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INDEPENDENCE OF THE INCREMENTS
OF GAUSSIAN RANDOM FIELDS

KAZUYUKI INOUE anp AKIO NODA

§1. Introduction

Let X = {X(A); A € R"} be a mean zero Gaussian random field (n > 2).
We call X Euclidean if the probability law of the increments X(4) — X(B)
is invariant under the Euclidean motions. For such an X, the variance
of X(A) — X(B) can be expressed in the form r(|A — B]) with a function
r(?) on [0, o) and the Euclidean distance |[A — Bj.

We are interested in the dependence property of a Euclidean random
field X and after P. Lévy [2] we introduce a set F ((P,|P,) for a pair of
points P,, P, R":

Fx(P|Py) = {A e R"; E[(X(A) — X(P))X(P) — X(P))] = 0}.

The set Fx(P,|P,), we expect, would characterize the Euclidean random
field X. This is the case for a Lévy’s Brownian motion X, where r(tf) = t.
Indeed, %4 (P,|P,) becomes the half-line emanating from P,, i.e.,

Fy(P|P)={AcR";|A - P|=|A— P+ |P, — P},
and the equality
?X(Pllpz):gjxl(lepz)y P, P,eR",

implies that X has independent increments on any line in R™ and therefore
that X is a Lévy’s Brownian motion X, under the normalizing condition
r(1) = 1. There are however some cases where the set % (P,|P,) is not
rich enough to characterize X; for example we have & x(P,|P,) = {P,} when
r(t) is strictly concave on (0, ). So we introduce in this paper a parti-
tion {€x(P,, P.; q); q € R} satisfying the following property: The increments
X(A) — X(B) and X(P,) — X(P,) are mutually independent if and only if A
and B belong to the same set ¥x(P,, P,; q) for some ¢q. Our partition
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describes much finer structure of X than {% x(P,|P,)} and has a relation
Cx(P,, P,; 1) = F4(P,|P,). For a Lévy’s Brownian motion X,, the set
% x, (P, P,; @) with 0 < |q] <1 coincides with a sheet of the hyperboloid of
two sheets of revolution with foci P, and P,:

Cx Py, Pi;q) = {AcR*;|A — P|=|A—PJ|+ q|P,— P} .
We now raise the following question: From the equality
Cx(Py, Pr; @) = €x (P, P;;q)  for any P, P,eR",

can one conclude that X with r(1) =1 is a Lévy’s Brownian motion X,?
Contrary to the above mentioned case g = 1, i.e., of & x (P,|P,), this question
is not easily answered. In addition, we shall be concerned with not only
a Lévy’s Brownian motion but also more general Euclidean random field
X, and we consider the following

ProBLEM 1. For some fixed ¢ € R, does a family of the sets {€4(P,, P,; q);
P, P, e R"} characterize the Euclidean random field X?

The second problem we consider is concerned with projective invari-
ance, which characterizes X, with r() = 0 < a < 2) ([3]). It is easily
seen that the projective invariance of X, is inherited by %, (P,|P,) as
follows: For any P,, P, e R", the relation

an—X.,((TpllTPz) = T.?Xa(PIIPZ)

holds for each Euclidean motion, inversion with center P, and similar
transformation 7 on R". We are naturally led to the converse problem:

ProBLEM 2. Does the relation
Fx(TP,|TP,) = TF x(P,| P,)

imply that the Euclidean random field X is an X,?

The purpose of this paper is to give partial answers to these problems.
In fact, we shall solve the Problem 1 for some class of Euclidean random
fields X, in particular, for X, with 0 < « < 2 (Theorems 2 and 3). We shall
also show that the Problem 2 can be solved under some condition on X
(Theorem 4).

We now give a summary of subsequent sections. Section 2 contains
definitions and discussions of a general Gaussian random field X. We
define the maximal conjugate set % y(A|&) for any non-empty subset & of
R" (Definition 1) and then introduce the set ¥x(P,, P,; q) (Definition 2)
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~ which plays an important role in our investigations.
In Section 3 we begin with a description of a Euclidean random field

X in terms of @ x(P,, P,; 0); namely, a Gaussian random field X is Euclidean
if and only if the relation

@x(P, P;;0) D {AeR";|A —P|=|A— P}

holds for any P,, P,e R" (Theorem 1).
We are mainly concerned with Euclidean random fields X, on R”,
which correspond to r(¢) expressed in the form

r@t) = o + J: 1 — e~*)udy(w)

with r(1) =1, where ¢>0 and y is a measure on (0, ) such that

r 1+ w'dy(w)<oo ([4]). For such an X, we find a parametrization of

0

€%, (P, P,; @) by a subset T(|P, — P,|; q) of [0, ); for a = |P, — P,| >0,
T(a;q)={t=0;r(t —a)) < r(@®) + gqr(@) < r(t + a)} .

The explicit form of T,(a; q) is given for some classes of r(¢) (Propositions

3A ~ 3E). An important example of r(¢) is

r(t) = j todi(er)

with a probability measure 1 on (0, 2].

In Section 4 we consider the Problem 1 for X, and ¢ = 0 in a slightly
general setting:

ProBrEM 1’. Suppose that, for some Euclidean random field X,, on
R" and some q, € R, the relation

Cx Py, Py q) C gxn(Pn P;; q)

holds for any P, P,e R". Then is it true that r(t) = r()?
This problem changes into the uniqueness problem of the solution

f(x) = x of the modified Cauchy’s functional equation ([1]) with f(1) =1
(Lemma 1):

flgx + ) = a.f(x) + f(»)

for xer((0, «)) and yer(T.(r'(x); q). Here we put r(¥) = {r@t); teF}
for a subset F of [0, ) and r-(¢) is the inverse function of r(¢) strictly

https://doi.org/10.1017/50027763000019759 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019759

254 KAZUYUKI INOUE AND AKIO NODA

increasing. We can solve this equation for the above mentioned classes
of X, by using the properties of T,(a; q) (Theorems 2 and 3). In particular,
we note that the Problem 1’ is completely answered for X, (0 < a < 2).

The final section contains the solution of the Problem 2 for X, under
the condition that 7T.(a,; 1) D [0, a,] for some a, > 0 (Theorem 4).

Acknowledgement. It is our pleasure to express our sincere gratitude
to Professors T. Hida and I. Kubo for their kind advice.

§2. The sets F(A|&8) and € (P, P,; q)

Let X = {X(A); Ae R"} (n > 2) be a Gaussian random field such that
X(A) — X(B) has mean zero and variance r(A4, B). Then the covariance
of the increments X(A) — X(P) and X(B) — X(P) is

(1)  E[X(4) — X(P))XX(B) — X(P))] = {r(A, P) 4+ r(B, P) — r(A, B)}/2.
We see that r(A, B) must satisfy the following conditions:
jr(A, B)=r(B,A), r(4,A) =0, r(4,B)>0 and

N
>0 aar(A, A) <0 for any A,eR* and for any a, € R

2,7=1

such that 3 a, =0 (1<i<N< o).
=1

(2)

We assume that r(A4, B) is jointly continuous and not identically zero.
We now introduce a decomposition of X(A) for any non-empty subset

& of R™:
(3) X(A) = p(A| &) + o(A]|6)E(AL6)
where
(A |&) = E[X(A)| X(P); Pe é],
d(A| &) = E[(X(A) — p(A|&))]
and

(X(A) — (Al EDlo(Als)  if o(A]6) >0,

S(Alg):{ 0 if 6(A]&) = 0.

Since X is Gaussian, we see that the random variable &(A|&) is inde-
pendent of {X(P); Pec&}. The decomposition (3) is called the canonical
form of X(A) ([2]). Explicit forms of u(A|&) and ¢(A|&) are easily given
for the case & = {P,, P,)}. First suppose that r(P, P,) > 0. Then
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(4) HA|P,P) = (1 — )27 X(P) + (1 + )27 X(Py)",
and
(5) d(A|P,P) =1 —q2'r(A, P) + (1 -+ q2'r(A, P)

— (1 =4 'r(P, Py,
where the coefficient g is given by
(6) q = (r(A, P) —r(A, P))[r(P, P,) .

When r(P,, P,) = 0, we have u(A|P,, P,) = X(P) = X(P,) and the equality
(4) holds for any q € R.
The correlation function of &(A|&) is denoted by

(7) px(A, B| &) = E[&(A]£)E(B| 4] ,

and is called the conditional correlation function relative to &. After P.
Lévy [2] we give the following

DeFINITION 1. For any A € R® and any non-empty subset & of R”,
(8) Fu(A|8) = {BeR"; px(A, B|&) = 0} .

Two points A and B such that px(A, B|&) = 0 are said to be conjugate
relative to &, and F 4(A| &) is called the maximal conjugate set of A relative
to & ([2]). The set Fx(A|&) contains a point B e R" such that ¢(B|¢&) = 0,
so that F(A|6) D &, & being the closure of &. If, in particular, ¢(A|¢)
= 0, we have #x(A|&) = R

ProposiTiON 1. The set F x(A|&) is a maximal closed set ¥~ such that
W(A|YV) = w(Alé) and ¥ N & = ¢. We also have

(9) Fx(A]€) = {BeR"; W(B|¢ U {A}) = u(B|6)} .

Proof. Set V= {7 CR*; (A|?)=w(A|&) and v" N & = ¢}. Then
the first assertion is proved by the following facts:

(1) eV when v eV; (i) Fx(A|&)eV; ({ii) ¥, U ¥,eV when
V., V. eV; (V) ¥ C Fi(A|E) when 7" e V.
The equality (9) is easily proved by taking the following formula into ac-
count:

(B¢ U {A}) = u(B| ) + px(A, B|6)a(B|£)5(A[€) .

The proof is thus completed.
For the case & = {P,}, we see by (9) that
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F (P\|P,) = {AeR"; (A| P, P,) = X(Py)},
hence the equalities (4) and (6) give the following:
(10) Fx(P,|P) ={AeR";r(A, P) =r(A,P) + r(P, P)} .
As will be shown in Theorem 2, there are some cases where & y(P,|P,)
is rich enough to characterize X. But it may happen that F x(P,|P,) =
{P,} (see Proposition 3C). Hence in order to characterize X even in such
a case, it is necessary to introduce other kinds of subsets of the parameter
space R". Inspired by (4), we give the following
DeriniTiON 2. For any P, P,e R* and any q <€ R,
(11) €x(P,, Py;q) = {AecR"; F‘(A]Pu P) =1 — @2 X(P)
+ 1 + @27 X(P)} .

This set can be expressed as follows:
(12) %X(Plypz;q) = {AGR"; r(A’PI) = r(A9P2) + qr(Pl,PZ)} .

We note the following simple facts:

(1) Uger Cx(Py, Py; q) = R",

(ii) Ex(Py, Py; 1) = Fx(P| Py);

(i) Fx(Py, Py; q@) = € x(P,, P;; — Q).

An interesting property of the set ¥x(P,, P,; q) is illustrated by the
following

PropositiOoN 2. The increments X(A) — X(B) and X(P) — X(P,) are
mutually independent if and only if A and B belong to the same set
& x(P,, P,; q) for some q € R.

Proof. Since X is Gaussian, the increments X(A) — X(B) and X(P,)
— X(P,) are mutually independent if and only if

E[(X(4) — X(B)(X(P) — X(P))] = 0.
This is rephrased by the equation
r(A,P) —r(A,P)=r(B,P) —r(B,P),
which is equivalent, by (12), to the assertion that A and B belong to
% x(P,, P,; g) for some q € R. The proof is thus completed.

§3. The set %x,(P, P,; q) for a Euclidean random field X,

In this section we first give a description of a Euclidean random field
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X in terms of ¥x(P,, P,;0), and then introduce a class S, of functions r(t)
by wusing Schoenberg’s theorem ([4]), and further investigate the set
€ x,(P, P;; @) for such an r()eS..

Suppose that the probability law of a Gaussian random field X is
invariant under each Euclidean motion 7 on R", that is,

(13) ox(TA, TB|T¢6) = px(A, B| &)

for any A, Be R" and any §CR" Then the variance r(A4, B) of X(A4) —
X(B) can be expressed in the form r(4, B) = r{A — B|) with a continuous
function r(¢) on [0, o0). Such a Gaussian random field is called Euclidean.
The Euclidean random field corresponding to r(f) is denoted by X,.

THEOREM 1. A Gaussian random field X is Euclidean if and only if
the relation

(14) Cx(Py, Pp;0) D {AeR";|A — P|=|A— P}
holds for any P,, P,eR"

Proof. Since “only if” part is clear by (12), we shall prove “if” part.
If |A— P|=|A— P,), then we have r(4, P,) = r(A, P,). With this we
must show that r(A, B) = r(4’, B’) for any A, B, A’, B'cR" such that
|A — B]|=|A’" — B/|. Putting |A — B| =d, we can find a finite number
of points P, P,, ---, Py such that |]A — P|=|P,— P,|]=--- =|Py, — A’}
= d. Then we have

r(A,B)=r(A,P)=r(P,P)= - =rP,A)=r,B),

which completes the proof.
Two Euclidean random fields X,, and X,, on R" linked by r(f) =
(const.)r,(t) have the same probabilistic structure:

0x,(A, B|€) = px, (A, B|6), Fx, (Al6)=Fx, (A]6) and
(ngl(Pu P;; Q):%Xm(Ph P; q)

for any A, B, P, P,eR", any & C R" and any ¢ < R.

As is easily seen, r(f) never vanishes for ¢ > 0, so we shall impose
the normalizing condition r(1) = 1 in what follows.

We denote by S, the class of functions r(¢) associated with Euclidean
random fields X, on R". It is a well-known result (see, for example, [6])
that r(¢) € S, has the following representation:
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(15) r® = et + | {1 - V(L@ ,

where ¢, =0, Y,(t) = I'(n/2)(2/t)"" "], _»,(f) with the Bessel function
Jin-2)(t) of order (n — 2)/2 and where L, is a measure on (0, o) such that

r w(1l + w')'dL,(u)<oo. Noting that S, D S,,,, I. J. Schoenberg [4] in-
0

vestigated the class S.. = (.. S,; namely, he proved that r(f)eS. is
uniquely expressed in the following form:

(16) r(t) = ct®* + J:o {1 — e "lu'dy(w),

where ¢ > 0 and y is a measure on (0, o) such that r 1+ wdy(w) <oo.
0

The important subclass L. of S. is defined as the set of functions r(¢) =

2

j t*dA(er) with probability measures 1 on (0,2]. We note that r() e S, is

0

strictly increasing since
r@) = 2t{c -+ r e*““dr(u)} >0 for t >0,
0

and hence the inclusion relation (14) becomes the equality
17 Cx Py, Py;0) = {AeR";|A — P|=|A - PJ.

We also note that r(f) € S, can be extended analytically to the function
r(2) on the complex domain {ze C;|argz| <z/4} ([5])). In the sequel we
shall consider the set %4, (P,, P,; ¢) only for ¢ > 0 and r(¢) € S., because
€ x,(Py, Py; —q) is the mirror image of %, (P,, P,; q) with respect to the
hyperplane (17).

Now we shall illustrate the relation between the sets ¥x.(P,, P:;q)
and T,(P, — P,|; ¢) which will be defined below by (18). Let H be an
arbitrary two-dimensional half-plane in R™ such that P, and P, belong to
the boundary-line of H. We can give a natural parametrization to the set
Cx,(Py, Py;9) N H in the following way. For any A e %y (P, P;q) N H,
put [P, — P,| =a and |A — P,| = ¢ Since r(f) is strictly increasing, we
have

rqft—a)<r((lA—-P)<rt+a).
Hence by (12),

rqft—a)<r@® +qri@ <rit+a).
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Define the following subset of [0, «o) for each a > 0:
(18) T(a;9) ={t=0;r(t —a)) <r(®) + qr(e) < r(t + a)} .

Then we see that for each te T,(|P, — P,|; ¢) there exists uniquely a point
A(t) € €x,(P,, Py; @) N H such that |A(f) — P,| = t.

In the rest of this section we devote ourselves to the investigation of
T.(a;q). First we see that

[D(a; q), o) fo<g<1,

03 057t — a) < 7+ ar@) = {0 e

where D(a; q) is the unique solution on (0, a/2) of the equation r(a — ?)
= r(t) + qr(a). Thus, putting

F.(t;a,q) =r(t + @) — rt) — qr(a),
we have

{t > D(a; q); F,(t;a,9) >0 if0<g<1,

=
19 T.(a;q) = .
(19) mq>{v>mﬂmmw>m ifg>1.

We shall give further consideration on the following classes of r(t)
€S.:

r(t) = t, which corresponds to a Lévy’s Brownian motion X;;

r(t) is strictly convex on (0, «);

r(?) is strictly concave on (0, c0);

r(t) is strictly convex on (0, f,) and strictly concave on (¢, o) for some
ty (0 <, < oo).

r(t) is strictly concave on (0, f,) and strictly convex on (¢, o) for some
t, (0 < t, < o0).

gowp

&

We see that r(t) = r t*di(a) e L,, lies in A, B and C when the probability
0

measure 2 is concentrated on {1}, [1, 2] and (0, 1] respectively; otherwise
r(t) e L, is always in E. Examples of r(¢) in D:

(i) r®) =0 —e ™)L —e") (u>0);

) r@={2¢+ 1} 1< a<2);

(i) r(@) = log (1 + t*)/log 2.
Note that r(z) = {2¢/(t + 1)} with 0 < « < 1 belongs to the class C.

ProrositioN 3A. For r(tf) = t, we have
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[A — @)a/2, ) if0<g<1l,
) ifg>1.

Proof is elementary, so is omitted.

For r(f) in B ~ E, we shall introduce some notations. The limits
lim,_, 7’(f) and lim,.. r'(f) exist in [0, o], and are denoted by r’(0 +) and
r'(o0), respectively, We denote by C(a; q) the unique solution on (0, o)
of the equation F,(¢;a, q) = 0 when a solution exists. We set

(20) T.(a;q) = {

h(a; @) = lim F.(¢; a, q) = lim r {r'(t + s) — qr'(s)}ds
{—oo t—oo J O
= 1r'(c0)a — gr(a) .
Of course h(a; q) = o when r’(c0) = oo.

ProrositioN 3B. Suppose that r(t) € 8. is strictly convex on (0, o).
Then we have

[D(a; @), 0) if 0<qg<1,

e T -1 fa—t
~ [Cla; q), o) if q>1and 0<a<a*q),
b if ¢ >1and a>a*(q),

where a*(q) = sup {a@ > 0; h(e; @) = 0}. Moreover, for ¢ > 1, we have a*(q)
= oo if and only if r'(c0) = co. In this case there exists an increasing
continuous function ¢, (a) on (0, oo) such that C(a; q) < ¢,(a) for any a > 0.

PropositioN 3C. Suppose that r(t) e S, is strictly concave on (0, o).
Then we have

[D(a; q), C(a; )] if0<g<land 0<a<aylg,

. |[D(a; q), ) if 0<q<1land a>a.q,
22) Ta;9 = 0 Fa—1,
¢ ifqg>1,

where a.(q) = sup {a = 0; h(a; @) < 0}. Moreover, for 0 < g < 1, there exists
an increasing continuous function +r,(a) on (0, c0) such that D(a; q) < (@)
< C(a; q) for 0 < a <au(q) and D(a; q) < (@) for a > a.(q).

These two propositions can be proved in a similar manner, so we give
only the proof of Proposition 3B.

The proof of Proposition 3B. Since r'(f) is strictly increasing, we have
(d/dt)F,(t; a, q) > 0. Noting that F,(0; a, ¢) = (1 — @)r(a), we easily obtain
(21) for 0< g < L.
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Now consider the case ¢ > 1. We devide the proof into two parts: (i)
r’(o0) < oo and (ii) r’(o0) = oo. First consider (i). We see that (d/da)h(a; q)
is positive on (0, b) while negative on (b, o), where b = inf{a > 0; qr'(a)
> r’(c0)}. Noting that the limit

lim (a; g)fa = r'(c0) — lim L | #/(s)ds = (1 — g)r'(oo)
0

a—oo a—co

is negative, we see that a*(q) is finite and have

>0 if 0 < a < a*(Qq),
<0 if a > a*(q) .

has q){

If h(e; g) > 0, the solution C(a;q) of the equation F,(¢;a,q) = 0 exists
and T.(a; q@) = [C(e; q), o) holds. While, if A(a; q) < 0, then T.(a;q) = ¢.
Thus (21) has been proved in the case (i).

Next consider (ii). It follows from h(a; q) = o that a*(g) = o and
TJ(a;q) = [C(a; @), ©) for any a > 0. The function ¢, (a) = r'-(gr'(a))
satisfies the inequality C(a; q) < ¢,(a) for any a > 0, because

F($,a); a, @) > a{r'(¢(a)) — qr'(@)} = 0.

We note that ¢,(a) is increasing and continuous, and that ¢,0 +) = 0 if
and only if (0 4-) = 0. Thus all the assertions have been proved.

As for r(t) in D or E, we are interested only in the case ¢ = 1.

ProposrTioN 3D. Suppose that r(t) € S.. is strictly convex on (0, t,) and
strictly concave on (i, o) for some t, (0 < t, < o). Then we have

[0, o0) if0<a<a*,
(23) T.(a;1) = [0, Cla; 1)] if a, <a<a,
{0} ifa>a, .

where a, = inf{a > 0; A(a; 1) < 0} end a, = sup{a > &; r'(a) > r'(0 +)}.
Moreover, if r'(0 4+) < r'(), then there exists a decreasing continuous func-
tion r(a) on (0, co) such that 0 < c(a) < C(a; 1) for a > a,.

ProrosiTioN 3E. Suppose that r(t) € S.. is strictly concave on (0, t,) and
strictly convex on (&, o) for some t, (0 < t, < o0). Then we have

{0} if 0<a<a*,
(24) T(a; 1) = {0} U [Cla; 1), 0)  if a* <a<a,
[0, o0) if a > a,,
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where o* = inf{a > 0; A(a; 1) > 0} and a, = sup{a > t,; r'(a) < r'(0 +)}.
Moreover, a* = 0 if and only if r'(0 4) < r'(c0). In case r'(0 +) = r’(c0),
there exists a, € (t,, ) such that Ca; 1) < a, for a > a,.

The above two propositions can be proved in a similar manner, so we
give only the proof of Proposition 3E.

The Proof of Proposition 3E. When a > a, (a, < o), we easily see
that (d/dt)F,.(t; a,1) > 0 for any t > 0. From this we have T,(a; 1)=]0, o),
which implies that a* < a,. On the other hand, when a < a,, (d/d})F,(¢; a, 1)
is negative for 0 < ¢ < t, while positive for ¢ > ¢,, where ¢, € (0, f,) is the
unique solution of the equation r’(¢ + a) = r’(f). Therefore, if h(a; 1) >0,
the solution C(a; 1) of the equation F(¢; a,1) = 0 exists and T,(a; 1) = {0}
U [C(a; 1), o) holds. While, if A(e;1) <0, then T,(a;1) = {0}. We are
now in a position to see that
<0 ifo0<a<a*,

ha; 1){ :
>0 if a > a*.

For (d/da)h(a; 1) is negative on (0, b) while positive on (b, o0), where b =
inf {a € (0, t,); r'(a@) < r'(o0)} < @*. Thus we have proved (24).

We now proceed to the proof of the second part. We first note that
a* = 0 if and only if b = 0, which is equivalent to the condition r(0 +)
< r'(e0). In case r'(0 +) = r'(0) (i.e., a* =0 and a, = ), we can choose
a, € (t,, o0) such that r(2a,) > 2r(a,), because g(a) = r(2a) — 2r(a) is strictly
increasing on (f,, o) and the limit

lim g(a) = lim j 0 (s + @) — r'(s)}ds = f {'(00) — r/(s)}ds

a— oo

is positive. It is easily verified that F.(a,; a,1) > 0 for a > a,, which im-
plies that C(a;1) < a, for a > a,, Thus the proof is completed.

8§4. Characterization of X, by means of % (P, P,; q)

In this section we consider the Problem 1 concerning the characteri-
zation of a Euclidean random field X, on R™ by means of % (P, P,; q).
First we note that the family {€4 (P, P:; q); P\, P, R", ¢ € R} uniquely
determines the probability law of X,. That is, if functions r(¢), r.(¥) € S,
satisfy the equality

(25) Cx(Py, Py; q) = %X“(Pl, Py q)

for any P,, P,¢ R" and any q € R, then we have r(f) = r,(f). This is easily
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verified by noting that (25) is equivalent to the following:

(26) {r(A —PJ) — r(A — le)}/rqpl — By
= {r(A — P||) — r(|A — PD}/r(P, — P,))

for any A, P, P,cR".
Our conjecture is that the family {¢€y,(P,, P,; q); P, P, € R} with some
fixed ¢ > 0 would suffice for the characterization of X,.

ProBrEM 1. Let r(®eS., ¢ >0 and n > 2 be fixed. Suppose that
r(t) €S, and g, € R satisfy the relation

27 Cx(P,, Py;q) C (ngl(Pl, Py q,)

for any P,, P,e R". Then is it true that r,(t) = r(¢) and ¢, = ¢?

Proposition 2 tells us the following: For any A, B¢ %, (P, P.; @) the
increments X(A) — X(B) and X(P,) — X(P,), viewed as the differences of
members of X,, are mutually independent. By the relation (27), this pro-
perty is still true even if those increments are viewed as the differences
of members of X,,. Therefore, if the Problem 1’ is affirmative, the para-
meter set of the form ¥y (P, P,;q) is thought of as a characteristic of a
Gaussian random field, so far as the independence property of the incre-
ments is concerned. We shall solve this problem for the classes A ~ E of
r(t) € §. by using the properties of T,(a; q).

We deduce a functional equation for f(x) = r,(r-!(x)) from the relation
(27). For each te T,(|P, — P,|; q), there exists a point A(¢) € €y (P, P,; q)
such that |A(¥) — P,) =t. By (12), we see that

r(A@®) — P) =r@®) + qr((P, — P.)) .
Since the point A(f) belongs also to %y, (P, P.; q)), the equality
r,([A(t) — P)) =r(t) + Q1r1([P1 — Py

holds. From these equations, putting x = r(|P, — P,)) and y = r(f), we

obtain

(28) flgx + ) = a.f(x) + f() ,
where

(29) xer(0,00), yer(T.(r'(x);q) .

What has been discussed can be summarized as
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LeMmA 1. Suppose that the relation (27) holds for any P, P,cR".
Then the continuous function f(x) = r(r-'(x)) satisfies the functional equation
(28).

Since the equality ¢, = g easily follows from r(t) = r(f), our goal is to
prove that f(x) = x is the unique solution of (28) with f(1) = 1.

(@) The case ¢ = 1. In this case the Problem 1’ becomes somewhat
simple; the relation (27) implies that g, = 1. We thus have Cauchy’s
functional equation:

(28), fx +y) =fx) + ),
(29), xer(0, ), yer(T,(r'(x);1).

When r(t) is strictly concave (i.e., in the class C), & 4 (P,|P,) = {P.} holds,
so that we cannot obtain r(f) = r(¥). On the other hand, when r(f) is
strictly convex (in B) or r(f) = ¢ (in A), Cauchy’s functional equation (28),
holds for any x, y > 0. Then it is a classical result that f(x) = x is the
unique solution with f(1) = 1 ({1]). Furthermore we shall show that this
is true also for r(¢) in D or E under the condition r’(0 +) < r’(c0), by using
the theorem of J. Aczél (p. 46 in [1]).

First, let r(f) € S, be in D with the condition r'(0 +) < r’(c0). Then
we see by Proposition 3D that the domain (29), includes the following set:

(30) Dy = {(x,5);0<x <0<y <), x+y<p}

with the decreasing continuous function @(x) = r(z(r-'(x))) on (0, 8), where
B = r(=) e (1, o] and where z(a) is the function on (0, o) in Proposition
3D. When p < oo, we may assume that @(x) < g — x without loss of
generality.

LemmA 2. Suppose that a continuous function f(x) with f(1) = 1 satisfies
Cauchy’s functional equation (28), for any (x, y) € D, with o decreasing con-
tinuous function @(x) on (0,8) such that 0 < O(x) < B —x (1 < B < o).
Then we have f(x) = x.

Proof. Take x, such that @&(x,) = x,. Then, (0, x.] X (0, x,]  D,, which
means that (28), holds for any x, y € [0, x,]. Hence by Aczél’s theorem, we

have f(x) = cx on [0, x,] with some constant ¢. When x > x,, it follows
from (28), that

{fx+y) —f@Yy =fMy=c for 0<y <),
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so that the right derivative of f at xe(x,, §) exists and is equal to the
constant ¢. From this we obtain f(x) = cx on [0, 8), and ¢ = 1 since f(1)
= 1. The proof is thus completed.

Next, let r(¥) ¢ S.. be in E with the condition r'(0 +) < r’(e0). Then
we see by Proposition 3E that the domain (29), includes the following set:

31 D" = {(x,5); 0 < x < 00, ¥(x) <y < o0},
where ¥(x) is the nonnegative continuous function defined by

r(C(r'(x); 1) for 0 < x < r(ay) ,
0 for x > r(a,) ,

U(x) = {

and satisfies the property that there exists x,¢€ (0, o0) such that ¥(x) < x,
for x > x,.

LemmA 3. Suppose that a continuous function f(x) with f(1) = 1 satisfies
Cauchy’s functional equation (28), for any (x,y)e D¥ with a nonnegative
continuous function ¥(x) on (0, co) satisfying the property that there exists
x, € (0, o) such that [x,, co0) X [x,, 00) & D¥. Then we have f(x) = x.

This is a simple consequence of Aczél’s theorem, so we omit the proof.

Thus we have proved the following

THEOREM 2. Suppose that r(t) € S, satisfies one of the following four
conditions:
(i) r@®=¢
(ii) r(@) is strictly convex on (0, );
(iii) r(t) is strictly convex on (0, t,), strictly concave on (i, o) for some
t, (0 < t, < o0) and r'(0 +) < r'(o0);
(iv) r() is strictly concave on (0, t,), strictly convex on (f,, c0) for some
t, (0 <t < o0) and r’(0 +) < r'(co).
Then, r(t) €S, satisfies the relaiion

Fx(P,|P) C Fx, (P|P,) for any P, P,cR"
if and only if r(t) = r(@).

In the above cases (iii) and (iv), we have assumed, for convenience,
that r'(0 4+) < r’(c0). Without this assumption, difficulties arise, for one
thing the equality Fy (P,|P,) = {P,} holds for |P, — P,| > @, in the case
(iii) (see Proposition 3D) and for |P, — P,| < ¢* in the case (iv) (Propo-
sition 3E).
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(b) Thecases 0 << q<1or qg>1 When r() is strictly concave (in C)
or r(t) = t (in A), we have ¥y (P, P,;q) = ¢ for g > 1, so the answer to
the Problem 1’ is obviously “No”. But we have an affirmative answer in
the following four cases:

(i) 0<g<land r(®=t;
(ii) 0< ¢ <1 and r(¢) is strictly convex on (0, o) ;
(iil)) 0< g <1 and r(¢) is strictly concave on (0, )
(32) .
with (o) = oo ;
(iv) g > 1 and r(¢) is strictly convex on (0, co) with r’(0 +) = 0
and r’/(c0) = oo .

In these cases, we see by Propositions 3A, 3B and 3C that in the
interior of the domain (29) there exists an increasing continuous curve
I':y=d¢(x), 0 < x< oo, with ¢(0 +) = 0. Therefore, under the restriction
that r,(¢) € S, is twice differentiable, we can easily verify that f(x) = x is
the unique solution of (28) with f(1) = 1. Thus we have obtained the
following

TrEOREM 3. Suppose that r(t)eS. and g > 0 satisfy one of the four
conditions in (32). Then, a twice differentiable function r(t)e S, and q, ¢ R
satisfy the relation

Cx (P, Pz;q)c(gX,I(Pn P;; q) for any P,, P,cR"
if and only if r(t) = r(t) and q, = q.
Remark 1. We see by Theorems 2 and 3 that the answer to the Pro-
blem 1’ for r(f) = t* (0 < & < 2) is “Yes” in the following cases: (i) 0 <

g<land 0<a<2; () g=land1l<<a<?2; (i) g>land 1<a<2
In the other cases, the answer is “No”.

Remark 2. Theorem 3 holds even in the case where a parameter ¢,
R depends on P,, P, R".

§5. The projective invariance of %y (P,|P,)

In this section we consider the Problem 2 mentioned in §1. The pro-
bability law of X, is invariant under each Euclidean motion, similar trans-
formation and inversion 7 on R", that is, the equality

(39 pxdTA, TB|T¢&) = px(A, B|&)
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holds for any A, Be R" and any & C R". Here we take an inversion T
with center in &, that is, for some a¢ > 0 and some Pe &,

TA=¢(A—P)|A—P*+P ifAxP,
TP=P.

The property (33) is the characteristic property of X, called projective
invariance ([3]). It easily follows from (33) that

(34) FxTA|TE) = TF x(A]|E) for any AeR" and any & C R".

Now we wish to show that there is no other X, with the above property
(34). Namely, we are ready to discuss

ProBLEM 2. Suppose that r(t) € S, satisfies the equality
(35) Fx(TP,|TP,) = TF x(P,|P,) for any P,, P,cR",

where a transformation T on R™ runs over all similar transformations
and inversions with center P,. Then is it true that r(f) = *?
We can solve this problem under the following condition:

(36) There exists a, > 0 such that r(t) + r(e) <r(t+a) for 0<t< ay,

which means that T.(a,;1) D [0, @,]. It follows from (35) that T,(a;1) =
{atlay; t € T(ay; 1)}, @ > 0, and that the set T,(a; 1)\{0}, ¢ >0, is invariant
under the inversion #* = o/t on (0, c0). By using the condition (36), we
have 7T.(a;1) = [0, =) for any a > 0.

THEOREM 4. Suppose that r(t) € S.. satisfies the condition (36). Then
the equality (35) holds for any similar transformation and inversion with
center P, if and only if r(®) = t* 1 < a < 2).

Proof. It suffices to prove “only if” part. From the equality (35) for
any similar transformation 7 on R", we obtain the equation

(37) r(kr=(r(®) + 1)) = r(kt) + r(k)

for any £ > 0 and any te T,(1;1) = [0, o0). With this we show the follow-
ing equation for any natural number m:

(38) r(kr-'(m)) = mr(k) for any £ > 0.

This equation clearly holds for m = 1. Suppose the equation (38) holds
for m. Then, putting ¢ = r~'(m) in (37), we see that
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r(kr-i(m + 1)) = r(kr(m)) + r(k) = (m + Dr%) .

By induction on m, the equation (38) holds for all m.

If we set r(k) = a in (38), then we have r-'(ma) = r-'(m)r-'(a). It easily
follows that r~'(pa) = r~*(p)r-'(a) for any rational number p and any a > 0.
Since r-i(¢) is continuous, we obtain

r~'(ab) = r-'(a)r'(b) for any @, 6> 0,

which implies that r~'(¢) = ¢/ for some « > 0. Thus, excluding the case
0 < a < 1 because of (36), we have r(f) = ¢ with 1 < a < 2. The proof
is completed.
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