
Less Annotating, More Classifying: Addressing the

Data Scarcity Issue of Supervised Machine

Learning with Deep Transfer Learning and

BERT-NLI

Moritz Laurer , Wouter van Atteveldt , Andreu Casas and
Kasper Welbers

Department of Communication Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands. Email: m.laurer@vu.nl,
wouter.van.atteveldt@vu.nl, a.casassalleras@vu.nl, k.welbers@vu.nl

Abstract
Supervised machine learning is an increasingly popular tool for analyzing large political text corpora. The

main disadvantage of supervisedmachine learning is the need for thousands ofmanually annotated training

data points. This issue is particularly important in the social sciences where most new research questions

require new training data for a new task tailored to the specific research question. This paper analyses

how deep transfer learning can help address this challenge by accumulating “prior knowledge” in language

models. Models like BERT can learn statistical language patterns through pre-training (“language knowl-

edge”), and reliance on task-specific data can be reduced by training on universal tasks like natural language

inference (NLI; “task knowledge”). We demonstrate the benefits of transfer learning on a wide range of eight

tasks. Across these eight tasks, our BERT-NLI model fine-tuned on 100 to 2,500 texts performs on average

10.7 to 18.3 percentage points better than classicalmodels without transfer learning. Our study indicates that

BERT-NLI fine-tuned on 500 texts achieves similar performance as classical models trained on around 5,000

texts. Moreover, we show that transfer learning works particularly well on imbalanced data. We conclude by

discussing limitations of transfer learning and by outlining new opportunities for political science research.

Keywords: machine learning, computational methods, text as data, transfer learning

1. Introduction

From decades of political speeches to millions of social media posts – more and more politically

relevant information is hidden in digital text corpora too large for manual analyses. The key

promise of computational text analysis methods is to enable the analysis of these corpora by

reducing the need for expensive manual labor. These methods help researchers extract mean-

ingful information from texts through algorithmic support tools and have become increasingly

popular in political science over the past decade (Benoit 2020; Grimmer and Stewart 2013; Lucas

et al. 2015; Van Atteveldt, Trilling, and Calderon 2022; Wilkerson and Casas 2017).
Supervised machine learning is one such algorithmic support tool (Osnabrügge, Ash, and

Morelli 2021). Researchersmanually create a set of examples for a specific task (training data) and

then train a model to reproduce the task on unseen text. The main challenge of this approach

is the creation of training data. Supervised models require relatively large amounts of training

data to obtain good performance, making them a “nonstarter for many researchers and projects”

(Wilkerson and Casas 2017). Lack of data is particularly problematic in the social sciences where

most new research questions entail a new task (task diversity) and some concepts of interest are

only present in a small fraction of a corpus (data imbalance). Compared to the natural language

processing (NLP) literature, for example, political scientists are less interested in recurring bench-

mark tasks with rich and artificially balanced data. The ensuing data scarcity problem is probably

an important reason for the greater popularity of unsupervised approaches in the social sciences.
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Unsupervisedapproaches aredifficult to tailor to specific tasks andareharder to validate, but they

do not require training data (Denny and Spirling 2018; Miller, Linder, and Mebane 2020, 4).

This paper argues that this data scarcity problem of supervised machine learning can be miti-

gated through deep transfer learning. The main assumption of transfer learning is that machine-

learning models can learn “language knowledge” and “task knowledge” during a pre-training

phase and store this “knowledge” in their parameters (Pan and Yang 2010; Ruder 2019).1 During

a subsequent fine-tuning phase, they can then build upon this “prior knowledge” to learn new

tasks with less data. Put differently, a model’s parameters can represent statistical patterns of

wordprobabilities (“languageknowledge”), linkwordcorrelations to specific classes (“taskknowl-

edge”) and later reuse these parameter representations for new tasks (“knowledge transfer”).

In the political science literature, the use of shallow “language knowledge” throughpre-trained

word embeddings has become increasingly popular (Rodman 2020; Rodriguez and Spirling 2022),

whereas the investigation of deep “language knowledge” and models like BERT (Bidirectional

Encoder Representations from Transformers) has only started very recently on selected tasks

(Bestvater and Monroe 2022; Licht 2023; Widmann and Wich 2022). We are not aware of political

science literature on “task knowledge.”

This paper thereforemakes the following contributions.We systematically analyze: thebenefits

of transfer learning across a wide range of tasks and datasets relevant for political scientists;

the importance of “task knowledge” as a second component of transfer learning; the impact of

transfer learning on imbalanced data; and how much training data, and therefore annotation

labor, different algorithms require. Our insights can help future research projects estimate their

data requirements with different methods.

To test the theoretical advantages of transfer learning, we systematically compare the per-

formance of two classical supervised algorithms (support vector machine [SVM] and logistic

regression) to two transfer learning models (BERT-base and BERT-NLI) on eight tasks from five

widely used political science datasets.

Our analysis empirically demonstrates the benefits of transfer learning. BERT-NLI outperforms

classical models by 10.7 to 18.3 percentage points (F1 Macro) on average when 100 to 2,500

annotateddatapoints areavailable. BERT-NLI achieves similar averageF1Macroperformancewith

500 data points as classical models with around 5,000 data points. We also show that BERT-NLI

performs better with very little training data (≤1,000), while BERT-base is better when more data

are available. Moreover, we find that “shallow knowledge transfer” through word embeddings

also improves classical models. Lastly, we show that transfer learning is particularly beneficial for

imbalanceddata. Thesebenefits of transfer learning robustly apply across awide rangeofdatasets

and tasks.

We conclude by discussing limitations of deep transfer learning and by outlining new opportu-

nities for political science research. To simplify the reuse of BERT-NLI in future research projects,

we open-source our code2, general purpose BERT-NLI models3 and provide advice for future

research projects.

2. Supervised Machine Learning from a Transfer Learning Perspective

2.1. Supervised Machine Learning in Political Science
The rich text-as-data literature demonstrates thewide variety ofmethods in the toolkit of political

scientists: supervised or unsupervised ideological scaling; exploratory text classification with

1 Note that we only use the word “knowledge” to help create an intuitive understanding of transfer learning without too
much jargon. Language models (i.e., pre-trained algorithms) do not “know” or “understand” anything in a deeper sense.
The machine-learning process is essentially a sequence of parameter updates to optimize the statistical solution of a
very specific task. Some authors colloquially call this internal parameter representation “knowledge.” For a more formal
discussion of transfer learning, see Pan and Yang (2010) and Ruder (2019).

2 An easy-to-use Jupyter notebook for training your own BERT-NLI model and the full reproduction code is available at
https://github.com/MoritzLaurer/less-annotating-with-bert-nli.

3 Several models are available at https://huggingface.co/MoritzLaurer.
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unsupervised machine learning; or text classification with prior categories with dictionaries or

supervised machine learning (Benoit 2020; Chatsiou and Mikhaylov 2020; Grimmer and Stewart

2013; Lucas et al. 2015; Van Atteveldt et al. 2022; Wilkerson and Casas 2017). This paper focuses on
onespecific groupof approaches: text classificationwithprior categorieswith supervisedmachine

learning.

In the social sciences, supervised machine-learning projects normally start with a substantive

research question which requires the repetition of a specific classification task on a large textual

corpus. Researchers might want to: explain Russian foreign policy by classifying thousands of

statements frommilitary and political elites into “activist” versus “conservative” positions (Stew-

art and Zhukov 2009); or understand delegation of power in the EU and classify legal provisions

into categories of delegation (Anastasopoulos and Bertelli 2020); or predict election results and

need to classify thousands of tweets into sentiment categories to approximate twitter users’

preferences toward key political candidates (Ceron et al. 2014). These research projects required
the classification of thousands of texts in topical, sentiment, or other conceptual categories

(classes) tailored to a specific substantive research interest.

Using supervisedmachine learning to support thisprocess roughly involves the following steps:

A tailored classification task is developed, for example, through iterative discussions resulting in

a codebook; experts or crowd workers implement the classification task by manually annotating

a smaller set of texts (training and test data); a supervisedmachine-learningmodel is trained and

tested on this manually annotated data to reproduce the human annotation task; if the model’s

output obtains a desired level of accuracy and validity, it can be used to automatically reproduce

the task on very large unseen text corpora. If implemented well, the aggregate statistics created

through this automatic annotation can then help answer the substantive research question.

Political scientists have mostly used a set of classical supervised algorithms for this process,
such as SVMs, logistic regression, naïve Bayes, etc. (Benoit 2020). These classical algorithms are

computationally efficient and obtain good performance if large amounts of annotated data are

available (Terechshenko et al. 2020). Their input is usually a document-feature matrix which
provides the weighted count of pre-processed words (features) per document in the training

corpus. Solely based on this input, these models try to learn which feature (word) combinations

aremost strongly linked to a specific class (e.g., the topic “economy”). Several studies have shown

the added value of these algorithms (e.g., Colleoni, Rozza, and Arvidsson 2014; Osnabrügge et al.
2021; Peterson and Spirling 2018).

Thekeydisadvantageof theseclassical algorithms is that they start the trainingprocesswithout

any prior “knowledge” of language or tasks. Humans know that thewords “attack” and “invasion”

express similar meanings, or that the words “happy” and “not happy” tend to appear in different

contexts. Humans also quickly understand the task “classify this text into the category ‘positive’

or ‘negative.”’ Classicalmodels on the other hand need to learn these language patterns and tasks

from scratch with the training data as the only source of information. Before training, the SVM is

only an equation that can draw lines into space. A SVM has no prior internal representation of the

semantic distance between the words “attack,” “war,” and “tree.” This lack of prior “knowledge”

of language and tasks is themain reasonwhy classical supervisedmachine learning requires large

amounts of training data.

A first solution to the “language knowledge” limitation compatible with classical algorithms

was popularized in 2013 with word embeddings (Mikolov et al. 2013). Word embeddings rep-
resent words that are often mentioned in similar contexts with similar vectors – a proxy for

semantic similarity. These embeddings can for example be used as input features for classifiers

to provide them with a form of “language knowledge” and have gained popularity in political

science (Rodman 2020; Rodriguez and Spirling 2022). Word embeddings alone provide, however,

only “shallow language knowledge”: first, the information they capture is limited. The vector
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of the word “capital” is the same, whether it appears next to the word “city,” “investment,” or

“punishment.” Second, the improvement, which word embeddings offer for classical algorithms

is only a different input layer: word embeddings instead of, for example, TF-IDF as input. Newer

models integrate word embeddings into stacked layers of many additional vectors (parameters).

These multi-layered, “deeper” architectures are designed to store more “knowledge.”

2.2. Deep Transfer Learning
Deep transfer learning tries to create “prior knowledge” by splitting the training procedure in

roughly two phases: pre-training and fine-tuning (Howard and Ruder 2018). First, an algorithm

is pre-trained to learn some general purpose statistical “knowledge” of language patterns in

a wide variety of domains (e.g., news, books, and blogs), creating a language model. Second,

this pre-trained model is fine-tuned on annotated data to learn a very specific task.4 Transfer

learning therefore has two important components (Pan and Yang 2010; Ruder 2019): (1) learning

statistical patterns of language (language representations) and (2) learning a relevant task (task
representations). Both types of representations are stored in the parameters of the model.
For learning general purpose language representations, the most prominent solution is BERT

(Devlin et al. 2019) which is a type of transformer model (Vaswani et al. 2017). Transformers like
BERT are first pre-trained using a very simple task such as masked language modeling (MLM),

which does not require manual annotation. During MLM, some words are randomly hidden from

the model and it is tasked with predicting the correct hidden words. The overall objective of

this procedure is for the model’s parameters to learn statistical patterns of language (language

representations) such as semantic similarities of words or context-dependent ambiguities from a

wide variety of texts (see Appendix B1 of the Supplementary Material for details).

While sizeable performance increases with BERT-base models are possible based on its “lan-

guage knowledge” (Devlin et al. 2019), data requirements are still relatively high. Widmann and
Wich (2022), for example, show strong performance gains for an emotion detection task, but point

out that the amount of training data is still an important limitation and that classes with less data

underperform. An important reason for this is that the pre-training task BERT-base has learned

(MLM) is very dissimilar to the actual final classification tasks researchers are interested in. This

is why the last, task-specific layer of BERT (the task head tuned for MLM) is normally deleted

entirely and reinitialized randomly before fine-tuning – which constitutes an important loss of

“task knowledge” (see Appendix B of the Supplementary Material for details on BERT’s layered

structure). BERT then needs to be fine-tuned on manually annotated data, to learn a new, useful

task and each of its classes from scratch.

2.3. BERT-NLI – Leveraging the Full Potential of Deep Transfer Learning
More recently, methods have been proposed which do not only use prior “language knowledge,”

but also prior “task knowledge” of transformers.5 There are several different approaches using

these innovations (Brown et al. 2020; Schick and Schütze 2021). This paper uses one approach,
based on natural language inference (NLI), first proposed by Yin, Hay, and Roth (2019) and later

refined, for example, by Wang et al. (2021)).
What is NLI? NLI is a task and data format, which consists of two input texts and three output

classes. The input texts are a “context” and a “hypothesis.” The task is to determine if the hypoth-

4 This describes the focus of the main steps. In practice, pre-training also involves learning (less relevant) task(s) and fine-
tuning also involves learning the language of specific domain(s) (e.g., legal or social media texts).

5 Note that the transfer of “task knowledge” is not inherently limited to transformers. Osnabrügge et al. (2021) show that the
task learned by a logistic regression trained on the Manifesto Corpus can be applied to a different target corpus and that
datasets with broadly useful tasks can be reusedwith classicalmodels. Transfer learning is not an “either-or” category, but
can be handled by different models to different extents.
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Table 1. Examples of the NLI task.

Hypothesis Context Class

The EU is trustworthy The EU has betrayed its partners during the False

negotiations on Sunday

The EU is trustworthy The US has betrayed its partners during the Neutral

negotiations on Sunday

The EU is trustworthy Civil society praised the EU for reliably True

keeping its promises.

esis is true, false, or neutral given the context.6 A hypothesis could be “The EU is trustworthy”with

the context “The EU has betrayed its partners during the negotiations on Sunday.” In this case, the

correct class would be false, as the context contradicts the hypothesis. Note that it is not about

finding the objective truth to a scientific hypothesis, but only about determining if the context

string entails the hypothesis string (see, e.g., Table 1).

NLI has three important characteristics from a transfer learning perspective: It is data-rich, it

is a universal task, and it enables label verbalization. First, NLI is a widely used and data-rich
task in NLP. Many NLI datasets exist, and crowd-coders have created more than a million unique
hypothesis-context pairs. Using this data, the pre-trained BERT-base can be further fine-tuned on

theNLI classification task, creatingBERT-NLI. OurBERT-NLImodels are trainedona concatenation

of eight general-purpose NLI datasets (around 1.2 million texts) from the NLP literature (see

Appendix B3 of the Supplementary Material for details).

Second, NLI is a universal task. Almost any classification task can be converted into an NLI task.
Take the text “We need to raise tariffs” and our task could be to classify this text into the eight

topical classes of the Manifesto Corpus (“economy,” “democracy,” . . .). BERT-NLI can always only

execute the NLI task: predicting one of the classes true/false/neutral given a context-hypothesis

pair. We can, however, translate the topic classification task into an NLI task by expressing each

topical class as a “class-hypothesis,” for example, “It is about economy,” “It is about democracy,”

etc. We can then take “We need to raise tariffs” as context and test each of the class-hypotheses

against this context. Each context-hypothesis pair is provided as input to BERT-NLI, which predicts

the three NLI classes true/false/neutral for each class-hypothesis. We then select the topical class

via the class-hypothesis that BERT-NLI predicts to be the “truest.” Note that when we re-purpose

BERT-NLI for other tasks like topic classification, the class-hypotheses do not have to be actually

“true” in a deeper sense. The objective of reusing the classes of BERT-NLI for other tasks is only

to identify themost likely downstream class relevant for the new task. The predictions for the NLI

classes false and neutral class are ignored. Figure 1 illustrates how this approach enables us to

solve almost any classification task with BERT-NLI.
Using a universal task for classification is an important advantage in situations of data scarcity.

Both classical algorithms and BERT-base models need to learn the target task the researcher is

interested in from scratch, with the training data as the only source of task-information. They can

thenonly solve this very specific task.With theuniversalBERT-NLI classifier, almostany taskcanbe

translated into the universal NLI task format. BERT-NLI can then fully reuse the “task knowledge”

it has already learned from hundreds of thousands of general-purpose NLI context-hypothesis

6 Note that there is some variation in how the input texts and classes are called in the literature. NLI can also be called
recognizing textual entailment (RTE), the “context” can be called “premise” and the three classes can be called “entail-
ment,” “contradiction,” and “neutral” (Williams, Nangia, and Bowman 2018). We use the simplified vocabulary based on
the instructions shown to crowd workers.
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economy

welfare

......

Economy

True: 0.52

False: 0.04

Neutral: 0.44

True: 0.23

False: 0.07

Neutral: 0.70

...

Military: 
Positive

True: 0.83

False: 0.02

Neutral: 0.15

True: 0.07

False: 0.57

Neutral: 0.36

** Context: Any input text treated as context for the class-hypothesis.

*** Class-hypothesis: Class verbalised by the researcher. The classes are not limited 
by the training data. Any task and its classes can be verbalised.

{any verbalised 
topic

True: ...

False: ...

Neutral: ...

BERT-NLI

BERT-NLI

BERT-NLI

BERT-NLI

BERT-NLI

Ta
sk

 1
. 

To
pi

c 
C

la
ss

if
ic

at
io

n
Ta

sk
 2

. 
S

ta
n

ce
 D

et
ec

ti
on

Input Algorithm Output Interpretation

Economy: 0.54

Fabric of Society: 0.01

...BERT-
Manifesto*

Input Algorithm Output Interpretation

Economy
Social Groups: 0.03

Welfare: 0.04

Political System: 0.02

External Relations: 0.31

Democracy: 0.02

Other category: 0.03

BERT-
Stance-
Military*

Military: 
Positive: 0.88

Military: 
Negative: 0.12

Military: 
Positive

* BERT models fine-tuned on a specific dataset respectively. They can only predict 
the exact classes they have learned from their respective training data. 
E.g. topics from the Manifesto corpus, or stances towards the military. 

Standard classification with fine-tuned BERT Universal classification with BERT-NLI

Figure 1. Illustration of standard classification versus universal NLI classification.
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pairs. No task-specific parameters need to be randomly reinitialized in the task head. No “task

knowledge” is lost.

This is also linked to the third important characteristic of NLI classification: label verbalization
(Schick andSchütze 2021). Remember that humanannotators always receive explicit explanations

of each class in form of a codebook and can use their prior knowledge to understand the task

without any examples. Standard classifiers, on the other hand, only receive examples linked to an

initially meaningless number for the respective class (both classical algorithms and BERT-base).

They never see the description of the classes in plain language andneed to statistically guesswhat

the underlying classification task is, only based on the training data. With the NLI task format,

the class can be explicitly verbalized in the hypothesis based on the codebook (see Figure 1).

More closely imitating human annotators, BERT-NLI can therefore build upon its prior language

representations to understand the meaning of each class more quickly. Expressing each class in

plain language provides an additional important signal to the model.

As we will show in Section 3, the combination of transformers, self-supervised pretraining,

intermediate training on the data-rich NLI task, reformatting of target tasks into the universal NLI

task, and label verbalization can substantially reduce the need for task-specific training data.

3. Empirical Analyses

3.1. Setup of Empirical Analyses: Data and Algorithms
To investigate the effects of transfer learning, we analyze a diverse group of datasets, representing

typical classification tasks which political scientists are interested in. The datasets vary in size,

domain, unit of analysis, and task-specific research interest (see Table 2). For all datasets, the

overall task for human coders was to classify a text into one of multiple predefined classes of

substantive political interest. Additional details on each dataset are provided in Appendix A of the

Supplementary Material.

Different data pre-processing stepswere tested. One objective during pre-processing is to align

the classifier input more closely with the input human annotators receive. In some datasets, the

unit of analysis for classification are individual quasi-sentences7 extracted from longer speeches

or party manifestos (Burst et al. 2020; Policy Agendas Project 2015). Human coders did, however,
not interpret these quasi-sentences in isolation, but after reading the preceding (and following)

text. Inspired by Bilbao-Jayo and Almeida (2018), we therefore test each algorithm with two

types of inputs during hyperparameter search: only the single annotated quasi-sentence, or the

quasi-sentence concatenated with its preceding and following sentence. See Appendix E of the

Supplementary Material for other pre-processing steps for each algorithm.

3.1.1. Algorithms. Each dataset is analyzed with the following algorithms:

• Classical algorithms: SVM and logistic regression – twowidely used algorithms to represent
classical approaches. For each classical algorithm, we test two types of feature representa-
tions: TFIDF vectorization and average word embeddings (see Appendix E4 of the Supple-
mentary Material). Word embeddings provide a shallow form of “language knowledge.”8

• A standard transformer model: We use DeBERTaV3-base, which is an improved version
of the original BERT trained on more data, with a better pre-training objective than MLM
and some architectural improvements (He, Gao, and Chen 2021, see Appendix B2 of the
Supplementary Material for details).

7 A quasi-sentence is an entire sentence or a part of a sentence that represents one semantic unit. If one sentence contains
two concepts of interest, it is split into two quasi-sentences.

8 We use pre-trained GloVe embeddings (Pennington, Socher, and Manning 2014) provided by the SpaCy library (see
en_core_web_lg-3.2.0, Montani et al. 2022), a widely used type of word embedding (Rodriguez and Spirling 2022).
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Table 2. Key political datasets used in the analysis.

Dataset Task Domain Unit of Includes Avg. text Data points

analysis context? length Train/Test

Manifesto Corpus
(Burst et al. 2020)

Classify text in 8
general topics

Party manifestos Quasi-sentences Yes 116 characters
(348 with context)

12,1570 all
88,158 train
33,412 test

Sentiment Economy
News (Barberá et al.
2021)

Differentiate if
economy is
performing well or
badly according to
the text (2 classes)

News articles News headline and
first paragraphs

No 1,624 cha. 3,382 all
3,000 train
382 test

US State of the
Union Speeches
(Policy Agendas
Project 2015)

Classify text in
policy topics (22
classes)

Presidential
speeches

Quasi-sentences Yes 116 cha. (347 with
context)

21,641 all
15,207 train
6,434 test

US Supreme Court
Cases (Policy
Agendas Project
2014)

Classify text in
policy topics (20
classes)

Law, summaries of
court cases and
rulings

Court case
summaries
(multiple
paragraphs)

No 2,456 cha. 7,752 all
5,236 train
2,326 test

CoronaNet (Cheng
et al. 2020)

Classify text in types
of policy measures
against COVID-19
(20 classes)

Research assistant
texts and copies
from news and
government sources

One or multiple
sentences

No 297 cha. 48,998 all
34,298 train
14,700 test

Manifesto stances
toward the military
(subsets of Burst
et al. 2020)

Identify stance
toward the simple
topic “military.” (3
classes:
positive/negative/
unrelated).

Party manifestos Quasi-sentences Yes Similar to
Manifesto Corpus
above

13,507 all
3,970 train
9,537 test

Manifesto stances
toward
protectionism
(subsets of Burst
et al. 2020).

Identify stance
toward the concept
“protectionism” (3
classes:
positive/negative/
unrelated).

Party manifestos Quasi-sentences Yes Similar to
Manifesto Corpus
above

5,878 all
2,116 train
3,762 test

Manifesto stances
toward traditional
morality (subsets of
Burst et al. 2020).

Identify stance
toward the complex
concept “traditional
morality” (3 classes:
positive/negative/
unrelated).

Party manifestos Quasi-sentences Yes Similar to
Manifesto Corpus
above

7,478 all
3,188 train
4,290 test
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• An NLI-transformer: We fine-tune DeBERTaV3-base on 1.279.665 NLI hypothesis-context
pairs from eight existing general-purpose NLI datasets (“BERT-NLI,” see Appendix B3 of the
Supplementary Material).9

3.1.2. Converting Political Science Tasks to NLI Format and Fine-Tuning BERT-NLI. Specifically for fine-

tuning BERT-NLI, the following steps were required. First, we read the codebook for each task

and manually formulate one hypothesis corresponding to each class. For example, Barberá et al.

(2021) asked coders to determine if a news article contains positive or negative indications on the

performance of theU.S. economy. Based on the codebook,we therefore formulated the two class-

hypotheses “The economy is performing well overall” and “The economy is performing badly

overall.”10 Second, we optionally write a simple script to reformat the target texts to increase the

natural language fit between the class-hypothesis and the target (con)text, if necessary.11 Third,

we fine-tune the general-purpose BERT-NLI model on, for example, 500 annotated texts from the

manifesto-military dataset. To this end, we match each text with the class-hypothesis, we know

to be “true” based on the existing annotations and assign the label “true.” In addition, we also

match each text with one random “not-true” class-hypothesis and assign the label “neutral.” This

avoids that BERT-NLI learns to only predict the class “true” and provides a convenient means for

data augmentation. The result is, for example, BERT-NLI-manifesto-military, which both “knows”

the general NLI task and the specific manifesto-military task reformatted to NLI. Fourth, the fine-

tuned model can then be applied to texts in a test set. As illustrated in Figure 1, each test text is

fed into BERT-NLI exactly N times, once with each of the N different class-hypotheses. The class
for which the hypothesis is the most “true” is selected.

Note that this approach allows us to further align the classifier inputwith the human annotator

input: each human coder based their annotations on instructions in a codebook and with BERT-

NLI, we can provide these coding instructions to the model via the class-hypotheses (see “label

verbalization” above and Appendix B of the Supplementary Material).

3.1.3. Comparative Analysis Pipeline and Metrics. The objective of our analysis is to determine how

much data, and therefore annotation labor, is necessary to obtain a desired level of performance

on diverse classification tasks and imbalanced data. To ensure comparability and reproducibility

across datasets and algorithms, each dataset is analyzed based on the same script: the random

training sample size is successively increased from 0 to 10,000 texts, hyperparameters are tuned

on a validation set, final performance is tested on a holdout test set. We assess uncertainty

by taking three random training samples and report standard deviation (see Appendix C of the

Supplementary Material).

We evaluate each model and task with multiple metrics (following the implementations by

Pedregosa et al. 2011). Firstly, accuracy counts the overall fraction of correct predictions (and is
equivalent to F1 Micro). The disadvantage of accuracy is that it overestimates the performance of

classifiers overpredicting majority classes and neglecting minority classes. On three of our tasks,

a baselinemodel that only predicts themajority class would already achieve above 90% accuracy

due to high data imbalance. We assume that inmost social science use-cases, all classes included

in a task are of roughly similar importance,making accuracy amisleadingmetric for performance.

Secondly, balanced accuracy calculates accuracy for each class separately and then takes the
average of each per-class accuracy score (equivalent to “Recall Macro”). This gives equal weight

9 Themodel is available at https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-docnli-ling-2c.
10 In practice, we tested different hypothesis formulations during hyperparameter search (see ppendices B and E of the

Supplementary Material).
11 For some tasks, we found that reformatting the context to “The quote: ‘{context}”’ and formulating the hypotheses as

“The quote is about . . .” increases the natural language fit between hypothesis and context, which increases performance
(see Appendix B of the Supplementary Material). The literature uses less natural formulations like “It is about . . .” (Yin et al.
2019).
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Figure 2. Average performance across eight tasks versus training data size.
The “classical-best” lines display the results from either the SVM or logistic regression, whichever is better.
Note that four datasets contain more than 2,500 data points (see Figure 3).

to all classes independently of their size and is amore suitablemetric, assuming that classes have

similar substantive value. A characteristic of balanced accuracy is that it is higher for classifiers

with less false negatives (high “Recall”) but does not properly account for false positives (risk of

lower “Precision”). Balanced accuracy empirically favors classifiers that predict many minority

classes well but perform less well on a few majority classes (Appendix D1 of the Supplementary

Material). Thirdly, F1 Macro is a metric that tries to remedy this issue. It is the harmonic mean of
Precision and Recall and gives equal weight to all classes independently of their size. Appendix D

of the Supplementary Material provides a more detailed empirical discussion and data, including

othermetrics like Cohen’s Kappa.We conclude that F1Macro is themost adequatemetric formany

social science use-cases of supervised machine learning and we therefore use it as the primary

metric in this paper, while also reporting other metrics.12

3.2. Empirical Results
Figure 2 displays the aggregate average scores across all datasets. Figure 3 displays the results

per dataset (see Appendix D of the Supplementary Material for detailedmetrics). We focus on two

main aspects across tasks: overall data efficiency and ability to handle imbalanced data.

Regarding data efficiency, deep transfer-learning models perform significantly better with less

data than classical models across all tasks. The results show that BERT-NLI outperforms the

classical models with TF-IDF by 10.7 to 18.3 percentage points on average (F1 Macro) when 100

to 2,500 annotated data points are available (7.9 to 12.4 with BERT-base). Classical models can

be improved by leveraging shallow “language knowledge” from averaged word embeddings, but

a performance difference of 8.0 to 11.7 F1 Macro remains (0.4 to 7.7 with BERT-base). The results

12 Note that the importance of different classes might vary in different substantive research projects and researchers can
makemore nuanced decisions on the weight they attribute to different classes.
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indicate that BERT-NLI achieves similar average F1Macro performancewith 500 data points as the

classical models with around 5,000 data points.13 The performance difference remains, as larger

amounts of data are sampled (5,000–10,000, see Figure 3 and Appendix D3 of the Supplementary

Material) and applies across domains, units of analysis and tasks.

Moreover, the more transfer learning components a model is using, the better it becomes at

handling imbalanced data. We demonstrate this by comparing accuracy/F1 Micro to F1 Macro

averaged across the data intervals 100 to 2,500. Higher improvements with F1 Macro indicate

an improved ability to handle imbalanced data. When “shallow language knowledge” with word

embeddings is added to classicalmodel insteadof TFIDF, F1Macro is increasedby+4.6 percentage

points,while accuracy/F1Micro is only increasedby+2.9 – a+1.7 higher improvement for F1Macro.

With BERT-base and its “deep language knowledge,” the improvement over classical TFIDF is+7.2

with accuracy/F1 Micro and +10.3 with F1 Macro – a +3.1 higher improvement for F1 Macro. With

BERT-NLI and its additional “task knowledge,” the improvement is +8.3 with accuracy/F1 Micro

and 14.6 with F1 Macro – a +6.3 higher improvement for F1 Macro. The higher F1 Macro score

improvements compared to accuracy/F1 Micro indicates that transfer learning reduces reliance

on majority classes. Good classifiers should perform similarly across all classes a researcher is

interested in. Appendix D1 of the SupplementaryMaterial provides additional data demonstrating

that, when more transfer learning components are added, the performance on different classes

becomes less varied.

This has two main reasons: First, both BERT variants (and word embeddings) require fewer

examples for the words used in minority classes thanks to their prior representations of, for

example, synonyms and semantic similarities of texts (“language knowledge”). Second, BERT-NLI

performs better on F1 Macro and especially balanced accuracy and its performance across classes

is least varied. Its prior “task knowledge” further reduces the need for data for smaller classes.

In Appendix D1 of the Supplementary Material, we show empirically that the comparatively high

performance of BERT-NLI on balanced accuracy is due to higher performance on many smaller

classes compared to few majority classes. BERT-NLI can already predict a class without a single

class example in the data (“zero-shot classification”). It does not need to learn each class for the

new task since it uses the universal NLI taskwhere classes are expressed in hypotheses verbalizing

the codebook. This capability is also illustrated in Figures 2 and 3 by themetrics with zero training

examples.

Note that our metrics are based on fully random training data samples, which do not always

contain examples for all classes, especially for datasetswithmany classes. This simulates a typical

challenge social scientists are facing, where random sampling is common and even advanced

sampling techniques like active learning require an initial random sampling step (Miller et al.
2020). Transfer learning and especially prior “task knowledge” can therefore become another tool

in our toolbox to address the issue of imbalanced data. Also note that the values for accuracy/F1

Micro are significantly higher than for F1Macro for allmodels andonly reporting accuracy/F1Micro

provides a misleading picture of actual performance on imbalanced data.

How to choose between BERT-base and BERT-NLI? Themain criteria are the amount of training

data and the degree of data imbalance. BERT-NLI is useful in situations where little and very

imbalanced data is available (≤1,000). As more data becomes available to learn the new task

(andminority classes) from scratch, it seems advisable to use the simpler BERT-basemodel given

the converging performance (≥2,000). BERT-NLI has a tendency to perform better on (many)

minority classes, while performing less well on (few) majority classes – which can be good or

bad, depending on the use-case (see Appendix D of the Supplementary Material). Another dataset

13 Note that the results above 2,500 data points are harder to compare, as only four datasets have enough data for the data
intervals of 5,000 or more. This statement is therefore based on the performance for four datasets (see Appendix D of the
Supplementary Material) as well as the overall trendline for all eight datasets.
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characteristic that can influence the value of BERT-NLI is concept complexity. BERT-NLI seems to

work better when concepts are measured that can be clearly expressed in the hypotheses. For

example, it performsparticularlywell on themanifesto-military task,measuring the stance toward

the comparatively simple topic “military.” At the same time, it performs comparatively lesswell on

manifesto-morality where the complex concept “traditional morality” is measured, which covers

diverse sub-dimensions from traditional family values, religiousmoral values to unclear concepts

like “unseemly behavior.” We assume that it is harder for BERT-NLI to map the simple language in

the hypothesis to complex concepts. We discuss other factors that can influence the performance

of BERT-NLI in Appendix B4 of the Supplementary Material.

Lastly,weobserve thathyperparameters and text pre-processing canhavean important impact

on performance for allmodels. For example, while BERT-basemodels are normally trained for less

than 10 epochs,we find that training for up to 100 epochs increases performanceon small datasets

(see Appendix E3 of the Supplementary Material for a systematic study on hyperparameters).

Moreover, regarding pre-processing, if the unit of analysis are quasi-sentences, including the

preceding and following sentence during pre-processing systematically increases performance

for all models (Appendix E1 of the Supplementary Material); the value of word embeddings can

be increased by reweighting the averaged embeddings and selecting more important words with

part-of-speech tagging (Appendix E4 of the Supplementary Material); and the performance of

BERT-NLI can be improved through simple pre-processing steps (Appendix B5 of the Supplemen-

tary Material).

4. Discussion of Limitations

While deep transfer learning leads to high classification performance, several limitations need to

bediscussed. First, deep learningmodels are computationally slowand require specific hardware.

BERT-like transformers take several minutes to several hours to fine-tune on a high-performance

GPU, while a classical model can be trained in minutes on a laptop CPU. To help alleviate this

limitation, we share our experience for accessing GPUs (Appendix F of the Supplementary Mate-

rial) and choosing the right hyperparameters (Appendix E3 of the Supplementary Material). Our

extensive hyperparameter experiments indicate that a set of standard hyperparameters performs

well across tasks and data sizes and researchers can refer to these default values to reduce

computational costs.

Moreover, using BERT requires learning new software libraries. Luckily, there are relatively

easy to use open-source libraries like Hugging Face transformers, which only require a moderate

understanding of Python and no more than secondary education in math (Wolf et al. 2020).14

Furthermore, specifically for BERT-NLI, we share our models and code. We provide several BERT-

NLI models used in this paper with state-of-the-art performance on established NLI benchmarks.

We invite researchers to copy and adapt our models and code to their own datasets.15

An additional disadvantage specifically of NLI is its reliance on human annotated NLI

data, which is abundantly available in English, but less so in other languages. We also

provide a multilingual BERT-NLI model pre-trained on 100 languages, but we expect it to

perform less well than English-only models (Appendix B of the Supplementary Material;

https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli). There are several other

techniques for leveraging “prior task knowledge” which do not rely on human annotated data

and could be explored in future research (Brown et al. 2020; Schick and Schütze 2021).
Lastly, model (pre-)training can introduce biases and impact the validity of outputs. There is a

broad literature on bias in deep learningmodels (Blodgett et al. 2020) and thismost likely extends

14 Hugging Face also provides a beginner-friendly course: https://huggingface.co/course/chapter1/1.
15 NLImodels are available at https://huggingface.co/MoritzLaurer; an easy-to-use Jupyter notebook to train your ownBERT-

NLI model is available at https://github.com/MoritzLaurer/less-annotating-with-bert-nli.
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to political bias and NLI. It is possible, for example, that the hypotheses “The US is trustworthy”

and“China is trustworthy”will result indifferentoutputs for semantically equal inputsasoneactor

might have been mentioned more often in a negative context than others during (pre-)training.

Political bias in deep learning is an important subject for future research. Moreover, the “black

box” nature of deep learning models makes them harder to interpret. This becomes problematic

when researcherswant tounderstandwhyexactly amodel hasmadeacertain classification. There

are some open-source libraries such as Captum (https://github.com/pytorch/captum) which can

partly alleviate this issue by extracting the importance of specific features (words) for a classifica-

tion decision to enable interpretations. More generally, whether the supervisedmachine-learning

pipeline used for a specific new research question is internally and externally valid is an important

additional assessment for substantive research projects (Baden et al. 2022).

5. Conclusion and Outlook

Lack of training data is a major hurdle for researchers who consider using supervised machine

learning. This paper outlined how deep transfer learning can lower this barrier. Transformers like

BERT can store information on statistical language patterns (“language knowledge”) and they can

be trained on a universal task like NLI to help them learn downstream tasks and classes more

quickly (“task knowledge”). In contrast, classical models need to learn language and tasks from

scratch with the training data as the only source of information for any new task.

We systematically test the effect of transfer learning on a range of eight tasks from five widely

used political science datasets with varying size, domain, unit of analysis, and task-specific

research interest. Across these eight tasks, BERT-NLI trained on 100 to 2,500 data points performs

on average 10.7 to 18.3 percentage points better than classical models with TF-IDF vectorization

(F1 Macro). We also show that leveraging the shallow “language knowledge” of averaged word

embeddings with classical models improves performance compared to TF-IDF, but the difference

to BERT-NLI is still large (8.0 to 11.7 F1 Macro). Our study indicates that BERT-NLI trained on 500

data points achieves similar average F1 Macro performance as classicalmodels with around 5,000

data points. Moreover, transfer learning works particularly well for imbalanced data, as it reduces

the data requirements for minority classes. We also provide advice on when to use BERT-NLI and

when using a simpler BERT-base model is advisable. Researchers can use our results as a rough

indicator for howmuch annotation labor their task could require with different methods.

Based on these empirical findings, we believe that deep transfer learning has great potential

for making supervisedmachine learning amore valuable tool for social science research. Asmost

research projects tackle new research questions which require new data for different tasks on

mostly imbalanced data, the reduction of data requirements is a substantial benefit. Moreover,

this enables researchers to spend more time on ensuring data quality rather than quantity and

carefully creating test data for ensuring the validity of models. Accurate models combined with

high quality datasets directly contribute to the validity of computational methods.

There are many important directions for future research this paper could not cover. This paper

used random sampling for obtaining training data. Active learning can further reduce the number

of required annotated examples (Miller et al. 2020). In fact, combinations of active learning and
BERT-NLI are promising, as the zero-shot classification capabilities of BERT-NLI can be used in the

first sampling round. Moreover, issues of political bias and validity need to be investigated further.

Computational social scientists should become amore active part of the debate on (political) bias

and validity in the machine-learning community.

Lastly, we believe that transfer learning has great potential for enabling the sharing and

reusing of data andmodels in the computational social sciences. Datasets are traditionallymostly

designed for one specific research question and fine-tuned models can hardly be reused in

other research projects. Transfer learning in general and universal tasks in particular can help
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break these silos. Computational social scientists with a “transfer-learning mindset” could create

general purpose datasets and models designed for a wider variety of use cases. Transfer learning

opens many new venues for sharing and reuse which have yet to be explored.

Supplementary Material

For supplementary material accompanying this paper, please visit https://doi.org/10.1017/

pan.2023.20.
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All datasets used in this paper are publicly available. Replication code and cleaned data are avail-

able on GitHub (https://github.com/MoritzLaurer/less-annotating-with-bert-nli) and the code can

be run interactively in a Code Ocean capsule at https://doi.org/10.24433/CO.5414009.v2 (Laurer

et al. 2023a). A preservation copy of the same code and data can also be accessed via Dataverse at
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