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The structure of semigroups whose subsemigroups form a chain under inclusion was
determined by Tamura [9]. If we consider the analogous problem for inverse semigroups
it is immediate that (since idempotents are singleton inverse subsemigroups) any inverse
semigroup whose inverse subsemigroups form a chain is a group. We will therefore,
continuing the approach of [5, 6], consider inverse semigroups whose full inverse
subsemigroups form a chain: we call these inverse V-semigroups.

In §1 we show that the non-trivial ^-classes of an inverse V-semigroup form a chain,
the associated principal factors being either cyclic or quasi-cyclic p-groups with zero (p a
prime) or isomorphic to B5, the five-element combinatorial Brandt semigroup. Inverse
V-semigroups are then characterized by these properties together with (C): for any
non-idempotents x and y with Jx<Jy, x = xx~1y" for some non-zero integer n.

In §2 the property (C) is used to further elucidate the properties of inverse
V-semigroups. It is shown, for instance, that each element of such a semigroup S has
index at most 2. If S has an infinite subgroup G, then G contains all the non-idempotents
of S; if S has a non-trivial subgroup G of prime-power, but not prime, order, then x2 e G
for every non-idempotent x of S.

Meakin [8] described a very special class of inverse V-semigroups: those with no
proper inverse subsemigroups whatsoever. In the present paper the characterization given
by the author in [6] of those inverse semigroups whose lattice of full inverse subsemi-
groups is distributive is clearly relevant.

1. A characterization. We begin with some terminology and notation, and a sum-
mary of the results from [5] which we will use. For background on lattices of full inverse
subsemigroups the reader is referred to [5,6].

Denote by iSS^S), or just ££F, the lattice of full inverse subsemigroups of the inverse
semigroup S (that is, the lattice of those inverse subsemigroups of S containing the
semilattice E of idempotents of S). If A e S, denote by (A) the inverse subsemigroup of S
generated by A, and by (E, A) the full inverse subsemigroup generated by A, that is,
(EUA). In general we use the notation of [4].

RESULT 1.1 ([5, Corollary 1.2, Proposition 1.3]). For each $-class J of S the relation y}

on £9, defined by Ay}B if AC\J = BC\J, is a congruence. In the lattice of congruences on
&&, /\{yj-JeS/£} = 0. Hence S£& is a subdirect product of the lattices Se&lyj, JeSlg.
Moreover l£&lyj = £S&(PF(J)), where PF(7) is the principal factor associated with J, under
the isomorphism Ayj —* (A n J) U{0}.
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COROLLARY 1.2. The lattice £& is distributive if and only i/i?^(PF(J)) is distributive
for each g-class J.

RESULT 1.3 ([5, Corollary 3.6]). If S is a completely 0-simple inverse semigroup with
!£<!' distributive then S is either a group with zero or is isomorphic to B5, the combinatorial
Brandt semigroup with five elements.

(Note: as in [5] we define PF(J) = JU{0}, the product of two elements of J being then-
product in S if it lies in J, and all other products being zero. Thus PF(J) is always
0-simple).

Finally, we require a characterization of V-groups, (that is groups whose subgroups
form a chain under inclusion).

RESULT 1.4 ([10, Theorem 5]). A group is a V-group if and only if it is a cyclic or
quasi-cyclic p-group, for some prime p.

(The notation Zip") is often used for quasi-cyclic p-groups. The reader is referred to
[3] for their properties).

Since !£$F(BS) is a two-element chain (by Theorem 3.2 of [5]), it is immediate from
Result 1.3 that the completely 0-simple V-semigroups are just BS and the V-groups with
zero adjoined. We now show that these are the only 0-simple inverse V-semigroups; thus
by Result 1.1, every inverse V-semigroup is completely semisimple.

Suppose S is an inverse V-semigroup which is 0-simple but not completely 0-simple.
Clearly ££SF(S) is distributive. It was shown in [6] that such a semigroup is in fact a simple
semigroup S*( = S\0) with zero adjoined and that i?^(S*) = i ^ ( S ) . Further S* is
E -unitary (that is ex = e, eeE, implies that xeE) and if <x denotes the least group
congruence on S* then the morphism a*? of S* upon S*la induces a lattice morphism of
££9?(S*) upon i?^(S*/o-), the lattice of subgroups of S*/a. Since S is a V-semigroup, S*la
is a V-group, whence, by Result 1.4, a p-group for some prime p. But this is impossible,
for (since S is not completely 0-simple) S* contains an element of infinite order ([1,
Theorem 2.54]), whose image in S*/o- again has infinite order.

We have proved the necessity of the property (B) in the following characterization of
inverse V-semigroups.

THEOREM 1.5. An inverse semigroup S is a V-semigroup if and only if
(A) the non-trivial $ -classes of S form a chain,
(B) each non-trivial $-class is either a cyclic or quasi-cyclic p-group for some prime p,

or has principal factor isomorphic to B5,
(C) for each x,ye S\Eg with Jx <Jy there is a non-zero integer n such that x = xx~xy".

Proof. Suppose S is a V-semigroup, and put E = Es. Let x, yeS\E. Either (E, x ) c
(E, y) so that x e(E, y) and Jx ^Jy, or (E, y)^(E, x) so that ye{E, x) and Jy ^Jx. This
proves (A); (B) has already been shown.

Again let x ,ye S\E, with Jx <Jy. Clearly y^(E, x), soxe{E, y). By expressing x as a
product involving E and y and permuting idempotents if necessary (c.f. Lemma 2.1 of
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[6]), we may write x = ey" for some eeE and non-zero integer n. Then xx^sSe, so

x = ey" = xx-1ey" = xx~1yn,

proving (C).
Conversely, suppose S is an inverse semigroup satisfying (A), (B) and (C), and let A,

Beg&(S), where AfE,B£E. Suppose A£B and let aeA\B. Put J = Ja. From (B)
and the comments following Result 1.4, PF(J) is an inverse V-semigroup. Now from
Result 1.1 the map C-»(CnJ)U{0} is a lattice morphism of te&iS) upon
Hence since ae(A D/)\(B n / ) , so that

(Anj)u{0}£(Bnj)u{0},

we have

(B n j) u {0} <= (A n j) u {0},

that is,
On the other hand if beB\E and 6£J, then by (A), either Jb>J or / b < / . But if

Jb>J then, using (C), a = (aa'^b" eB, for some n^0 , a contradiction. Thus Jb <J and,
using (C) again, b = (bb~1)an e A, for some n^=0. Therefore B g A .

Hence S is a V-semigroup.

2. Some consequences. Throughout this section S will be an inverse V-semigroup,
with E = ES. The properties (A), (B) and (C) will be those in Theorem 1.5.

We consider first the restrictions that (B) places on a non-idempotent x of S. Clearly
if x belongs to a subgroup, that is, x has index 1 (in the terminology of [4, §1.2]), it has
prime-power period. Suppose now that x does not belong to a subgroup. Then Jx has
precisely 4 elements: Jx ={x, x~\ xx"1, x"1x}. Consider the monogenic inverse subsemi-
group (x) of S: since S is completely semisimple so is (x), and, further each non-group
^-class of (x) has at most four elements; from the description of all monogenic inverse
semigroups (given in, for example, [2]) it is apparent that x has index 2, that is, x2 lies in
the kernel Kx of <x>. From (B), again, Kx is a (cyclic) group of order pfc, for some prime p
and some ks=0. (If k = 0, KX ={x2}). Thus

x2 = x2+p\

that is, x has period pk. The identity / of Kx is xpk if k 3= 1, or x2 if k = 0.
Let J be the ̂ -class of S containing Kx. Let zeS be such that z9lf. Then, by (C),

there is a non-zero integer n such that z =fx". Thus z e Kx. Thus J is a group and in fact
J = Kx. We have thus established

PROPOSITION 2.1. In an inverse V-semigroup S every element x which is not in a
subgroup of S has index 2 and period pk for some prime p and some k=*0. The kernel Kx of
(x) is an entire group £-class of S, with identity xpk if k 3= 1, or x2 if k = 0.

It is easily verified that any monogenic inverse semigroup generated by an element of
index 2 and period pk, ks=0, satisfies (A), (B) and (C) and is therefore a V-semigroup.
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We now show that the property (C) imposes major restrictions on the permissible
combinations of non-trivial $-classes of S. First, however, a technical lemma, whose proof
is routine, is needed.

LEMMA 2.2. Let T be any inverse semigroup, G a group $-class of T, with identity e,
and U an inverse subsemigroup of T such that e *£/ for all f e E(U). Then the map u>-+eu is
a morphism of U into G.

Now let G and H be non-trivial group $-classes of S with identities e and /,
respectively, such that e<f (so G<H as $-classes). From (C) it follows that the
morphism <f>fe :u>-+eu of H into G, denned in the lemma, is surjective. In fact K<f>fe = G
for every non-trivial subgroup K of H. In particular this implies ker <f>fe ={/}, so <j>ft. is a
bijection.

Furthermore H, being a cyclic or quasi-cyclic p-group, certainly contains a subgroup
of order p. Thus |G| = |H| = p. Applying (A) we therefore have

PROPOSITION 2.3. If S is an inverse ^-semigroup with more than one non-trivial
maximal subgroup then there is a prime p such that every non-trivial subgroup of S has order
precisely p.

Now let J be a non-trivial ^-class of S containing an element x of index 2, and let G
be a non-trivial group $ -class of S, with identity e, such that G<J. The case Kx = G was
covered in Proposition 2.1. By Exercise 3, §8.4 of [1], e<xx~\ e<x~*x and so
e =£ (xx~1)(x~1x) = /, the identity of Kx. Hence Kx 3= G and there is a morphism of <x> upon
G (using (C)), as denned in Lemma 2.2, whose restriction to Kx is the identity if Kx = G,
and is the bijection <f>f_e defined above if Kx > G. (Note that the ^-class Kx cannot be
trivial, for if so, we have x2 = x3, from which, using (C), it follows that z2 = z3 for any
z e G\{e}, a contradiction). Summing up, we have

PROPOSITION 2.4. Let x be an element of S of index 2 and let Gbe a group $ -class of S,
with identity e, such that G<JX. Then G^KX and the map u>-+eu (ue(x)) is a morphism
of (x) upon G whose restriction to Kx is a bijection upon G. Thus if Kx is trivial so is every
group $ -class G<JX.

When the order of a group and a non-group ^-class is reversed the situation is rather
different.

PROPOSITION 2.5. Let x be an element of S of index 2 and let G be a non-trivial group
£-class of S, with identity e, such that G>JX. Then |G| = 2 and x = xx~lz, where z is the
involution of G. In that case x has period at most 2.

Proof. Since JX<G, we have x = (xx~1)zn for some n^O, for any zeG\{e}. Thus
xx"1 < e and for any such z,

But Rxx-i={xx'1, x} and if xx-1z = xx"1 then xx^z" = xx"1 for every non-zero integer n,
contradicting (C). Hence xx-1z = x for every z in G\{e}.
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Suppose some element z of G has order I > 2. Then

x = xx-1z = xx~1z2,

so xz = x and xzn = x for all n & 1. But then

x = xz1"1 = (xx~1z)z'~1 = xx~1zl = xx~1c = xx"1,

a contradiction. So every non-identity element of G has order 2. Since G is cyclic or
quasi-cyclic, |G| = 2.

The last statement is an application of Propositions 2.3 and 2.1.

An interesting application of these results is the following.

COROLLARY 2.6. If an inverse ^-semigroup S contains a quasi-cyclic maximal subgroup
G, then G constitutes the only non-trivial 0-class of S.

If S contains a maximal subgroup G of prime-power, but not prime order then G is the
only non-trivial maximal subgroup of S and G = Kx for every element x of S of index 2.

Proof. First let G be any non-trivial maximal subgroup of S not of prime order. By
Proposition 2.3, G is the only non-trivial maximal subgroup of S. Suppose xeS has index
2. By Proposition 2.5, G?JX. Thus G<JX, so that by Proposition 2.4, G^K* and
\G\ — \KX\. Since G is non-trivial, so is Kx. By Proposition 2.1, Kx is an entire $-class of S
and hence G = KX. Again by Proposition 2.1, Kx is finite so G cannot be quasi-cyclic,
proving the first statement.

We consider, finally, the relationship between two non-group $-classes / < / ' of S.
Let x 6 J\E and y e J'\E. From Proposition 2.1 we have that Ky is a group $>-class of

S, so Ky£J. Consider the case Ky>J and suppose Ky is trivial, that is, K^ ={y2}. From
Exercise 3, §8.4 of [1] again, either y2 >xx - 1 or y2>x~1x. In the former case

x x-!y" = xx~1(y2y") = xx~*

for any non-zero integer n, contradicting (C). Since the latter case similarly contradicts the
obvious dual of (C), Ky is therefore non-trivial. In fact, by Proposition 2.5, |XV| = 2 and
x = xx-1y3 (since y3 is the involution in Ky), so that xx - 1<y2 and

x = (xx~xy2)y = xx-1y.

Suppose next that Ky <J. Then by Proposition 2.4, Ky =sKx. From (C),

x = xx~1y±1

(since Jr < Jx for |re|^2). When x = xx~xy» we obtain

x2 = (xx~1yxx~1y~1)y2,

so Ky = KX. We obtain a similar result when x = xx"1y~1.
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(b)

Figure 1

e

(c)

Finally suppose K, and J are incomparable. Then, by (A), we have that Ky is trivial,
so that, by Proposition 2.4, Kx is also. Again we have x = xx~1y±1. Summarizing,

PROPOSITION 2.7. If x and y in S have index 2 and Jx <Jy then either
(i) Ky>Jx, in which case \Ky\ = 2 and \Kj*s2, or

(ii) Ky <JX, in which case Ky = KX, or
(iii) Ky and Jx are incomparable, in which case Kx and Ky are trivial.

In each case x = xx~1y±1.

Before continuing, we provide examples to show that each of these cases may occur.
First, let E be the semilattice in Fig. l(a), and let G be a group of order 2, with g its

involution and 1 its identity. Let G act on E on the left by order automorphisms so that g
acts by "reflection". Let U be the semidirect product of E and G: that is U = £ x G , with

(X, h)(X', h') = (XA hx', hh').

(In the terminology of [7], U = P(G,E,E)). Then U has 2 non-trivial group ^-classes,
Jtfil) and J(el), of order 2, and two non-group /-classes, J(ag) and /(cg), each with principal
factor isomorphic with B5. Clearly (A) and (B) are satisfied and (C) is easily verified. Here
K(afi)>J(cg) and |K(ag)| = |-K(C)g)| = 2. By taking the Rees quotient modulo J(e,g), we obtain
a similar example with |K(og)| = 2 and |K(cg)| = 1.

Now let E be the semilattice in Fig. l(b), let G be as above, g again acting by
"reflection", and form the semidirect product V of E and G. In this case

(Here |Jf(a>g)l = 2 but examples may be similarly constructed where K^a< g) has arbitrary
prime-power order).

Finally let E be the semilattice in Fig. l(c) and let W be the full inverse subsemigroup
of TE (see [4, Chapter V]) generated by the isomorphism y taking aE to bE and fixing /.
Then W is an inverse V-semigroup. If x is the isomorphism taking cE to dE then it is
easily verified that, if we take S = W, then S has the properties described in Proposition

We now continue the theme of Corollary 2.6.
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COROLLARY 2.8. If an inverse V-semigroup S contains a maximal subgroup of prime
order pi=2, then every non-trivial subgroup has order p. Each element of S of index 2 has
the same kernel, K say, and the same period p. Further G*sK for each non-trivial subgroup
GofS.

Proof. That every non-trivial subgroup has order p follows from Proposition 2.3. Let
G be such a subgroup and let x be any element of S of index 2. By Proposition 2.5,
G~£JX. Hence G<JX, so by Proposition 2.4 we have that G^KX and \G\ = \KX\. So x has
period p.

If y is another element of index 2 then \Ky\ = p also and we have K^ ̂ Kx ^Ky, that
is, Kx = Ky = K, say, and G *£ K for every non-trivial subgroup G of S.

When S has a maximal subgroup of order 2 then we can similarly show that every
element of index 2 has period at most 2. However the examples above show that not
every such element need have period 2, and the kernels may be disjoint.
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