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INDEPENDENCE OF THE INCREMENTS

OF GAUSSIAN RANDOM FIELDS
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§ 1. Introduction

Let X = {X(A); A e Rn} be a mean zero Gaussian random field (n > 2).

We call X Euclidean if the probability law of the increments X(A) — X(B)

is invariant under the Euclidean motions. For such an X, the variance

of X(A) — X(B) can be expressed in the form r(\A — B\) with a function

r(t) on [0, oo) and the Euclidean distance \A — B\.

We are interested in the dependence property of a Euclidean random

field X and after P. Levy [2] we introduce a set J Γ

X (P 1 |P 2 ) for a pair of

points P l 5 P2eRn:

^x(PAPd = {AeR``; E[(X(A) - X(P2))(X(PX) - X(P2))] = 0} .

The set ^r

x(Pί\P2), we expect, would characterize the Euclidean random

field X. This is the case for a Levy's Brownian motion Xu where r(t) = t.

Indeed, ^xlPγ\Pί) becomes the half-line emanating from P2, i.e.,

= {AeR`; \A - P,\ = \A - P2\ + \PX - P2|} ,

and the equality

^x(Pi I ^2) - PxSPi IP2), P» P*eR\

implies that X has independent increments on any line in Rn and therefore

that X is a Levy's Brownian motion Xx under the normalizing condition

r(l) = 1. There are however some cases where the set ^X(P\ \ P2) is not

rich enough to characterize X; for example we have ^x{Pλ \ P2) = {P2} when

r{t) is strictly concave on (0, 00). So we introduce in this paper a parti-

tion {^χ(Pi, P2; q); q eR} satisfying the following property: The increments

X(A) - X(B) and X(P,) - X(P2) are mutually independent if and only if A

and B belong to the same set c?'X(P1? P2;g) for some q. Our partition
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describes much finer structure of X than {^'X(P1\P2)} and has a relation

&x(P» P 2; 1) = ^ x ( P i | P 2 ) . For a Levy's Brownian motion Xl9 the set

^Xl{Pu P2I Q) with 0 < |g| < 1 coincides with a sheet of the hyperboloid of

two sheets of revolution with foci Px and P 2 :

<$xι{Pl9 P 2; g) = {A e Jϊ»; |A - P,\ = |A - P 2 | + g |P, - P2|} .

We now raise the following question: From the equality

VX(PU P 2; g) = ^χ x(P1 ? P 2; g) for any P l 5 P 2 6 JRΛ ,

can one conclude that X with r(l) = 1 is a Levy's Brownian motion XλΊ

Contrary to the above mentioned case q = 1, i.e., of SFx$JPγ |P2), this question

is not easily answered. In addition, we shall be concerned with not only

a Levy's Brownian motion but also more general Euclidean random field

X, and we consider the following

PROBLEM 1. For some fixed gel?, does a family of the sets {^x(Pl9 P 2; g);

Pu P 2 € Rn} characterize the Euclidean random field X?
The second problem we consider is concerned with projective invari-

ance, which characterizes Xa with r(t) — ta (0 < a < 2) ([3]). It is easily
seen that the projective invariance of Xa is inherited by &r

Xa(Pi\P2) as
follows: For any Pu P2 e Rn, the relation

holds for each Euclidean motion, inversion with center P2 and similar
transformation T on Rn. We are naturally led to the converse problem:

PROBLEM 2. Does the relation

imply that the Euclidean random field X is an XaΊ

The purpose of this paper is to give partial answers to these problems.

In fact, we shall solve the Problem 1 for some class of Euclidean random

fields X, in particular, for Xa with 0 < a < 2 (Theorems 2 and 3). We shall

also show that the Problem 2 can be solved under some condition on X

(Theorem 4).

We now give a summary of subsequent sections. Section 2 contains

definitions and discussions of a general Gaussian random field X. We

define the maximal conjugate set ^X{A \ $) for any non-empty subset S of

Rn (Definition 1) and then introduce the set <ίfx(PuP2; q) (Definition 2)
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which plays an important role in our investigations.

In Section 3 we begin with a description of a Euclidean random field

X in terms of ^x(Pl9 P 2; 0); namely, a Gaussian random field X is Euclidean

if and only if the relation

Vx(Pl9 P 2; 0) =) {A e R"; \A - P,\ = (A - P2|}

holds for any P1 ? P 2 e Λn (Theorem 1).

We are mainly concerned with Euclidean random fields X} on Rn,

which correspond to r(t) expressed in the form

r(t) = cf + Γ (1 - e-t2u)u~ιdγ(u)
Jo

with r(l) — 1, where c ^ 0 and γ is a measure on (0, co) such that

(1 + w)~1cίr(^)<co ([4]). For such an Xr we find a parametrization of
Jo

%Xr{Pu P 2; q) by a subset Γ ^ - P 2 | ; q) of [0, oo); for a - |P, - P 2 | > 0,

Γ,(α; q) = {t > 0; r((£ - α|) < r(ί) + gr(α) < r(t + α)} .
The explicit form of Tr(a; q) is given for some classes of r{t) (Propositions

3A — 3E). An important example of r(t) is

r(t) - Γ tadλ(a)
Jo

with a probability measure λ on (0, 2].

In Section 4 we consider the Problem 1 for Xr and g ^ 0 in a slightly

general setting:

PROBLEM V. Suppose that, for some Euclidean random field Xri on

Rn and some qx e R, the relation

holds for any Pί9 P2 e Rn. Then is it true that rx(t) = r(ί)?

This problem changes into the uniqueness problem of the solution

f(x) = x of the modified Cauchy's functional equation ([1]) with /(I) = 1

(Lemma 1):

f(qx + y) = qif(x) + f(y)

for xer((0, oo)) and y e r{Tr{r'\x); q)). Here we put r(F) - {r(t); teF}

for a subset F of [0, co) and r~\t) is the inverse function of r(t) strictly
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increasing. We can solve this equation for the above mentioned classes

of Xr by using the properties of Tr(a; q) (Theorems 2 and 3). In particular,

we note that the Problem Γ is completely answered for Xa (0 < a < 2).

The final section contains the solution of the Problem 2 for Xr under

the condition that Tr(a0; 1) Z) [0, α0] for some α0 > 0 (Theorem 4).

Acknowledgement. It is our pleasure to express our sincere gratitude

to Professors T. Hida and I. Kubo for their kind advice.

§ 2. The sets ^X(A \ S) and ^X(PU P2; q)

Let X = {X(A); A e Rn} (n > 2) be a Gaussian random field such that

X(A) — X(B) has mean zero and variance r(A, B). Then the covariance

of the increments X{A) - X(P) and X(B) - X(P) is

( 1 ) E[(X(A) - X(P))(X(B) - X(P))] = {r(A, P) + r(By P) - r{A, B)}/2 .

We see that r(A, B) must satisfy the following conditions:

[r(A, B) - r(B, A\ r(A, A) = 0, r(A, B) > 0 and
N

^`1 Λ ")T(AU Aj) < 0 for any At e Rn and for any ateR( 2 ) Σ
l

such that Σi a>i = ° (1 < i < ΛΓ < oo) .

We assume that r(A, B) is jointly continuous and not identically zero.

We now introduce a decomposition of X(A) for any non-empty subset

£ of Rn:

( 3 ) X(A) = μ(A\£) + σ(A\£)ξ(A\£) ,

where

//(A I £) = £?[X(A) I X(P) P e ^] ,

σ\A\£) = E[(X(A) - μ(A\£)γ]

and

Γ(X(A) - μ(A I < )̂)MA I <f) if σ(A \ S) > 0 ,

"" t 0 ifσ(AK) = 0.
ξ(A

Since X is Gaussian, we see that the random variable ξ(A \ S) is inde-

pendent of {X{P);PeS}. The decomposition (3) is called the canonical

form of X(A) ([2]). Explicit forms of μ(A | S) and σ(A | δ) are easily given

for the case δ = {PJ; P2}. First suppose that r(P,, P2) > 0. Then
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( 4 ) μ(A\P,:P,) = (1 - q)2~`X(Pd + (1 + g)2"'X(Pι)
1,

and

( 5 ) σ\A I P,3P2) = (1 - q)2-`r{A, P ) + (1 + g)2-'r(A, P2)

- (1 - g2)4-V(P, P 2 ),

where the coefficient q is given by

( 6) q = (r(A, P,) - r(A, P2))KPl9 P2) .

When r(Pu P2) = 0, we have μ(A\Pl9 P2) = X{P,) - X(P2) and the equality

(4) holds for any q e R.

The correlation function of ξ(A | g) is denoted by

( 7 ) Px{A,B\S) -^ E[ξ{A\S)ξ{B\S)} ,

and is called the conditional correlation function relative to g. After P.

Levy [2] we give the following

DEFINITION 1. For any AeRn and any non-empty subset g of Rn,

( 8 ) ^χ{A\i) - {BeR*\Px(A,B\g) = 0} .

Two points A and B such that ρx(A, B | g) = 0 are said to be conjugate

relative to $, and J ^ A | (f) is called the maximal conjugate set of A relative

to g ([2]). The set ^X(A \ g) contains a point B e Rn such that σ(B | g) == 0,

so that J^xίA I <f) =) #, g being the closure of g. If, in particular, σ(A | g)

= 0, we have ^^(A | <f) = Rn.

PROPOSITION 1. The set &'X(A \ g) is a maximal closed set nΓ such that

u(A I nΓ) = μ(A I g) and Ψ` Π £ ^ φ. We also have

( 9 ) &χ{A\$) = {BeR*; μ(B\g U {A}) = μ(B\g)} .

Proo/. Set V == [T a Rn; μ(A\r`) = μ(A\ g) and ir {\ g ^ φ}. Then

the first assertion is proved by the following facts:

(i) Ψ e V when f e F ; (ii) &X(A \g)eV; (iii) Ψ`x U Ψ`2 e V when

^ i , ^2 e F; (iv) TT C J ^ ( A | ̂ ) when f e F .

The equality (9) is easily proved by taking the following formula into ac-

count :

μ(B \g U {A}) = μ(B I g) + Px(A, BI g)σ(B \ g)ξ(A \ g) .

The proof is thus completed.

For the case g = {P2}, we see by (9) that
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{AeRn; μ(A \ Pu P2) = X(P2)} ,

hence the equalities (4) and (6) give the following:

(10) &χ(PAPd = {AeRn; r(A, P>) = r(A, P2) + r{Pu P2)} .

As will be shown in Theorem 2, there are some cases where

is rich enough to characterize X. But it may happen that &' X(PX | P2) =

{P2} (see Proposition 3C). Hence in order to characterize X even in such

a case, it is necessary to introduce other kinds of subsets of the parameter

space Rn. Inspired by (4), we give the following

DEFINITION 2. For any Pl9 P2 e Rn and any q e R,

= {AeRn; μ(A \Pu P2) = (1 - g)2"1Z(P1)

+ (1 + q)2~`X(P2)} .

This set can be expressed as follows:

(12) VX{PU P2;q) = {AeRn; r(A, P.) = r(A, P2) + qr(Pu P2)} .

We note the following simple facts:

( i ) UqeRvx(P»P*;q) = Rn;
(ii) ^X(P1,P2;1) = ^X(P1\P2);
(iii) VX(P19 P2;q) = VX(P2, P,; - q).

An interesting property of the set ^x(Pl9 P 2; q) is illustrated by the

following

PROPOSITION 2. The increments X(A) - X(B) and X(P,) - X(P2) are

mutually independent if and only if A and B belong to the same set

^X(PU P 2; q) for some qeR.

Proof. Since X is Gaussian, the increments X(A) — X(B) and X(PΪ)

— X(P2) are mutually independent if and only if

E[(X(A) - X(B))(X(P1) - X(P2))] = 0 .

This is rephrased by the equation

r(A, P,) - r(A, P2) = r{B, PJ - r(B, P2) ,

which is equivalent, by (12), to the assertion that A and B belong to

&x(Pl9 P2',q) for some qeR. The proof is thus completed.

§3. The set &Xr(PuP2;q) for a Euclidean random field Xr

In this section we first give a description of a Euclidean random field
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X in terms of ^X{PU P2; 0), and then introduce a class S^ of functions r(t)

by using Schoenberg's theorem ([4]), and further investigate the set

Vχr(Pi> p2l q) for such an r(t) e &..

Suppose that the probability law of a Gaussian random field X is

invariant under each Euclidean motion T on Rn, that is,

(13) Px{TA, TBI Tδ) = Px{A, B \ δ)

for any A, BeRn and any £(ZRn. Then the variance r(A, B) of X(A) -

X(B) can be expressed in the form r(A, B) = r(\A — B\) with a continuous

function r(t) on [0, co). Such a Gaussian random field is called Euclidean.

The Euclidean random field corresponding to r(t) is denoted by Xr.

THEOREM 1. A Gaussian random field X is Euclidean if and only if

the relation

(14) <gx{Pu P 2 ; 0) =) {A e Rn;\A - Pλ\ = |A - P2\)

holds for any Pl9 P2 e Rn.

Proof. Since "only if" part is clear by (12), we shall prove "if" part.

If IA - Pj| = \A - P2\, then we have r(A, P,) = r(A, P2). With this we

must show that r(A, B) = r(A', Bf) for any A, B, A\ B' e Rn such that

\A — B\ = \Af — Bf\. Putting \A — B\ = d, we can find a finite number

of points Pu P 2 ; ",PN such that \A - Pt\ = \P, - P2\ = - \PN - Af\

= d. Then we have

r(A, B) = r(A, Px) = r(P1 ? P2) = . = r(PN, A*) = KA', BO ,

which completes the proof.

Two Euclidean random fields Xri and Xr2 on Rn linked by r^t) —

(const.)r2(£) have the same probabilistic structure:

pXri(A9 B\δ) = pXr2(A, BIδ\ ^Xri(AIδ) = # - X r a ( A | ί ) and

«7x r i(P1,P2;g)=«'x r,(Pi,P2;g)

for any A, β, P1 ? P2 e 7?n, any £ C Rn and any g e R.

As is easily seen, r(t) never vanishes for t > 0, so we shall impose

the normalizing condition r(ϊ) = 1 in what follows.

We denote by Sn the class of functions r(t) associated with Euclidean

random fields Xr on Rn. It is a well-known result (see, for example, [6])

that r(t)eSn has the following representation:
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(15) r(t) = cnf + Γ {1 - Yn(tu)}dLn(u) ,
Jo

where cn > 0, Yn(t) = Γ(^/2)(2/ί)(w"2)/V(re_2)/2(0 with the Bessel function

J(n-2)/2(t) of order (n — 2)/2 and where Ln is a measure on (0, oo) such that

Γ u\l + u?)-ιdLn(u)<oo. Noting that Sn z> ιSn+1, I. J. Schoenberg [4] in-
Jo

vestigated the class S^ = Γ)n>2Sn; namely, he proved that r(t) e S^ is

uniquely expressed in the following form:

(16) r(t) = cf + Γ {1 - e-»*}u-ιdr(u\
Jo

C°°
where c > 0 and γ is a measure on (0, oo) suchthat (1 + u)~ιdγ{uXoo.

Jo

The important subclass L^ of S^ is defined as the set of functions r(i) =

tadλ(a) with probability measures λ on (0, 2]. We note that r(t) e S^ is
Jo

strictly increasing since

r\t) = 2t\c + Γ e-t2udγ(u)\ > 0 for t > 0 ,

and hence the inclusion relation (14) becomes the equality

(17) VXr(P» P 2; 0) = {A e IT; \A - Pt\ = \A - P2|} .

We also note that r(t) e Sm can be extended analytically to the function

r(z) on the complex domain {z eC;\axg z\ Kπj4} ([5]). In the sequel we

shall consider the set &χr(Pu P2; Q) only for q > 0 and r(ί)β5Όo, because

^xXP^Pil —q) is the mirror image of ^Xr{Pl9 P2; q) with respect to the

hyperplane (17).

Now we shall illustrate the relation between the sets &χXPi, P2', q)

and TXIP, - P2\; q) which will be defined below by (18). Let H be an

arbitrary two-dimensional half-plane in Rn such that Px and P2 belong to

the boundary-line of H. We can give a natural parametrization to the set

VχAP» P 2; q) Π H in the following way. For any A e VXAP» P2; q) Π ̂ Γ,

put I Pi — P2\ = a and \A — P2\ = t. Since r(ί) is strictly increasing, we

have

r ( | ί - α | ) < KIA-P.IX r(t + a) .

Hence by (12),

r(|ί - α|) < r(t) + gr(α) < r(t + a) .
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Define the following subset of [0, oo) for each a > 0:

(18) Tr(a; q) = {t> 0; r(\t - a\) < r(t) + qr(a) < r(t + a)} .

Then we see that for each t e Tr{\Pι — P2\; q) there exists uniquely a point

A(t) e VXr(Pu P2; q) Π H such t h a t \A{t) — JP2| = ί.

In the rest of this section we devote ourselves to the investigation of

Tr(a; q). First we see that

([D(a; g), oo) if 0 < a < 1 ,
\t > 0; r(\t - a\) < r{t) + qr(a)} = V \ q h .» Λ

[[0, oo) if q > 1 ,

where D(a; q) is the unique solution on (0, a/2) of the equation r(a — t)

= r(t) + qr(a). Thus, putting

Fr(t; a, q) = r(t + a) - r(t) - qr(ά) ,

we have

\{t > D(a; q); Fr(t; a, q) > 0} if 0 < q < 1 ,
(19) Tr(a; q) - ^ ^ ^ p ^ ^ g)

We shall give further consideration on the following classes of r(t)

A. r(t) = t, which corresponds to a Levy's Brownian motion Xλ\

B. r(t) is strictly convex on (0, oo);

C. r(t) is strictly concave on (0, oo);

D. r(i) is strictly convex on (0, t0) and strictly concave on (ί0, oo) for some

to (0<t0< oo).

E. r(ί) is strictly concave on (0, Q and strictly convex on (t0, oo) for some

to (0<t0< oo).

We see that r(ί) = tadλ(ά) e Z^ lies in A, B and C when the probability

measure λ is concentrated on {1}, [1, 2] and (0,1] respectively; otherwise

rifieL^ is always in E. Examples of r(t) in D:

( i ) r(ί) = (1 - β-

(ii) r(ί) = {2t/(t + 1)}*

(iii) r ( 0 - l o g ( l

Note that r(ί) = {2φ + l)}α with 0 < a < 1 belongs to the class C.

PROPOSITION 3A. For r(t) = t, we have

https://doi.org/10.1017/S0027763000019759 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019759


260

(20) Tr(a;q) =

KAZUYUKI INOUE AND AKIO NODA

[(1 - g)α/2, oo) if 0 < q < 1,

φ if q > 1 .

Proof is elementary, so is omitted.

For r(t) in B — E, we shall introduce some notations. The limits

lim^o r'(t) and lim^*, r\t) exist in [0, oo], and are denoted by r'(0 + ) and

r'(oo), respectively. We denote by C(a; q) the unique solution on (0, oo)

of the equation Fr(t; a, q) = 0 when a solution exists. We set

h(a; q) = lim Fr(t; α, q) = lim {r\t + s) — qr\s)}ds

= r\co)a — qr(a) .

Of course Λ(α; g) Ξ OO when rr(oo) = oo.

PROPOSITION 3B. Suppose that r(t) e 5U is strictly convex on (0, oo).

Then we have

(21)

[D(a; g), oo) ί/ 0 < g < 1 ,

[0, oo) ifq=l,

[C(a; q), oo) if q > 1 ατιcί 0 < α < α*(g) ,

^ if q `> 1 and a > α*(g) ,

where a*(q) — sup {α > 0; h(a; q) > 0}. Moreover, for q > 1, w e Λαi e α*(g)

= oo i/ and oτzZj> i/ r'(oo) = oo. Jn ^Λi5 case ίΛerβ exists an increasing

continuous function φq(a) on (0, oo) such that C(a; q) < φq(a) for any a > 0.

PROPOSITION 3C. Suppose that r(i) e S^ is strictly concave on (0, oo).

Then we have

(22) Tr(a; q) =

[D(a;q),C(a;q)]

[D(a;q), oo)

{0}

if 0 < q < 1 and 0 < a <

// 0 < q < 1 and a > a*(#

ifq=l,

where a*(q) = sup {a > 0; Λ(a; g) < 0}. Moreover, for 0 < q < 1, there exists

an increasing continuous function ψq(a) on (0, oo) such that D(a; q) < ψq(a)

< C(a; q) for 0 < a <a*(g) and D(a; g) < -ψ β(a) /or a > a^g).

These two propositions can be proved in a similar manner, so we give

only the proof of Proposition 3B.

The proof of Proposition 3B. Since r'(t) is strictly increasing, we have

(d/dt)Fr(t; a, q) > 0. Noting that Fr(0; α, q) = (1 - q)r(a), we easily obtain

(21) for 0 < q < 1.
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Now consider the case q > 1. We devide the proof into two parts: (i)

r'(oo) < oo and (ii) r'(oo) = co. First consider (i). We see that (dlda)h(a; q)

is positive on (0, b) while negative on (b, oo), where b = inf {a > 0; qr'(d)

> r'(oo)}. Noting that the limit

lim h(a; q)ja - r'(oo) - lim 2- Γ r/(s)ds = (1 - q)r'(oo)
a— oo α-> oo (X J 0

is negative, we see that α*(g) is finite and have

if 0 < α < a*(q),
h(a; q)\

\ < 0 if α

If h(a; q) > 0, the solution C(a; q) of the equation i^.(2; α, g) = 0 exists

and Γr(α; g) = [C(a; q), oo) holds. While, if h(a; q) < 0, then Tr(a; q) = φ.

Thus (21) has been proved in the case (i).

Next consider (ii). It follows from h(a; q) — oo that a*(q) — co and

Tr(a; q) = [C(a; q), oo) for any a > 0. The function 0β(α) = r'~l(qr'(a))

satisfies the inequality C(a; q) < φq(a) for any α > 0, because

Fr(φq(a); a, q) > a{r'(φq(a)) - qr\a)} = 0 .

We note that φq(a) is increasing and continuous, and that φq(0 + ) = 0 if

and only if r'(0 + ) — 0. Thus all the assertions have been proved.

As for r(t) in D or E, we are interested only in the case q = 1.

PROPOSITION 3D. Suppose that r(t) e S^ is strictly convex on (0, t0) and

strictly concave on (t0, oo) for some tQ (0 < t0 < oo). Then we have

(23) Tr(a; 1) =

[0, oo) if 0 < a < a* ,

[0, C(a; 1)] if a*<a<aί7

{0} if a > ax .

u Λere α^ = inf {α > 0; h(a; 1) < 0} and aλ = sup {α > ίo; r'(α) > r'(0 +)}.

Moreover, if r'(0 + ) < r'(oo)9 then there exists a decreasing continuous func-

tion τ(a) on (0, oo) such that 0 < r(α) < C(α; 1) for a > α^.

PROPOSITION 3E. Suppose that r(t) e S^ is strictly concave on (0, t0) and

strictly convex on (t0, oo) for some t0 (0 < t0 < oo). Then we have

({0} if 0 < a < α* ,

(24) Γr(α; 1) = J{0} U [C(α; 1), oo) if a* < a < a2 ,

[[0, co) i/ α > α2 ,
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where α* = inf {a > 0; h(a; 1) > 0} and a2 = sup {a > to; r'(a) < r'(0 +)}.

Moreover, α* = 0 // and only if r'(0 + ) < r'(oo). Jra case r'(0 + ) = r'(oo),

ίΛere exists a0 e (t0, oo) such that C(a; 1) < a0 /or a > a0.

The above two propositions can be proved in a similar manner, so we

give only the proof of Proposition 3E.

The Proof of Proposition 3E. When a > α2 (α2 < oo), we easily see

that (dldi)Fr(t; a, 1) > 0 for any t > 0. From this we have Tr(a; l) = [0, oo),

which implies that α* < α2. On the other hand, when a < a2, (dldf)Fr(t; α, 1)

is negative for 0 < t < Jα while positive for t > Zα, where ta e (0, ί0) is the

unique solution of the equation r\t + a) = r'(t). Therefore, if h(a; 1) > 0,

the solution C(a; 1) of the equation Fr(t; a,ί) = 0 exists and Tr(a; 1) = {0}

U [C(a; 1), oo) holds. While, if h(a; 1) < 0, then Tr(a; 1) = {0}. We are

now in a position to see that

0 if 0 < a < α* ,

•>0 if a>a*.

For (d/da)h(a; 1) is negative on (0, b) while positive on (6, oo), where b =

inf {a e (0, t0); r\a) < r'(oo)} < α*. Thus we have proved (24).

We now proceed to the proof of the second part. We first note that

α* = 0 if and only if b = 0, which is equivalent to the condition rr(0 + )

< r^oo). In case r'(0 + ) = r'(oo) (i.e., α* = 0 and α2 = oo), we can choose

aQ e (tQ, oo) such that r(2a0) > 2r(a0), because g(a) = r(2a) — 2r(a) is strictly

increasing on (t0, oo) and the limit

lim g(a) = lim Γ {r'(s + a) - r7(s)}ds = Γ {r'(oo) - r'(s)}ds
α->«> α—oo J o J o

is positive. It is easily verified that Fr(a0; a, 1) > 0 for a > α0, which im-

plies that C(a; 1) < aQ for α > α0. Thus the proof is completed.

§4. Characterization of Xr by means of ^Xr(Pι, P2; q)

In this section we consider the Problem 1 concerning the characteri-

zation of a Euclidean random field Xr on Rn by means of ^Xr{Pu P 2; q).

First we note that the family &Xr(Pu P2;q); Pu P2 eRn,qe R} uniquely

determines the probability law of Xr. That is, if functions r(t), rλ(t) e Sn

satisfy the equality

(25) VXr(Pu P2;q) = VXr(jPu P2 q)

for any Pl9 P2 e Rn and any q e R, then we have r(t) = r^t). This is easily
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verified by noting that (25) is equivalent to the following:

(26) ^ A ~ p^ - r^A - p

2W/Γ(IΛ - P*D
= {rj\A - P,\) - ri(\A - P2\))irm - P.I)

for any A, Pu P2 e Rn.

Our conjecture is that the family {^χr(Pu Pi\ q)\ Pu P2 £ Rn} with some

fixed q > 0 would suffice for the characterization of Xr.

PROBLEM Γ. Let r(t) e £«,, q > 0 and n > 2 be fixed. Suppose that

rλ(t) e Sn and qλeR satisfy the relation

(27) <gXr{Pu P2 q) c VXrι(Pl9 P2 Ql)

for any Pl9 P2 e Rn. Then is it true that rx(t) = r(t) and q1 = q?

Proposition 2 tells us the following: For any A, B e &χr(Pu P2', q) the

increments X(A) — X(B) and X(Pt) — X(P2), viewed as the differences of

members of Xr9 are mutually independent. By the relation (27), this pro-

perty is still true even if those increments are viewed as the differences

of members of Xri. Therefore, if the Problem V is affirmative, the para-

meter set of the form ^xχPl9 P2; q) is thought of as a characteristic of a

Gaussian random field, so far as the independence property of the incre-

ments is concerned. We shall solve this problem for the classes A — E of

r(t)eSm by using the properties of Tr(a; q).

We deduce a functional equation for f(x) •=• rλ{r~x{xγ) from the relation

(27). For each t e Tr{\Pλ - P2\; q\ there exists a point A{t) e tfXr(Pu P2; q)

such that \A(t) - P2\ = t. By (12), we see that

r(\A(t) - P,|) = r(t) + qrQP, - P2|) .

Since the point A(t) belongs also to ^Xri(Ply P2', qd, the equality

rλ(\A{t) - iM) = Γl(t) + q^dP, - P2\)

holds. From these equations, putting x = r(|Pi — -P2I) a n ( i y — r(0? we

obtain

(28) f(qx + y) = qj(x) + f(y) ,

where

(29) x e r((0, 00)), y e r(Tr(r"1(x); q)) .

What has been discussed can be summarized as
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LEMMA 1. Suppose that the relation (27) holds for any Pu P2 e Rn.

Then the continuous function f(x) — r^r'`ix)) satisfies the functional equation

(28).

Since the equality qx = q easily follows from r^t) = r(t), our goal is to

prove that f(x) = x is the unique solution of (28) with /(I) = 1.

(a) The case q = 1. In this case the Problem V becomes somewhat

simple; the relation (27) implies that qx — 1. We thus have Cauchy's

functional equation:

(28), f{x + y) = f(x) + fiy) ,

(29), x e r((0, oo)), y e r(Tr(r-`(x); 1)) .

When rii) is strictly concave (i.e., in the class C), !FXriPx\P2) = {P2} holds,

so that we cannot obtain r^t) = rit). On the other hand, when rit) is

strictly convex (in B) or rit) — t (in A), Cauchy's functional equation (28X

holds for any x, y > 0. Then it is a classical result that fix) = x is the

unique solution with /(I) = 1 ([1]). Furthermore we shall show that this

is true also for rit) in D or E under the condition r'(0 + ) ^ J`'ί00)? by using"

the theorem of J. Aczel (p. 46 in [1]).

First, let r(ί) eSM be in D with the condition r'(0 + ) < r'(oo). Then

we see by Proposition 3D that the domain (29), includes the following set:

(30) DΦ = {(x9y); 0<x<β,0<y^ Φ(x), x + y < β}

with the decreasing continuous function Φ(x) = r(r(r-1(x))) on (0, /3), where

β = r(oo) e (1, oo] and where r(α) is the function on (0, oo) in Proposition

3D. When β < oo, we may assume that Φ(x) < β — x without loss of

generality.

LEMMA 2. Suppose that a continuous function fix) with /(I) = 1 satisfies

Cauchy's functional equation (28), for any (x9y) e Dφ with a decreasing con-

tinuous function Φix) on (0, β) such that 0 < Φ(x) < β — x ( l < / 3 < oo).

Then we have fix) = x.

Proof. Take x0 such that Φix0) = x0. Then, (0, x0] x (0, x0] c Dφ, which

means that (28), holds for any x, y e [0, x0]. Hence by AczeΓs theorem, we

have fix) = ex on [0, x0] with some constant c. When x > xQ, it follows

from (28)! that

{f(χ + y) - /(*)}/y = f(y)b = c for o < y < Φix),
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so that the right derivative of / at x e (x0, β) exists and is equal to the

constant c. From this we obtain f(x) = ex on [0, β), and c — 1 since /(I)

= 1. The proof is thus completed.

Next, let r(t)eS^ be in E with the condition r'(0 + ) < r'(oo). Then

we see by Proposition 3E that the domain (29X includes the following set:

(31) Dψ = {(x,y); 0<x<™, Ψ(x) < y < oo} ,

where Ψ(x) is the nonnegative continuous function defined by

(r(C(r-\x); 1)) for 0 < x < r(a2) ,

[θ for x > r(a2) ,

and satisfies the property that there exists x0 e (0, oo) such that Ψ(x) < x0

for x > x0.

LEMMA 3. Suppose that a continuous function f(x) with /(I) = 1 satisfies

Cauchy's functional equation (28X for any (x,y)eDψ with a nonnegative

continuous function Ψ(x) on (0, oo) satisfying the property that there exists

x0 e (0, co) such that [xQ, oo) x [χ0, oo) c Dψ. Then we have f(x) = x.

This is a simple consequence of AczeΓs theorem, so we omit the proof.

Thus we have proved the following

THEOREM 2. Suppose that r(i) e 8^ satisfies one of the following four

conditions:

( i ) r(t) = t;

(ii) r(t) is strictly convex on (0, oo);

(iii) r(i) is strictly convex on (0, t0), strictly concave on (t0, oo) for some

t0 (0<t0< oo) and r'(0 + ) < r^oo);

(iv) r(t) is strictly concave on (0, Q, strictly convex on (t0, oo) for some

tQ (0 < tQ < oo) and r'(0 + ) < ^(oo).

Then, r^t) e Sn satisfies the relation

&Xr(P, IP2) C ^Xri(Pλ IP2) for any P19 P2 e Rn

if and only if r^t) = r(t).

In the above cases (iii) and (iv), we have assumed, for convenience,

that r'(0 + ) < r^oo). Without this assumption, difficulties arise, for one

thing the equality ^Xr(Pί\P2) = {P2} holds for {P, - P2\ > a, in the case

(iii) (see Proposition 3D) and for \Pί — P2\ < α* in the case (iv) (Propo-

sition 3E).
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(b) The cases 0 < g < 1 or g > 1. When r{t) is strictly concave (in C)

or r(t) — t (in A), we have ^Xr{Pu P2; q) — φ for q > 1, so the answer to

the Problem V is obviously "No". But we have an affirmative answer in

the following four cases:

( i ) 0 < q < 1 and r(t) = t

(ii) 0 < g < 1 and r{t) is strictly convex on (0, co)

(iii) 0 < q < 1 and r(t) is strictly concave on (0, oo)

with r(oo) = oo

(iv) q > 1 and r(t) is strictly convex on (0, co) with r'(0 + ) = 0

and r'(oo) = oo .

In these cases, we see by Propositions 3A, 3B and 3C that in the

interior of the domain (29) there exists an increasing continuous curve

Γ: y = φ{x), 0 < x < oo, with φ(0 +) = 0. Therefore, under the restriction

that rx{t) e Sn is twice differentiable, we can easily verify that f(x) = x is

the unique solution of (28) with /(I) = 1. Thus we have obtained the

following

THEOREM 3. Suppose that r(t) e £«, and q > 0 satisfy one of the four

conditions in (32). Then, a twice dίfferentίable function r^t) eSn and ^ e ί

satisfy the relation

VxAPi, P2\Q)CL VXn{Pu P 2; qx) for any Pu P2 e Rn

if and only if rλ(t) = r(t) and q1 = q.

Remark 1. We see by Theorems 2 and 3 that the answer to the Pro-

blem V for r(t) = ta (0 < a < 2) is "Yes" in the following cases: (i) 0 <

q<l and 0 < a < 2; (ii) q = 1 and 1 < α < 2; (iii) g > 1 and 1 < a < 2.

In the other cases, the answer is "No".

Remark 2. Theorem 3 holds even in the case where a parameter qx e

R depends on Pl9 P2 e Rn.

§5. The projective invariance oΐ ^Xa{P1\P2)

In this section we consider the Problem 2 mentioned in § 1. The pro-

bability law of Xa is invariant under each Euclidean motion, similar trans-

formation and inversion T on Rn, that is, the equality

(33) pXa(TA, TBI TS) = pXa(A, B \ g)
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holds for any A, B e Rn and any δ C Rn. Here we take an inversion T

with center in $, that is, for some a > 0 and some P e l ,

(TA = a\A - P) \A - P\~2 + P if A * P ,

[TP = P .

The property (33) is the characteristic property of Xa called projective

invariance ([3]). It easily follows from (33) that

(34) ^xSTA ] TS) = T&Xa{A I i) for any AeRn and any $ c Rn.

Now we wish to show that there is no other Xr with the above property

(34). Namely, we are ready to discuss

PROBLEM 2. Suppose that r(t) e S^ satisfies the equality

(35) ^Xr(TPλ I TP2) = T^Xr{P, IP2) for any Pί9 P 2 e if",

where a transformation T on Rn runs over all similar transformations

and inversions with center P2. Then is it true that r(t) = Γ?

We can solve this problem under the following condition:

(36) There exists a0 > 0 such that r(t) + r(a0) < r(t + α0) for 0 < t < α0 ,

which means that Γr(α0; 1) ID [0, a0]. It follows from (35) that Tr(a; 1) =

{at/a0; t e Tr(a0; 1)}, a > 0, and that the set Γr(α; l)\{0}, α > 0, is invariant

under the inversion £* = α2/^ o n (0, c0)- By using the condition (36), we

have Tr(a; 1) = [0, oo) for any a > 0.

THEOREM 4. Suppose that r(t) e £«, satisfies the condition (36).

ί/̂ e equality (35) ΛoZds /or αziy similar transformation and inversion with

center P2 if and only if r(t) = ta (1 < a < 2).

Proof. It suffices to prove "only if" part. From the equality (35) for

any similar transformation T on Rn, we obtain the equation

(37) r(kr~\r{t) + 1)) = r(kt) + r(k)

for any k > 0 and any t e Tr(l; 1) = [0, oo). With this we show the follow-

ing equation for any natural number m:

(38) r(kr-\m)) = mr(k) for any k > 0 .

This equation clearly holds for m = 1. Suppose the equation (38) holds

for m. Then, putting t = r"!(m) in (37), we see that
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r(kr-\m + 1)) = r(kr~\m)) + r(k) = (m + l)r(Jfe) .

By induction on m, the equation (38) holds for all m.

If we set r(k) = a in (38), then we have r-\ma) = r~λ(m)r-ι{ά). It easily

follows that r~ι(pά) = r"1(p)r~1(α) for any rational number /> and any α > 0.

Since r~!(ί) is continuous, we obtain

r~\ab) = r-Xa)r-Xb) for any α, 6 > 0 ,

which implies that r~\t) = tί/a for some a > 0. Thus, excluding the case

0 < a < 1 because of (36), we have r(i) == ίβ with 1 < a < 2. The proof

is completed.
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