol π∗ when considering
cohomology classes on X pulled back to EX .

2. Main results

THEOREM 2.1. Let X be a complex manifold of complex dimension n. Suppose
that X is homeomorphic to the complement of a closed subcomplex in a finite CW-
complex; this is no restriction for X compact. Then the kernel of the pushforward
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homomorphism i∗ : H ∗(EX ,F2) → H ∗(X [2],F2) is spanned over F2 by the
following elements, for u in H ∗(X,F2):

e j(eau + ea−1 Sq2 u + · · · + Sq2a u) for |u| = 2a, 0 6 j 6 n − 1− a;
e j(eau + ea−1 Sq2 u + · · · + Sq2a u) for |u| = 2a + 1,

0 6 j 6 n − 1− a;
e j(ea−1 Sq1 u + ea−2 Sq3 u + · · · + Sq2a−1 u) for |u| = 2a, 0 6 j 6 n − 1− a;

e j(ea Sq1 u + ea−1 Sq3 u + · · · + Sq2a+1 u) for |u| = 2a + 1,
0 6 j 6 n − 2− a.

We have a localization exact sequence, in particular with F2 coefficients:

→ H j+1 X [2]→ H j+1(S2 X − X)→ H j EX → H j+2 X [2]→ .

Moreover, the F2-Betti numbers of EX and S2 X − X are determined by those
of X (see Theorem 4.2 for S2 X − X ). So Theorem 2.1 determines the F2-Betti
numbers of X [2] in terms of the action of Steenrod operations on H ∗(X,F2). The
description is complicated, but this is unavoidable: Example 2.5 shows that the
F2-Betti numbers of X [2] are not determined by the F2-Betti numbers of X , in
general.

On the other hand, the following result implies that X [2] has several good
properties when the integral cohomology of X has no 2-torsion; in particular, its
F2-Betti numbers are determined by those of X in that case.

THEOREM 2.2. Let X be a complex manifold of complex dimension n whose
integral cohomology has no 2-torsion. Suppose that X is homeomorphic to
the complement of a closed subcomplex in a finite CW-complex; this is no
restriction for X compact. Then a basis over F2 for the kernel of the pushforward
homomorphism i∗ : H ∗(EX ,F2)→ H ∗(X [2],F2) is given by the elements:

e j(eau + ea−1 Sq2 u + · · · + Sq2a u) for |u| = 2a, 0 6 j 6 n − 1− a;
e j(eau + ea−1 Sq2 u + · · · + Sq2a u) for |u| = 2a + 1, 0 6 j 6 n − 1− a,

where u runs through a basis for H ∗(X,F2).
Moreover, if the integral cohomology of X has no 2-torsion (respectively no

torsion), then the integral cohomology of X [2] has no 2-torsion (respectively no
torsion).

The following corollary gives a basis for the cohomology of X [2] when the
cohomology of X has no 2-torsion. We use the maps g and i from the end
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of Section 1. Note that any cohomology class on X can be represented by a
pseudomanifold (as discussed in Section 3).

COROLLARY 2.3. Let X be as in Theorem 2.2. Let z0, . . . , zs be Z-cohomology
classes that form a basis for H ∗(X,Z(2)). For each j , let Z j be a closed
pseudomanifold in X that represents the class z j .

For each j from 0 to s with |z j | 6 2n − 2, if |z j | is even, |z j | = 2a, then
there is an element x j of H 4a(X [2],Z) that restricts to the class [S2 Z j − Z j ] in
the Z-cohomology of S2 X − X; and if |z j | = 2a + 1, there is an element y j of
H 4a+3(X [2],Z) that restricts to the Bockstein β[S2 Z j − Z j ] in the Z-cohomology
of S2 X − X. Choose such elements. Then H ∗(X [2],Z(2)) is a free Z(2)-module,
with a basis given by the elements:

g∗(z j ⊗ zk) for j < k,
i∗(em z j) for each j , 0 6 m 6 b|z j |/2c − 1,

em x j for each j with |z j | = 2a, 0 6 m 6 n − 1− a,
em y j for each j with |z j | = 2a + 1, 0 6 m 6 n − 2− a.

If z j is the cohomology class of a complex submanifold Z j of X , then the
element x j in Corollary 2.3 can be taken to be the class of the sub-Hilbert scheme
Z [2]j in X [2]. Beyond that case, it is not clear how to describe the classes x j and y j

in geometric terms.
The following statement is used in Voisin’s paper on cubic hypersurfaces. It is

proved there in the case of odd-degree complete intersections in projective space
[22, Lemma 2.8].

COROLLARY 2.4. Let X be a compact complex manifold whose integral
cohomology has no 2-torsion. Let k > l be integers, and let α be an element of
H 2k(EX ,Z) of the form

α = ek−lβl + ek−l−1βl+1 + · · ·
with β in H 2 j(X,Z). If i∗α is divisible by 2 in H 2k+2(X [2],Z) and 2l > k, then βl

is divisible by 2 in H 2l(X,Z).

Proof. Consider α as a class in H 2k(EX ,F2). We are assuming that α is in the
kernel of i∗ : H 2k(EX ,F2)→ H 2k+2(X [2],F2). The kernel of i∗ on H ∗(EX ,F2) is
computed in Theorem 2.2, which implies the conclusion here.

EXAMPLE 2.5. We give an example of compact complex manifolds X and Y
with the same F2-Betti numbers such that X [2] and Y [2] do not have the same
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F2-Betti numbers. First, let W → P1 be a minimal rational elliptic surface with
section, for example defined by blowing up the intersection of two cubic curves
in P2. Then W has second Betti number equal to 10. By Ogg and Shafarevich,
for any finite sequence of integers m1, . . . ,mr > 2, there is a smooth projective
elliptic surface over P1 which is a principal homogeneous space for W → P1

outside r points in P1 and which has multiple fibers with multiplicity m1, . . . ,mr

at those points [7, Theorem III.6.12]. Such a surface automatically has b2 = 10,
since b2(W ) = 10 [7, Lemma I.3.18, Proposition I.3.21, Theorem I.6.7]. Let X
and Y be such elliptic surfaces with multiple fibers of multiplicities 2, 2 and 4, 4,
respectively. Then π1(X) ∼= Z/2 and π1(Y ) ∼= Z/4 [7, Theorem I.2.3]. Here X is
an Enriques surface and Y has Kodaira dimension 1.

By Poincaré duality and the universal coefficient theorem, the integral
cohomology groups of X and Y are:

0 1 2 3 4
X Z 0 Z10 ⊕ Z/2 Z/2 Z
Y Z 0 Z10 ⊕ Z/4 Z/4 Z

It follows that the Enriques surface X and the surface Y have the same F2-Betti
numbers: 1, 1, 12, 1, 1. Because the Bockstein Sq1 is zero on H ∗(Y,F2) but
not on H ∗(X,F2), Y [2] has smaller F2-Betti numbers than X [2]. Explicitly, by
Theorem 2.1, the F2-Betti numbers are:

0 1 2 3 4 5 6 7 8
X [2] 1 1 13 15 94 15 13 1 1
Y [2] 1 1 13 14 92 14 13 1 1

3. The boundary map

Recall the localization exact sequence with F2 coefficients:

H j+1 X [2]→ H j+1(S2 X − X)→ H j EX → H j+2 X [2].

The key step in determining the kernel of the pushforward i∗ : H j EX →
H j+2 X [2] is to compute the boundary homomorphism on interesting elements of
H j+1(S2 X − X), as we now do.

LEMMA 3.1. Let Z be a closed C∞ submanifold of real codimension r in a
complex manifold X. Let u be the cohomology class of Z in H r (X,F2). Then
the boundary in H 2r−1(EX ,F2) of the class [S2 Z − Z ] in H 2r (S2 X − X,F2) is{

ea−1 Sq1 u + ea−2 Sq3 u + · · · + Sq2a−1 u if r = 2a,
eau + ea−1 Sq2 u + · · · + Sq2a u if r = 2a + 1.
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Proof. We can view S2 Z − Z as the interior of a manifold with boundary, where
the boundary is the real projective bundle PR(T ∗Z) over Z . So the boundary
of [S2 Z − Z ] is the class t∗1 in H 2r−1(EX ,F2), where t is the proper map
PR(T ∗Z) → EX = PC(T ∗X), taking a real line in Tz Z for a point z in Z to
the complex line that it spans in Tz X .

We can factor t as PR(T ∗Z) ↪→ PR(T ∗X)|Z ↪→ PR(T ∗X) � PC(T ∗X).
Write ρ : PR(T ∗X)|Z → Z for the projection. Then PR(T ∗Z) is the zero set
of a transverse section of the real vector bundle Hom(O(−1), ρ∗NZ/X ) over
PR(T ∗X)|Z ; that section is the one associated to the subbundle O(−1) ⊂ ρ∗T X |Z .
So the cohomology class of PR(T ∗Z) on PR(T ∗X)|Z is the top Stiefel–Whitney
class wr (O(1) ⊗ ρ∗NZ/X ). (This follows from the description of the top Stiefel–
Whitney class in Milnor and Stasheff [15, page 145].) The top Stiefel–Whitney
class of the tensor product of a line bundle L with a vector bundle W of rank r is

wr (L ⊗W ) = (w1 L)r + (w1 L)r−1w1W + · · · + wr W

by the splitting principle, as in Bott and Tu [2, page 279]. Write b for the
class w1 O(1) in H 1(PR(T X),F2). We deduce that the F2-cohomology class of
PR(T ∗Z) on PR(T ∗X)|Z is br + br−1w1 NZ/X + · · · +wr NZ/X , where we omit the
symbol ρ∗ for cohomology classes on Z pulled back to PR(T ∗X)|Z .

Write s for the inclusion Z ↪→ X , and u for the cohomology class s∗1 = [Z ]
in H r (X,F2). Then the pushforward of the class of PR(T ∗Z) from PR(T ∗X)|Z
to PR(T ∗X) is br u + br−1s∗w1 NZ/X + · · · + s∗wr NZ/X . The Steenrod squares of
the class u = [Z ] in H ∗(X,F2) are the pushforward to X of the Stiefel–Whitney
classes of the normal bundle NZ/X by the inclusion s : Z → X ,

Sq j u = s∗w j(NZ/X ),

by Thom [17]. (For an introduction to Steenrod squares, see Hatcher [9, Section
4.L].) So the class of PR(T ∗Z) on PR(T ∗X) is br u + br−1 Sq1 u + · · · + Sqr u.

Finally, we have to push this class forward via the S1-bundle h : PR(T ∗X)→
PC(T ∗X). (We sometimes write O(1)R instead of O(1) for the natural real
line bundle on PR(T ∗X), and likewise O(1)C instead for O(1) for the natural
complex line bundle on PC(T ∗X), to avoid confusion.) The class e = c1 O(−1)
in H 2(PC(T ∗X),F2) pulls back to b2, since the complex line bundle O(1)C
on PC(T ∗X) pulls back to O(1)R ⊗R C on PR(T ∗X), and c1(O(1)R ⊗R C) =
w1(O(1)R)2 = b2. All classes on PR(T ∗X) pulled back from H ∗(X,F2) (such
as the classes Sq j u) are also pulled back from PC(T ∗X). Here H ∗(PR(T ∗X),
F2) is a free module over H ∗(X,F2) with basis 1, b, . . . , b2n−1, where n is
the complex dimension of X . (This follows from the Leray–Hirsch theorem [9,
Theorem 4D.1].) So to compute the pushforward h∗ on F2-cohomology, it suffices
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to compute h∗1 and h∗b. Here h∗1 is in H−1(PC(T ∗X),F2) = 0, and so h∗1 = 0.
Also, h∗b is in H 0(PC(T ∗X),F2), and so it is either 0 or 1. In fact, h∗b = 1. This
can be proved by restricting over a point in X , and noting that the inclusion of a
hyperplane b = [RP2n−2] in RP2n−1 composed with the surjection to CPn−1 has
degree 1 (mod 2), as it restricts to a diffeomorphism from R2n−2 to Cn−1.

Therefore, for Z of codimension r = 2a, the boundary of [S2 Z − Z ] in
H 4a−1(EX ,F2) is

h∗(b2au+ b2a−1 Sq1 u+ · · · + Sq2a u) = ea−1 Sq1 u+ ea−2 Sq3 u+ · · · + Sq2a−1 u.

For Z of codimension r = 2a + 1, the boundary of [S2 Z − Z ] in H 4a+1(EX ,F2)

is

h∗(b2a+1u + b2a Sq1 u + · · · + Sq2a+1 u) = eau + ea−1 Sq2 u + · · · + Sq2a u.

Let b be the element of H 1(S2 X − X,F2) associated to the double cover X ×
X − X → S2 X − X .

LEMMA 3.2. Let Z be a closed C∞ submanifold of real codimension r in a
complex manifold X. Let u be the cohomology class of Z in H r (X,F2). Then
the boundary in H 2r (EX ,F2) of the product b[S2 Z − Z ] in H 2r+1(S2 X − X,F2)

is {
eau + ea−1 Sq2 u + · · · + Sq2a u if r = 2a,
ea Sq1 u + ea−1 Sq3 u + · · · + Sq2a+1 u if r = 2a + 1.

Proof. We can think of S2 X − X as the interior of a real manifold with boundary,
where the boundary is the real projective bundle PR(T ∗X). Then the element b in
H 1(S2 X − X,F2) restricts to the class b = w1(O(1)R) on PR(T ∗X).

As in the proof of Lemma 3.1, the boundary in H 2r (EX ,F2) of the product
b[S2 Z − Z ] is the pushforward of the cohomology class b on PR(T ∗Z) via the
proper map PR(T ∗Z) → PC(T ∗X). We can factor that map as PR(T ∗Z) ↪→
PR(T ∗X) � PC(T ∗X), and the class b is pulled back from PR(T ∗X). So the
pushforward of b to PR(T ∗X) is b times the class of PR(T ∗Z) on PR(T ∗X), as
computed in the proof of Lemma 3.1. Thus, the pushforward of b to PR(T ∗X) is
b(br u + br−1 Sq1 u + · · · + Sqr u) = br+1u + br Sq1 u + · · · + b Sqr u.

It remains to push this class forward via the S1-bundle h : PR(T ∗X) →
PC(T ∗X). We recall from the proof of Lemma 3.1 that h∗e = b2, h∗1 = 0, and
h∗b = 1. Thus, for Z of even codimension r = 2a, the boundary of b[S2 Z − Z ]
in H 4a(EX ,F2) is

h∗(b2a+1u + b2a Sq1 u + · · · + b Sq2a u) = eau + ea−1 Sq2 u + · · · + Sq2a u.
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For Z of codimension r = 2a+1, the boundary of b[S2 Z−Z ] in H 4a+2(EX ,F2) is

h∗(b2a+2u+b2a+1 Sq1 u+· · ·+b Sq2a+1 u) = ea Sq1 u+ea−1 Sq3 u+· · ·+Sq2a+1 u.

Next, we prove the same formulas for any F2-cohomology class on X , not
necessarily the class of a submanifold. We can view any cohomology class on
a manifold as the class of a pseudomanifold, that is, a closed piecewise linear
subspace that is a manifold outside a closed subset of real codimension at least 2.

LEMMA 3.3. Let X be a complex manifold, and let u be an element of H r (X,F2)

for some r. Consider u as the class of a closed pseudomanifold Z in X. Then the
boundary in H 2r−1(EX ,F2) of the class [S2 Z − Z ] in H 2r (S2 X − X,F2) is{

ea−1 Sq1 u + ea−2 Sq3 u + · · · + Sq2a−1 u if r = 2a,
eau + ea−1 Sq2 u + · · · + Sq2a u if r = 2a + 1.

Also, the boundary in H 2r (EX ,F2) of the product b[S2 Z − Z ] in H 2r+1(S2 X − X,
F2) is {

eau + ea−1 Sq2 u + · · · + Sq2a u if r = 2a,
ea Sq1 u + ea−1 Sq3 u + · · · + Sq2a+1 u if r = 2a + 1.

Proof. By Thom, the F2-homology of any space X is generated by classes
of closed (unoriented) C∞ manifolds Z with continuous maps Z → X [18,
Théorème III.2]. When X is a manifold, Thom also showed that H∗(X,F2) is
not always generated by submanifolds; that is, we cannot always take the maps
Z → X to be embeddings [18, page 46]. For a locally compact space X , Thom’s
argument shows that the Borel–Moore homology of X with F2 coefficients
is generated by C∞ manifolds Z with proper maps Z → X . (The Borel–
Moore homology of a ‘reasonable’ locally compact space such as a manifold is
isomorphic to the singular homology with locally finite chains. For a survey, see
Fulton [8, Section 19.1].)

Let X be a complex manifold of complex dimension n. By Thom’s theorem, it
suffices to prove the lemma for the class u in H r (X,F2) of a C∞ manifold Z of
real dimension 2n − r with a proper map Z → X . The idea is that for N large
enough, the composition Z → X ↪→ X × PN associated to a point in complex
projective space PN can be approximated by a proper C∞ embedding, by Whitney.
(Namely, it suffices that dimR(X × PN ) > 2 dimR(Z) + 1.) Perturbing Z in this
way does not change the class of S2 Z − Z in H ∗(S2(X × PN )− X × PN ,F2).
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Let v be the generator of H 2(PN ,F2); then vN is the class of a point on PN , and
so the class of Z on X × PN is uvN . Lemmas 3.1 and 3.2 compute the boundary
of the classes [S2 Z − Z ] and b[S2 Z − Z ] in H ∗(EX×PN ,F2), whether r is even
or odd. For example, suppose r = 2a and look at the boundary of b[S2 Z − Z ];
the argument is completely analogous in the other three cases. The boundary of
b[S2 Z−Z ] in H 4a+4N (EX×PN ,F2) is ea+N uvN+ea+N−1 Sq2(uvN )+· · · . Since vN

is in the top-degree cohomology group H 2N (PN ,F2), we have Sq j(vN ) = 0 for all
j > 0. By the Cartan formula Sqi(xy) =∑i

j=0 Sq j(x)Sqi− j(y) [9, Section 4.L],
the boundary of b[S2 Z−Z ] in H 4a+4N (EX×PN ,F2) can be rewritten as ea+N uvN+
ea+N−1 Sq2(u)vN + · · · .

We want to compute the boundary of [S2 Z − Z ] in H 4a(EX ,F2). Clearly this
element pushes forward to the boundary of [S2 Z − Z ] in H 4a+4N (EX×PN ,F2).
Since EX is the complex projective bundle P(T ∗X) and EX×PN is P(T ∗(X×PN )),
it is straightforward to check that this pushforward homomorphism is injective. So
to show that the boundary of b[S2 Z− Z ] in H 4a(EX ,F2) is eau+ea−1 Sq2 u+· · ·
as we want, it suffices to show that the latter element pushes forward to ea+N uvN+
ea+N−1 Sq2(u)vN + · · · .

We can factor the inclusion we are considering as P(T ∗X) ↪→ P(T ∗(X ×
PN ))|X ↪→ P(T ∗(X×PN )). Here p : P(T ∗X)→ P(T ∗(X×PN ))|X is the zero set
of a transverse section of the complex vector bundle O(1)⊗ NX/X×PN = O(1)⊕N

over P(T ∗(X × PN ))|X . So p∗1 is the top Chern class cN (O(1)⊕N ) = eN . So

p∗(eau + ea−1 Sq2 u + · · · ) = (p∗1)(eau + ea−1 Sq2 u + · · · )
= ea+N u + ea+N−1 Sq2 u + · · · .

Next, we push this class forward by q : P(T ∗(X × PN ))|X ↪→ P(T ∗(X × PN )).
Here q∗1 = vN . So

q∗(ea+N u + ea+N−1 Sq2 u + · · · ) = (q∗1)(ea+N u + ea+N−1 Sq2 u + · · · )
= ea+N uvN + ea+N−1 Sq2(u)vN + · · · .

By the previous paragraph, this proves that the formulas we want hold in
H ∗(EX ,F2).

4. Cohomology of the configuration space, and proof of Theorem 2.1

Milgram, Löffler, Bödigheimer, Cohen, and Taylor computed the F2-homology
of the configuration space B(X, a) of subsets of X of order a in terms of
the F2-homology of X and the dimension of X , for any compact manifold X
(possibly with boundary) and any natural number a [1, 14]. Since we need
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explicit generators for the cohomology of B(X, 2) = S2 X − X , we compute this
cohomology directly for X a closed manifold in Theorem 4.2, not relying on their
work. It would be interesting to compute the ring structure on the F2-cohomology
of the configuration spaces B(X, a) for manifolds X .

As a tool, we use the calculation of the homology of symmetric products by
Nakaoka and Milgram [13], as follows. We need a statement (unlike Theorem 1.2)
that does not require X to have torsion-free integral cohomology. Let f : X×X→
S2 X be the obvious map.

THEOREM 4.1. Let X be the complement of a closed subcomplex in a finite CW-
complex. Let u0, . . . , us be a basis for H B M

∗ (X,F2) over F2. Then H B M
∗ (S2 X,F2)

has a basis consisting of the element f∗(ui ⊗ u j) in degree |ui | + |u j | for each
i < j , one element in each degree

|ui | + 2, |ui | + 3, . . . , 2|ui |
for each i with |ui | > 0, and one element in degree 0 for each i with |ui | = 0.

Proof. First suppose that X is a finite CW-complex, so that Borel–Moore
homology coincides with homology in the usual sense. Dold showed that the Fp-
homology of a symmetric product Sa X (as a graded vector space) is determined by
the Fp-homology of X [6, Theorem 7.2]. So to compute the F2-homology of S2 X ,
it suffices to compute this when X is a wedge (one-point union) of spheres. That
easily reduces to the case of a single sphere X , where the calculation of H∗(S2 X,
F2) was made by Nakaoka. For any finite CW-complex X , the identification
of some of the generators as pushforwards f∗(ui ⊗ u j) is part of Milgram’s
calculation of the ‘Pontrjagin product’ on symmetric products, the action on
homology of the natural maps Sa X × Sb X → Sa+b X [13, Theorem 5.2].

More generally, let X = Y − Z for some finite CW-complex Y and closed
subcomplex Z . Then X is the complement of a point p0 in the quotient space Y/Z ,
which is a finite CW-complex. So S2 X = S2(Y/Z)− (Y/Z), where the inclusion
Y/Z → S2(Y/Z) is the map x 7→ x + p0. Steenrod showed that this inclusion
induces an injection on F2-homology [6, Theorem 2]. So the exact sequence

H j(Y/Z)→ H j S2(Y/Z)→ H B M
j S2 X → H j−1(Y/Z)

with F2 coefficients determines the Borel–Moore homology of S2 X with F2

coefficients from the results of Nakaoka and Milgram.

Using that, we give an explicit basis for the cohomology of S2 X − X .

https://doi.org/10.1017/fms.2016.5 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.5


Integral cohomology of the Hilbert scheme of two points 13

THEOREM 4.2. Let X be a C∞ manifold of real dimension m. Assume that X is
homeomorphic to the complement of a closed subcomplex in a finite CW-complex;
this is automatic for X compact. Let z0, . . . , zs be a basis for H ∗(X,F2), and
let Z i be a closed pseudomanifold in X that represents the class zi . Let b in
H 1(S2 X − X,F2) be the class of the double cover g : X × X − X → S2 X − X.
Then a basis for H ∗(S2 X − X,F2) is given by the elements g∗(zi ⊗ z j) in degree
|zi | + |z j | for i < j , together with the elements b j [S2 Z i − Z i ] in degree 2|zi | + j
for all i and all 0 6 j 6 m − 1− |zi |.

Proof. We compute the F2-Betti numbers of S2 X − X by reducing to the better-
understood homology of symmetric products. Namely, we have an exact sequence
of Borel–Moore homology groups with F2 coefficients:

→ H B M
i X → H B M

i S2 X → H B M
i (S2 X − X)→ H B M

i−1 X → .

By Poincaré duality, H B M
i (S2 X − X,F2) ∼= H 2m−i(S2 X − X,F2); so the F2-

Betti numbers of S2 X − X are determined by the pushforward homomorphism
associated to the diagonal inclusion ∆ : X → S2 X .

In fact, this homomorphism is zero in positive degrees. To see this, note that it
suffices to prove this for X a finite CW-complex, by the proof of Theorem 4.1. We
can also assume that X is connected. Fix a base point p0 in X . This determines a
sequence of inclusions

X → S2 X → S3 X → · · ·
given by adding the point p0. (Do not confuse this map X → S2 X , x 7→
x + p0, with the diagonal inclusion, x 7→ 2x .) The colimit of this sequence is
called the infinite symmetric product S∞X . It can be viewed as a topological
commutative monoid, with the homotopy type of the product of Eilenberg–
MacLane spaces

∏
j>0 K (H j(X,Z), j), by Dold and Thom [9, Section 4.K]. This

product decomposition is compatible with the addition on S∞X , up to homotopy.
Moreover, by Steenrod, all the maps X → S2 X → · · · → S∞X given by adding
p0 give injections on F2-homology [6, Theorem 2].

The Dold–Thom theorem implies that R := H ∗(S∞X,F2) is a primitively
generated Hopf algebra, with generators given by applying Steenrod operations
to generators of H j(K (H j(X,Z), j),F2) [12, Section 4.4, Theorem 6.19]. The
multiplication by 2 map on S∞X is the composition of the diagonal S∞X →
S∞X × S∞X with the addition S∞X × S∞X → S∞X , and so the corresponding
pullback homomorphism on R is the composition of the coproduct R → R ⊗ R
with the product R ⊗ R → R. Pulling back the multiplication by 2 map sends
a primitive class x in R to zero (as x 7→ 1 ⊗ x + x ⊗ 1 7→ 2x = 0).
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Since R is primitively generated, the multiplication by 2 map induces zero on
R in positive degrees. Equivalently, the multiplication by 2 map induces zero on
the F2-homology of S∞X in positive degrees. By the commutative diagram

X ∆ //

��

S2 X

��

S∞X 2 // S∞X,

the composition of the diagonal map ∆ : X → S2 X with the inclusion S2 X →
S∞X induces zero on F2-homology in positive degrees. By Steenrod’s theorem
(above), it follows that∆ induces zero on F2-homology in positive degrees, as we
want.

We return to considering a C∞ manifold X , possibly noncompact. We know the
Borel–Moore homology of S2 X with F2 coefficients from Theorem 4.1. Together
with the previous paragraph, this determines the cohomology of S2 X − X with F2

coefficients, by the exact sequence

H B M
i X → H B M

i S2 X → H 2m−i(S2 X − X)→ H B M
i−1 X.

Namely, given a basis z0, . . . , zs for H ∗(X,F2), H ∗(S2 X−X,F2) has a basis with
one element in degree |zi | + |z j | for all i < j and one element in each degree

2|zi |, 2|zi | + 1, . . . , |zi | + m − 1

for each i .
We want to show that a basis for H ∗(S2 X − X,F2) is given by the classes

g∗(zi ⊗ z j) for i < j together with the elements b j [S2 Z i − Z i ] for all i and all
0 6 j 6 m − 1 − |zi |. Since we know the dimension of H ∗(S2 X − X,F2), it
suffices to show that these elements are linearly independent over F2.

To see this, think of S2 X − X as the interior of a manifold with boundary,
where the boundary is the real projective bundle PR(T ∗X). This gives a restriction
homomorphism

H ∗(S2 X − X,F2)→ H ∗(PR(T ∗X),F2).

I claim that the elements g∗(zi ⊗ z j) restrict to zero on PR(T ∗X). For this, think
of X × X − X as the interior of a manifold with boundary, where the boundary is
the unit sphere bundle SR(T X) inside T X . Because the cohomology class zi ⊗ z j

on X × X − X extends to X × X , the restriction of zi ⊗ z j to SR(T X) extends
to the unit disc bundle DR(T X), which is homotopy equivalent to X . Clearly this
restriction of zi ⊗ z j to H ∗DR(T X) ∼= H ∗X is zi z j ∈ H ∗X ; so the restriction of
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zi ⊗ z j to H ∗SR(T X) is the pullback of zi z j . So the pushforward by the double
cover g : SR(T X)→ PR(T ∗X) is g∗g∗(zi z j) = (g∗1)zi z j = 0, where g∗1 = 0 ∈
H 0(PR(T ∗X),F2) since g has degree 0 (mod 2). That is, the classes g∗(zi ⊗ z j)

restrict to zero on PR(T ∗X).
Next, let u be the class in H r (X,F2) of a closed pseudomanifold Z in X . The

restriction of b in H 1(S2 X − X,F2) to PR(T ∗X) is the Stiefel–Whitney class
b = w1(O(1)R). By the proof of Lemma 3.1, the restriction of [S2 Z − Z ] from
H 2r (S2 X− X,F2) to H 2r (PR(T ∗X),F2) is br u+br−1 Sq1 u+· · · . (To be precise,
Lemma 3.1 proves this when Z is a closed C∞ submanifold of X , but the proof of
Lemma 3.3, replacing X by a product X × PN

C (or X × SN ) for N large, extends
this to arbitrary cohomology classes u.) So the element b j [S2 Z − Z ] for 0 6 j 6
m−1−r restricts to b j(br u+br−1 Sq1 u+· · · ) on PR(T ∗X). Since H ∗(PR(T ∗X),
F2) is a free module over H ∗(X,F2) with basis 1, b, . . . , bm−1, we read off that
the elements b j(S2 Z i − Z i) for zi = [Z i ] running through a basis for H ∗(X,F2)

and 0 6 j 6 m − 1− |zi | have linearly independent restrictions to PR(T ∗X).
By the previous two paragraphs, to show that the given elements are linearly

independent in H ∗(S2 X − X,F2) and hence form a basis, it suffices to show that
the elements g∗(zi ⊗ z j) for i < j are linearly independent in H ∗(S2 X − X,F2).
But this is clear from the exact sequence with F2 coefficients:

H B M
a X → H B M

a S2 X → H 2m−a(S2 X − X)→ H B M
a−1 X.

Indeed, the elements g∗(zi⊗z j) in the cohomology of S2 X−X are the restrictions
of the Borel–Moore homology classes f∗(zi ⊗ z j) on S2 X , where f : X × X →
S2 X is the obvious map. These classes in H B M

∗ S2 X are linearly independent for
i < j by Theorem 4.1. Since the diagonal homomorphism H B M

a X → H B M
a S2 X is

zero in positive degrees, the elements g∗(zi⊗z j) for i < j are linearly independent
in H ∗(S2 X − X,F2). Theorem 4.2 is proved.

Proof of Theorem 2.1. By the exact sequence of F2-cohomology groups

H j+1 X [2]→ H j+1(S2 X − X)→ H j EX → H j+2 X [2],

the kernel of the pushforward i∗ : H ∗EX → H ∗X [2] is equal to the image of the
boundary homomorphism from H ∗(S2 X − X,F2). Theorem 4.2 gives a basis for
H ∗(S2 X−X,F2), and Lemma 3.3 computes the boundary of the classes [S2 Z−Z ]
and b[S2 Z − Z ], for a pseudomanifold Z in X . That determines the boundary of
all classes b j [S2 Z − Z ], since b2 in H 2(S2 X − X,F2) is the pullback of the class
e in H 2(X [2],F2). This gives the elements of ker(i∗) listed in Theorem 2.1.

It remains to show that the boundary of each remaining basis element g∗(vi⊗v j)

for H ∗(S2 X − X,F2) (where i < j) is zero. By the exact sequence, it suffices to
show that these classes are restrictions of cohomology classes on X [2]. To see this,
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let g : X̃ × X → X [2] be the obvious degree-2 map. Since g is a proper map of
manifolds, it induces a pushforward homomorphism on cohomology. Consider
each cohomology class vi ⊗ v j in H ∗(X × X) as a class on X̃ × X by pulling
back. Then the class g∗(vi ⊗ v j) on S2 X − X is the restriction of the cohomology
class g∗(vi ⊗ v j) on X [2]. Theorem 2.1 is proved.

5. Torsion-free cohomology

Proof of Theorem 2.2. The Adem relations among Steenrod operations imply that
Sq1 Sq2 j = Sq2 j+1 on the F2-cohomology of any space [9, Section 4.L]. Here Sq1

is the Bockstein on F2-cohomology. Since we assume that H ∗(X,Z) has no 2-
torsion, we have Sq1 = 0 on H ∗(X,F2), and hence all odd Steenrod operations
are zero.

As a result, Theorem 2.1 gives that the kernel of the pushforward
homomorphism i∗ : H ∗(EX ,F2)→ H ∗(X [2],F2) is spanned by the elements

e j(eau + ea−1 Sq2 u + · · · + Sq2a u) for |u| = 2a, 0 6 j 6 n − 1− a, and

e j(eau + ea−1 Sq2 u + · · · + Sq2a u) for |u| = 2a + 1, 0 6 j 6 n − 1− a,

where u runs through a basis for H ∗(X,F2). Since H ∗(EX ,F2) is a free
module over H ∗(X,F2) with basis 1, e, . . . , en−1, the elements listed are linearly
independent over F2.

Thus, we have a basis for ker(i∗). By the exact sequence with F2 coefficients

H j+1 X [2]→ H j+1(S2 X − X)→ H j EX → H j+2 X [2],

we now know the F2-Betti numbers of X [2]. Namely, let v0, . . . , vs be a basis for
H ∗(X,F2). Then H ∗(X [2],F2) has a basis with one element in degree |vi | + |v j |
for each i 6 j except when i = j and |vi | is odd, together with one element in
each degree

|vi | + 2, |vi | + 4, . . . , |vi | + 2n − 2

for each i .
Since H ∗(X,Z) has no 2-torsion, the rational cohomology of X has a basis v0,

. . . , vs in the same degrees. To show that H ∗(X [2],Z) has no 2-torsion, it suffices
to show that the rational cohomology of X [2] has a basis in the same degrees as
the basis above for H ∗(X [2],F2). Since the Hilbert scheme X [2] is the quotient by
the symmetric group S2 of the blow-up X̃ × X along the diagonal, H ∗(X [2],Q)
is the subspace of S2-invariants in H ∗(X̃ × X ,Q). Since X̃ × X is the blow-up
of the complex manifold X × X along the closed complex submanifold X of
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codimension n, we have

H ∗(X̃ × X) = H ∗(X × X)⊕ E · H ∗X ⊕ · · · ⊕ En−1 · H ∗X,
where E denotes the class of the exceptional divisor EX in H 2(X̃ × X) [20,
Theorem 7.31]. Since the nontrivial element of S2 acts on H ∗(X × X,Q) by
vi ⊗ v j 7→ (−1)|vi ||v j |v j ⊗ vi , the S2-invariants in H ∗(X × X,Q) have a basis
with one element in each degree |vi | + |v j | for each i 6 j except when i = j
and |vi | is odd. The other summands E j · H ∗(X,Q) of H ∗(X̃ × X ,Q) are fixed
by S2. We conclude that H ∗(X [2],Q) = H ∗(X̃ × X ,Q)S2 has a basis in the same
degrees as the basis above for H ∗(X [2],F2). So the integral cohomology of X [2]

has no 2-torsion.
Finally, suppose that H ∗(X,Z) has no torsion. The easy computation of the

rational cohomology of X [2] above works with Z[1/2]-coefficients. In particular,
the integral cohomology of X [2] has no odd torsion. By the previous paragraph,
it follows that the integral cohomology of X [2] is torsion-free. Theorem 2.2 is
proved.

Proof of Corollary 2.3. We first construct the classes x j and y j in the Z-
cohomology of the Hilbert scheme X [2].

Suppose that |z j | is odd, |z j | = 2a + 1. Then S2 Z j − Z j is typically not
orientable, because the action of Z/2 on Z j × Z j does not preserve orientation. In
this case, the Bockstein β[S2 Z j−Z j ] is an integral cohomology class on S2 X−X
killed by 2. Consider the exact sequence of Z-cohomology groups

H l+1 X [2]→ H l+1(S2 X − X)→ H l EX .

Because the integral cohomology of EX has no 2-torsion, the boundary of
β[S2 Z j − Z j ] must be zero in the integral cohomology of EX . So there is an
element y j in H 4a+3(X [2],Z) that restricts to β[S2 Z j − Z j ] on S2 X − X , as we
want. In the F2-cohomology of S2 X − X , y j restricts to b[S2 Z j − Z j ], by Thom’s
formula (see Section 3) applied to the smooth locus of S2 Z j − Z j . This uses
that the orientation class w1 on S2 Z j − Z j (corresponding to the double cover
Z j × Z j − Z j → S2 Z j − Z j ) is the restriction of b ∈ H 1(S2 X − X,F2).

Suppose that |z j | is even, |z j | = 2a. Then [S2 Z j− Z j ] is a Z-cohomology class
on S2 X− X , and 2[S2 Z j − Z j ] is the restriction of the class g∗(z j ⊗ z j) on X [2]. It
follows that the boundary of 2[S2 Z j − Z j ] is zero in the integral cohomology of
EX . Because the cohomology of EX has no 2-torsion, it follows that the boundary
of [S2 Z j − Z j ] is also zero. So there is an element x j in H 4a(X [2],Z) that restricts
to [S2 Z j − Z j ] on S2 X − X , as we want.

Since H ∗(X,Z(2)) is torsion-free, we know by Theorem 2.2 that H ∗(X [2],Z(2))

is torsion-free. Being finitely generated, it is in fact a free Z(2)-module. Therefore,
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in order to show that the elements listed in Corollary 2.3 form a basis for H ∗(X [2],
Z(2)), it suffices to show that they form a basis for H ∗(X [2],F2) as an F2-vector
space.

This follows by going through the proof of Theorem 2.2. Namely, we have
computed the boundary map in the exact sequence of F2-cohomology groups

H l+1 X [2]→ H l+1(S2 X − X)→ H l EX → H l+2 X [2],

as well as a basis for the kernel of the pushforward i∗ : H ∗EX → H ∗X [2]. As a
result, we can write down a basis for the image of i∗, as listed in Corollary 2.3.
We also know, using Lemma 3.3 and Theorem 4.2, a basis for the kernel of the
boundary map on H ∗(S2 X − X): the elements g∗(z j ⊗ zk) for j < k, and the
elements bm[S2 Z j − Z j ] for 0 6 m 6 2n − 2 − |z j | with m ≡ |z j | (mod 2).
Equivalently, this is a basis for H ∗X [2] modulo the image of i∗.

Using that the element e in H 2 X [2] restricts to b2 in H 2(S2 X − X), we read
off that the elements listed in Corollary 2.3 form a basis for the F2-cohomology
of X [2]. As mentioned above, it follows that the corresponding classes in Z(2)-
cohomology also form a basis. Corollary 2.3 is proved.

6. Complex submanifolds

In a special case, the formulas in Theorems 2.1 and 2.2 have a simple geometric
explanation, and that is what led to guessing those formulas in general. Namely,
let Y be a closed complex submanifold of codimension a in a complex manifold
X , and let u be the cohomology class of Y in H 2a(X,F2). The Hilbert scheme
Y [2] is a closed complex submanifold of codimension 2a in X [2]. As throughout
the paper, we omit the symbol π∗ for cohomology classes on X pulled back to
EX .

LEMMA 6.1. The restriction of the cohomology class of Y [2] in H 4a(X [2],F2) to
EX is

eau + ea−1 Sq2 u + · · · + Sq2a u.

Proof. We have an exact sequence of holomorphic vector bundles on Y , 0 →
T Y → T X |Y → NY/X → 0. The exceptional divisor EX is the complex projective
bundle π : P(T ∗X) → X of lines in T X . (Following our conventions for
projective bundles from Section 1, the natural line subbundle in the vector bundle
π∗T X is called O(−1).) We also write π for the projection P(T ∗X)|Y → Y . The
intersection Y [2] ∩ EX , which is transverse, is W := P(T ∗Y ) ⊂ P(T ∗X)|Y ⊂
P(T ∗X) = EX . The submanifold W is the zero set of a transverse section of
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the vector bundle Hom(O(−1), π∗NY/X ) over P(T ∗X)|Y ; that section is the one
associated to the subbundle O(−1) ⊂ π∗(T X |Y ).

So the cohomology class of W on P(T ∗X)|Y is the top Chern class ca(O(1)⊗
NY/X ). The top Chern class of the tensor product of a line bundle L with a vector
bundle F of rank a is

ca(L ⊗ F) = (c1 L)a + (c1 L)a−1c1 F + · · · + ca F.

The class e on X [2] restricted to EX is e = c1 O(−1). So the cohomology class of
W on P(T ∗X)|Y in F2-cohomology is ea + ea−1c1 NY/X + · · · + ca NY/X .

The Steenrod squares of the class u = [Y ] in H ∗(X,F2) are the pushforward
to X of the Stiefel–Whitney classes of the normal bundle NY/X by the inclusion
s : Y → X ,

Sq j u = s∗w j(NY/X ),

by Thom [17]. Since NY/X is a complex vector bundle, the odd Stiefel–Whitney
classes are zero and the even Stiefel–Whitney classes are the Chern classes in
F2-cohomology:

w2i NY/X = ci NY/X (mod 2)

[15, Problem 14-B]. We conclude that the class of W = Y [2] ∩ EX in H ∗(EX ,F2)

is eau + ea−1 Sq2 u + · · · + Sq2a u.

To relate this to Theorems 2.1 and 2.2, note that the element e in H 2(EX ,F2) is
in the image of restriction i∗ from X [2]. So Lemma 6.1 implies that for the class
u in H 2a(X,F2) of a complex submanifold, the image of restriction i∗ contains
e j(eau + ea−1 Sq2 u + · · · + Sq2a u) for all j > 0, in particular for all 0 6 j 6
n − 1− a.

Moreover, the class [EX ] in H 2(X [2],Z) is equal to 2e, and so i∗1 = [EX ] = 0
in H 2(X [2],F2). So i∗i∗y = (i∗1)y = 0 for all y in H ∗(EX ,F2). Thus, Lemma
6.1 shows that the kernel of i∗ contains e j(eau + ea−1 Sq2 u + · · · + Sq2a u)
for all classes u in H 2a(X,F2) of complex submanifolds and all 0 6 j 6
n−1−a. This calculation suggested the complete description of the kernel of i∗ in
Theorems 2.1 and 2.2.
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rationalité stable’, Ann. Sci. Éc. Norm. Supér. 49 (2016), 373–399.

[6] A. Dold, ‘Decomposition theorems for S(n)-complexes’, Ann. of Math. (2) 75 (1962), 8–16.
[7] R. Friedman and J. Morgan, Smooth Four-Manifolds and Complex Surfaces, (Springer, Berlin,

1994).
[8] W. Fulton, Intersection Theory, (Springer, Berlin, 1998).
[9] A. Hatcher, Algebraic Topology, (Cambridge University Press, Cambridge, 2002).

[10] E. Markman, ‘Integral generators for the cohomology ring of moduli spaces of sheaves over
Poisson surfaces’, Adv. Math. 208 (2007), 622–646.

[11] J. P. May, A Concise Course in Algebraic Topology, (University of Chicago Press, Chicago,
1999).

[12] J. McCleary, A User’s Guide to Spectral Sequences, (Cambridge University Press, Cambridge,
2001).

[13] R. J. Milgram, ‘The homology of symmetric products’, Trans. Amer. Math. Soc. 138 (1969),
251–265.
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