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ON THE WIDTH OF A PLANAR CONVEX SET
CONTAINING ZERO OR ONE LATTICE POINTS

PauL R. ScoTT

We generalise to a rectangular lattice a known result about the maximal width
of a planar compact convex set containing no points of the integral lattice. As a
corollary we give a new short proof that the planar compact convex set of great-
est width which contains just one point of the triangular lattice is an equilateral
triangle.

1. INTRODUCTION

In the Euclidean plane E? let A denote the integral lattice, and At the triangular
lattice generated by the vectors (1,0) and (1/2,v3/2). Let also Ag(u,v) denote the
rectangular lattice generated by the vectors (u,0) and (0,v).

We denote by K a compact, convex set in E2. The minimal width, w(K), of K
is the smallest distance between parallel supporting lines of K. A number of results

are known about w(K) in the case where K is constrained by a lattice:

THEOREM 1. If K contains no points of the lattice A in its interior, then w(K) <
(V3+ 2)/2; equality is assumed for an equilateral triangle of side-length (V3+ 2)/\/§
(2].

THEOREM 2. If K contains one point of the lattice A in its interior, then w(K) <
V2 + 1; equality is assumed here for a certain isosceles triangle [3].

THEOREM 3. If K contains no points of the lattice At in its interior, then
w(K) < V/3; equality is assumed here for the ‘obvious’ equilateral triangle of side-
length 2 [4].

Recently a further result of this type has been proved [5]:

THEOREM 4. If K contains one point of the lattice At in its interior, then
w(K) < 3/2V/3; equality is assumed here for an equilateral triangle of side-length 3.
(See Figure 1(a).)

The proof given for this pretty result is long, but can be halved in length by building
on known results. Here we shall prove the following simple generalisation of Theorem
1, from which Theorem 4 will immediately follow as a corollary.
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THEOREM 5. Suppose that u < v and v < V3u. If K contains no point of
Ag(u,v) in its interior, then w(K) < (\/§u+2v)/2. This result is best possible,
equality being attained for the equilateral triangle illustrated in Figure 1(b).

J3us2v
2
v
"." u
v4 AN X
(2) (b)
Figure 1.

2. PROOF oF THEOREM 5

To prove Theorem 5, we shall need to step through the proof of Theorem 1 given
in {2], to which we refer the reader. In replacing A by Agr(u,v), several significant
modifications are required.

We shall assume that K is a planar compact convex set satisfying the conditions
of Theorem 5, and for which w(K) is as large as possible. From Figure 1(b) we see
that w(K) £ (V3u + 2v)/2. We may therefore use the well-known result of Blaschke
[1] and suppose that K contains a disc of radius

R = %.%.(\/ﬁu+2v).

By translating K through a suitable lattice vector, we can take the centre of this disk
to lie inside the rectangle with vertices A(0,0), B(x,0),C(u,v), D(0,v). Now from the
bounds on v and v, R > (V3 +2)u/6 >u/2, and R > v/2. It follows that the disc
must intercept (at least) three sides of the rectangle ABCD. We can now argue as in
[2] to deduce that K lies within a convex quadrilateral Q determined by lines a,b,¢c,d
through A, B, C, D respectively. Since w(K) < w(Q), and @ contains no lattice points
n its interior, it is sufficient to show that w(Q) < (V3u + 2v)/2.

In quadrilateral Q,let ab=1L, b.c=M, c.d= N, d.a= P. No pair of sides of
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Q can be parallel. For if say sides a and ¢ are parallel, then

w(Q)SAC'=\/1—zz+—v’<\/§v<v+(\/5—1)\/§u=v+%< (20 + V3u) 2

Hence we may think of Q as the intersection of two triangles as in Figure 2. Let L be
the vertex which these two triangles have in common. Then the diagonal MP will be
called the minor diagonal of Q. (There are in fact two cases to consider here when R is
not a square: if P say is the vertex in common, we ultimately obtain a different result.
For the present we shall stay with the notation of Figure 2, and evaluate the two cases
at the end of the argument.)

L

Figure 2.

Following (2], we now use Steiner symmetrisation. If K is a given region and | a
given line in the plane, we obtain a new region K' as follows. Displace each chord XY
of K which is perpendicular to ! along the line XY until its midpoint lies on I. Then
K' is the union of these displaced chords.

The proof of the theorem now follows from four simple lemmas. The first lemma
is unchanged from [2].

LEMMA 1. Let Q' be the kite obtained from quadrilateral ) under symmetrisa-
tion about the perpendicular bisector of the minor diagonal of Q. Then w(Q') > w(Q).

LEMMA 2. Let m denote the length of the minor diagonal of Q, and let n denote
the width of Q in a direction perpendicular to this. Let Ry be a rectangle obtained
from R under a similarity with scale factor A\. If Ry is inscribed in Q with a vertex
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on each side of Q, then

Figure 3.

PROOF: Let Ry have vertices A4, B, C, D and let DC make an angle § with
the minor diagonal as in Figure 3. Let the diagonals of @ meet in the point O.

Now the area of @@ is mn/2. This area is also given by adding the areas of
quadrilaterals ODPA,OBMC to the areas of OCND, OALB. We obtain

Avcos0.m /2 + ducos8.n/2 = mn/2.
Hence A(vm + un) cos § = mn,

A(vm +un) 2 mn,
or A > &
vm + un
as required.

We observe that equality holds when the rectangle has a pair of sides parallel to
the minor diagonal. 0

The third lemma requires only minor alteration from that given in [2].

LEMMA 3. The quadrilateral Q can be transformed into a kite Q' having the
following properties:
(a) w(Q')2w(Q);
(b) @' contains no lattice point in its interior;
() @' has its axis along the line z = a/2;
(d) the sides of Q' pass through A, B, C, D respectively.
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PRrROOF: Transform the quadrilateral @ as in Lemma 1 to obtain a kite Q' with
w(Q') 2 w(Q).-

Since @ and R (= R;) exhibit the relationship outlined in Lemma 2, the constants
m and n satisfy the condition mn/(vm + un) < 1. Now inscribe a rectangle R, similar
to R in the kite Q', with sides parallel to the diagonals of Q'. Since m and n are
invariant under the symmetrisation, and the sides of R are parallel to the diagonals of
Q', we obtain A =mn/(vm +un) < 1. If A =1, we take R) to coincide with R, and
Q' now satisfies the conditions of the lemma. If A < 1, an enlargement of Q' (and R,)
with scale factor 1/A(> 1) increases its minimal width, and gives the required kite. [

LEMMA 4. w(Q') < (VB3u + 2v)/2, with equality occurring only when Q' degen-
erates into an equilateral triangle.

PRrOOF: Using the obvious labelling corresponding to that of @, let Q' = L'M'N'P'
be the kite for which w(Q') is maximal. Then exactly as in [2], we deduce that the four
altitudes of ' must be equal, and that the angles at L', M' and P' are congruent.

Consider now the half-kite illustrated in Figure 4.
N

Figure 4.
Let the width of @' be denoted by p(#). Then

p(6) = FL' = FG + GL'
= vsin 30 + (u cosec fsin 28)/2
= vsin36 — u cosf.
hence p'(6) = 3vcos30 —usiné
<0

for all (positive) values of u and v, and for the allowable range of ¢

Hence the maximal value of p is assumed for § = 7/6, and Q' is an equilateral triangle.
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We have now shown that if Q' is a quadrilateral with maximal width, and such
that it is derived from a quadrilateral ) determined by two intersecting triangles with
common vertex L (see Figure 2), then w(Q') < pmaz = (\/ﬁu + 2v) /2. As mentioned
earlier, there is another possibility, where P (say) rather than L, is taken as the common
vertex of the defining triangles. In this case the réles of u and v are interchanged, and
the maximal value for the width is given by p* = (\/§v + 2u) /2. However it is easily
checked that p* < paz for u < wv.

To complete the proof of the theorem, we only need to observe that no closed,
convex, proper subset of the equilateral triangle has the same minimal width as the
triangle. For no such subset can contain all three vertices of the triangle, and removal
of any vertex of the triangle decreases the width. 0

3 PrROOF oF THEOREM 4

The extremal equilateral triangle in Figure 1(a) contains an inscribed regular
hexagon of side-length 1. The endpoints of the two horizontal edges of this hexagon
determine a rectangle R, which in turn determines a rectangular lattice Ag(u,v) for
which « = 1 and v = /3. The convex set K which satisfies the conditions of Theorem
5 can contain no points of this lattice. Hence, from Theorem 5,

w(K) < (\/éu + 2v) /2= (\/?7 + 2\/5) /2 = 3V3/2,

and equality occurs here if and only if K is the equilateral triangle of side-length 3.
This completes the proof of Theorem 4. 0

4. SOME FINAL COMMENTS

There are two comments which should be made. The first is that the condition
v € v/3u in the statement of Theorem 5 may not be necessary. However, including this
constraint helps keep the proof simple, and is sufficient to establish Theorem 4, which
is our main goal. It is interesting that equality occurs precisely for the values of u and
v which give the chosen sublattice of the triangular lattice.

The second comment concerns the nature of the proof. Although the proof given
here is much shorter than that given in [5], it is still not entirely satisfying. The result
is ‘obvious’ in the sense that the extremal equilateral triangle fits naturally with the
structure of the triangular lattice. One might have hoped that symmetry considerations
would have led to an immediate proof, as indeed happened in the proof of Theorem 3.
Perhaps there is an even shorter proof remaining to be discovered!
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