
http://dx.doi.org/10.4153/CJM-2017-052-3
©Canadian Mathematical Society 2018

On Algebraic Surfaces Associated with
Line Arrangements

Zhenjian Wang

Abstract. For a line arrangement A in the complex projective plane P2 , we investigate the com-
pactiûcation F in P3 of the aõne Milnor ûber F and its minimal resolution F̃. We compute the
Chern numbers of F̃ in terms of the combinatorics of the line arrangement A. As applications of
the computation of the Chern numbers, we show that the minimal resolution is never a quotient of
a ball; in addition, we also prove that F̃ is of general type when the arrangement has only nodes or
triple points as singularities. Finally, we compute all the Hodge numbers of some F̃ by using some
knowledge about the Milnor ûber monodromy of the arrangement.

1 Introduction

A line arrangement A is a ûnite set of lines in the projective plane P2 = CP2:
A = {L1 , . . . , Ld}

where for i = 1, . . . , d, L i ∶ ℓ i(x , y, z) = 0 is a line in P2 deûned by the linear form ℓ i .
We call Q = Q(x , y, z) = ∏d

i=1 ℓ i the deûning equation ofA.
In this paper, we consider a construction of surfaces from a line arrangement that

is closely related to the Milnor ûber of the arrangement. _eMilnor ûber F = F(A)

of the line arrangement A is the smooth aõne surface in C3, deûned by
F ∶ Q(x , y, z) − 1 = 0,

where Q is the deûning equation of A. As F is not compact, we consider its natural
compactiûcation F in P3 deûned by

F ∶ Q(x , y, z) + td = 0.
Denote by V(Q) the projective curve in P2 deûned by Q = 0, or equivalently,

V(Q) = ⋃
L i∈A

L i ;

then F is a branched cover of P2 of degree d branched over V(Q). _e surface F
is a singular surface with isolated singularities, and we are mainly interested in the
minimal resolution F̃ of F.

_e main aim of this paper is to compute the Chern numbers c21 (F̃) and c2(F̃) of
the associated surface F̃, and then to discuss properties of F̃ using our computations.

We ûrst show that c21 (F̃) and c2(F̃) are determined by the combinatorics of the
line arrangement A. More precisely, we prove the following theorem.
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_eorem 1.1 Let A be a line arrangement in P2 consisting of d = ∣A∣ lines. For r ≥ 2,
denote by tr the number of points lying on exactly r lines contained in A.

_en the following hold.
(i) _e ûrst Chern number of the associated surface F̃ is given by

c21 (F̃) = K2
F +∑

r
trDCIr ,d ,

where K2
F
= d(d − 4)2. For d /≡ 1mod r, we have

DCIr ,d = −d(r − 2)2
− r

λ

∑
i=1

(n i − 2) + 2(r − 2)( r − gcd(r, d)) + (r − b);

for d ≡ 1mod r, we have DCIr ,d = −(d − 1)(r − 2)2 .
(ii) _e second Chern number of the associated surface F̃ is given by

c2(F̃) = χ(F) +∑
r

trDCIIr ,d ,

where χ(F) is the topological Euler number of F:

χ(F) = d(d2
− 4d + 6) − (d − 1)∑

r
tr(r − 1)2 .

In addition, for d /≡ 1mod r, we have

DCIIr ,d = 1 + rλ − (r − 2)( gcd(r, d) − 1) ;

for d ≡ 1mod r, we have DCIIr ,d = d − 1.
In the above formulae, the numbers λ, b, n i are uniquely determined only by r and d
from _eorem 4.1 below.

_eorem 1.1 will not be completely proved until Section 5, before which we will
establish step by step all necessary ingredients of the proof. Brie�y speaking, we will
ûrst show that the computation of the Chern numbers can be localized in Section 3;
namely, it suõces to consider minimal resolutions of surface germs. _en we make
use of the technical theorem, i.e., _eorem 4.1 on resolutions of weighted homoge-
neous singularities to complete the calculations. Another technical tool involving
continued fractions is outlined in Section 5.
As a ûrst application of our computation of the Chern numbers, we show that the

surface F̃ can never be a ball quotient. Recall that a ball quotient is a smooth projective
surface that is biholomorphic to B/Γ, where

B = {(z,w) ∈ C2
∶ ∣z∣2 + ∣w∣

2
< 1}

equipped with the Kähler metric whose Kähler form is given by

ωB = −
√
−1∂∂ log(1 − ∣z∣2 − ∣w∣

2
),

and where Γ is a discrete cocompact subgroup of isometries ofB. A smooth projective
surface X is said to be of general type if its canonical divisor KX is big; and for such
surfaces, we have the celebrated Miyaoka-Yau inequality, namely,

(1.1) c21 (X) ≤ 3c2(X),
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where the equality holds if and only if X is a ball quotient; see [22].
We say that A is a pencil if V(Q) has a singularity of multiplicity d = ∣A∣. Using

our results on Chern numbers, we prove the following result.

_eorem 1.2 Assume d = ∣A∣ ≥ 2.
(i) If d ≥ 4 andA is a pencil, c21 (F̃) > 3c2(F̃).
(ii) If d ≥ 3 andA is not a pencil or d = 2, c21 (F̃) < 3c2(F̃).

In particular, if d ≥ 2 and for d = 3,A is not a pencil, then F̃ is not a ball quotient.

_e non-ball-quotient property of F̃ is always true for d ≥ 2; see Remark 6.1. And
in fact, it is not very surprising that F̃ is not a ball quotient; however, our result above
is stronger than the non-ball-quotient property of F̃; see Remark 6.2.

Next, we use the formulae for theChern numbers to determinewhether the surface
F̃ is of general type. We prove the following result in Section 7.

_eorem 1.3 Assume that d = ∣A∣ ≥ 7 and V(Q) contains only nodes or triple points
as singularities; then F̃ is of general type.

Finally, our results can also be applied to study problems in the theory of line ar-
rangements. In fact, onemotivation for ourwork i s to understandwhether theHodge
numbers of F̃ are combinatorially determined, one of the main open questions in the
theory of line arrangements; see [16]. We will give some examples in which we com-
pute all the Hodge numbers of F̃ at the end of this paper.

2 Preliminaries

In this section, we present some basic facts that are stated in the form we will apply
in the proof of our main theorem, namely, _eorem 1.1. _ese facts are well known,
and thus we skip the details and only give some references.

2.1 Intersection Theory for Normal Surfaces

Let X be a projective variety of dimension n over C.
When X is smooth, the intersection theory on X is classical and quite well-known.

For intersection theory on smooth surfaces, we refer the reader to [1, Chapter 2].
If X is not smooth, there are technical problems about deûning the intersection

number of n = dimX divisors on X; see, for instance, [10, Section 2.5]. However,
we can always have a well-deûned intersection number of n Cartier divisors on the
projective variety X and such an intersection theory admits similar properties as in
the smooth case; see [5, Section 1.2].

Given n Cartier divisors D1 , . . . ,Dn on a (not necessarily smooth) projective vari-
ety X, their intersection numberwill be denoted byD1 ⋅D2 ⋅ ⋅ ⋅Dn ; ifD1 = ⋅ ⋅ ⋅ = Dn = D,
we use the simpler notation Dn = D1 ⋅ D2 ⋅ ⋅ ⋅Dn .

In addition, assume f ∶C → X is a morphism from a projective curve to a quasi-
projective variety X and D is a Cartier divisor (class) on X. Since f ∗D is a Cartier
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divisor on C, we can deûne

(2.1) D ⋅ C = degOC( f ∗D).

We will mainly be concerned with intersection theory on normal surfaces.
Let X , X̃ be two normal projective surfaces and let π∶ X̃ → X be a proper surjective

morphism. _en we have the projection formula

π∗C ⋅ π∗D = (deg π)C ⋅ D

for any two Cartier divisors on X; see [5, Proposition 1.10]. Together with formula
(2.1), this implies the projection formula

π∗D ⋅ E = D ⋅ π∗E ,

where D is a Cartier divisor on X, while E is a curve on X̃. In particular, if E is
contracted by π to a point, then π∗D ⋅ E = 0 for any Cartier divisor D on X.

2.2 Canonical Divisors of Normal Surfaces

Let X be a normal surface on a smooth projective threefold Y .
If X is smooth, thenwe have a well-deûned canonical bundle and hence the canon-

ical divisor KX ; moreover, we have the adjunction formula

(2.2) KX = (KY + X)∣X .

When X is not smooth, we have a canonical bundle on the smooth locus X ∖

Sing(X) of X, and hence the associated Cartier divisor KX∖Sing(X) on X ∖ Sing(X).
Note that Sing(X) has codimension 2 in X, since X is normal, so any Weil divisor
on X is uniquely determined by its restriction on X ∖ Sing(X) (see [11, Chapter II,
Section 6, Proposition 6.5(b)]); the canonical divisor of X, still denoted by KX , is the
uniqueWeil divisor whose restriction on X∖Sing(X) isKX∖Sing(X). Furthermore, the
adjunction formula (2.2) still holds. Indeed, the equality clearly holds on the smooth
locus X ∖ Sing(X), and thus it is also valid on X, because as we have mentioned, any
Weil divisor on X is uniquely determined by its restriction on X ∖ Sing(X).

Note that because Y is a smooth manifold, KY and X are both Cartier divisors on
Y , hence KX = (KY + X)∣X is a Cartier divisor on X, being the restriction to X of the
Cartier divisor KY +X of Y . _erefore, we have the well-deûned intersection number
K2

X . By [5, Proposition 1.8], we obtain

(2.3) K2
X = (KY + X) ⋅ (KY + X) ⋅ X .

2.3 Miyaoka–Yau Number

As in the previous subsection, we assume that X is a normal surface on a smooth
projective threefold Y .

When X is smooth, it is well known that c21 (X) = K2
X and c2(X) = χ(X), where

χ(X) denotes the topological Euler number of X.
If X is not smooth, K2

X and χ(X) are still well-deûned numbers for X, and they
are good substitutions for the Chern numbers c21 and c2.

In view of the Miyaoka–Yau inequality (1.1), we give the following deûnition.
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Deûnition 2.1 Let X ⊆ Y be a normal surface on a smooth projective threefold Y ,
theMiyaoka–Yau number of X is deûned by MY(X) = 3χ(X) − K2

X .

Now assume that the normal surface X has an isolated singularity 0 ∈ X, and
π∶ X̃ → X be a minimal resolution of the singularity 0, given by successive embed-
ded blowups. Let π′∶ Ỹ → Y be the eòect of the successive blowups on Y . _en Ỹ is
a smooth projective threefold, on which X̃ is a normal hypersurface; hence, we have
the canonical divisor KX̃ = (KỸ + X̃)∣X̃ and topological Euler number χ(X̃) and thus
the Miyaoka-Yau number MY(X̃) of X̃.

Deûnition 2.2 _ree numerical invariant diòerences for the minimal resolution
π∶ X̃ → X around the point 0 are deûned as follows:
(i) _e diòerence for the ûrst Chern number is DCI0 = K2

X̃ − K2
X ;

(ii) _e diòerence for the second Chern number is DCII0 = χ(X̃) − χ(X);
(iii) _e diòerence for the Miyaoka–Yau number is

DMY0 = MY(X̃) −MY(X) = 3DCII0 − DCI0 .

When X is given by (X , 0) ∶ Gr(u, v)+ td = 0 around the local coordinates (u, v , t)
centered at 0 on Y where Gr is a product of r distinct linear forms, it turns out that
the three diòerences deûned above are determined only by r and d; thus, they will be
denoted by DCIr ,d ,DCIIr ,d and DMYr ,d = 3DCIIr ,d − DCIr ,d , respectively.

3 Surfaces Associated with Line Arrangements and Chern Num-
bers: From Global to Local

In this section, we consider several surfaces associated with a given line arrangement,
and as a ûrst step to prove_eorem 1.1, we show that our computations can indeed be
localized; namely, we only need to investigate the resolution of a surface germ.

3.1 Surfaces Constructed from Line Arrangements

Let A = {L1 , . . . , Ld} with L i ∶ ℓ i = 0, i = 1, . . . , d, be a line arrangement in P2 with
deûning polynomial Q(x , y, z) = ℓ1ℓ2 ⋅ ⋅ ⋅ ℓd .

Given r ≥ 2. If a point x ∈ P2 lies on exactly r lines in A, or equivalently, x is a
singular point of multiplicity r of the curve V(Q) ∶ Q = 0 in P2, we say that x is of
multiplicity r. _e number of points of multiplicity r will be denoted by tr .
Consider the aõne Milnor ûber F ∶ Q = 1 in C3, for which we have a natural

compactiûcation F ∶ Q(x , y, z) + td = 0 in P3. _e surface F is a singular normal
surface in P3, and a singular point of multiplicity r of V(Q) gives a singular point
of multiplicity r of F and vice versa. Moreover, since Q is a product of distinct linear
forms, around a singular point of F ofmultiplicity r, we have F ∶ Gr(u, v)+td = 0with
Gr(u, v) a product of r distinct linear forms, whose resolution will be investigated in
detail in the next section.
For later convenience, we ûrst compute the Chern numbers and the Miyaoka–Yau

number of the singular surface F.
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Example 3.1 _e adjunction formula (2.2) gives

KF = (KP3 + F)∣F ∼ (d − 4)H∣F ,

where H is a hyperplane section of P3. Indeed, we have F ∼ dH and KP3 ∼ −4H
(where ∼ denotes rational equivalence). It follows from (2.3) that

(3.1) K2
F = d(d − 4)2 .

Moreover, there is a natural projection

p∶ F Ð→ P2 , (x , y, z, t) z→ (x , y, z),

which is a branched covering of degree d with ramiûcation locus V(Q) ⊆ P2, hence

χ(F) = 3d − (d − 1)χ(V(Q)).

_e Euler number of the singular curve V(Q) is

χ(V(Q)) = d(3 − d) +∑
r

tr(r − 1)2 ,

which implies that

(3.2) χ(F) = d(d2
− 4d + 6) − (d − 1)∑

r
tr(r − 1)2

Consequently,

(3.3) MY(F) = 3 χ(F) − K2
F = (d − 1)∑

r
tr(r − 1)(3 − r).

Remark 3.2 To deduce (3.3), we have used the well-known equality

d(d − 1)
2

= ∑
r

tr
r(r − 1)

2
.

Let π∶ F̃ → F be theminimal resolution of F; namely, the following three conditions
hold:
(i) F̃ is a smooth surface and π is proper birational morphism;
(ii) π∶ F̃ ∖ π−1(Sing(F)) → F ∖ Sing(F) is an isomorphism;
(iii) there is no exceptional (−1)-curve on F̃, i.e., a rational curve E on F̃ such that

E2 = −1 and E is contracted to a point by π.
Such a resolution π can be obtained by successive embedded blowups, namely by
blowing up along submanifolds of P3 as well as the resulting manifolds in each step.
In particular, we can resolve the singularities of F point by point, because one can
do blowups in this way. In addition, useful numerical information for the resolution
is encoded in its (weighted) dual graph, as explained in [6, p. 50]; for instance, the
intersection matrix of the exceptional curves can be read out from the dual graph.
For the detailed construction of the dual graph; see loc. cit.

476

https://doi.org/10.4153/CJM-2017-052-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-052-3


On Algebraic Surfaces Associated with Line Arrangements

3.2 Chern Numbers for the Associated Surfaces

Let p1 , . . . , ps be all the singular points of F and let r i be the multiplicity of p i . Let
E i ,1 , . . . , E i ,v i be the irreducible components of π−1(p i) andM i , j,k = E i , j ⋅E i ,k be the
intersection product of E i , j and E i ,k . Moreover, let Mi = (M i , j,k) be the intersection
matrix of the E i , j for any ûxed i. It is a v i × v i matrix. Set

Ei = (E i ,1 , E i ,2 . . . , E i ,v i )

as a 1 × v i matrix.
_e canonical divisor KF̃ is of the form

KF̃ = π∗KF +
s

∑
i=1

v i
∑
j=1
a i , jE i , j .

Let Ai = (a i ,1 , a i ,2 , . . . , a i ,v i )
T be a v i × 1 matrix, where ( ⋅ )T denotes the transpose

of a matrix; then KF̃ can be written as

(3.4) KF̃ = π∗KF +
s

∑
i=1
EiAi .

Let
Ei ⋅ KF̃ = (E i ,1 ⋅ KF̃ , . . . , E i ,v i ⋅ KF̃)

be a 1 × v i matrix. By _eorem 4.1, each E i , j is a smooth complete curve, and by [14],
each Mi is a symmetric negative deûnite v i × v i matrix. Set Ni = −Mi

−1.
Taking intersection product of KF̃ with the exceptional divisors E i , j , it follows that

(3.5) Ai = −Ni(Ei ⋅ KF̃)
T ,

and hence by (3.4), we have

KF̃ = π∗KF −
s

∑
i=1
EiNi(Ei ⋅ KF̃)

T ,

so from the projection formula, one obtains

c21 (F̃) = K2
F +

s

∑
i=1

(EiNi(Ei ⋅ KF̃)
T)

2 .

In addition, since E i , j is a smooth complete curve, we have the adjunction formula

E i , j ⋅ KF̃ = 2g(E i , j) − 2 − E2
i , j ;

thus, it follows from (3.5) that a i , j satisfy
v i
∑
k=1
a i ,k(E i , j ⋅ E i ,k) = 2g(E i , j) − 2 − E2

i , j , j = 1, . . . , v i .

So, we have proved the following result.

Lemma 3.3 _e ûrst Chern number c21 (F̃) of F̃ is given by

c21 (F̃) = K2
F +

s

∑
i=1

(
v i
∑
j=1
a i , jE i , j)

2
,
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where E i , j , j = 1, . . . , v i are the irreducible components of the exceptional divisor
π−1(p i) and a i , j , i = 1, . . . , s; j = 1, . . . , v i satisfy the equation

(3.6)
v i
∑
k=1
a i ,k(E i , j ⋅ E i ,k) = 2g(E i , j) − 2 − E2

i , j .

From (3.6), one easily sees that for a ûxed i, the a i , j are determined by the genera
of the E i , j and the intersection products E i , j ⋅ E i ,k , j, k = 1, . . . , v i ; thus, they are
determined only by the dual graph of the resolution of the surface germ (F , p i).

Now we consider the more general setting. Let X be a normal surface in a smooth
projective threefold Y such that X has a singularity 0. Let X̃ → X be the minimal
embedded resolution of X about the singularity 0.
Assume that (X , 0) ≃ (F , p i) for some i and q1 = 0, q2 , . . . , qm are all the singular

points of X. Note that X̃ may not be smooth, so let X̃∗ be the minimal resolution of
X̃, then X̃∗ is also the minimal resolution of X.
By our discussion above, we have

c21 (X̃∗
) = K2

X̃ + R,

where R depends only on the resolution of the singularities of (X , q j), j = 2, . . . ,m.
Similarly, considering X̃∗ as a minimal resolution of X, we obtain

c21 (X̃∗
) = K2

X + R + (
v i
∑
j=1
a i , jE i , j)

2

with a i , j satisfying (3.6). _erefore, we obtain that

K2
X̃ − K2

X = (
v i
∑
j=1
a i , jE i , j)

2
.

Finally, the surface germ (F , p i) is deûned by Gr i (u, v) + td = 0 around the local
coordinates (u, v , t) centered at p i on P3, where Gr i is a product of r i distinct linear
forms. So, by our notation, we have

DCIr i ,d = (
v i
∑
j=1
a i , jE i , j)

2
,

where the a i , j satisfy (3.6).
Consequently, we have the following theorem, which essentially says that our com-

putation of ûrst Chern number can be localized.

_eorem 3.4 For the ûrst Chern number c21 , the following hold:
(i) Assume that p1 , . . . , ps are all the singular points of F and r i is the multiplicity of

p i . _en

c1(F̃) = K2
F +

s

∑
i=1
DCIr i ,d = K2

F +∑
r

trDCIr ,d .

(ii) Let (X , 0) be an isolated surface singularity germ deûned by Gr(u, v) + td = 0,
where Gr is a product of r ≤ d distinct linear forms and πX ∶ X̃ → X is the min-
imal resolution. Let E1 , . . . , EM are the irreducible components of π−1

X (0) and
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E j ⋅ Ek , j, k = 1, . . . ,M are the intersection products. _en the E j are smooth
complete curves and the matrix (E j ⋅ Ek) is negative deûnite. Moreover,

DCIr ,d = (
M

∑
j=1
a iE i)

2

with a i satisfying the following equations

M

∑
k=1
ak(E j ⋅ Ek) = 2g(E j) − 2 − E2

j , j = 1, . . . ,M .

In particular, DCIr ,d is determined only by the dual graph of (X , 0).

Computation of the second Chern number is relatively easier. Just notice that res-
olution of a singular point has the topological eòect of replacing the point by its ex-
ceptional divisor. _us, by a similar argument as above and using the additivity of the
Euler number, we obtain the following theorem.

_eorem 3.5 For the second Chern number c2, the following hold:
(i) Assume that p1 , . . . , ps are all the singular points of F and r i is the multiplicity of

p i . _en

c2(F̃) = χ(F) +
s

∑
i=1
DCIIr i ,d = χ(F) +∑

r
trDCIIr ,d .

(ii) Assume that (X , 0) is an isolated surface singularity germ deûned by Gr(u, v) +
td = 0, where Gr is a product of r ≤ d distinct linear forms and πX ∶ X̃ → X is the
minimal resolution. _en

DCIIr ,d = χ(π−1
X (0)) − 1.

In particular, DCIIr ,d is determined only by the dual graph of (X , 0).

From _eorems 3.4 and 3.5, it follows that the computation ofMY(F̃) can also be
localized, and in fact, by (3.3),

MY(F̃) = MY(F) +∑
r

trDMYr ,d(3.7)

= ∑
r

tr((d − 1)(r − 1)(3 − r) + DMYr ,d) .

For later convenience, we set

Er ,d = (d − 1)(r − 1)(3 − r) + DMYr ,d .

4 Resolution of Singularities

In this section, we consider singularities of the type (X , 0) ∶ f (u, v , t) = 0 with
f (u, v , t) = Gr(u, v) + td , where Gr(u, v) is a product of r distinct linear forms in
u, v. Such a type of singularity in fact belongs to a special class of singularities, namely
weighted homogeneous singularities, whose resolutions are explicitly known.
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Using the recalled_eorem 4.1 about the structure of the dual graph, we compute
themain numerical invariants DCIr ,d and DCIIr ,d for some special cases, while such
computation for the general case will be completed in the next section.

4.1 Weighted Homogeneous Singularities

Consider the C∗ action on C3 given by

a ⋅ (z1 , z2 , z3) = (aw1z1 , aw2z2 , aw3z3),

where the weights w i = weight(z i) are strictly positive integers satisfying

gcd(w1 ,w2 ,w3) = 1.

An isolated surface singularity (X′ , 0) ∶ f ′(z1 , z2 , z3) = 0 is called weighted homoge-
neous of degree N for the weights w i if

a ⋅ f ′(z1 , z2 , z3) = f ′(aw1z1 , aw2z2 , aw3z3) = aN f ′(z1 , z2 , z3), ∀a ∈ C∗ .

_eorem 4.1 (see [15] and [6, Section 4.10]) Let (X , 0) ∶ f (u, v , t) = Gr(u, v)+ td =
0, r ≤ d be an isolated weighted homogeneous singularity of degree N = rd/ gcd(r, d),
where Gr(u, v) is a product of r distinct linear forms in u, v, for the weights

w1 = weight(u) = d/ gcd(r, d),
w2 = weight(v) = d/ gcd(r, d),
w3 = weight(t) = r/ gcd(r, d).

_en there is a resolution π∶ X̃ → X such that the following hold.
(i) _ere is a C∗ action on X̃ under which the morphism π is equivariant.
(ii) _e exceptional divisor π−1(0) has exactly one component, denoted by E0, that

is ûxed pointwise by the C∗ action on X̃.
(iii) π−1(0) has the form

π−1
(0) = E0 ∪ E1 ∪ ⋅ ⋅ ⋅ ∪ Eλ ,

where for k = 1, . . . , λ, Ek = E1
k ∪ ⋅ ⋅ ⋅ ∪ E

r
k is a disjoint union of r curves, corresponding

to vertices at distance k from the center in the dual graph below.
(iv) For each k = 1, . . . , λ and j = 1, . . . , r, the curve E j

k is a smooth rational irre-
ducible curve and has self-intersection (E j

k)
2 = −nk ≤ −2 (independent of j).

(v) E0 is a smooth complete curve of genus

g(E0) =
1
2
[

N2

w1w2w3
−∑

i< j

N gcd(w i ,w j)

w iw j
+∑

i

gcd(N ,w i)

w i
− 1]

=
1
2
(r − 2)(gcd(r, d) − 1).

(vi) _e components E0 , E j
k meet transversally according to the following star-

shaped graph
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v
@
@

�
� v

. . .
v

. . .
⋅ ⋅ ⋅

vv v ⋅ ⋅ ⋅v⋅ ⋅ ⋅ v vvv b n1n1 n2n2

nλ−1 nλnλ−1nλ ,

where the central vertex corresponds to E0 and there are exactly r arms, having the same
length λ and the same weight sequences n1 , . . . , nλ .

(vii) Moreover, the above dual graph satisûes the following: if we index the arms
1, 2, . . . , r from le�most to right by the anticlockwise order and go along the arm indexed
by j from the end closest to E0 to the one farthest to E0, we get, in order, the vertices
corresponding to the curves E j

1 , E
j
2 , . . . , E

j
λ .

(viii) Let α = w1 = d/ gcd(r, d) and b′ = w3 = r/ gcd(r, d). When α = 1, there are
in fact no arms, i.e., λ = 0. In this case, let β = 0. When α > 1, choose 0 < β < α such
that βb′ ≡ −1mod α. _en the weights of the vertices of the dual graph are determined
as follows:
● _e weight of the central vertex is

b = N
w1w2w3

+ rβ/α = gcd(r, d)(1 + b′β)
α

.

● _e weight sequence (n1 , . . . , nλ) along each arm is given by the following continued
fraction decomposition

α
β
= n1 −

1

n2 −
1

⋅ ⋅ ⋅ −
1
nλ

.

4.2 Examples of Minimal Resolutions

Assume that X is a surface on a smooth projective threefold Y with only on singular
point 0 and that (X , 0) ∶ f (u, v , t) = Gr(u, v) + td = 0, where (u, v , t) is the local
coordinate system on Y around 0 andGr is a product of r distinct linear binary forms.

Let π∶ X̃ → X be the resolution obtained by _eorem 4.1 and let πm ∶ X̃m → X be
the minimal resolution of X.

Example 4.2 When r = 2, (X , 0) is a singularity of type Ad−1, and its minimal
resolution πm ∶ X̃m → X is well-known: the dual graph isv v v v⋅ ⋅ ⋅

where there are (d−1) vertices and each vertex has weight 2. Moreover, KX̃m = π∗mKX
(see [17]), so by _eorems 3.4 and 3.5, we obtain

DCIr ,d = 0 and DCIIr ,d = d − 1,
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and hence

DMYr ,d = 3(d − 1), Er ,d = (d − 1)(r − 1)(3 − r) + DMYr ,d = 4(d − 1).

Note that when r = 2 and d = rp+1 for p ≥ 1, the resolution X̃ → X is not minimal.
Indeed, the central curve E0 is a (−1)-curve, i.e., g(E0) = 0 and b = 1 in _eorem 4.1.
More generally, we have the following proposition.

Proposition 4.3 _e resolution X̃ → X is not minimal if and only if d ≡ 1mod r.

Proof _e resolution is not minimal only if E0 is a (−1)-curve, since (E j
k)

2 = −nk ≤

−2 for k ≥ 1. _is is the case if and only if that g(E0) = 0 and b = 1, namely,

0 = g(E0) = 1
2 (r − 2)( gcd(r, d) − 1) ,

1 = b = gcd(r, d)(b′β + 1)/α.

From the second equality, it follows that gcd(r, d) = 1 and b′β + 1 = α. Now from
gcd(r, d) = 1, we have, by deûnition, α = d/ gcd(r, d) = d and b′ = r/ gcd(r, d) = r,
so d = rβ + 1.

_us, if d cannot be written as d = rp + 1 for some p ≥ 1, the resolution X̃ → X
given in _eorem 4.1 is already minimal. _e canonical divisor KX̃ has the form

KX̃ = π∗KX + a0E0 +∑
k , j
a j
kE

j
k .

By considering the adjunction formula, we have

E0 ⋅ KX̃ = 2g(E0) − 2 − E2
0 = 2g(E0) − 2 + b,

and for all k, j,
E j

k ⋅ KX̃ = 2g(E j
k) − 2 − (E j

k)
2
= −2 + nk ,

hence, by the projection formula and_eorem 4.1, we get a system of equations

−ba0 + (a1
1 + ⋅ ⋅ ⋅ + ar

1) = (r − 2)(gcd(r, d) − 1) − 2 + b,

−nka j
k + (a j

k−1 + a
j
k+1) = −2 + nk , ∀k, j,

(4.1)

where we have set a j
0 = a0 and a

j
λ+1 = 0 for all j.

For j = 1, . . . , r, set

Ej = (E j
1 , . . . , E

j
λ) and aj = (a j

1 , . . . , a
j
λ);

then

KX̃ = π∗KX + a0E0 +
r

∑
j=1
Ej(aj)

T .

_e intersection matrix of E0 , E l
k is negative deûnite (see [14]), so from (4.1) we

can uniquely solve for the a0 and aj. Moreover, we can see that if (a0 , a1 , . . . , ar) is a
solution of the system (4.1), then (a0 , aj , a2 , . . . , aj−1 , a1 , aj+1 , . . . , ar) is also a solution
for any j > 1; hence, from the uniqueness of the solution, it follows that a1

k = a2
k =

⋅ ⋅ ⋅ = ar
k for all k.
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Write
Ek = E1

k + E
2
k + ⋅ ⋅ ⋅ + E

r
k , k = 1, . . . , λ.

_en

KX̃ = π∗KX +
λ

∑
k=0
akEk ,

with the ak satisfying
−ba0 + ra1 = (r − 2)(gcd(r, d) − 1) − 2 + b

−nkak + (ak−1 + ak+1) = −2 + nk , k = 1, . . . , λ,
(4.2)

where aλ+1 = 0. In particular,

DCIr ,d = (
λ

∑
k=0
akEk)

2
.

Now assume that d = rp + 1 for some p ≥ 1; then the resolution X̃ → X is not
minimal and E0 is a (−1)-curve. By blowing down E0, we get another resolution X̃′

of X, andmoreover, since in this case α = b′β+1 = rβ+1, by performing the continued
fraction decomposition of α/β = (rβ + 1)/β, we have n1 = r + 1 ≥ 3; hence, X̃′ is the
minimal resolution X̃m of X, with the dual graph being

@
@

�
� v

. . .
v

. . .
⋅ ⋅ ⋅

vv v ⋅ ⋅ ⋅v⋅ ⋅ ⋅ v vvv n′1n′1 n2n2

nλ−1 nλnλ−1nλ ,

where n′1 = n1 − 1 and there is no central vertex, meaning that for the r exceptional
curves E1

1 , . . . , Er
1 corresponding to the vertices of weight n′1, we have E

j
1 ⋅E

j′

1 = 1 for j /=
j′. In particular, the exceptional divisor does not have normal crossings. Moreover, a
similar argument gives that

DCIr ,d = (
λ

∑
k=1
akEk)

2
,

with the ak satisfying
−n′1a1 + (r − 1)a1 + a2 = −2 + n′1 ,
−nkak + (ak−1 + ak+1) = −2 + nk , k = 2, . . . , λ,

where aλ+1 = 0.
For later convenience, we ûrst give the formulae DCIr ,d and DCIIr ,d for the case

d = rp + 1.

Example 4.4 Let r ≥ 3 and d = rp + 1, p ≥ 1. _en according to _eorem 4.1, we
have
(i) α = d/ gcd(r, d) = d and b′ = r/ gcd(r, d) = r, so α = b′p + 1; since 0 < β < α is

chosen so that b′β ≡ −1mod α, we have β = p;
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(ii) we have α/β = (rp+1)/p, so considering the continued fraction decomposition,
we have λ = p, and n1 = r + 1, n2 = n3 = ⋅ ⋅ ⋅ = nλ = 2.

By the discussions above,

DCIr ,d = (
λ

∑
k=1
akEk)

2

with
−ra1 + a2 + (r − 1)a1 = −2 + r

−2a2 + (a1 + a3) = 0
−2a2 + (a2 + a4) = 0

...
−2aλ−1 + (aλ−2 + aλ) = 0

−2aλ + aλ−1 = 0.
By considering the above equations from the bottom to the second top one, we have

ak = (λ + 1 − k)aλ , k = 1, . . . , λ − 1;
hence, from the ûrst equation, we get aλ = −(r − 2). It follows that

DCIr ,d = (r − 2)2
(Ep + 2Ep−1 + ⋅ ⋅ ⋅ + pE1)

2 .

Note that E2
k = −rnk = −2r for k > 1 and

E2
1 = (E1

1 + ⋅ ⋅ ⋅ + Er
1 )

2
= −r;

moreover, for k /= k′,

Ek ⋅ Ek′ =

⎧⎪⎪
⎨
⎪⎪⎩

r for k′ = k ± 1,
0 otherwise.

Hence, we have
DCIr ,d = (r − 2)2

(Ep + 2Ep−1 + ⋅ ⋅ ⋅ + pE1)
2
= −(r − 2)2rp = −(d − 1)(r − 2)2 .

In addition, we have DCIIr ,d = rλ = rp = d − 1; thus,

DMYr ,d = 3DCIIr ,d − DCIr ,d = 3(d − 1) + (d − 1)(r − 2)2 .
Consequently,

Er ,d = DMYr ,d + (d − 1)(r − 1)(3 − r) = 4(d − 1).

5 Proof of Theorem 1.1

In this section, we consider the general case of _eorem 4.1. Although our method
applies for more general situations, we assume that r ≥ 3 and d /≡ 1mod r, since
otherwise we are done by Examples 4.2 and 4.4. In particular, the resolution π∶ X̃ → X
given in _eorem 4.1 is minimal.
By the discussions before Example 4.4, we have

DCIr ,d = (
λ

∑
k=0
akEk)

2

484

https://doi.org/10.4153/CJM-2017-052-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-052-3


On Algebraic Surfaces Associated with Line Arrangements

with ak satisfying

− ba0 + ra1 = (r − 2)(gcd(r, d) − 1) − 2 + b
− nkak + (ak−1 + ak+1) = −2 + nk , k = 1, . . . , λ,

where aλ+1 = 0.
_e hard part, which will be accomplished in this section, is to ûnd a compact

formula for the invariant DCIr ,d without the implicit use of the a i . Essentially, we
achieve this goal by applying an eòective method to deal with the continued fraction
decomposition coming from _eorem 4.1.

_e main results are formulae (5.7) and (5.8), which we summarized in _eo-
rem 1.1.

5.1 Continued Fraction Decomposition

In order to apply_eorem4.1, we ûrst deal with the continued fraction decomposition

α
β
= n1 −

1

n2 −
1

⋅ ⋅ ⋅ −
1
nλ

.

Recall that β is chosen such that b′β ≡ −1mod α, hence gcd(α, β) = 1. Let

α0 , α1 , . . . , αλ−1 , αλ = 1, αλ+1 = 0

be a sequence of natural numbers such that gcd(α i , α i+1) = 1 for i = 0, 1, . . . , λ and

(5.1) α i

α i+1
= n i+1 −

1

n i+2 −
1

⋅ ⋅ ⋅ −
1
nλ

, i = 0, 1, . . . , λ − 1.

Clearly, the numbers α i are uniquely determined by the continued fraction decom-
position above, and α i > 0 for i < λ + 1.

Moreover, by deûnition (5.1), we have
α i−1

α i
= n i −

1
α i/α i+1

=
n iα i − α i+1

α i
;

hence,
α i−1 = n iα i − α i+1 ,

or, in another more convenient formulation,

(5.2) (
α i−1
α i

) = (
n i −1
1 0 )(

α i
α i+1

) .

For i = 1, . . . , λ, set

(5.3) Gi = (
n i −1
1 0 )
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be a 2 × 2 matrix. _en the relation (5.2) can be formulated as

(
α i−1
α i

) = Gi (
α i
α i+1

) .

_us, we have

(5.4) (
α i−1
α i

) = GiGi+1 ⋅ ⋅ ⋅Gλ (
αλ
αλ+1

) = GiGi+1 ⋅ ⋅ ⋅Gλ (
1
0)

for all i ≥ 1.
Note also that by deûnition (5.1) and our conventions, α0 = α and α1 = β.
Let G = G1G2 ⋅ ⋅ ⋅Gλ ; then by (5.4), we have

(
α
β) = (

α0
α1

) = G(
1
0) .

So G is of the form

G = (
α γ
β δ)

for some integers γ, δ. In fact, we have the following more precise result.

Proposition 5.1 With the notation as above and in _eorem 4.1, we have

G = (
α b′ − α
β 1+b′β

α − β
) ,

namely, γ = b′ − α and δ = −β + (1 + b′β)/α.

Proof First, we establish the following claim.

Claim 5.2 −α < γ ≤ 0 and −β < δ ≤ 0.

Assuming the claim, note that by deûnition,

detG = αδ − βγ = 1;

hence, βγ ≡ −1mod α. Recall also that b′β ≡ −1mod α, so we have γ = b′ − α, since
γ, b′−α ∈ (−α, 0], and the equation βx ≡ −1mod α admits a unique solution satisfying
x ∈ (−α, 0]. In addition,

δ = 1 + βγ
α

=
1 + β(b′ − α)

α
=

1 + b′β
α

− β.

Proof of Claim 5.2 For i ≥ 1, let

(
ξ i γ i
η i δ i

) = G1G2 ⋅ ⋅ ⋅Gi;

then ξ i , η i , γ i , δ i are all integers. It suõces to show the following:
(i) ξ i , η i > 0 for all i;
(ii) γ i ∈ (−ξ i , 0] and δ i ∈ (−η i , 0] for all i.
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We prove this by induction on i. When i = 1, we have

(
ξ1 γ1
η1 δ1

) = G1 = (
n1 −1
1 0 ) ,

and the conclusion obviously holds. Now assuming the validity of the result for i, we
have

(
ξ i+1 γ i+1
η i+1 δ i+1

) = (
ξ i γ i
η i δ i

)Gi+1 = (
ξ i γ i
η i δ i

)(
n i+1 −1
1 0 ) .

_erefore,
(i) ξ i+1 = n i+1ξ i + γ i > 2ξ i − ξ i > 0, since n i+1 ≥ 2 and by inductive hypothesis,

ξ i > 0 and γ i ∈ (−ξ i , 0]. Similarly, η i+1 = n i+1η i + γ i > 0 by the inductive
hypothesis η i > 0 and γ i ∈ (−η i , 0];

(ii) γ i+1 = −ξ i < 0 since ξ i > 0; in addition,

γ i+1 + ξ i+1 = −ξ i + (n i+1ξ i + γ i) > (n i+1 − 2)ξ i ≥ 0,

since n i+1 ≥ 2 and γ i > −ξ i by the inductive hypothesis; similarly, δ i+1 = −η i < 0
and

δ i+1 + η i+1 = −η i + (n i+1η i + δ i) > (n i+1 − 2)η i ≥ 0.
We are done.

5.2 Compact Formulae for DCIr ,d and DCIIr ,d

As stated in the beginning of this section,

DCIr ,d =
λ

∑
i=0
a2
i E2

i + 2
λ−1

∑
i=0
a ia i+1E i ⋅ E i+1 .

Recall that E2
0 = −b and E2

i = −rn i for i > 0. In addition, for i /= i′,

E i ⋅ E i′ =

⎧⎪⎪
⎨
⎪⎪⎩

r for i′ = i ± 1,
0 otherwise.

Hence, we have

DCIr ,d = −ba2
0 + r

λ

∑
i=1
a i(2a i−1 − n ia i).

Since −n ia i + a i−1 + a i+1 = −2 + n i , it follows that

(5.5) DCIr ,d = a0(−ba0 + ra1) + r(
λ

∑
i=1

n ia i − 2
λ

∑
i=1
a i) .

Using the equality −n ia i + a i−1 + a i+1 = −2 + n i again, we get
λ

∑
i=1

n ia i − 2
λ

∑
i=1
a i =

λ

∑
i=1

( a i−1 + a i+1 − (n i − 2)) − 2
λ

∑
i=1
a i

= −
λ

∑
i=1

(n i − 2) + (a0 − a1 − aλ);
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consequently, by (5.5), we obtain

(5.6) DCIr ,d = a0(−ba0 + ra1) − r
λ

∑
i=1

(n i − 2) + r(a0 − a1 − aλ).

To compute a0, a1 and aλ , we use the whole system of equations in (4.2). Let
a∗i = a i + 1 for i = 0, 1, . . . , λ + 1. Recall also that aλ+1 = 0. _en the equations in (4.2)
can be reformulated into a more convenient form:

−ba∗0 + ra∗1 = gcd(r, d)(r − 2)
−n1a∗1 + (a∗0 + a∗2 ) = 0
−n2a∗2 + (a∗1 + a∗3 ) = 0

...
−nλ−1a∗λ−1 + (a∗λ−2 + a

∗
λ) = 0

−nλa∗λ + (a∗λ−1 + a
∗
λ+1) = 0.

With the help of the matrices Gi deûned in (5.3), we have

(
a∗i−1
a∗i

) = Gi (
a∗i
a∗i+1

) ;

hence,

(
a∗0
a∗1

) = G1 ⋅ ⋅ ⋅Gλ (
a∗λ
a∗λ+1

) = G(
a∗λ
1 ) .

By Proposition 5.1, we thus have

⎧⎪⎪
⎨
⎪⎪⎩

a∗0 = αa∗λ + (b′ − α) = αaλ + b′

a∗1 = βa∗λ + (
1+b′β
α − β) = βaλ + (1 + b′β)/α.

Furthermore, it also holds −ba∗0 + ra∗1 = gcd(r, d)(r− 2); thus, we obtain three equa-
tions in a0 , a1 , aλ . _e solution is as follows; the proof involves only direct computa-
tions and is le� to the reader.

Lemma 5.3
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

a0 = (2 − r)α + b′ − 1,
a1 = (2 − r)β + 1+b′β

α − 1,
aλ = −(r − 2).

_erefore, it follows from (5.6) that

(5.7) DCIr ,d = −d(r − 2)2
− r

λ

∑
i=1

(n i − 2) + 2(r − 2)( r − gcd(r, d)) + (r − b).

Furthermore, we have
(5.8) DCIIr ,d = −1 + χ(E0) + rλ = 1 + rλ − (r − 2)( gcd(r, d) − 1) .

Indeed, X̃ is essentially obtained from X by replacing 0 by (1+rλ) curves intersecting
according to the dual graph; E0 contributes to χ(E0) for χ(X̃); each arm in the dual
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graph gives rise to a disjoint union of λ copies of P1 ∖ {one point} ≅ C and hence
contributes λ for χ(X̃).

5.3 Estimates of the Miyaoka–Yau Number

Now we continue to consider the Miyaoka–Yau number. By deûnition, DMYr ,d =

3DCIIr ,d − DCIr ,d . Hence, in view of (5.7) and (5.8), we get

DMYr ,d = (3(1 + rλ) + r
λ

∑
i=1

(n i − 2)) + (d − 1)(r − 2)2

− ((r − 2)( gcd(r, d) + r − 1) + (r − b)) .

By deûnition, Er ,d = DMYr ,d + (d − 1)(r − 1)(3 − r); it follows that

(5.9) Er ,d = ( r
λ

∑
i=1

(n i + 1)) + (d + 2) − ((r − 2)( gcd(r, d) + r − 1) + (r − b)) .

We need an estimate of Er ,d . First, we have

(r − 2)( gcd(r, d) + r − 1) + (r − b) ≤ (r − 2)(2r − 1) + r = 2(r − 1)2 ,

so

(5.10) Er ,d ≥ ( r
λ

∑
i=1

(n i + 1)) + (d + 2) − 2(r − 1)2
> −2r(r − 1).

Remark 5.4 _e above estimate is also true when d ≡ 1mod r by Example 4.4 and
when r = 2 by Example 4.2.

As an application of the above calculations, we give new examples of computing
Chern numbers and Er ,d by directly using formulae (5.7)–(5.9).

Example 5.5 Let r ≥ 3 and d = rp, p ≥ 1. _en the resolution π∶ X̃ → X in _eo-
rem 4.1 is minimal.
(i) We have gcd(r, d) = r, so α = d/ gcd(r, d) = p and b′ = r/ gcd(r, d) = 1.

Since α = b′p and by assumption β is chosen so that 0 ≤ β < α satisfying
b′β ≡ −1mod α, we have β = p − 1.

(ii) We get

b = gcd(r, d)(1 + b′β)
α

= r.

(iii) We have
α
β
=

p
p − 1

;

doing the continued fraction decomposition, we see that

λ = p − 1, n1 = ⋅ ⋅ ⋅ = nλ = 2.

_erefore,

r
λ

∑
i=1

(n i + 1) = 3rλ = 3r(p − 1) = 3d − 3r.
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(iv) Eventually, by (5.7), we have

DCIr ,d = −d(r − 2)2;

by (5.8), we have

DCIIr ,d = 1 + r(p − 1) − (r − 2)(r − 1) = d − (r − 1)2;

by (5.9), we obtain

Er ,d = (3d − 3r) + (d + 2) − ((r − 2)(2r − 1) + 0)
= 4d − 2r(r − 1).

Example 5.6 Let r ≥ 3 and d = r(p − 1) + (r − 1) = rp − 1 for p ≥ 2.
(i) We have gcd(r, d) = 1, so α = d/ gcd(r, d) = d and b′ = r/ gcd(r, d) = r.

Since α = b′p − 1 and by assumption β is chosen so that 0 ≤ β < α satisfying
b′β ≡ −1mod α, we have β = α − p = p(r − 1) − 1.

(ii) We get

b = gcd(r, d)(1 + b′β)
α

= r − 1.

(iii) We have
α
β
=

d
r(p − 1) − 1

=
rp − 1

r(p − 1) − 1
,

doing the continued fraction decomposition, we see that λ = p + r − 3, and

n1 = ⋅ ⋅ ⋅ = np−2 = 2, np−1 = 3, np = np+1 = ⋅ ⋅ ⋅ = np+r−3 = 2.

_erefore,

r
λ

∑
i=1

(n i + 1) = r(3λ + 1) = 3r(p + r) − 8r = 3(d + 1) + 3r2 − 8r.

(iv) Eventually, by (5.7), we have

DCIr ,d = −d(r − 2)2
+ (2r − 5)(r − 1);

by (5.8), we have

DCIIr ,d = 1 + r(p + r − 3) = d + (r − 1)(r − 2);

by (5.9), we obtain

Er ,d = (3(d + 1) + 3r2 − 8r) + (d + 2) − ( r(r − 2) + 1)
= 4(d + 1) + 2r(r − 3).

Consequently, when r = 3, we have the following:
(a) when 3∣d, we have E3,d = 4d − 12 by Example 5.5;
(b) when d ≡ 1mod3, we have E3,d = 4(d − 1) by Example 4.4;
(c) when d ≡ 2mod3, we have E3,d = 4(d + 1) by the results above.
In particular, when d ≥ 4, it is always true that E3,d ≥ 4(d − 3).
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6 Proof of Theorem 1.2

Let π∶ F̃ → F be the minimal resolution obtained in previous sections. We prove that
MY(F̃) /= 0 under the assumption of _eorem 1.2.

_e proof will be divided into three cases with respect to the values of td and td−1.
Case 1 When the lines in A form a pencil, namely, td = 1, we have, d /= 3 by the

assumption of _eorem 1.2; moreover, by Examples 4.2 and 5.5 and formula (3.7),

MY(F̃) = Ed ,d = 4d − 2d(d − 1) = 2d(3 − d).
Case 2 If td = 0 while td−1 /= 0, then we have td−1 = 1 and t2 = d − 1 (if d = 3,

t2 = d = 3). Moreover, by Examples 4.2 and 4.4, in view of (3.7), we have

MY(F̃) = t2E2,d + td−1Er ,d = (d − 1)(4(d − 1)) + 4(d − 1)
= 4d(d − 1) > 0.

Case 3 Nowwe consider the case td = 0, td−1 = 0. _en by estimate (5.10), we have

MY(F̃) = t2E2,d + t3E3,d +∑
r≥4

trEr ,d ≥ t2E2,d + t3E3,d − 2∑
r≥4

trr(r − 1)

= ( t2(E2,d + 4) + t3(E3,d + 12)) − 2∑
r

trr(r − 1).

From Remark 3.2, we have∑r trr(r − 1) = d(d − 1); moreover, from Example 4.2 and
the end of Example 5.6, we deduce that
(6.1) MY(F̃) ≥ 4d(t2 + t3) − 2d(d − 1) = 2d(2(t2 + t3) − (d − 1)) .
Now we use the celebrated inequality in the second remark added in proof of [12],
which states that

t2 +
3
4
t3 ≥ d +∑

r≥5
(r − 4)tr ;

see also [18] or [21, Appendix A]. In particular, t2 + t3 ≥ d. It follows immediately by
(6.1), that MY(F̃) > 0.
_e proof now is complete.

Remark 6.1 When d = ∣A∣ = 3 andA is a pencil, i.e., t3 = 1,MY(F̃) = 0. Moreover,
from Example 5.5, we obtain DCI3,3 = −3. Hence, by Example 3.1, we have

c21 (F̃) = K2
F̃ = K2

F + DCI3,3 = 3 × (3 − 4)2
− 3 = 0.

Moreover, c2(F̃) = 0, since MY(F̃) = 3c2(F̃) − c21 (F̃) = 0.
Since c2 > 0 for a smooth projective surface of general type (see [1, Chapter VII]),

it follows that F̃ is not of general type, a fortiori, F̃ is not a ball quotient.

Remark 6.2 Note that a ball quotient cannot admit any rational curves; see [3,
Proposition 19]. In fact, for any smooth projective surface X, any given morphism
f ∶P1 → X li�s to a morphism f̃ ∶P1 → X̃, since P1 is simply connected, where X̃ is the
universal cover of X. If X is a ball quotient, or, equivalently, X̃ is biholomorphic to a
ball, then by the maximum principle, f̃ and hence f must be constant. When the line
arrangement A is not a pencil, from _eorem 4.1, F̃ clearly contains rational curves
in the exceptional divisors; it follows immediately that F̃ is not a ball quotient.
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However, we have showed above that MY(F̃) > 0 when A is not a pencil. _is
is stronger than the non-ball-quotient property in the following sense: a non-ball
quotient surface X of general type can have MY(X) > 0 or MY(X) < 0, while our
results assert that MY(F̃) < 0 can never happen even if F̃ is of general type.

7 Surfaces of General Type Associated with Line Arrangements

Let A be a line arrangement in P2. By _eorem 1.2, MY(F̃) > 0 when A is not a
pencil. It is natural to ask whether F̃ is a surface of general type.

7.1 A General Type Criterion

We ûrst provide a criterion for a surface to be of general type.

Proposition 7.1 Let X be a smooth projective surface. If c21 (X) > 9, then X is of
general type.

Proof Let X′ be a minimal model of X. _en X′ is obtained by successively blowing
down (−1)-curves. Note that once we blow down a (−1)-curve, c21 increases by 1, so
c21 (X′) ≥ c21 (X) > 9; hence, by the Enriques–Kodaira classiûcation of surfaces (see
[1, Chapter VI], X′ is of general type, and thus, so is X.

7.2 Surfaces Associated with Line Arrangements with only Nodes and Triple Points

In the sequel, we consider surfaces associated with line arrangements such that tr = 0
whenever r ≥ 4, and we prove_eorem 1.3.
For r = 2, by Example 4.2, we have DCI2,d = 0 and DCII2,d = d − 1.
When r = 3, the following hold.

(i) If 3∣d, DCI3,d = −d ,DCII3,d = d − 4 by Example 5.5.
(ii) If d ≡ 1mod3, DCI3,d = −(d − 1),DCII3,d = d − 1 by Example 4.4.
(iii) If d ≡ 2mod3, we have DCI3,d = −(d − 2),DCIIr ,d = d + 2 by Example 5.6.

The Case 3∣d

When d = 3p, we have by (3.1) that

c21 (F̃) = K2
F +∑

r
trDCIr ,d = d(d − 4)2

− dt3 = d((d − 4)2
− t3) ,

and by (3.2),

c2(F̃) = χ(F) +∑
r

trDCIIr ,d = d(d2
− 4d + 6) − 3t3d .

By Remark 3.2, we have 2t2+6t3 = d(d− 1); hence, t3 ≤ d(d− 1)/6, and thus when
d = 3p ≥ 9,

c21 (F̃) ≥ d((d − 4)2
−
d(d − 1)

6
) > 9.
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_erefore, F̃ is of general type by Proposition 7.1. In addition,

c21 (F̃)
c2(F̃)

=
(d − 4)2 − t3

d2 − 4d + 6 − 3t3
=

1
3
( 1 + 2(d − 3)(d − 7)

d2 − 4d + 6 − 3t3
) .

The Case d ≡ 1mod3

When d = 3p + 1, we have

c21 (F̃) = K2
F +∑

r
trDCIr ,d = d(d − 4)2

− (d − 1)t3 ,

c2(F̃) = χ(F) +∑
r

trDCIIr ,d = d(d2
− 4d + 6) − 3(d − 1)t3 .

Since 2t2 + 6t3 = d(d − 1), we have t3 ≤ d(d − 1)/6, so when p ≥ 2; or equivalently,
d ≥ 7,

c21 (F̃) ≥ d(d − 4)2
−

1
6
d(d − 1)2

> 9;

hence, F̃ is of general type by Proposition 7.1. In addition,

c21 (F̃)
c2(F̃)

=
d(d − 4)2 − (d − 1)t3

d(d2 − 4d + 6) − 3(d − 1)t3
=

1
3
( 1 + 2d(d − 3)(d − 7)

d(d2 − 4d + 6) − 3(d − 1)t3
) .

The Case d ≡ 2mod3

When d = 3p + 2, we have

c21 (F̃) = K2
F +∑

r
trDCIr ,d = d(d − 4)2

− (d − 2)t3 ,

c2(F̃) = χ(F) +∑
r

trDCIIr ,d = d(d2
− 4d + 6) − 3(d − 2)t3 .

Since 2t2 +6t3 = d(d − 1), we have t3 ≤ d(d − 1)/6, so when p ≥ 2, or, equivalently,
d ≥ 8,

c21 (F̃) ≥ d(d − 4)2
−

1
6
d(d − 1)(d − 2) > 9;

hence, F̃ is of general type by Proposition 7.1. In addition,

c21 (F̃)
c2(F̃)

=
d(d − 4)2 − (d − 2)t3

d(d2 − 4d + 6) − 3(d − 2)t3
=

1
3
( 1 + 2d(d − 3)(d − 7)

d(d2 − 4d + 6) − 3(d − 2)t3
) .

Conclusion

In any case, c21 (F̃)/c2(F̃) is an increasing function in t3 with ûxed d ≥ 7. As t3 ≤

d(d − 1)/6, it follows that

1 ≤ lim inf
d→∞

c21 (F̃)
c2(F̃)

≤ lim sup
d→∞

c21 (F̃)
c2(F̃)

≤
5
3
.

_eorem 1.3 follows from the above discussion.
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8 Chern Numbers and Hodge Numbers

In this section, we compute the Hodge numbers of the associated surfaces in some
examples.

8.1 Relations Between Hodge Numbers and Chern Numbers

Fix a smooth projective surface X. Denote by q = h0,1(X) its irregularity and by
p = h0,2(X) its geometric genus. Denote also by b i , i = 1, 2, 3, 4 the Betti numbers of
X and by c21 , c2 the Chern numbers, as well as by hs ,t the Hodge numbers.

_en by Noether’s formula (see [1, Chapter I, the examples a�er _eorem 5.5]), we
ûrst have

(8.1) 1 − q + p = 1
12

(c21 + c2);

secondly, from the formula for Euler characteristic, we have

(8.2) 2 − 2b1 + b2 = c2 .

Moreover, from Hodge decomposition and Serre duality, we have

(8.3) b1 = 2q, b2 = h0,2
+ h2,0

+ h1,1 , hs ,t
= ht ,s

= h2−s ,2−t , s, t = 0, 1, 2.

We can view the equalities (8.1)–(8.3) as equations for the Hodge numbers hs ,t , as-
suming known c1 , c2 , q, and we have the solution

(8.4)

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

h0,0 = h2,2 = 1,
h0,1 = h1,0 = h1,2 = h2,1 = q,
h0,2 = h2,0 = 1

12 (c
2
1 + c2) − (1 − q),

h1,1 = − 1
6 c

2
1 +

5
6 c2 + 2q.

8.2 Computing Hodge Numbers via Chern Numbers

In the sequel, A is a line arrangement in P2 and F̃ is the associated surface. All the
Hodge numbers hs ,t and Chern numbers c21 , c2 are those of F̃; namely, we abbreviate
the notations hs ,t(F̃) by hs ,t , etc.

One of motivations of our work is to understand whether the Hodge numbers hs ,t

are combinatorially determined, one of the main open questions in the theory of line
arrangements; see [16]. By_eorem 1.1, the Chern numbers c21 , c2 of F̃ are determined
by the combinatorics of A. On the other hand, the irregularity q is closely related to
the monodromy of h∗∶H1(F) → H1(F), where h∶ F → F is deûned by

h(x , y, z) = ( exp(2π
√
−1/d)x , exp(2π

√
−1/d)y, exp(2π

√
−1/d)z) .

Indeed, as F̃ can be seen as a smooth compactiûcation of F, we have H1(F̃) ≃

W1H1(F), where W● denotes the weight ûltration on the cohomology H●(F); see,
for instance, [6, Appendix C]. In addition, by [8, _eorem 4.1], we have

W1H1
(F) = H1

(F)/=1 = ker (h∗d−1
+ ⋅ ⋅ ⋅ + h∗ + Id∶H1

(F) → H1
(F))
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So

(8.5) 2q = b1(F̃) = dimH1
(F)/=1;

this is known for many line arrangements; see [4]. In fact, in [16], a combinatorial
formula for q is given when A has only double or triple points; more examples are
given in [19] where q is computed. A good, and recent, survey of the monodromy
computations is [20] and in a recent preprint [9], an eòective algorithm to compute q
is provided.

We give now some examples in which we compute all the Hodge numbers of the
associated surfaces. In the ûrst two examples below, tr /= 0 only if r∣d. By Example 5.5,
we have

DCIr ,d = −d(r − 2)2 and DCIIr ,d = d − (r − 1)2 .

Example 8.1 (Hesse arrangement) _e Hesse arrangement is deûned by

Q = xyz((x3
+ y3

+ z3
)
3
− 27x3 y3z3)

with d = 12 with t2 = 12, t4 = 9. Moreover, we have dimH1(F)/=1 = 6; see [2, Remark
3.3(iii)], thus q = 3 by (8.5).
For the Chern numbers, we ûrst have by (3.1),

K2
F = d(d − 4)2

= 768.

Since DCI2,12 = 0 and DCI4,12 = −48, we obtain

c21 = K2
F +∑

r
trDCIr ,d = 336 > 9.

So by Proposition 7.1, F̃ is of general type. Moreover, by (3.2),

χ(F) = d(d2
− 4d + 6) − (d − 1)∑

r
tr(r − 1)2

= 201.

Since DCII2,12 = 11 and DCII4,12 = 3, we have

c2 = χ(F) +∑
r

trDCIIr ,d = 360.

Finally, by formula (8.4), we obtain

h0,0
= h2,2

= 1,

h0,1
= h1,0

= h1,2
= h2,1

= q = 3,

h0,2
= h2,0

=
1
12

(c21 + c2) − (1 − q) = 60,

h1,1
= −

1
6
c21 +

5
6
c2 + 2q = 250.

Example 8.2 Consider the arrangement A(m,m, 3) deûned by

Q = (xm
− ym

)(ym
− zm

)(zm
− xm

) = 0.
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_en if m = 3, we have t3 = 12 and if m /= 3, we have t3 = m2 , tm = 3. In addition,
dimH1(F)/=1 can be computed by [7, _eorem 1.4]; it follows from (8.5) that

q =
⎧⎪⎪
⎨
⎪⎪⎩

2 if m ≡ 0mod3,
1 otherwise.

Moreover, by Example 5.5, the following hold:

DCI3,d = −d = −3m, DCII3,d = d − 4 = 3m − 4

DCIm ,d = −d(m − 2)2
= −3m(m − 2)2 , DCIIm ,d = d − (m − 1)2

= 3m − (m − 1)2 .

_erefore, by (3.1),

c21 = K2
F +∑

r
trDCIr ,d = 3m(m − 2)(5m − 2),

and by (3.2),

c2 = χ(F) +∑
r

trDCIIr ,d = 9m(m2
− 2m + 2).

(i) First consider the case wherem = 2. _en q = 1, c21 = 0, and c2 = 36. _erefore,
by formula (8.4), we have

h0,0
= h2,2

= 1,

h0,1
= h1,0

= h1,2
= h2,1

= q = 1,

h0,2
= h2,0

=
1
12

(c21 + c2) − (1 − q) = 3,

h1,1
= −

1
6
c21 +

5
6
c2 + 2q = 32.

(ii) Second, consider the case where m = 3; then q = 2. Moreover, c21 = 117 > 9,
so F̃ is of general type by Proposition 7.1. In addition, c2 = 135. _erefore, by formula
(8.4), we have

h0,0
= h2,2

= 1,

h0,1
= h1,0

= h1,2
= h2,1

= q = 2,

h0,2
= h2,0

=
1
12

(c21 + c2) − (1 − q) = 22,

h1,1
= −

1
6
c21 +

5
6
c2 + 2q = 97.

(iii) Consider the case where m > 3 and m /≡ 0mod3. _en q = 1 and c21 =

3m(m−2)(5m−2). Note that in our situation m ≥ 4, hence c21 ≥ 3 ⋅4 ⋅2 ⋅ 18 = 432 > 9;
hence, F̃ is of general type by Proposition 7.1.
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In addition, c2 = 9m(m2 − 2m + 2). _erefore, by formula (8.4), we have

h0,0
= h2,2

= 1,

h0,1
= h1,0

= h1,2
= h2,1

= q = 1,

h0,2
= h2,0

=
1
12

(c21 + c2) − (1 − q) = 1
2
m(m − 1)(4m − 5),

h1,1
= −

1
6
c21 +

5
6
c2 + 2q = 5m3

− 9m2
+ 13m + 2.

(iv) Finally, we consider the case where m > 3 and m ≡ 0mod3. _en q = 2, and

c21 = 3m(m − 2)(5m − 2) ≥ 3 ⋅ 6 ⋅ (6 − 2) ⋅ (5 ⋅ 6 − 2) > 9,

hence F̃ is of general type by Proposition 7.1. Moreover,

c2 = 9m(m2
− 2m + 2);

hence, by formula (8.4), we have

h0,0
= h2,2

= 1,

h0,1
= h1,0

= h1,2
= h2,1

= q = 2,

h0,2
= h2,0

=
1
12

(c21 + c2) − (1 − q) = 1
2
m(m − 1)(4m − 5) + 1,

h1,1
= −

1
6
c21 +

5
6
c2 + 2q = 5m3

− 9m2
+ 13m + 4.

Conclusion For m ≥ 3, the surface F̃ is of general type. Furthermore, as m → ∞,
we have h0,2 = h2,0 , h1,1 →∞, while other Hodge numbers remain 1 or 2. In addition,
the Chern ratio

c21
c2

=
3m(m − 2)(5m − 2)
9m(m2 − 2m + 2)

Ð→
5
3

as m Ð→∞.

Example 8.3 Now we consider line arrangements that arise from restriction of
higher dimensional hyperplane arrangements. _e braid arrangement in Pn is given
by

Bn ∶ ∏
0≤i< j≤n

(x i − x j) = 0,

consisting of (n+1
2 ) hyperplanes. Let E ⊆ Pn be a generic projective plane and let

An =Bn ∣E the restriction ofBn to E. _enAn is a line arrangement in the projective
plane with only nodes and triple points such that

d = (
n + 1
2

) =
n(n + 1)

2
and t3 = (

n + 1
3

).

Indeed, any triple point ofAn corresponds to the intersection of exactly three hyper-
planes in Bn , and is then of the form {x i1 = x i2 = x i3} for some i1 < i2 < i3. Hence,

t3 = #{(i1 , i2 , i3) ∶ i1 , i2 , i3 ∈ [0, n], i1 < i2 < i3} = (
n + 1
3

).
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From Remark 3.2, we have

2t2 + 6t3 = d(d − 1) = (
n + 1
2

)((
n + 1
2

) − 1) ,

hence

t2 =
d(d − 1)

2
− 3t3 =

n2(n2 − 1)
4

.

Note that if n ≡ 1mod3, then d ≡ 1mod3; otherwise, 3∣d. So we consider the follow-
ing two cases:
(i) If n /≡ 1mod3, we have 3∣d. Moreover, dimH1(F)/=1 can be computed by [13,

_eorem A, Lemma 4.1, Proposition 4.14 and Proposition 5.1]; we have by (8.5)
that

q =
⎧⎪⎪
⎨
⎪⎪⎩

1 if n = 2, 3,
0 otherwise.

In addition,
DCI2,d = 0, DCII2,d = d − 1

and
DCI3,d = −d , DCII3,d = d − 4.

Hence,

c21 = K2
F +∑

r
trDCIr ,d =

1
24

n(n + 1)(n − 2)(n − 3)(3n2
+ 19n + 32),

so if n ≥ 4, then c21 > 9, and thus F̃ is of general type by Proposition 7.1. Moreover,

c2 = χ(F) +∑
r

trDCIIr ,d =
1
8
n(n + 1)(n − 2)(n3

+ 2n2
− 3n − 12).

(ii) If n ≡ 1mod3, then d ≡ 1mod3 and dimH1(F)/=1 = 0 by [13, _eorem A], and
thus q = 0. In addition,

DCI2,d = 0, DCII2,d = d − 1,

and by Example 4.4, we have

DCI3,d = −(d − 1), DCII3,d = d − 1.

_us,

c21 = K2
F +∑

r
trDCIr ,d

=
1
24

n(n + 1)(3n2
(n2

− 15) + 2n(2n2
− 21) + 188) ,

so if n ≥ 4, we have c21 > 9 and thus F̃ is of general type by Proposition 7.1.
Moreover,

c2 = χ(F) +∑
r

trDCIIr ,d =
1
8
n(n + 1)(n4

− 7n2
− 2n + 20).

Finding the concrete formulae for the Hodge numbers by applying (8.4) is le� to the
reader. For the Chern ratio, we have limn→∞ c21 /c2 = 1.
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