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Abstract

Commonly, quantitative gait analysis post-stroke is performed in fully equipped laboratories housing costly technol-
ogies for quantitative evaluation of a patient’s movement capacity. Combining such technologies with an electromy-
ography (EMG)-driven musculoskeletal model can estimate muscle force properties non-invasively, offering clinicians
insights intomotor impairmentmechanisms.However, lab-constrained areas and time-demanding sensor setup and data
processing limit the practicality of these technologies in routine clinical care. We presented wearable technology
featuring a multi-channel EMG-sensorized garment and an automated muscle localization technique. This allows
unsupervised computation of muscle-specific activations, combined with five inertial measurement units (IMUs) for
assessing joint kinematics and kinetics during various walking speeds. Finally, the wearable systemwas combined with
a person-specific EMG-driven musculoskeletal model (referred to as human digital twins), enabling the quantitative
assessment of movement capacity at a muscle-tendon level. This human digital twin facilitates the estimation of ankle
dorsi-plantar flexion torque resulting from individual muscle-tendon forces. Results demonstrate the wearable technol-
ogy’s capability to extract joint kinematics and kinetics. When combined with EMG signals to drive a musculoskeletal
model, it yields reasonable estimates of ankle dorsi-plantar flexion torques (R2 = 0.65 ± 0.21) across different walking
speeds for post-stroke individuals. Notably, EMG signals revealing an individual’s control strategy compensate for
inaccuracies in IMU-derived kinetics and kinematics when input into a musculoskeletal model. Our proposed wearable
technology holds promise for estimatingmuscle kinetics and resulting joint torque in time-limited and space-constrained
environments. It represents a crucial step toward translating human movement biomechanics outside of controlled lab
environments for effective motor impairment monitoring.

1. Introduction

Gait assessment is commonly used to evaluate the movement capacity of a person with motor disorders
such as those resulting from conditions like stroke (Mohan et al., 2021), spinal cord injury (Barbeau et al.,
1999), and cerebral palsy (Dickens & Smith, 2006). In the last two decades, fully equipped biomechanics
laboratories with camera-based motion tracking systems, stationary force plates, and electromyography
(EMG) sensors have played a pivotal role in enabling quantitative gait analysis (Nadeau et al., 2013;
Klöpfer-Krämer et al., 2020).

By using motion capture technologies, force sensors, and EMG, we can record human movements,
ground reaction forces (GRFs), and muscle-specific activation patterns, respectively. Data on body
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motion and external forces can be combined with a multi-body dynamic model to simulate the motions,
e.g., joint kinematics and joint moments (Winter, 2009). This methodology alone cannot yield insights
into the force-generating properties of the underlying muscles. By estimating musculoskeletal properties
such as muscle activations and muscle forces, clinicians can get a better understanding of the underlying
causes of a person’s movement impairments, develop personalized rehabilitation interventions, and
monitor the progress for optimal recovery. Since the musculoskeletal system is redundant, i.e., many
muscles act on the same joint, and innumerable solutions are possible to obtain the same movement,
knowing inverse dynamics (ID)-derived moments is not enough to estimate the force contribution of each
muscle acting on the same joint.

A person-specific musculoskeletal model can facilitate the non-invasive estimation of muscle forces.
By employing measured body kinetic and kinematic data and by minimizing an objective function
describing pre-defined physiological criteria (Pedotti et al., 1978; Crowninshield &Brand, 1981; Davy&
Audu, 1987), muscle forces and muscle activations can be computed. However, since the computation of
muscle forces is based on optimization techniques and not on muscle-related measured data, its
applicability to neurologically impaired individuals is suboptimal (Simpson et al., 2015). The estimation
of muscle activation and muscle forces starting from positions and external forces can be challenged by
abnormal neuromuscular patterns, underlying co-contraction, spasticity, or the presence of silent muscles.
However, measured muscle activation input in a person-specific musculoskeletal model (referred to as
EMG-driven musculoskeletal model) can better detect these abnormalities. EMG-driven models provide
a digital representation of a person’s musculoskeletal anatomy, where individual muscle-tendon units
(MTUs) are driven by measured EMGs. This digital representation is referred to as a human digital twin.
Human digital twins bridge the physical and digital worlds, enablingmonitoring, simulation, and analysis
of a person’s movement capacity at a muscle-tendon level under different conditions. In a clinical context,
the use of human digital twins can facilitate the identification of the causes behind a movement
impairment and help optimize rehabilitation treatments. In the last decades, EMG-driven musculoskeletal
models have enabled the non-invasive estimation of muscle-tendon forces and resulting joint torques in
healthy (Sartori et al., 2012) and neurologically impaired individuals (Knarr et al., 2014; Manal et al.,
2012). The presence of such parameters can describe how the muscles are coordinated during a specific
movement and hence help gain a thorough understanding of the underlying mechanisms provoking the
motor impairment. However, the implementation of EMG-driven models has been primarily restricted to
fully equipped laboratories (Sartori et al., 2012; Durandau et al., 2018). The high costs of cameras and
force plates, the lab-constrained measurement area, as well as the time-demanding sensor setup and
processing, have limited the applicability of this technology to tackle daily life problems in healthcare
environments with a high demand for gait assessment.

There is a need to replace conventional laboratory systems with a fully wearable and portable gait
assessment tool. In the present study, we proposed a wearable technology comprising a multi-channel EMG-
sensorized garment and an automatedmuscle localization algorithmcombinedwith five inertialmeasurement
units (IMU) as well as an EMG-driven musculoskeletal model. This can allow the computation of (1) knee
and ankle angles and ID-derived ankle dorsi-plantar flexion torque, and (2) ankle dorsi-plantar flexion torque
estimated using an EMG-driven musculoskeletal model during walking at different speeds in post-stroke
individuals. With the proposed solution, we investigated the possibility of (1) removing the need for
laboratory-based technologies, such as force plates and camera-based tracking systems, by using five
IMU sensors, and (2) using IMU data and a person-specific musculoskeletal model to estimate knee and
ankle angles, right and left GRFs, and ID-derived ankle dorsi-plantar flexion torques. Furthermore, we
hypothesized that (3) we could calibrate a person-specific EMG-driven musculoskeletal model and estimate
ankle dorsi-plantar flexion torque using joint angles and ankle dorsi-plantar flexion torque derived from five
IMUs in conjunction with muscle activations derived from the garment-embedded EMG signals. We
hypothesized that the IMU and EMG-driven ankle dorsi-plantar flexion torque could be estimated with
comparable accuracy (R2 > 0.7 andRMSE<0.3Nm/kg) to the ankle dorsi-plantar flexion torque retrievedvia
an inverse dynamics approach informedby joint kinematics and kinetics retrievedvia lab-bound technologies
(multi-camera tracking systems and in-ground force plates).
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We focused on the ankle joint since typical gait retraining in post-stroke survivors has focused on the
impairment of plantar flexor muscles that are the primary contributors to forward propulsion and the
swing initiation phases (Embrey et al., 2010; Kesar et al., 2009). Previous studies suggested that a
rehabilitation strategy aiming at increasing paretic forward propulsion and swing initiation in a post-
stroke population can help improve gait performance (Peterson et al., 2010).

Wearable sensors have been widely used to compute joint torque via ID. Previous studies combined
IMUs with other portable technologies (portable force plates or pressure insoles) (Liu et al., 2014;
Khurelbaatar et al., 2015; Wang et al., 2022) or machine learning algorithms (Li et al., 2016; Stetter et al.,
2020), to compute lower limb joint moments. Other studies have integrated IMUs with person-specific
biomechanical models to compute knee and ankle moments during walking (Fukutoku et al., 2020), as
well as hip moments during balance tasks (Noamani et al., 2020). However, all these works applied
wearable sensors to healthy participants.

Similarly, EMG-driven musculoskeletal models have been used to estimate joint moments based on
underlying muscle forces. Several studies have used laboratory-informed signals together with a person-
specific musculoskeletal model to estimate joint moments in healthy (Sartori et al., 2012; Durandau et al.,
2018; Tagliapietra et al., 2015) and neurologically impaired individuals (Knarr et al., 2014; Manal et al.,
2012). Furthermore, EMG-driven models together with IMUs (Han et al., 2015) or machine learning
techniques (Wu et al., 2021; Heine et al., 2011) have been employed to estimate joint moments of the
upper and lower limb, albeit typically for healthy individuals. Our previous studies combined an EMG-
sensorized leg garment, automatedmuscle localization techniques, and an EMG-drivenmodel to estimate
ankle dorsi-plantar flexion torque (Simonetti et al., 2023) during walking in post-stroke and healthy
participants. However, the acquisition of joint kinematics and kinetics relied still on lab-bound technol-
ogies such as 16-camera tracking systems and two floor-embedded force plates. The use of these non-
wearable and expensive laboratory setups prevents the application of our EMG-sensorized leg garments
and EMG-drivenmodels to out-of-lab scenarios. Moreover, the lengthy setup (e.g., placement of multiple
markers on the body for joint kinematics processing) is not compatible with the limited time available per
patient in clinical settings. Our current research tackles these limitations by introducing a fully wearable
technology that uses five IMUs to estimate both joint kinematics and foot-ground reaction forces needed
for the EMG-driven model calibration. This can potentially facilitate the transfer of these technologies
into clinical settings. To the best of the authors’ knowledge, no previous studies combine the estimation of
muscle kinetics and resulting joint torque by integrating EMG-sensorized garments, an automatedmuscle
localization algorithm, wireless and wearable IMU sensors, and an EMG-driven musculoskeletal model
with validation on healthy and post-stroke individuals.

In the subsequent sections, we elaborate on the experimental procedures alongwith the data processing
for the laboratory-based and fully wearable systems. We showed the effectiveness of IMU linear
accelerations and orientations in computing joint kinetics and kinematics, respectively, compared to a
standard laboratory system (Section 3). Furthermore, we demonstrated that EMG signals revealing the
person-specific control strategy largely impact the final torque estimation and compensate for IMU-
derived joint angle inaccuracies when input to a musculoskeletal model (Section 3). We applied the same
methodology to a control group comprising nine healthy participants and validated the IMU-based
estimation of joint kinetics and kinematics, as well as IMU-derived joint angles and bipolar EMG-
driven estimation of ankle moments (Supplementary Material). Finally, we discuss the results, including
study limitations and future work (Section 4).

2. Methods

2.1. Experimental procedures

Four males with hemiparetic post-stroke (age = 53.8 ± 8.0 years, height = 177.5 ± 4.3 cm,
weight = 94.2 ± 20.1 kg) (Table 1) were recruited for participation through the Sint Maartenskliniek
(Nijmegen, The Netherlands). The study (reference number 2022–13658) was approved by the regional
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medical ethics committee of Eastern Netherlands (METC Oost-Nederland). Each participant completed
three tasks: a static standing pose in a neutral position (10 s), walking at a self-selected comfortable speed,
and walking as fast as possible. A minimum of 10 gait cycles in each walking condition were recorded.

EMG data were recorded using an EMG-sensorized garment (Figure 1) embedded with a grid of
64 EMG electrodes equally distributed and surrounding the leg of the affected side. Prior to donning the
garment, the skinwasmoistenedwith salty water to reduce the electrodes’ impedance. A ground electrode
was attached using a wet wristband. All EMG channels were connected to a multi-channel amplifier
(SAGA 64+, Data Recorder, TMSi, Odendzaal, The Netherlands) worn on the back of the participant and
connected to a desktop station (SAGA 64+, Docking Station, TMSi, Odendzaal, The Netherlands)
through an optical fiber cable. The EMG signals were recorded at a sampling rate of 2000 Hz and
amplified against the average of all 64 connected floating inputs, i.e., average reference mode, with the
exception of the ground electrode. A detailed description of the EMG-sensorized garment is presented in
our previous work (Simonetti et al., 2023).

Kinematics data were captured using five IMUs (XsensTM MTw, Movella, Enschede, The Nether-
lands) and a 3Dmotion tracking system (Vicon, New York (NY), USA). IMUs were attached with velcro
straps: on the sacrum at the midway point between the line connecting the left and right posterior superior
iliac spine, on each foot on the midfoot region, and on the impaired leg on the thigh on the mid-femur
lateral region, and on the tibia below the tibial tuberosity (Figure 1). The MT Manager software
(MT manager 2019.2, Movella, Enschede, The Netherlands) was used for wireless data recording from
the IMUs,with a sampling rate of 100Hz. Thirty-seven reflectivemarkers were placed on bony landmarks
and leg segments, as previously described (Sartori et al., 2012). Data were acquired at 100 Hz using

Table 1. Post-stroke participants information

Age Weight (kg) Height (m) Time since stroke (months) Stroke type FAC score (0–5) Affected side

p01 44 78 1.72 8 ischemic 5 left
p02 57 128 1.83 36 hemorragic 5 left
p03 49 80.2 1.75 3 ischemic 5 right
p04 65 90.4 1.80 4 hemorragic 5 left

Abbreviation: FAC = Functional Ambulation Category.

Figure 1. Experimental setup.
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16 optical cameras (eight Vicon Bonita cameras, four Vicon Vero 2.2 cameras, and four Vicon Vue video
cameras). Simultaneously, 3D GRFs were recorded at 1000 Hz via two floor-embedded force plates
(Kistler 9286BA, Kistler, Winterthur, Switzerland). The EMG and kinematics tracking systems were
synchronized by using the digital input of the Data Recorder (DIGI) to record the motion tracking
system’s start and end events.

2.2. Data processing

Signal processing of the raw EMG, kinetic, and kinematic data was done on Matlab (Matlab2020a,
MathWorks, Natick (MA), USA).

2.2.1. Kinematic and kinetic data
The kinematic and kinetic data from the optical motion tracking system and the force plates were low-pass
filtered at 6Hzwith a zero-lag 2nd order Butterworth filter. Linear and angular accelerations and velocities
extracted from the IMU software were low-pass filtered at 3 Hz with a zero-lag 2nd order Butterworth
filter. A lower cut-off frequency with respect to the kinetic and kinematic data obtained from lab systems
was chosen to reduce the noise introduced by relative movement between sensors and the underlying
segment.

2.2.2. EMG data
For the post-stroke individuals, the raw EMG signals were amplified with a gain of 23 and automatically
inspected to identify noisy channels, that is, channels with large voltage fluctuations due to movement
artifacts as described (Simonetti et al., 2023). All noisy channels were set to zero. The raw EMG signals
measured from the remaining channels went through re-referencing processing (see detailed processing in
(Simonetti et al., 2023)) to remove the noise introduced by the noisy channels during the average reference
amplification modality. The rereferenced EMG signals were processed to extract linear envelopes. First,
the re-referenced EMG signals were high-pass filtered at 20 Hz using a zero-lag 2nd order Butterworth
filter and fully rectified. Afterward, the rectified EMG signals went through a movingmedian filter with a
moving window length of 0.16 s to obtain an equivalent behavior to a low-pass filter with a 6 Hz cut-off
frequency (Conforto et al., 1999). The moving median filter allowed removing the remaining spikes due
to movement artifacts. The resulting linear envelopes of each channel were normalized against the
maximum linear envelopes’ value extracted among all performed tasks.

The multi-channel EMG clustering developed in (Simonetti et al., 2023) was applied to the 64 nor-
malized linear envelopes from three gait cycles at a comfortable walking speed to extract muscle-specific
activations for the following seven muscles: tibialis anterior, extensor hallucis longus, medial and lateral
gastrocnemius, soleus, peroneus brevis, and longus.

2.3. Wearable lab

2.3.1. Scaling and Inverse kinematics
We used the open-source software OpenSim (Delp et al., 2007) and the participant’s height and weight to
linearly scale a generic musculoskeletal geometry model (gait 2392) to the person-specific musculoskel-
etal geometry (Figure 2(a)). A manual scaling factor was defined for each subject as the ratio between the
height of the generic musculoskeletal model (168 cm) and the individual height of a participant (Table 1).
This yielded a scaled model, from which we derived initial person-specific values of optimal fiber length
and tendon slack length for each modeled muscle-tendon unit using a previously developed optimization
algorithm (Modenese et al., 2016) (Figure 2(b)). Using the OpenSim IMU placer tool, IMU orientations,
representedwith quaternions, during a static posewere used to register each IMU sensor to a specific body
segment of the scaled and optimized model (Figure 2(c)). Subsequently, the IMU orientations from all the
walking tasks were used as input to the Opensim IMU inverse kinematics (IK) tool to obtain knee and
ankle joint angles (Al Borno et al., 2022) (Figure 2(d)). We will refer to the joint angles output of the
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OpenSim IK tool as IMU-based knee and ankle angles. The tool calculated the generalized coordinates of
a model that best matched the experimental IMU orientations. Mathematically, this is expressed as a
weighted least squares problem, which minimizes the orientation errors (Al Borno et al., 2022).

2.3.2. Gait phases detection
The gait phase detection algorithm was developed to automatically detect initial contact (IC) and terminal
contact (TC) events (Figure 2(e)) to subdivide the gait cycle into single and double stance phases. The gait
phase detection algorithm is composed of the steps described as follows:

• Foot flat (FF): The foot flat phase, i.e., when the entire leading foot is flat on the ground until the
moment before the heel is lifted off the ground, was computed by applying a threshold to the 3D
filtered linear velocities, as follows:

FF =
X

~v tð Þn�0:5σvn tð Þ < v tð Þn <~v tð Þn + 0:5σv tð Þn (2.1)

where v tð Þn is the linear filtered velocity in the direction n (n = x,y,z), ~v tð Þn is the mean linear filtered
velocity value in each direction, and σv tð Þn is its standard deviation. Therefore, the FF phase was
considered as the set of points in time where the angular velocities in the three directions simultaneously
showed a small variationwith respect to themean value that was expected to be close to zero (Rueterbories
et al., 2013).

Figure 2. Schematics of the IMU-based pipeline to extract joint angles and ankle torques from
accelerations and quaternions as well as person-specific anthropometric measures. Using the OpenSim
software, the mass and height are used to scale the default musculoskeletal model (a) to the specific

participant measures. The optimal fiber length and the tendon slack length of the scaled model are then
optimized (b). The IMU are placed on the model (c) and then used to perform inverse kinematics (d) and
obtain joint angles. IMU accelerations are used to detect gait phases (e) and estimate the total 3D GRF
(f). The 3D GRF is split into right and left GRFs using the STA (g) and the detected gait phases. The
inverse kinematics input is used to track the heel, toes, and CoM of the calcaneus position (x, y, z). Those
together with the detected gat phases are used to estimate the CoP (i). Estimated CoP and right and left
GRFs are input to the inverse dynamics tool (j) to finally compute the ankle dorsi-plantar flexion torque.
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• Signal VectorMagnitude (SVM) of the angular velocities: The SVMof the angular velocities of each
foot was calculated as follows (Chang et al., 2016):

SVM =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωx tð Þ2 +ωy tð Þ2 +ωz tð Þ2

q
(2.2)

where t is the time step, ωx tð Þ, ωy tð Þ, and ωz tð Þ are the filtered angular velocities of in the anterior-
posterior, vertical, and mediolateral directions, respectively.

• Initial contact (IC): we assumed the SVMwas zero, or close to zero when the entire foot is in contact
with the ground (FF), that is, when there is no foot rotation and therefore none or almost none angular
velocity (Rueterbories et al., 2013). In general, during the IC, a sharp spike in the foot acceleration is
easily visible. This then levels out to the FF (Patterson&Caulfield, 2011). Therefore, we defined the
IC moment as the local maximum right before the beginning of the FF phase (Figure 3).

• Terminal Contact (TC): SVM is relatively large when the foot is at TC in the swing phase (Patterson
& Caulfield, 2011) due to the foot moving off the ground during the initial swing. Therefore, we
detected as TC point the local maximum right after the end of the FF phase (Figure 3).

These steps were applied to the acceleration of each foot to find the IC and the TC events of both impaired
and contralateral sides. Once these four events (IC andTC impaired side, and IC andTC contralateral side)
for each gait cycle were detected, the gait phases were defined as follows:

• double stance phase 1: from IC impaired side to TC contralateral side.
• single stance: from TC contralateral side to IC contralateral side.
• double stance phase 2: from IC contralateral side to TC impaired side.
• swing phase: from TC impaired side to following IC impaired side.

2.3.3. Estimation GRFs
The sensors’ local linear accelerations were first expressed in the origin frame (2.3) and then rotated to be
aligned to the origin OpenSim frame (2.4). To compute the total external force, we used the inverted

Figure 3. Identification of foot contact, singles stance, and toe-off from signal vector magnitude (SVM).
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pendulum model of gait, which assumes that (1) the GRF accelerates the center of mass (CoM) and
opposes gravity, and (2) the CoM is bound to the pelvis. By knowing the kinematics and inertial properties
of the segments of the musculoskeletal model and assuming that the feet are the only contact with the
ground, we estimated the total 3D GRF using Newton’s equations of motion 2.5 (Figure 2(f)).

aGS =RG
S �aLS (2.3)

aGM =RG
M �aGS (2.4)

FG
ext =

X
mB aGM �gGM

� �
(2.5)

FG
ext =F

G
L +FG

R (2.6)

where aLS is the sensor (S) local (L) linear acceleration, R
G
S is the rotation matrix to the global sensor’s

frame obtained from the sensor orientations, aGS is the sensor’s global linear acceleration,RG
M is the rotation

matrix to the model frame representing a� 90-deg rotation around the x-axis, FG
ext is the 3D total external

force in the global model frame,mB mass of each body segment (the pelvis contains the mass of the entire
body except for the impaired leg and the contralateral foot), aGM is the linear acceleration of the single
segment, gGM is the gravity, and FG

L and FG
R are the left and right 3D GRFs, all in the global model frame.

To split the total 3D GRF into the right and left sides 2.6, we use the smooth transition assumption
(STA) (Karatsidis et al., 2017) (Figure 2(g)). It assumes that during the double stance, there is a smooth
load transition from the trailing foot to the leading foot. The behavior of the components of the STA
functions, in all dimensions, used in this work is described in detail in (Ren et al., 2008).We referred to the
obtained GRFs as IMU-based GRFs.

2.3.4. Estimation of Center of Pressure (CoP)
To estimate the center of application of the external force (Figure 2(i)), i.e., CoP, during gait, we assumed
that its position traveled linearly from the heel (at IC) to the toes (at TC), and it was always within the base
of support as reported by (DeCock et al., 2008).We defined three points in the foot in the generic unscaled
model: the heel, the calcaneus CoM, and the end of the toe segment. The calcaneus CoM position was
already defined in the musculoskeletal model, while the position of the heel and the end of the toe were
manually defined. Their positions (x, y, z) with respect to the calcaneus CoM in the generic musculo-
skeletal model are the following: heel = [0.00363314, 0.00830251, �0.00715492] m, toe = [0.231826,
�0.0107138,�0.0071549]m. However, such positions were scaled to each participant’s foot dimensions
using the manual scaling factor computed during the scaling of the generic musculoskeletal geometry
(Section 2.3.1). We capture the position of these points during gait by using the Point Kinematics
OpenSim tool (Schutte et al., 1993) (Figure 2(h)). For each gait cycle, the CoP in the vertical direction
was set to zero. For the anterior-posterior (x) and the mediolateral directions (z), the CoP position starts at
the ICmoment from the position of the pre-defined heel point, and it travels during the double stance 1 and
finally reaches CoM of the calcaneus (Figure 4) when in the contralateral TC. Finally, during the FF and
double stance 2 phases, the CoP translated from the calcaneus CoM to the position of the pre-defined toe
point.

2.4. Laboratory system

The open-source software OpenSim (Delp et al., 2007) and experimental marker trajectories from a static
task were used to scale a generic musculoskeletal geometry model (gait 2392). The generic model is
equipped with virtual markers positioned at corresponding anatomical locations to the experimental
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markers. Scaling adjustments were made to the dimensions of each segment in the generic model tomatch
the distances between the virtual markers to those of the experimental. Subsequently, from the scaled
model, the optimal fiber length and tendon slack length of each muscle-tendon unit were optimized with
the same Matlab tool as described in Section 2.3.1. Optimized scaled models and experimental marker
trajectories during thewalking tasks were used to solve IK and obtain reference joint angles. TheOpensim
IK tool iterates through each time frame of experimental marker data, adjusting the optimized scaled
model’s pose to align closely with the experimental marker for that specific time step. This alignment is
achieved by minimizing the sum of weighted squared errors of markers, ensuring the model closely
replicates the observed movements captured by the markers (Delp et al., 2007).

GRF and CoP were directly measured from the double force plates, and we refer to them as reference
GRFs and reference CoP.

2.5. Inverse dynamics (ID)

IMU-based joint angles, GRFs, and CoP trajectories, as well as reference joint angles, GRFs, and CoP
trajectories, were input to the inverse dynamics Opensim tool (Figure 2(j)) to obtain IMU-based and
reference ankle dorsi-plantar flexion torques, respectively.

2.6. EMG-driven musculoskeletal modeling

We employed an EMG-driven musculoskeletal model (Durandau et al., 2018) to estimate ankle dorsi-
plantar flexion torques.

Figure 4. Center of pressure (CoP) displacement from foot contact (FC) to Toes-off (TO). The CoP and
the GRFs (green arrows) are shown in three instants of the gait cycle (FC, contralateral toes-off - TOcl,

and TO) in two different views: (a) lateral view, (b) from the top.
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For each participant, we carried out a calibration process (Figure 5) to optimize the musculoskeletal
model parameters (optimal fiber length, tendon slack length, strength coefficient, and shape factor of each
muscle-tendon unit) that do not vary linearly across individuals to match each individual’s force-
generating capacity. This optimization aimed to minimize the mean squared error between the reference
and EMG-drivenmodel estimated torques normalized by the variance of the reference torque over the first
gait cycle performed at a comfortable walking speed. We performed two calibrations for each participant
using just one gait cycle of a comfortable walking speed. The calibration input torque was either the
reference or IMU-based ankle dorsi-plantar flexion torque (Figure 5). After calibration, the person-
specific EMG-driven musculoskeletal model was used to estimate muscle-tendon force and resulting
ankle dorsi-plantar flexion torque using input joint angles (reference and IMU-based) and normalized
EMG linear envelopes (Figure 5) during novel trials and walking tasks that were not used for the model
calibration 5.We referred to the EMG-driven estimated torque driven by reference and IMU-based data as
reference-EMG-driven and IMU-EMG-driven torques, respectively.

2.7. Validation procedures

We performed two tests to evaluate kinematic and kinetic data retrieved by laboratory and wearable
systems and from ankle dorsi-plantar flexion torques estimated using laboratory- or wearable-derived
signals and an EMG-driven model.

Test 1 evaluated the first two hypotheses, i.e., removing the need for laboratory-based technologies and
computing knee and ankle angles and ID ankle dorsi-plantar flexion. We compared the output of the
laboratory (camera-based motion tracking system and force plates) and wearable (five IMUs) systems at
the level of knee and ankle flexion-extension angles, 3DGRFs, 3DCoP trajectory, and ankle dorsi-plantar
flexion torques derived from inverse dynamics. For each post-stroke individual and all walking speeds,
the coefficient of determination (R2) for shape similarity and the root mean square error (RMSE) for
amplitude similarity were computed between the laboratory system (reference) and the wearable system
(IMU-based) outputs.

Test 2 evaluated our third hypothesis, which is the capability of the proposed wearable technology
(EMG-sensorized garment and five IMUs) to estimate ankle dorsi-plantar flexion torques via a muscu-
loskeletal model driven by IMU-based and EMG signals. We calibrated the person-specific musculo-
skeletal model in two different ways, i.e., Ref-calibrated and IMU-calibrated (Section 2.6), and we obtained
two ankle dorsi-plantar flexion torque estimates: (1) ankle torque estimated using a Ref-calibrated

Figure 5.EMG-drivenmodeling pipeline comprising a calibration process to optimize themuscle-tendon
unit parameters and an estimation process to estimate ankle torque from muscle-specific normalized

envelopes and joint angles.
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musculoskeletal model driven by lab-based joint angles and EMG signals (Ref-EMG-driven), and (2) ankle
torque estimated using an IMU-calibrated musculoskeletal model driven by IMU-based joint angles and
EMG signals (IMU-EMG-driven). We compared the reference ankle dorsi-plantar flexion torque (Ref-ID)
with respect to the ankle dorsi-plantar flexion torque output of the two musculoskeletal models, i.e., Ref-
EMG-driven and IMU-EMG-driven. For each post-stroke individual and all walking speeds, R2 for shape
similarity and RMSE for amplitude similarity were computed.

Both tests were performed on a control group of nine healthy participants and a group of four post-
stroke individuals. The information about the healthy participants, experimental procedure, and test
results is presented in Supplementary Material.

3. Results

In the following section, only the results of post-stroke participants are shown. In SupplementaryMaterial
are presented the test results on healthy participants.

3.1. Test 1

R2 and RMSE values were computed to evaluate the shape and amplitude similarity between reference
and estimated knee and ankle angles, 3D GRFs, 3D CoP trajectory, and ID ankle dorsi-plantar flexion
torque.

Figures 6 and 7 show the comparison between reference and estimated leg joint angles (Figures 6(a) and
7(a)), 3D GRFs (Figures 6(b) and 7(b)), and ID ankle dorsi-plantar flexion torques (Figures 6(c) and 7(c))
averaged across all gait cycles for self-selected comfortable and fast walking speed for each post-stroke
individual, respectively. These figures show a close match in amplitude and shape between reference and
estimated joint angles and vertical GRFs. However, a small offset is visible in the estimated knee angle for
participant 3 and the estimated ankle angle for participants 1 and 3. For anterior-posterior and mediolateral
GRFs, the comparison showedmore visible average trend differences. For the ID ankle dorsi-plantar flexion

Figure 6. Comparison between reference (in blue) and estimated (in red) joint angles (a), 3D GRFs
(b) and inverse dynamics-derived ankle dorsi-plantar flexion torques (c) averaged across all gait cycles
for each post-stroke individual walking at a self-selected comfortable speed. The solid line represents the

mean values, while the shaded area is the standard deviation.
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torques, all participants show a closematchwith the negative plantar-flexion peak and close shape similarity
in the second half of the gait cycle. However, during the first half of the gait cycle, a moremarked difference
in the shapes is visible. Reference torque shows negative values from the IC (0%) to the TC (negative peak),
while the estimated torque shows a small dorsi flexion, i.e., positive values, during the first double support
phase.

Figure 8 shows the comparison between reference and estimated CoP trajectory in the two directions,
i.e., anterior-posterior and mediolateral, during walking at self-selected comfortable (Figure 8(a)) and
self-selected fast speeds (Figure 8(b)). For all speeds, the estimatedCoP trajectory in the anterior-posterior
direction showed a similar trend, i.e., a positive slope, with the reference CoP trajectory. A more marked
difference is visible for the CoP trajectory in the mediolateral direction, especially for participants 2 and
4 during both walking speeds.

Tables 2 and 3 present the R2 and RMSE values between reference and estimated kinematics (knee and
ankle angles) and kinetic (3D GRFs and ID ankle dorsi-plantar flexion torque) data for each post-stroke
individual. For the knee angles, R2 and RMSE values averaged across all participants, and all walking
speeds ranged between 0.47 and 0.86 with a mean (± std) of 0.70 ± 0.13, and between 5 and 19 deg with a
mean (± std) of 12 ± 4 deg, respectively. For the ankle angles, R2 and RMSE values averaged across all
participants, and all walking speeds ranged between 0.33 and 0.76 with a mean (± std) of 0.53 ± 0.15, and
between 5 and 11 deg with a mean (± std) of 8 ± 2 deg, respectively.

For the 3D GRFs, R2 and RMSE values across all post-stroke individuals and walking speeds were
0.39 ± 0.16 and 0.66 ± 0.36 N/kg in the anterior-posterior direction, 0.76 ± 0.29 and 2.01 ± 1.60 N/kg in
the vertical direction, and 0.33 ± 0.27 and 0.50 ± 0.27 N/kg in the mediolateral direction, respectively. For
the CoP, R2 and RMSE values averaged across all post-stroke individuals and for all walking speeds were
0.39 ± 0.13 and 11.75 ± 21.2 mm in the anterior-posterior direction, and 0.22 ± 0.09 and 8.11 ± 11.65m in
the mediolateral direction, respectively. For the ID ankle dorsi-plantar flexion torques, R2 and RMSE
values averaged across all post-stroke individuals and for all walking speeds were 0.71 ± 0.13 and
0.30 ± 0.14 Nm/kg, respectively.

Figure 7. Comparison between reference (in blue) and estimated (in red) joint angles (a), 3D GRFs (b),
and inverse dynamics-derived ankle dorsi-plantar flexion torques (c) averaged across all gait cycles for
each post-stroke individual walking at a self-selected fast speed. The solid lines represent the mean

values, while the shaded area is the standard deviation.
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3.2. Test 2

Figure 9 shows the comparison between reference ID torque (ID ankle dorsi-plantar flexion torque
informed by lab-bound signals, Ref-ID) and output ankle dorsi-plantar flexion torque output of two EMG-
driven models: (1) lab-bound signals-EMG-driven model and (2) a fully wearable (IMU and EMG)-
driven model. The torques were averaged across all gait cycles for each post-stroke individual walking at
self-selected comfortable (Figure 9(a)) and fast (Figure 9(b)) speeds. Participant 1 presents estimated
torques (Ref-EMG-driven and IMU-EMG-driven) with a similar trend with respect to the reference ID
torque. Participants 2 and 3 present IMU-EMG-driven torque with a visible higher shape similarity to the
reference ID torque with respect to the Ref-EMG-driven torque. On the contrary, participant 4 presented
better EMG-driven ankle dorsi-plantar flexion torquewhen themusculoskeletal model was calibrated and
driven by lab-derived signals (Ref-EMG-driven).

Table 4 shows the R2 and RMSE values for reference ID torque and the ankle dorsi-plantar flexion
torque output of two EMG-driven models, i.e., Ref-EMG-driven and IMU-EMG-driven, for each post-
stroke individual and for all walking speeds. R2 and RMSE values averaged across all post-stroke
individuals, and speeds were 0.60 ± 0.19 and 0.39 ± 0.19 Nm/kg between reference ID and Ref-EMG-
driven ankle dorsi-plantar flexion torques, 0.65 ± 0.21 and 0.35 ± 0.16 Nm/kg between reference ID and
IMU-EMG-driven, respectively.

Figure 8. Comparison between reference (in blue) and estimated (in red) center of pressure (CoP)
averaged across all gait cycles for each post-stroke individual walking at self-selected comfortable

(a) and fast (b) speeds. The solid lines represent the mean values, while the shaded area is the standard
deviation.
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4. Discussion

We presented a wearable technology that employed a multi-channel EMG-sensorized garment and an
automated muscle localization technique for unsupervised computation of muscle-specific activations
along with five IMUs for the computation of joint kinetics and kinematics during walking at different
speeds. This was done for the first time in the present work on both healthy (SupplementaryMaterial) and
post-stroke participants. The proposed wearable technology removes the need for laboratory-based
technologies, such as force plates and camera-based tracking systems, and lengthy procedures for manual
muscle localization and manual sensor placement. Furthermore, the wearable sensors and automated
processing techniques were combined with an EMG-driven musculoskeletal model for the non-invasive
estimation of ankle dorsi-plantar flexion torque as the result of the forces exerted by the underlying
muscles. This can allow the estimation of muscle kinetics and resulting joint torque for motor impairment

Table 2. R2 values between experimental and estimated (IMU based) flexion-extension angle of knee and angle, 3D GRFs, 3D CoP
and ID-derived ankle dorsi-plantar flexion torques during walking at a self-selected comfortable and self-selected fast speed for post-

stroke individuals

Comf W.

Joint angles GRFs CoP

ID-torque AnkleKnee Ankle AP V ML AP ML

p1 0.68 ± 0.19 0.50 ± 0.20 0.45 ± 0.25 0.94 ± 0.04 0.77 ± 0.10 0.31 ± 0.33 0.25 ± 0.20 0.87 ± 0.06
p2 0.47 ± 0.24 0.33 ± 0.16 0.20 ± 0.23 0.72 ± 0.29 0.21 ± 0.15 0.42 ± 0.35 0.15 ± 0.16 0.76 ± 0.06
p3 0.81 ± 0.11 0.76 ± 0.14 0.67 ± 0.10 0.92 ± 0.06 0.27 ± 0.09 0.67 ± 0.06 0.26 ± 0.11 0.68 ± 0.21
p4 0.68 ± 0.31 0.46 ± 0.29 0.54 ± 0.18 0.87 ± 0.15 0.25 ± 0.15 0.33 ± 0.32 0.20 ± 0.24 0.51 ± 0.23
Mean 0.66 ± 0.12 0.51 ± 0.16 0.46 ± 0.17 0.86 ± 0.09 0.38 ± 0.23 0.43 ± 0.15 0.21 ± 0.05 0.71 ± 0.13

Fast W.

Joint angles GRFs CoP
ID-torque
AnkleKnee Ankle AP V ML AP ML

p1 0.77 ± 0.09 0.47 ± 0.15 0.36 ± 0.23 0.93 ± 0.08 0.81 ± 0.08 0.38 ± 0.27 0.35 ± 0.22 0.89 ± 0.05
p2 0.54 ± 0.21 0.72 ± 0.24 0.19 ± 0.15 0.84 ± 0.08 0.15 ± 0.16 0.37 ± 0.30 0.29 ± 0.22 0.63 0.23
p3 0.77 0.06 0.65 ± 0.09 0.25 ± 0.13 0.37 ± 0.21 0.13 ± 0.12 0.44 ± 0.11 0.05 ± 0.04 0.73 ± 0.07
p4 0.86 ± 0.12 0.37 ± 0.18 0.50 ± 0.12 0.46 ± 0.46 0.08 ± 0.05 0.20 ± 0.09 0.21 ± 0.19 0.57 ± 0.26
Mean 0.7 ± 0.12 0.55 ± 0.14 0.33 ± 0.12 0.65 ± 0.24 0.29 ± 0.30 0.35 ± 0.09 0.22 ± 0.11 0.70 ± 0.12

Abbreviations: AP = anterior–posterior; V = vertical; ML = mediolateral.

Table 3. RMSE values between experimental and estimated (IMU based) flexion-extension angle of knee and angle, 3D GRFs, 3D
CoP and ID-derived ankle dorsi-plantar flexion torques during walking at a self-selected comfortable and sel-selected fast speed for

post-stroke individuals

Comf W.

Joint angles GRFs CoP
ID-torque

Ankle (Nm/kg)Knee (deg) Ankle (deg) AP (N/kg) V (N/kg) ML (N/kg) AP (m) ML (m)

p1 6.27 ± 1.81 7.40 ± 1.43 0.45 ± 0.16 1.14 ± 0.31 0.79 ± 0.45 0.07 ± 0.03 0.04 ± 0.01 0.12 ± 0.06
p2 18.72 ± 28.16 11.47 ± 7.58 0.58 ± 0.09 1.70 ± 0.40 0.63 ± 0.18 0.07 ± 0.03 0.07 ± 0.06 0.27 ± 0.08
p3 14.09 ± 1.20 7.58 ± 1.55 0.84 ± 0.48 1.21 ± 0.40 0.47 ± 0.19 0.03 ± 0.01 0.02 ± 0.01 0.39 ± 0.24
p4 12.36 ± 6.41 8.40 ± 4.74 0.69 ± 0.21 1.53 ± 0.92 0.48 ± 0.20 0.07 ± 0.04 0.07 ± 0.03 0.47 ± 0.12
Mean 12.86 ± 4.46 8.71 ± 1.63 0.64 ± 0.14 1.39 ± 0.23 0.59 ± 0.13 0.06 ± 0.01 0.05 ± 0.02 0.29 ± 0.15

Fast W.

Joint angles GRFs CoP
ID-torque
Ankle
(Nm/kg)Knee (deg)

Ankle
(deg) AP (N/kg) V (N/kg) ML (N/kg) AP (m) ML (m)

p1 5.51 ± 1.24 7.05 ± 0.62 0.32 ± 0.10 1.17 ± 0.48 0.24 ± 0.05 0.06 ± 0.02 0.03 ± 0.01 0.11 ± 0.02
p2 11.16 ± 3.49 5.07 ± 2.54 0.52 ± 0.13 2.27 ± 1.31 0.50 ± 0.12 0.13 ± 0.02 0.09 ± 0.04 0.45 ± 0.51
p3 15.37 ± 1.04 5.04 ± 0.86 1.53 ± 1.11 4.46 ± 1.20 0.46 ± 0.13 0.06 ± 0.01 0.04 ± 0.01 0.27 ± 0.13
p4 10.73 ± 1.12 8.70 ± 1.15 0.38 ± 0.08 3.63 ± 2.41 0.42 ± 0.10 0.06 ± 0.02 0.08 ± 0.01 0.40 ± 0.13
Mean 10.69 ± 3.50 6.46 ± 1.53 0.69 ± 0.49 2.88 ± 1.26 0.40 ± 0.10 0.08 ± 0.03 0.06 ± 0.03 0.31 ± 0.13

Abbreviations: AP = anterior–posterior; V = vertical; ML = mediolateral

e13-14 Donatella Simonetti et al.

https://doi.org/10.1017/wtc.2024.14 Published online by Cambridge University Press

http://doi.org/10.1017/wtc.2024.14
https://doi.org/10.1017/wtc.2024.14


monitoring in time- and space-constrained environments such as rehabilitation sessions in clinics.
Furthermore, wearable technologies can facilitate the study of human movement biomechanics outside
of the controlled lab environment.

Figure 9.Comparison between reference and EMG-driven estimated ankle dorsi-plantar flexion torques.
For each post-stroke individual, across all gait cycles of self-selected comfortable (a) and fast (b) walking
speed, reference ankle torque (Ref-ID, dark blue line) is compared with (a) laboratory-derived signals-
and EMG-driven torque (Ref-EMG-driven, light blue line), and IMU-based signal- and EMG-driven

torque (IMU-EMG-driven, purple line).

Table 4. R2 and normalized (by body weight) RMSE values between reference (Ref-ID) and both Ref-EMG-driven and IMU-EMG-
driven ankle dorsi-plantar flexion torques across all post-stroke individuals walking at self-selected comfortable and self-selected fast

speeds

R2 Comfortable walk Fast walk

Ref-EMG-driven IMU-EMG-driven Ref-EMG-driven IMU-EMG-driven

p1 0.81 ± 0.10 0.92 ± 0.03 0.76 ± 0.08 0.91 ± 0.03
p2 0.65 ± 0.24 0.77 ± 0.08 0.74 ± 0.27 0.62 ± 0.28
p3 0.68 ± 0.27 0.67 ± 0.27 0.22 ± 0.16 0.64 ± 0.14
p4 0.50 ± 0.17 0.32 ± 0.14 0.45 ± 0.30 0.34 ± 0.17
Mean 0.66 ± 0.11 0.67 ± 0.22 0.54 ± 0.23 0.63 ± 0.20

RMSE (Nm/kg)

Comfortable walk Fast walk

Ref-EMG-driven IMU-EMG-driven Ref-EMG-driven IMU-EMG-driven

p1 0.18 ± 0.03 0.13 ± 0.03 0.20 ± 0.02 0.13 ± 0.02
p2 0.23 ± 0.08 0.19 ± 0.05 0.39 ± 0.51 0.49 ± 0.55
p3 0.37 ± 0.24 0.40 ± 0.27 0.82 ± 0.05 0.39 ± 0.11
p4 0.46 ± 0.16 0.54 ± 0.12 0.45 ± 0.13 0.53 ± 0.10
Mean 0.31 ± 0.11 0.32 ± 0.17 0.47 ± 0.23 0.39 ± 0.15
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The results showed the capability of the proposed wearable technology to extract reasonable joint
kinematics and kinetics (Test 1) in both healthy (Supplementary Material) and post-stroke participants
(Section 3.1). Despite having lower accuracy than the IMU-based ID-derived ankle dorsi-plantar flexion
torque, when IMU-based estimation of kinetics and kinematics were combinedwith EMG signals to drive
a musculoskeletal model, reasonable estimates of ankle dorsi-plantar flexion torques (Test 2) during
different walking speeds for healthy (Supplementary Material) and post-stroke individuals (Section 3.2)
were obtained.

Our first test showed that IMU-based IK could extract accurate knee angles in healthy (R2 = 0.92 ± 0.08,
RMSE = 6 ± 3 deg, Supplementary Figure 1(a)) and reasonable estimates in post-stroke individuals
(R2 = 0.70 ± 0.13, RMSE = 6 ± 19 deg, Figures 6(a) and 7(a)) during different walking speeds. These
results were in line with previously reported results (Weygers et al., 2020). However, for ankle angles, the
accuracy decreases in both populations and particularly for post-stroke individuals (R2 = 0.53 ± 0.15,
RMSE = 8 ± 2 deg). This might be due to the lower range ofmotion of post-stroke individuals as well as the
slowerwalking speedwith respect to healthy participants (Carmo et al., 2012), hencemaking themovement
less pronounced andmore difficult for inertial sensors to capture accurately (Revi et al., 2020). Furthermore,
the calibration process that registered each IMU to a specific body segmentwas based on the assumption that
the participant was in a specific neutral pose during the static standing trial (Section 2.3.1), i.e., in a neutral
pose resembling the default pose of the generic OpenSim model. This becomes more challenging in post-
stroke individuals that present greater asymmetries between the paretic and non-paretic sides (Titianova &
Tarkka, 1995) and hence are not able to stand in a neutral position with weight distributed equally between
both sides.

The results on GRFs estimated from IMUs’ linear accelerations showed that the vertical forces are the
most accurate in both healthy (mean R2 > 0.91, Supplementary Figure 1(b), Supplementary Table 1) and
post-stroke individuals (mean R2 > 0.65, Figures 6(b), 7(b), Tables 2, and 3). As observed in the literature,
the estimation of the external forces in the anterior-posterior and mediolateral directions is more
challenging (Ren et al., 2008; Karatsidis et al., 2017), even more in post-stroke individuals (Tables 2
and 3) where movements are slower and less marked (Revi et al., 2020).

The less accurate results were observed for the IMU-based 3D CoP trajectory. With the use of the
simple assumption of the CoP traveling from the heel, as the IC point, to the toes at the TC moment, the
reported estimation showed a similar trend in the anterior-posterior CoP trajectory in both populations
(Supplementary Figures 2 and 8). In the mediolateral direction, the CoP trajectory showed a better
estimation for the post-stroke individuals (R2 = 0.22 ± 0.09) with respect to the healthy participants
(R2 = 0.11 ± 0.17). This might be due to the slower walking speed and range of motion caused by motor
impairment (Carmo et al., 2012).

Nevertheless, the IMU-based joint angles, 3D GRFs, and especially CoP trajectory, translated in IMU-
based ID ankle dorsi-plantar flexion torques with a promising degree of accuracy with respect to reference ID
ankle dorsi-plantar flexion torque, in both healthy (Supplementary Table 1) and post-stroke individuals
(Tables 2 and 3). While the negative plantar flexion peak is well detected in magnitude and timing, during
the single stance phase the shape of the IMU-based ID ankle dorsi-plantar flexion torques presented some
discrepancies with respect to the reference ID ankle dorsi-plantar flexion torque (Supplementary Figure 3).
Thismight be due to the less accurate estimation of the IMU-basedCoP trajectory built on a simple assumption
(Section 2.3.4, Supplementary Tables 1, 2, and Table 3). The assumption used to compute the CoP in the
anterior-posterior and mediolateral directions cannot accurately track changes of the CoP, especially in
abnormal gait where the IC might not always be at the heel and the CoP might not travel from the back to
the front of the foot (Jamshidi et al., 2010).

IMU-based knee and ankle angles and IMU-based ID ankle dorsi-plantar flexion torques are finally
used to inform an EMG-driven musculoskeletal model in order to estimate ankle dorsi-plantar flexion
torque resulting from the underlying muscle forces. The musculoskeletal model parameters (Section 2.6)
were calibrated two different times using a single gait cycle of the comfortable walking speed using two
different input joint kinetics and kinematics, i.e., reference and IMU-based.Wewere then able to calibrate
the musculoskeletal model parameters for the specific participant and estimate ankle dorsi-plantar flexion
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torque during unseen trials and unseen walking speeds, i.e., not used during the model calibration. With
test 2, we show that with a standard setup, i.e., in a laboratory with cameras and force plates, reference-
EMG-driven ankle dorsi-plantar flexion torques were computed with a promising accuracy (Table 4) with
respect to the reference ID ankle dorsi-plantar flexion torque (Ref-ID). When using a fully wearable setup
(IMUs and EMG-sensorized garment) the estimation of ankle dorsi-plantar flexion torques via the IMU-
EMG-driven model showed higher estimation errors compared to ankle dorsi-plantar flexion torque
retrieved via IMU-based inverse dynamics. However, the IMU-EMG-driven musculoskeletal model
outputs ankle dorsi-plantar flexion torque with marginally lower estimation errors than the one obtained
via the reference-EMG-driven model (Table 4). The shape of the IMU-EMG-driven ankle dorsi-plantar
flexion torque during the single stance phase (Figure 9) better resembles the profile of the reference ID
ankle dorsi-plantar flexion torque compared to the IMU-based ID ankle dorsi-plantar flexion torque
(Figures 6 and 7). This might suggest that the EMG-driven model can compensate for the lower accurate
IMU-based joint angles and ID-derived ankle dorsi-plantar flexion torques during the calibration process.
During the calibration, muscle-tendon unit (MTU) parameters were tuned to best match the input ankle
dorsi-plantar flexion torque (input Ref-ID for Ref-EMG-driven model and input IMU-based ID for IMU-
EMG-driven model). The EMG-driven output ankle dorsi-plantar flexion torques are dictated by both
EMG signals and joint angles. IMU-EMG-driven ankle dorsi-plantar flexion torqueswere less sensitive to
changes inMTU parameters than to the driving neural signal, i.e., muscle-specific EMGs. Therefore, after
pre-calibrating MTU parameters (Section 2.3.1), the narrow ranges for MTU parameters (around 5% or
the values found during scaling - Section 2.3) did not substantially affect the calibrated model, and
therefore we were still able to obtain IMU-EMG-driven ankle dorsi-plantar flexion torque comparable to
the reference ID ankle dorsi-plantar flexion torque.

While IMUs and a person-specific multi-dynamic model obtained the most accurate body kinematics
and kinetics, this approach restricts musculoskeletal assessment to the joint level. For individuals with
neurological impairment such as post-stroke, relying solely on kinetics and kinematics is insufficient for a
comprehensive clinical assessment since the cause of the altered motion, i.e., the muscles, is not directly
assessed. To address this limitation, introducing EMGs, particularly via an easy-to-wear EMG-embedded
sleeve combined with an automated muscle localization algorithm and EMG-driven musculoskeletal
modeling, becomes crucial. This setup helps identify abnormal muscle activity, such as co-contraction or
spasticity, and muscle forces and enhances the assessment of neurologically impaired individuals while
estimating ankle dorsi-plantar flexion torque via IMU-informed inverse dynamics.

This study includes limitations that should be addressed in future works. The estimation of CoP was
based on a simple assumption (Section 2.3.4). Future work should improve the estimation of CoP via the
use of portable force sensors or advanced machine-learning techniques in order to improve the compu-
tation of joint moments via ID. This solution could also help translate the proposed technology to
individuals not able to stand or walk independently. Since one of the assumptions for the GRF estimation
during walking stated that the participant needed to walk without external aid, with the feet as the only
contact with the ground, the IMU-based estimation of GRFs cannot give good estimates in the case of
individuals walking with external support, e.g., crutches. The IMU calibration process assumed that the
IMUswere attached to theCoMof each body segment. However, this is not true in reality since the sensors
are worn and placed on the skin. Future work should improve IMU calibration to lead to higher accuracy
in the estimation of joint kinematics and kinetics. Future work should investigate the reliability of gait
phase detection during abnormal gait. An accurate gait phase detection is crucial for the accurate split of
estimated GRFs on the left and right sides. In the current work, we focused on the estimation of ankle
dorsi-plantar flexion torque just in the sagittal plane. More degrees of freedom, as well as more joints,
should be included in future works. Furthermore, GRFs and ankle dorsi-plantar flexion torque were
computed during walking tasks. More movements should be added to evaluate the generalizability of the
EMG-driven model to estimate ankle moments in various dynamics and isometric tasks. To make the
proposed wearable technology fully portable and ready for everyday clinical use, cables should not be
used. Our solution still includes a long cable (10 m) for the synchronized recording of IMU and EMG
signals. This limits the use of the proposed wearable technology for completely unconstrained movement
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and application. By replacing optical fiber with aWi-Fi connection for the EMG amplifier, it would allow
a cable-free technology. However, further study should assess the impact of EMG data loss due to Wi-Fi
communication. The validation metrics used to compare the reference and the IMU-based output were
based on R2 and RMSE for shape and amplitude similarity, respectively. However, this study included
nine healthy participants and four male post-stroke individuals. To augment the statistical power, future
work should include a larger cohort of healthy participants and post-stroke individuals, ensuring high
inter-subject variability. Considering the significant age and weight differences between the healthy
control group and post-stroke individuals, future work should include more diverse participants in both
groups. Additionally, a larger variety of FAC scores across post-stroke participants should be investigated
to enhance the generalizability of the methodology to a wider range of motor impairments. Finally, future
research should assess the clinical relevance and practical application of our proposed methodology to
diverse injured populations with a variety in levels of severity, e.g., SCI individuals, elderly, or injured
athletes. This would not only enhance the statistical power but also provide a more comprehensive
understanding of the methodology’s generalization capacity.

Conclusion

In the present study, we propose a wearable technology that enables the application of biomechanical gait
analysis and EMG-driven musculoskeletal simulations by involving automated and advanced processing
techniques with a multi-channel EMG-sensorized garment and five IMU sensors. These open up new
avenues for the development of portable gait analysis tools in clinical applications for monitoring
musculoskeletal systems and designing personalized interventions.
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