
WEAKLY COMPACT SETS IN ORLICZ SPACES 
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1. Introduction. The purpose of this paper is to characterize weak com­
pactness in Orlicz spaces. Though an Orlicz space is a Banach space, it will 
be viewed from the standpoint of the theory of Kôthe spaces. Considering 
that a norm-bounded subset is not weakly compact in general, we shall give 
some criteria for weak compactness in terms of the functional defining an 
Orlicz space. Because weak compactness is closely connected with the con­
tinuity of the semi-norms on the conjugate space, at the same time some 
properties of continuous semi-norms on Orlicz spaces will be brought to light. 

The first characterization (Theorem 1) is concerned with degree of smooth­
ness of the functional at the origin. In Theorem 2 a connection between weak 
compactness and boundedness (by another functional) is obtained. In Theorem 
3 the result in Theorem 2 is stated as a proposition about continuous semi-
norms. 

2. Preliminaries. When Af(£) is a real-valued convex function such that 
Af(0) = 0, M{£) = M ( - £) and Af(£)/£-»<» as £ - > « , it is called an N-
function. On account of convexity, it admits the non-decreasing right-hand 
derivative £(£)> a n d the function 

N® = f q(v)dv 
Jo 

(where q(rj) is the right-inverse of p(Ç)) is also an Y-f unction. Af (£) and Y(£) 
are called mutually complementary to each other. By Young's inequality (see 
(3, §2; 4, II-l)) 
(1) \S-n\ <M{£) +N(V). 

Let G be an abstract set and \x be a fixed (non-negative) countably additive 
measure on the o--algebra B of subsets of G. We assume 0 < /* (G) < °o. For 
an Y-function M(£) we shall consider an (extended) real valued functional 
M(J) defined, on the class of all measurable functions f(t) on G, by 

M(f) = JM(f{t))dn 

(where jd/j. denotes the integral on G). The functional M(J) is called the 
modular defined by the Y-function M"(f), in accordance to the terminology 
of Nakano (5). 

The Orlicz space LM*, defined by an TV-function M(£), is the class of all 

Received September 5, 1960. 

170 

https://doi.org/10.4153/CJM-1962-012-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1962-012-7


WEAKLY COMPACT SETS 171 

measurable functions f[t) such that M(af) < °o for some a = a (J) > 0. LM* 
is a linear space with the usual addition and scalar multiplication. Moreover, 
it is a Banach space with the norm (see (3, § 9; 4, 11-2)) 

(2) HI/HI* = inf(l/ |{|) where Af( t f )< 1. 

Our starting point is in the fact that LM* is exactly the class of all measur­
able functions f(t) such that 

J 1/(0" 2(01** < » 

for all g(t) e LN* (where iV(£) is complementary to M(£)) (see (3, §9; 4, 
II-2)); in other words it is a Kôthe space with the adjoint LN* in the sense 
of Dieudonné (2). The norm is known (see (3, §9; 4, 11-2; 5, §40)) 

(3) lll/IIU < sup f | / ( 0 ' g ( 0 l ^ < 2 - | | | / | | U 
g *> 

where N(g) < 1. 
In this paper, the weak topology in question is not that as a Banach space, 

but that defined by LN*, that is, <T(LM*, LN*). This is also the standpoint 
of Nakano (5). When B is atomless, the Banach weak topology and cr(LM*, 
LN*) coincide with each other if and only if Af (£) satisfies the following con­
dition (A 2 ) : l imsup^M(2£)/M(£) < « (see (3, § 10; 4, II-2)). General norm-
bounded linear functionals are not manageable, as is seen in (1). Even if a 
subset A of LM* is bounded by the modular M(/), it is not necessarily (rela­
tively) weakly compact. A known criterion for weak compactness in terms 
of linear functionals can be summarized as follows (see (2; 5, § 28)). 

LEMMA. A subset A of LM* is (relatively) weakly compact, if and only if it is 
weakly bounded and equi-continuous in the following sense: 

sup / e4 | / (0-l(0l<*/i->0 as / . (£) -> 0 (g(t) 6 LN). 

This lemma reveals a connection between weak compactness and a property 
of semi-norms on the adjoint. A semi-norm ||/ | | considered in this paper will 
always be assumed to have the following property: \f{f)\ < \g(t)\ almost 
everywhere implies ||/| | < \\g\\. A semi-norm is called continuous, if | |/^|| —» 0 
as fi(E) —» 0 where fE(t) = f(t) or = 0 according as t Ç E or t$ E. The lemma 
shows that A is (relatively) weakly compact if and only if the semi-norm 
(on LN*) defined by 

ll/ll = s u p ^ J \f(t) • g(t)\d» 

is continuous. The definition of continuity suggests the following notion 
(cf. (3)): a semi-norm ||/| | is called uniformly continuous on LN*, if | | /# | | —> 0 
(as /*(£)—»0) uniformly with respect to f(f) with N(J) < 1. 
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On account of (3) and the lemma, if boundedness by modular M(J) implies 
(relatively) weak compactness, the norm |||/|||2v on LN* is continuous. When 
B is atomless, this in turn is equivalent to the (A2) property for iV(£) (see 
(3, § 10; 4, II-3)). Further, it is known (see (3, §4)) that #(£) has (A2) if 
and only if M(g) has the following (V2) property: lim mi^MirjQ/M(£) > 2?? 
for some rj > 0. Thus when B is atomless, boundedness by modular M(f) 
implies (relatively) weak compactness, if and only if M(£) has (V2). 

3. Weak compactness. In order to obtain equi-continuity, Young's 
inequality will be useful. In fact, from (1) it follows that 

$\f(t) • g(t)\dn < M(f) + N(g) 

for all f(t) and g(t), hence for all £, ij > 0, and E £ B 

f 1/(0 • g(0 [da < M{&)/0n + N(V • gB)/b. 

For rj > 0 with N(rjg) < °° by the absolute continuity of indefinite integrals 
it results that N(rjgE) —> 0 as 11(E) —> 0. Accordingly if sup / e /1M (£/)/£ —> 0 as 
£ —> 0, then 4̂ is equi-continuous, hence (relatively) weakly compact. 

Conversely let A be weakly compact and ikf(£) satisfies the condition: 
^ ( 9 / ^ 0 a s ^ 0. Suppose that sup /eAM(£/)/£ > 3e > 0 for some e > 0 
and for all § > 0. Then there exist a sequence of positive numbers (£fc) and 
a sequence (/fc) C 4̂ such that 

è > Éi > £2 > . . . , S & < °° 

and 

M(*&) . M ( G ) < e • &, M f e •/*) > 3efe 

for all fe. Since weak compactness implies boundedness by the norm, it may 
be assumed that supkM(fk) < 1. Since 2-£# < 1 and ikf(£) is convex, 
M(2£k-fk) < 2%kM(fk) < 2£*. We will prove that there exists a sequence (gk) 
in L^* such that 

(4) M f e •/**) + N(gkB) = & • f |/*(0 • &(0l<fc 

for all £ 6 B. In fact, since M(f) + N(p(£)) = £(£)£ where £(£) is the 
right-hand derivative of M(£) (see (3, § 2)), we may take gk{t) = £(&!/*(*) I). 
Then N(gk) < M(2ffc-/fc) < 2& for all k, because £(£)£ < M(2£) - M(£) 
< M(2{) for £ > 0 by convexity of M(£). Defining g{t) = sup/c \gk(t)\, it can 
be proved by Fatou's Lemma that 

N(g)< E % ) < 2 S f c < », 
that is, g e L„*. Writing Ek = {/; |/*(*)| > &} it follows that M(k)-n(Ek) 
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< M(Jk) < 1, hence /*(£*) < 1/M(k) - » 0 as k -> 0. By the lemma there 
exists j with 

f |/,(0'*(0 I "**<€, 

then from (4) 

This contradicts the properties of (£&) and (fk). T h u s if A is weakly compact 
and . M ( £ ) / £ - > 0 as £ - > 0, then 

s u p M ( f / ) / f - > 0 as £ - » 0 . 

Now w7e shall consider the general case. Since M (£) / J is non-decreasing 
for J > 0, there exists the limit a = l im^o^f(?)/£. Then the function 
Mi(f) = .M(£) - a|£| is also an iV-function. Since M^) < jfcf(£) < jfcfi(£) 
+ a|£| and /z(G) < °°, it follows L M * = LMl*. ikfi(£) satisfies the condit ion: 
Mi(Ç)/£ —> 0 as £ —» 0. T h u s 4̂ is (relatively) weakly compact in LM*, if and 
only if s u p / € 4 M ] (£/)/£—> 0 as £ —> 0. In the language of the modular M(f)> 
it can be s ta ted as follows: 

T H E O R E M 1. A subset A of LM* is (relatively) weakly compact, if and only if 

Mm/ï->«j\f(t)\d» as £J0 

uniformly with respect to f(t) £ A, where a = lim^o-^f (£)/?. 

There arises the question whether boundedness by another modular implies 
(relatively) weak compactness. We shall a t t e m p t to find the class of N-
functions which has the property t ha t (relatively) weak compactness in LA/* 
is equivalent to boundedness by the modular defined by an iV-function in 
the class. 

An X-f unction <£(£) is said to increase more rapidly than another M(Ç), il 
for any r\ > 0 there exist p, £0 > 0 such tha t 

(5) $(pÉ) > PVM(!J) for £ > £0. 

Remark by the way t ha t ikf (£) has (V2), if and only if it increases more rapidly 
than itself. The condition (5) may be stated in the following form: for any 
€ > 0 there exist <5, £0 > 0 such tha t e$(£) > Mfà)/ô for £ > £0. Now if a 
subset .4 of L M * is bounded by the modular <!>(/) (where <£(£) increases more 
rapidly than M(£)) , it is not hard to see tha t A satisfies the condition in 
Theorem 1, and consequently it is (relatively) weakly compact. 

Conversely let A be weakly compact in LM*. We distinguish between two 
cases. First if there exists y > 0 such tha t ess. sup | / ( / ) | < 7 for all f(t) Ç A, 
the function <£(£) = M(£)2 is an N-lunction increasing more rapidly than M (£), 
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and supf€A&(f) < $ (7) • ju (G) < 00, that is, A is bounded by modular O(f). 
Next consider the case supfeAy(f) = 00 where 7(f) = ess. sup|/(£)|. Writing 
Mi (J) = M(£) - a\i\ (where a = lim^0M(£)/£) by Theorem 1 there can be 
found a sequence of positive numbers (%k) such that £j > £2 > . • . and 
sup/.Jlfj (&/)/& < 1/22* for all k. Then writing 

<*>(£) = Z2*Mx(& •£)/&, 

by Fatou's theorem it results in 

f $(f(t))dn < £ 2*Mi(fcf)/fc < E 1/2* < 1 

consequently $(f(t)) < °° almost everywhere for each /(£). Since <£(£) is 
non-decreasing for £ > 0, this implies $(£) < 00 for all £ < y (J), finally for 
all £ > 0 because sup/€A7(f) = 00. Then it is clear that $(£) is an iV-f unction 
increasing more rapidly than M(£) and A is bounded by the modular 4>(/). 
Thus we obtain 

THEOREM 2. A subset A of LM* is (relatively) weakly compact, if and only if 
it is bounded by the modular defined by an N-function (depending on A) <£(£) 
increasing more rapidly than M (J). 

3. Continuous semi-norms. Let N(£) and ^(f) be complementary to 
M(J) and <£(£) respectively. It is not hard to see that >£(£•) increases more 
rapidly than iV(£) if and only if <£(£) is completely weaker than M(£) in the 
following sense: for any rj > 0 there exist p, £0 > 0 such that 

*(irè) < pM(Ç) for ? > go. 

Remark by the way that M(J) satisfies (A2) if and only if it is completely 
weaker than itself. 

Let 11/11 be a continuous semi-norm on LM* (with which LM* is not neces­
sarily complete). On account of the lemma, the subset 

A = [g(t); j \f(t) ' g(t)\dfji < 1 for all /(*) with | | / | | < l \ 

is weakly compact in LN*. On the other hand, it is easily seen that | |/ | | = 
supgeAj\f(t)'g(t)\diJL. By Theorem 2 A is bounded by the modular defined by 
an iV-function \T'(£) increasing more rapidly than iV(£)> s a v suPgeA^(2g) < 1. 
Then as is stated above, $(£), complementary to >F(£), is completely weaker 
than M(£). From (3) it follows that | |/ | | < | | | / | | |* for all f(t) £ LM*. On the 
other hand, the norm | | | / | | |$ is continuous on LM* (cf. (3, § 10)). 

THEOREM 3. A semi-norm \\f\\ on LM* is continuous, if and only if it is 
majorated by the norm defined by an N-function (depending on \\f\\) $(£) com­
pletely weaker than M (J). 
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Finally we shall consider uniformly continuous semi-norms on LM*. Let 
11/11 be uniformly continuous. It is not hard to see that in this case the set A 
in the proof of Theorem 3 has the following property: sup/€ii|||/^|||jv —> 0 as 
n(E) —> 0. On account of (2), this in turn means that supf€AN(kfE) —-> 0 as 
M(JE) —> 0 for all k, consequently sup ftAN(kf) < œ for all k. 

If, in general, a subset B of LN* has the property that sup f€BN{fE) —»• 0 as 
/x(E)—>0, there exists a sequence of positive numbers (ak) such that 
ax > a2 > . . . and sup feBN(fE) < 1/22* for all E G JB with /*(£) < a,. Here 
we may assume that sup f€BN(f) < 1. Consider an TV-function ^o(ê) whose 
right-hand derivative is equal to 2k on each interval [l/ak, l/ak+i). By defini­
tion ^o(f) < 2*£ on each such interval. For a fixed f{t) £ J3, writing 
Ek s {/; ft < | / (0 | < At+i} where ft = N'^l/a*), it follows that 

f *o[# (/(0)]<*M < 2N(0MG) + Z 2* f i V ( / ( 0 ) ^ 
^ K ^ Ek 

< 2N(01MG) + £ 1/2* < 2N(J31)p(G) + 1, 

because n{Ek)N{$k) < 2V(/) < 1, hence /i(£ t) < 1/iVCS*) = a,. Thus 

sup„B J ¥<>[#(/(*))]<*/* < » . 

Returning to the subject, in this way there exists a sequence of iV-functions 
0*(D) such that 

s u p m §*k[N{2kf{t))]dn < 1/2* 

for all &. We shall treat only the case sup / eA7(/) = oo where y (J) = ess. 
sup|/(0| . Then, as in the proof of Theorem 2, an N-iunction is obtained by 
setting >£(£) = l A [ f ( ^ ) ] , and from the properties of (>M£)) it follows 
that sup„A*(2f) < 1, hence by (3) | |/ | | < | | | / | | |* for all /(/) £ LM* where 
$(£) is complementary to ^(£). ^(£) is essentially stronger than iV(£) in the 
sense of Krasnoselskii and Ruttickii (3, § 13), that is, 

limN(kÇ)/*(Ç) = 0 for all k. 
£->oo 

On the other hand, <£(£) is essentially weaker than ikf(?)> that is, lim$_>œ<ï>(ft£)/ 
M(£) = 0 for all fe, and the norm | | | / | | |$ is uniformly continuous on LM* (see 
(3, § 13)). 

THEOREM 4. A semi-norm | |/ | | #?z XM* is uniformly continuous, if and only 
if it is majorated by the norm defined by an N-function {depending on ||/||) <£(£) 
essentially weaker than M(£). 

Analogous problems about Orlicz sequence spaces will be treated in another 
place. 
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