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Indecomposable representations of

certain commutative quivers

P-IAI. Donovan and M.-R. Freislich

This paper gives a detailed classification of the indecomposable

representations of one non-trivial "commutative quiver", gives

brief details of certain generalisations, and uses methods

likely to be more widely applicable.

Throughout this paper K denotes a field whilst all modules are left

modules of finite dimension over K . The indecomposable modules are

classified for the two ^-algebras whose presentations follow. In both

cases {e , e , e_, e, , e_, zA denotes a complete set of primitive

orthogonal idempotents whilst a generator \j). . is understood to satisfy
I'd

t h e r e l a t i o n s h i p i|> . . = £.\ji..c. :

\ = * < e r e 2 ' £ 3 ' V £ 5 ' E 6 ' Y 51 ' Y52' Y53' y5k> 6 i 6 ' 626 ' 6
3 6 ' 5k6 I

Y51616 = Y52626' Y53636 = Y
51*61)6

> '

Yl5a56 = Y25a56 = Y35B56 = ^ 5 6 = 0> •

These algebras are best understood as quiver algebras in the sense of

[3D. For example, a R -module M is just a sextuple of vector spaces

M (= £-M) , . . ., M, (= €.J^) together with the eight linear mappings

y . : M. + M 6., : Mc -*• M. satisfying the relations shown above. The
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18 P.W. Donovan and M.-R. Freislich

significance of these algebras lies in the fact that their representation

theory is quite complex but still tame in the sense of [3], This will be

proved in this paper. It will be noted that in. the above interpretation of

R -modules the special cases

(1) M = 0 and

(2) M6 = 0

correspond to the non-trivial 'Ij-subspace problem' solved in [Z], [5], and

elsewhere. Likewise the classification of E -modules with

(3) Ms = 0 and

(k) M± = M2 = M3 = Mk = 0

correspond to different 'extended Itynkin diagram' problems, to wit the

H-subspace problem and the 'Kronecker' problem. In Section 7 the class of

problems of this type accessible to the methods of this paper is discussed.

Section 1 contains a discussion of two functors, the first of which

establishes a virtual equivalence between the above two classification

problems and the second of which simplifies the latter problem. Section 2

briefly describes the matrix regress method of Nazarova and Roiter which is

used in Sections 4 and 5. Section 3 gives the classification of

indecomposable lt-subspace systems. Section 4 gives a direct determination

of the indecomposable i?2-modules whilst Section 5 gives an alternative

approach more suitable for the construction of canonical forms. The

quadratic form phenomenon of [3] is discussed in Section 6.

1. The functors used in the classification

The contents of this section are special cases of work of Auslander,

Platzeck, Reiten [/], which has recently been extended by Butler. The

functors discussed below both have evident adjoints which may be used to

give direct proofs of the properties mentioned.

The functor ¥ : mod(i? ) -»• mod(i? ) is defined as follows, using the

notation of the introduction. If M E mod(i? ) , (HW) . = li. for i ± 5 ,
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Commutative quivers 19

( W ) = ker(/V JJ_ M ±L M JJ_ W^) •* M ; the new Y mappings are the

projections and a ^{m^ = (o, 0, 6 gWg, -^g^g) ,

^•^(Mf) = ^id"6' &2d"(>' °' °̂  for m6 ^ M6 " It establishes a Ejection

between the full subcategory of mod(i?.J whose objects are the R -modules

without direct summands isomorphic to the projective module -̂|etr > and a

full subcategory of mod(ifj .

The functor <J> : mod(#J -* mod(i? ) takes M to M' where M'. = M.

for t = 1, 2, 3, It , M'G=M^ , M'3 = c o k e r ^ * (/̂  ^ A f ^ ) ;

a'xn = class(0, m) , 6'gW = class(w, 0) , y. class(m, m') = y.jn

(i = 1, 2) , = y.jn' {i = 3, k) . The functor establishes an equivalence

between the full subcategory of mod(i?p) whose objects are the R -modules

without direct summands isomorphic to the injective module

Rp£/-/(rad R Je^ , and the full subcategory of mod(i?_J whose objects have

no simple quotients isomorphic to i?p£,-/(rad i? j£_ . We need, therefore,

only classify the indecomposable i?2~modules in the image of $ to obtain

a classification of indecomposable modules in mod(i?.J and mod(i?p) .

2. Matrix regression

The Nazarova-Roiter regression method of [6] is briefly described

here, and will be used later.

A regression scheme T consists of two finite linearly ordered sets

R = {r^, ..., rji , C = {c^, ..., a} , and a symmetric relation p on

their disjoint union which is such that for any x € R JJ_ C there is at

most one y related to x .

A r-matrix is a block matrix whose block rows are parametrised in

order by the set R' obtained from R by replacing each r. related tc
Is

itself by two adjacent elements. The block columns are parametrised in

order by the analogous set C . If p(r., r.) (p(e., c.)) , i t j ,

then the corresponding block rows (columns) have the same number of rows
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20 P.W. Donovan and M.-R. Freislich

(columns) and if pfr., e.l the block row has the same number of rows as
*• 3

the number of columns in the block column. Block rovs or columns may have

zero width.

Two T-matrices are said to be isomorphic if one can be transformed

into the other by a sequence of operations of the following types.

1. A block row may be added to any subsequent block row, except that

the two block rows corresponding to r. related to itself may not be added

to each other.

2. A block row may be multiplied on the left by any invertible

matrix, subject to

(a) if pfr., r».) , £ + j , the corresponding block rows may be
*• 3

simultaneously multiplied by the same matrix,

(b) if Pu1., c .) , multiplication of the corresponding row on
t 3

the left by an invertible matrix entails multiplication of

the corresponding column on the right by its inverse.

3. The analogues of 1, 2 (a) for columns.

The direct sum of two T-matrices is defined in the usual way, and the

Krull-Schmidt Theorem applies. Nazarova and Roiter [6] have shown that the

indecomposable ^-matrices are isomorphic either to a discrete canonical

T-matrix, parametrized by combinatorial invariants independent of the field

X , or to continuous canonical ^-matrices parametrized by combinatorial

invariants and a monic irreducible polynomial. The proof is a complicated

induction for all regression schemes simultaneously.

3. The four-subspace classification

Reference [5] is not widely available and it deals only with the case

when the field K is algebraically closed. It may therefore be convenient

to use Brenner's note [2], which contains the general case including the

extension to skew fields, and also gives other references. Indeed, the

entire contents of this paper may be extended to the skew field case with

only a few small formal changes.

The symbol A refers to an element of K in the case when the field
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Commutative quivers 21

is algebraically closed. This is equivalent to a linear monic polynomial:

in general the symbol refers to an arbitrary monic irreducible polynomial.

The classification of U-subspace systems obtained by Gelfand and

Ponomarev in [5] will be needed in the next sections. The construction of

indecomposable i?p-modules uses the natural definition of a U-subspace

system as a quintuple of vector spaces V , ..., V with linear maps

y. i V. •*• Vc . At the same time it is convenient to think of the submodule
v % 5

of an i?? module M obtained by ignoring M,, a. ,-, 8 ,- as a U-subspace

system ker y. •*• M,. • It M has no direct summands isomorphic to i?oe. ,

i = 1, , 1* , the structure of this U-subspace submodule is completely

determined by the system ker y. •*• M .

On pages 22, 23 there is a complete list of the isomorphism types of

indecomposable U-subspace systems that will be needed. The dimension of a

system is the quintuple (dim V , ..., dim 7 ) .

The dimension of a non-trivial intersection is always 1 . With the

exception of S{2n, 0, X) , in each case the system is characterised by its

dimension and non-trivial intersections. Gelfand and Ponomarev [5] give

bases for the spaces that can be used to calculate the homomorphisms of any

system into any other, as also does Brenner [2]. Some information about

homomorphisms is needed in Section 5, and is recorded there.

4. The representation type of i?«

It is logically redundant to discuss the representation type of R- ,

given that Section 5 describes the construction of the indecomposable i?_-

modules in the image of the functor $ . Nevertheless, a discussion is

given here, on the grounds that the method of obtaining regression schemes

to classify i?2~modules directly may be of some interest.

Let N be any positive integer, and M an i?2-module whose

U-subspace submodule has indecomposable summands whose components in M^

have dimension at most 2N . Any direct summand of the U-subspace
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2 4 P . W . D o n o v a n a n d M . - R . F r e i s l i c h

submodule such tha t ker Y, n ker y = 0 = ker y n ker y, i s obviously a

d i rec t sunnnand of M t so we shall assume that no such summands occur. The

summands then correspond to U-subspace systems ker y . •*• M of types

S(2H+1, 2) , S^m, 1) , i = l , 2, 3, k , S^m, 0) , 5^(m, 0) . One

can then define various natural submodules in terms of those summands that

appear, as follows:

Submodule 4-subspace systems indexing its summands

a(k) All 5(2,7-1, 2) , j S k < N ;

b3(k) All S(2j-1, 2) , 3 £ S ; S^gj+l, l) ,

£3(2,7', 1) , (j, j' < [«]) ; 52(2j+l, 1) ,

Sh(2d't 1) , S3h(2j+1, 0) , ^ ( 2 j ' , 0) ,

U, 3' < [%fe], * S 2ff) ;

C34(fe) All 5(2J-1, 2) , j < Af ;

^ , 0) , S^W, 0)

(J, J" 2 [%*], k <2N) .

The submodules b (fe), fcp(fe), Z'K(^) are obtained by applying

permutations (13)(2M , (lU)(23) , (12)(31*) to the subscripts in the

definition of b (k) , and the submodule a
12(b) by applying (I3)(2lt) to

those in the definition of c-i),W .

There are inclusions as follows:

(1) a(i) ca(2) c ... c a(N) ,

(2) a(N) cb±(l), b2(l) cel2(l) cbl(2),b2( ) <= 0^(2)0... ,

(3) a(ff) c& 3(l), 6^(1) co3U(i) c*3(2), &u(2) c 0^(2) c ... .

Now the problem of obtaining simultaneous canonical forms for Y-ic> Yoq»

YOCJ Y^c > and 3 = 3,-g , is a problem of finite representation type. This

is evident from the fact that im 3 cz ker y„ n ker Yj,q c coi,(a^-l) > an(i
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Commutative quivers 25

from the structure of the filtration of ker y_ n ker y,^ induced by (l)

and (3). The reader may check from Gelfand and Ponomarev [5] the

classification of 3-subspace systems needed to calculate filtration (1+)

below. This classification may be used to check the naturality of the

filtrations. The induced filtration of M, is:

(It) 0 c p - ^ l ) c ... c e^ 1

B'h^d) c sTx[b (i)+bii(D) c ... ,

and i t may be used to put 3 into canonical form. A f i l t r a t i o n of

X = ker Y-.c n ker Y2C i s likewise induced by ( l ) and (2) . There are

isomorphisms 3~ a(k+l)/&~ a(k) •*• a{k+l)/a{k) for 1 5 k < N-l . Thus the

problem of finding canonical forms for a,.,- compatible with those for g_g

is equivalent to the canonical form problem for the evident regression

scheme. As N is arbitrary, this classifies all indecomposable

/?2-modules.

5. Construction of indecomposable modules

Let M € £_ where C. is the full subcategory of the image of $

whose objects have no direct summands isomorphic to any of the simple

projective modules R„£. (i = 1, ..., h) . Write a for a g , 3 for

656 , yi for Y^5 . Since M,. = ker Y 1
 n ker Y 2 + ker Y 3 n ker Y^ , the

l*-subspace submodule of M can have direct summands only of the types

corresponding to the systems ^ ( l . 0) , ^-.(l. l) > 5 p ^ l j ^ '

5l2(i, 0) , 53(1, 1) , 5^(1, 1) , or 5(1, 2) . Decomposition of M

into a direct sum of subspaces ^ , i = 1, ..., 7 , corresponding to

summands of each type (in the given order) allows one to obtain block

matrices in canonical form for the y , y , Y^> YJ, a s fo3J.ows:

0 0

0 0II 0 0 0 0

0 1 0 0 0
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26 P.W. Donovan and M.-R. Freisl ich

1 0 0 0 0 0 61

0 0 1 0 0 0 oj

Given that, for any such M , im 6 5 W + W + W + W and

ft'. + W + J/ 5 im g + (/ , one can reduce the matrix of 3 , using

operations compatible with the filtration, to the form on the left below,

where the marked divisions correspond to the division of the y • into

columns, except that the last block row is further subdivided. The matrix

of a is then in the form on the right below with block rows and columns

corresponding to those of g :

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

X

X

X

X

X

0

0

0

X

X

X

X

X

0

0

0

X

X

X

X

X

0

0

0

X

X

X

X

X

0

0

0

X

X

X

X

X

Compatibility requirements imply that the permissible operations on the

nonzero part of the matrix of a are those permitted by the following

regression scheme:

s = {**!' r 2 ' r 3 ' r0 > C = K ' ° 3'

P =

where the rows and columns of a are grouped and ordered so that
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P corresponds to block row h ,

r*p to block rows 5 and 6 ,

r»_ to block row 7 ,

rv to block row 8 ,

a to block column 1 ,

Cp to block column 2 ,

e, to block columns 3 and k ,

e, to block column 5 .

Note that M € J? requires that the blocks corresponding to r , r_,

2* must have rank equal to the number of rows they contain.

The canonical forms for the matrices a that produce indecomposable

modules in .£ are thus obtainable from the rules given by Nazarova and

Roiter in [6]. The rules are abstracted from the process of reduction of

each component of a 2"-matrix to canonical form, which, at each stage,

replaces the regression scheme by a new one with finer divisions of the

block rows and columns. A brief reinterpretation of the process, as

applicable to modules in C^ is given here.

At each stage of the regression, one may regard the block columns

(rows) of the matrix of a as being indexed by triples (M, <j>, Q)

(("» 'I'J ̂ )) where M [N) is an indecomposable module with a distinguished

quotient Q (submodule P ), and (fi (41) is a fixed surjection M -*• Q

(injection P •*• N ) . Distinct block columns (rows) related by p have the

same M (N) , while a block column related to a block row has M ~ S .

The block column [M, <j>, Q) (row (N, ty, P) ) is to the left of

(«', <f>', Q') (above (N', ij,', P1) ) if and only if there are homomorphisms

u : M' -* M , • K : Q' •* Q (v : N -* N' , -n : P -* P') such that K M is

surjective and «fi' = <j)y (ip'ir = VI|J) • Two block columns (rows)

correspond to the same (self-related) element of the regression scheme if

and only if they are indexed by modules having no such homomorphisms

between them in either direction.

The module Q (P) is always generated by (()g(ker a)

\\p- (coker a n ker y^ n ker Y 2 )
 a n d m a y always be chosen isomorphic to

one of those indexing the columns (rows) in the initial scheme; namely,
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2 8 P . W . D o n o v a n a n d M . - R . F r e i s l i c h

/ 7 3 "

= w2/<

P1=<cxff2e6> ,

Each step of the regression constructs new indecomposable modules, by

specifying linear maps from the kernel of a in the column-modules to the

cokernel of a in the row-modules in such a way that the kernel of the map

contains all copies of (ker <J>) r (or (ker $),- and (ker <j>), when the

column is self-related) and the image of the map is contained in the space

spanned by all copies of (im if;)- (or (im \j>) _ and (im \j>),. when the row

is self-related).

If the column is related to the row, the canonical forms for the

matrices of maps producing new indecomposable modules are indecomposable

rational canonical forms. Self-relation of a column specifies two

distinguished subspaces in the domain of the nap, and self-relation of the

row specifies two in the codomain. When the column is not related to the

row, then, the construction corresponds to the construction of certain

indecomposable 2-subspace, 3-subspace, or l*-subspace systems, according

to the degree of self-relation present. The systems are restricted by the

requirement that the subspaces corresponding to the rows span the junction

space and must have trivial intersection if there are two of them. Two-

subspace constructions are obvious. To identify the 3- and U-subspace

systems that produce new indecomposable modules, we use the 4-subspace

notation from Section 2, assuming that the first two subspaces correspond
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to columns and the last two to rows, and that, in the case of 3-subspace

systems, an appropriate subspace is zero. The type's that occur are then

S.Am, 0}, U, j} = {1, 3>, {1, k}, {2, 3>, {2, h} ;
13

S(2n, 0, X) ; S12(2n, 0) ; S ^ a i + l , - l ) , ^ ( 2 n + l , - l ) ;

51(2n, -1) , S2(2n, - l ) ;

S2(2n,

New constructions index new block rows and/or columns if and only if

they continue to have distinguished quotients generated by elements of

ker a or distinguished submodules generated by elements of

coker a n ker y n ker Yo > a n d t n e dimensions of these two subspaces

indicate how many new index pairs must occur. Thus, for example, when both

block row and column used in the construction are self-related, a new

construction indexes a new block column if and only if the two subspaces

corresponding to columns intersect nontrivially, and indexes a new block

row if and only if these two subspaces do not span the junction space.

Relations between, and ordering of the modules indexing new block rows

and columns are determined using the rules given above. The special

homomorphisms used in ordering are present between new constructions

arising from the same block row and column if and only if there are

similarly defined special homomorphisms between the subspace systems used

in the construction. For example, the new columns obtained from k-

subspace systems are ordered, from left to right, as follows:

{S-(2n-l, l ) , S, (2n-l, l)} (two block columns corresponding to a self-

related element)

{Sx(2n, 1 ) , 52(2n, l)} {S3(2n+1, l), S^Oi+l, 1)}

, 0 ) , S12(2n, 0)

The new rows obtained are ordered from top to bottom as follows:

{S (2n, - l ) , Sp(2n, -l)} (two block rows corresponding to a self-related

element)

{S3(2n+1, - 1 ) , Sk{2n+1, -l)} {S1(2n+2, - 1 ) , 52(2n+2, -l)}

, 0 ) , S12(2n, 0) ...
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6. Dimensions of indecomposable modules

If M i s an R.-module, the dimension of M i s the sextuple

(m1 , . . . , rr.A , where m. i s the dimension of the vector space M. .
-L o J J

The algebras R and i?2 are algebras corresponding to quivers with

relations, the relations in these two cases stating that certain composites

of arrows in the quiver are equal or zero. In [3], Brenner defines the

quadratic from <?(x) associated with a quiver with relations as

q{K) = f X2+ j a^x_ j

where the quiver has n points, and a.. = -k if there are k arrows

from i to j in the quiver, and a. . = +k if there are k

(independent) relations on composites of arrows connecting i and j .

For quivers without relations, and also for those quivers with relations

whose representation type is known, the representation type of the quiver

is finite, tame, or wild (see Brenner [3]) according as the quadratic form

is positive definite, positive semidefinite, or indefinite on the cone

{x | x. > o} . The dimensions of indecomposable representations of quivers

of finite or tame type are precisely the solutions in non-negative integers

to q{X-) = 1 (finite type), 0 or 1 (tame type) (see our notes [4]).

The heuristic argument provided by Brenner in [3] to explain this, views

q(m) - l as measuring the degree to which endomorphisms of a

representation of the quiver, in general position, of dimension m , are

determined, modulo scalars, by the requirements of compatibility with the

linear maps in the representation. The functors of Section 1 induce

isometries.

The quadratic form for i?2 is

i=1 ^ 5 6

which is clearly semidefinite, of co-rank 2 . If x = x« = x = x, = 0

it becomes the quadratic form q associated with the quiver A (the

'Kronecker problem'), and if x,- = 0 it becomes the quadratic form qo
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associated with the quiver 0, (the lt-subspace problem). The solutions

to <7(x) = 0 are of form na. + mb , where a. = (0, 0, 0, 0, 1, l)

(corresponding to q^a.') = 0 , a' = (l, l) ) and 6 = (l, 1, 1, 1, 2, 0)

(corresponding to <72(b') = 0 , fa' = (1, 1, 1, 1, 2) ) . The solutions to

<?(x) = 1 are of form na + mb + n. where >i is either (0, 0, 0, 0, 0, l)

or one of the 2k values (r , i» , r^, r, , r , o) with 0 5 r 5 1 ,

q{fi) = 1 .

The construction method of Section 5, however, reveals the existence

of indecomposable R -modules whose dimension m is such that q(m) = 2 .

Simple calculations cf dimensions arising in the course of construction of

indecomposable modules in C. , together with the use of the functor $ and

its adjoint, show that the set of dimensions of indecomposable 4_-modules

splits into three subsets as follows.

(1) Solutions to q(>c) = 0 . All dimensions nfl- + mb , n, m 5 0 ,

are in fact realised as dimensions of indecomposable modules. The infinite

families of indecomposable modules of the same dimension, parametrised by

the monic irreducible polynomials over the field, are all of this dimension

type.

(2) Solutions to q(x.) = 1 . Again, the dimensions n& + mb + 1 are

all realized for n, m t 0 .

(3) Solutions to q[x) = 2 . Those that arise as dimensions of

indecomposable modules are of form nd + mb + it , where A is one of the

following:

•4 = (l, 1, 0, 0, 0, 0) , & = (0, 0, 1, 1, 0, 0) ,

&3 = (1, 1, 0, 0, 2, 0) , ik = (0, 0, 1, 1, 2, 0) ,

*5 = (2, 0, 1, 1, 2, 0) , 4g = (0, 2, 1, 1, 2, 0) ,

4? = (1, 1, 2, 0, 2, 0) , 6Q = (1, 1, 0, 2, 2, 0) .

If 6=6., i = 1, , !* , the dimension is realised for all choices of

n > 1 , m > 0 , while if i = -6̂  , i - 5, .. ., 8 , it is realised for all

n •> 3 , m 2 0 .
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7. Further extensions of this method

It should be noted that our notes [4] on the representation theory of

the Dynkin diagrams A , D , and E , and the corresponding extended

Dynkin diagrams have been generalised by Dlab and Ringel in numerous papers

so as to include the other Dynkin diagrams. It is to be expected that

analogous generalisation is possible in the context of commutative quivers.

In the absence of a general representation theory of quivers with

commutativity and zero-composite relationships, various examples of such

problems are discussed below. All have semidefinite quadratic form.

Firstly, for each positive integer n there is a 'factorised /!„ ., '

quiver to consider. It may be obtained from the R.-module problem of this

paper by addition of the requirements that each of the vector spaces

e M, . . . , eM is graded by the integers taken modulo n , that y_o Y50'

Y,-,, Ŷ i, > -̂ig> ^26 r e s P e c t this grading whilst 6 g, 6, g map the ith

graded component to the (-£+l)th . As before, this gives rise to the

corresponding 'graded i??-module' problem, which can be handled by the

introduction of 'cyclically graded regression schemes'. This concept is a

direct generalisation of that described in Section 2.

Secondly, Butler has pointed out, the algebra /?„ may be extended by

the adjunction of further idempotents £_, SQ, ... , further generators

cig_, 3gy, a g, 6 g, ... subject to relationships a g^ = 35g<V_ = 0 ,

and so on. The modules M for which CM = eJtf = zJd = c,M = 0 may be

classified by use of the filtration induced by the appropriate 'Brauer

graph'. However, for the purposes of this paper, it is more convenient to

put the mappings a
5gs

 aST a 7 8 ' "' i n t o simultaneous canonical form.

(This is a standard finite representation type problem.) The determination

of canonical forms for B,-g, 2g™, 3_g, ... is then a regression scheme

calculation of a particularly simple type. Furthermore, the general

classification may be achieved by an evident reworking of the arguments of

this paper.

Thirdly, the quiver underlying the algebra R may be extended by a
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second U-subspace system by the adjunction of idempotents E_, Eg, e , e^

and generators YgT> Ygg, Y/-g, YgQ subject to additional relationships

a
56

Y67 = a56Y68 = 656Y69 = 356Y6O = ° ' T h e r e 8 r e s s i o n s c h e m e s defined in

Section 2 do not appear to be adequate to determine the representation

theory of this quiver. The relevant matrix problem may be obtained by

putting Y-,c> Ypci Yoc> Yhc into the canonical form defined by the

filtrations (l), (2), and (3) of Section 4 and simultaneously putting

Y67' Y68' Y6Q' Y60 irrto ttle d u a l canonical form. The matrix problem so

obtained can be described by two regression schemes T, 7- in which the

last elements of R , C, R~, I7- are not related to any elements. The

last block row of the T -matrix has the same width as the last block row
a

of the To-matrix. If any operation of type 2 (see Section 2) is
P

performed on one of these last block rows, it must also be performed on the

other. Similar conditions hold for the last two block columns. The proof

of [6] with slight modifications now shows that this extended algebra has

tame representation type.

Fourthly, the above generalisations may be carried out simultaneously

to yield still more complicated quivers with zero-composite relations. The

above methods suffice to prove that they have tame representation type.

Hence sundry associated commutative quivers also have tame representation

type.

Fifthly, as Brenner has pointed out, the 4-subspace components of the

i?2 problem considered here may be replaced by E type extended Dynkin

diagrams. For example, the algebra

i?3 = ^<el5 e2, e3, e^, e,_, e6> ^ eg, a 2 r a ^ , a ^ ,

632' V "V Yl8> Yl8 I a21Yl8 = °VL618 = Hx^l^J = 0>

is obtained analogously from an Es algebra [corresponding to the modules

with zJ4 = 0 J and a 'Kronecker' algebra. New methods seem necessary to

classify the i?,-modules.

It would be of some interest to have a method for generating all the
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algebras with zero-composite defining relations and with tame

representation type.
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