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Dedicated to Professor Kentaro Murata on his sixtieth birthday

Introduction

Complete parallel submanifolds of a real space form of constant sec-
tional curvature k& have been completely classified by Ferus [3] when & >
0, and by Takeuchi [19] when 2 < 0. A complex space form is by defini-
tion a 2n-dimensional simply connected Hermitian symmetric space of
constant holomorphic sectional curvature ¢ and will be denoted by M*(c).
The complex space form M"(0) is isometric to the Euclidean space R*"
and so complete parallel submanifolds of M"(0) are known by Ferus [3],
k=0. Assume that ¢+ 0. Then we know that a parallel submanifold
of M"(c) is Kahlerian or totally real. Complete Kéahlerian parallel sub-
manifolds of M"(c) have been completely classified by Nakagawa-Takagi
[13] when ¢ > 0, and by Kon [9] when ¢ < 0. Recently, Naitoh [11] has
shown that the classification of n-dimensional complete totally real parallel
submanifolds of M?(c), ¢ > 0, is reduced to that of certain cubic forms
of n-variables and Naitoh-Takeuchi [12] has classified these submanifolds
by the theory of symmetric bounded domains of tube type.

In the present article we will study the classification of complete
parallel submanifolds of M*(c), c # 0.

In the present paper I, we will show that a parallel submanifold of
M™(c), c + 0, is one of the following three types:

(a) Kahlerian submanifold,

(b) totally real submanifold which is contained in a totally real
totally geodesic submanifold,

(c) totally real submanifold which is contained in a totally geodesic
Kahlerian submanifold whose dimension is twice of the dimension of the
submanifold (Theorem 2.4).
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This implies that the classification of complete parallel submanifolds
of M*(c), ¢ > 0, is reduced to those of Nakagawa-Takagi [13], Ferus [3],
k > 0, and Naitoh-Takeuchi [12]. As application of our classification we
will completely classify complete 2-isotropic parallel submanifolds of M*(c),
¢ > 0, which the author has studied ealier in [10], [11] (Corollary 3.4).
Now, if ¢ < 0, the classifications of complete parallel submanifolds of types
(a), (b) are reduced to those of Kon [9], Takeuchi [19] respectively.

In the section 4 we will study the ‘“‘complete inverse” of an r-dimen-
sional complete totally real parallel submanifold of M'(c), ¢ 0. The
complete inverse is an (r + 1)-dimensional complete totally real parallel
submanifold of a pseudo-Hermitian space E™*' (Proposition 4.1).

In the section 5 we will define “orthogonal Jordan triple system”
and “orthogonal symmetric graded Lie algebra”. These notions may be
regarded as extensions of non-degenerate Jordan triple system and semi-
simple symmetric graded Lie algebra respectively. And two notions have
a natural one-to-one correspondence (Theorem 5.4). Moreover we will
construct a parallel submanifold of a pseudo-Euclidean space from an
orthogonal symmetric graded Lie algebra satisfying a certain condition
(Theorem 5.7).

In the forthcoming paper II we will construct an orthogonal Jordan
triple system and an orthogonal symmetric graded Lie algebra associated
with a complete inverse submanifold and show that the complete inverse
submanifold is equivalent to the parallel submanifold constructed from
the orthogonal symmetric graded Lie algebra. And we will classify r-
dimensional complete totally real parallel submanifolds of M’(c), ¢ <0,
by determining orthogonal symmetric graded Lie algebras associated with
complete inverses.

The author wishes to express his hearty thanks to Professor S. Mura-
kami for useful comments and to Professor M. Takeuchi for much infor-
mation.

§1. Preliminaries

Let M, M be connected pseudo-riemannian manifolds and f an isome-
tric immersion of M into M. Throughout this paper we will identify a
vector X of M with a vector f,(X) of M. The pseudo-riemannian metrics
on M, M are denoted by the same notation <, >. Let I/, 7 be the Levi-
Civita connections on M, M respectively. The metric and the connection
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on the pull back f'T(M) of the tangent bundle T(M) of M, induced
from <, > and 7, are also denoted by <, > and 7. The pull back
f'T(M) is orthogonally decomposed into the sum of tangent bundle 7'(M)
of M and normal bundle N(M) for f. Let D be the normal connection
on N(M), o, the second fundamental form of f, and A the shape operator
of f. Then we have the formulas:

(1.1 PoY="7,Y+o,X7Y),
(1.2) Vil =—-AX+ DL,
(1.3) (AX, Y = (o/X, Y),0, 0 (X, Y) = a (¥, X)

for vector fields X, Y of M and a normal vector field . We define
Ve )X, Y, Z) = Tia Y, Z) = Dyo (Y, Z) — 0,(V+Y, Z) — o (Y, V 1 Z)

for vector fields X, Y, Z of M. The isometric immersion f is called parallel
if '*¢, = 0, and the image f(M) of a parallel imbedding f is called a paral-
lel submanifold of M. Denote by R, R, R1 the curvature tensors for I7, 7,
D respectively and by {«}* the normal component of x. Then we have
the Gauss-Codazzi-Ricci equations for an isometric immersion f:

1.4) (R(X, Y)Z, W) = (R(X, Y)Z, W) + (o /X, Z), s (Y, W))
- <0f(X’ W)’ df(K Z)> )

(1.5) {RX, V)Z} = (P3a )Y, Z) — (T¥o )X, Z) ,

(1.6) (R(X, Y);, & = (RHX, Y);, & — (A, AlX, V)

for vector fields X, Y, Z, W of M and normal vector fields ¢, &.

Now, for a point p of an n-dimensional pseudo-riemannian manifold
M, there exists a basis {e,, - - -, €, €,,1, * -, €,} of the tangent space T,(M)
such that

-1, 15i=j<k,
<ei’ej>: 1: k-’rlél‘—"]éﬂ,
0, i#7j.
Here note that the non-negative integer % is independent of a point p.
The pair (k, n — k) is called the signature of the pseudo-riemannian mani-

fold M, and {e, ---,e,} an orthonormal basis of T,(M).
Let f be an isometric immersion of an n-dimensional pseudo-rieman-
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nian manifold M of signature (k, n — k) into a pseudo-riemannian manifold
M. We define the mean curvature vector field 5, for f as follows:

n"?f(p) = =2k, O'f(eu e) + 2tk (e €)

for an orthonormal basis {e,, ---,e,} of T,(M). The isometric immersion
f is called minimal if 7, = 0. It is called totally umbilical if

(1) the mean curvature vector field 7, is nowhere zero and o (X, Y) =
(X, Yyy, for vector fields X, Y of M, and

(2) 7, is parallel; Dy, = 0.

The image f(M) of a totally umbilical isometric imbedding f is called a
totally umbilical submanifold of M. Here note that a totally umbilical
isometric immersion is always parallel.

Let f;: M, > M,, 1 < i< s, be isometric immersions of n,-dimensional
pseudo-riemannian manifolds M, into pseudo-riemannian manifolds M,.
Denote by o,,, 7;, the second fundamental form and the mean curvature
vector field of f, respectively. The product isometric immersion f= f; X
..« X f, of the product pseudo-riemannian manifold M = M, X --- X M,
into the product pseudo-riemannian manifold M = M, X - - - X M, is defined
by

f(pl’ © '7ps) = (fl(pl)’ . '9fx(ps))

for p,e M,, 1<i<s Then we have
af(X'l+ Tt +X37Yl+ M + Ys):ofl(Xl’ Yl)+ s +Ufs(Xsy Ys)’

neny =Ny, + 0+ Ny,

for vector fields X, Y, of M,, 1 <i<s. Therefore, f is parallel (resp.
minimal) if and only if each f; is parallel (resp. minimal). Moreover, 7,
is parallel if and only if each z,, is parallel.

LemmA 1.1 (cf. Takeuchi [19]). Let M, M’, M, be pseudo-riemannian
manifolds. Let f': M — M’ be an isometric immersion, f”’: M’ — M a totally
geodesic or totally umbilical isometric immersion and let f = f" of’ be the
composition of ' and f”. Then

D ofX,Y) =0,(X,Y) + <X, VD00, ;=19 + g of’,
Dyy; = Diny, Anf = A;, + gy 9ppid
for vector fields X, Y of M (Here D', A’ denote the normal connection and
the shape operator for f’ respectively),
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(2) 7%, is parallel if and only if y, is parallel,
8) f is parallel if and only if ' is parallel.

Proof. See [19, Lemma 1.1]. q.e.d.

§2. The reduction theorem

In this section we study parallel isometric immersions of riemannian
manifolds M into a complex space form M"(c), ¢ # 0. (dim M > 2)

Let M be a Kihlerian manifold and denote by J the complex stru-
cture. An isometric immersion f of a riemannian manifold M into M is
called Kdhlerian (resp. totally real) if JT (M) = T, (M) (resp. JT, (M) C
N,(M)) for pe M. If f is Kahlerian, M is a Kahlerian manifold such that
f: M — M is a holomorphic isometric immersion.

Let f: M — M be an isometric immersion of a riemannian manifold
M into a riemannian manifold M. For a point p e M, the first normal
space (M) and the first osculating space Oy(M) at p are defined by

NM) = {o/(X, Y): X, Ye T,(M)}, O(M) = T,(M) @ NY(M)

where { )}z means the R-span of { }. Let M be a riemannian symmetric
space. A linear subspace V C T,(M) is called a Lie triple system if R (X, Y)Z
eVifor X, Y, Ze¢ V. For a Lie triple system V there is a unique com-
plete totally geodesic submanifold N of M such that pe N, T,(N) =V
(cf. Helgason [6]).

LEMMA 2.1. Let f be a parallel isometric immersion of a riemannian
manifold M into a complex space form M*(c), c += 0. Then the first osculat-
ing space OXM) is a Lie triple system in T,(M™(c)) for a point pe M.
Moreover, the following cases occur:

(@) The immersion f is Kdhlerian and the subspace O)(M) is J-invari-
ant, i.e., JOXM) = O} (M),

(b) The immersion f is totally real and the subspace Oy(M) is totally
real, i.e., JO,(M) and O, (M) are orthogonal,

(¢c) The immersion f is totally real and the subspace O(M) is J-invar-
iant.

Here if the subspace O, (M) is J-invariant (resp, totally real), the com-
plete totally geodesic submanifold N defined by Oy(M) is a complex space
form M'(c) (resp. a real projective space RP*(c/4) or a real hyperbolic space
RH*(c/4) of constant sectional curvature cf4 according as ¢ >0, ¢ <0
respectively).
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Proof. A parallel isometric immersion of a riemannian manifold
(dim > 2) into M*(c), ¢ # 0, is Kahlerian or totally real (cf. Chen-Ogiue
[1]) and the first osculating spaces are Lie triple systems (Naitoh [10]).
Since a totally geodesic submanifold is parallel, the submanifold N < M™*(c)
defined by O,(M) is Kéhlerian or totally real. This implies that O}(M) is
J-invariant or totally real. If f is K&hlerian, we have JT,(M) = T, (M)
and ¢/(JX, Y) = Jo (X, Y) for X, Ye T,(M), and thus O,(M) is J-invariant.

Now it is known that a complete Kdhlerian (resp. totally real) totally
geodesic submanifold of M*(c) is M"(c) (resp. RP*(c/4) or RH*(c/4) accord-
ing as ¢ > 0, ¢ < 0 respectively). This completes our proof. q.e.d.

Let M be a Kahlerian manifold and denote by J the complex structure.
Let f: M— M be a totally real isometric immersion of a riemannian
manifold M into M. The normal space N,(M), p ¢ M, is decomposed into
the sum of subspace J7T,(M) and its orthogonal complement {J7T,(M)}+.
Denote by ¢%(X, Y) (resp. 0:(X, Y)) the JT,(M)-component (resp. {JT,(M)}*-
component) of ¢/(X,Y) for X, Ye T,(M). The T(M)-valued symmetric
tensor Jo} is defined by

(o)X, Y) = J(¢}(X, Y))

for vector fields X, Y of M. If we identify tangent spaces T,(M) with
cotangent spaces T¥(IM) through the riemannian metric on M, the tensor
Jo? is a covariant tensor of degree 3.

LEMMA 2.2. Let M and f be as above. Then,
(1) Jo% is a symmetric tensor of degree 3.
Moreover, if the totally real isometric immersion [ is parallel,
(2) the tensor Ja7 is parallel, i.e., V(Jo%) = 0,
@ (oHX, W), Jak(¥, 2)y = 0
for vector fields X, Y, Z, W of M.

Proof. The claim (1) is the result of Lemma 2.4 in [10]. We show
the claims (2), (3). For vector fields X, Y, Z, W of M we have

T (Je}(Y, Z)), W)
= F(JoUY, 2)), W) by (1.1),
= — VXY, 2)), IW)

— T o (Y, Z)), IW) + F (e }(Y, Z)), IW)

= —(Dy(e[Y, Z)), JWy — (aH(Y, Z),V yJ W by (1.2),
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= — (P Y, Z) + oY, 7 2), IW) + (Jak(¥, Z2), P W)

by the parallelity of f,
= (ALY, Z) + 0NV, V2 2), IWY + (JoH(Y, Z), 0,(X, W)> by (L1),
= oV LY, 2) + JoU(Y, V:2), Wy + (Jop(¥, Z), a}(X, W))

since the subspace {JT,(M)}* is J-invariant. Hence we have
CAY (o)XY, 2), W) = (o3(X, W), Jo}(Y, Z)) .

Since Jo} is a symmetric tensor of degree 3, the equation (2.1) means
that I'(Jo%) is a symmetric tensor of degree 4. Moreover we have

(o)X, X), X) = (o7(X, X), Jop(X, X)) =0

for a vector field X of M, and thus F(Jo%) = 0. Together with (2.1) our
claim (3) is proved. q.e.d.

Let M be a riemannian manifold and c(f) a curve in M defined on
an open interval Is0 and parametrized by arc-length. The curve c(f) is
called a Frenet curve in M of osculating rank r(= 1) if for all ¢ € I its higher
order derivatives

@) = 75,5.008), V300, - -, FTi7:0)(2)
are linearly independent but
¢t) = (75,500@), WD), -+, (P350)(2)

are linearly dependent in 7.,(M). Then there exist unique positive C=-
functions «,(t), - -+, £,_,(f) on I and unique orthonormal C<-vector fields
V@), - --, V,(t) along the curve c(f) such that

¢ = Vi(t), 720, VI(B) = £,() V(D) ,
720 V() = —r () V(8) + (D) Vi(t) ,
(2.2) :
Tara Vo)) = —k,2.(0)V, () + £, () V()
Tars V) = —k, () V,_i(2) .

Here we call £,(t), 1 <j<r— 1, the Frenet curvature functions of c(z),
{VAt); 1 <j < r} the Frenet r-frame along c(f), and the equations (2.2) the
Frenet formulas. For a given integer r(= 1) and given positive C>-func-
tions #,(t), ---, £,_,(t) on I, the Frenet formulas may bz regarded as a
system of differential equations with variables ¢, V, ---, V,. It is known
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that this system has a unique local solution for given initial conditions;
a point ¢(0) = pe M and an orthonormal r-frame {V,0) = V;;1<j<r}
of T,(M). If the riemannian manifold M is complete, the Frenet curve
c(t) is defined for —oo < t < +oo(cf. [2], [17]).

LemMa 2.3 (Stritbing [17]). Let f: M — M be a parallel isometric im-
mersion of a riemannian manifold M into a riemannian manifold M. If
7(Y) is a geodesic in M parametrized by arc-length, the composition curve
(fo7)(?) is a Frenet curve in M.

THEOREM 2.4. Let M be a complete riemannian manifold and [ a pa-
rallel isometric immersion of M into a complex space form M™c), ¢ # 0.
Then there exists a unique complete totally geodesic submanifold N of M™(c)
such that f(M) C N, T(N) = OX(M), qge M.

Moreover, the following cases occur:

(a) The manifold M and the immersion f are Kihlerian, and the
submanifold N is M'(c),

(b) The immersion f is totally real and the submanifold N is a real
projective space RP*(c/[4) or a real hyperbolic space RH(c/4) according as
¢ > 0, ¢ <0 respectively,

(c) The immersion f is totally real and the submanifold N is M'(c)
with r = dim M.

Proof. Fix a point pe M. By Lemma 2.1 the first osculating space
OY(M) is a Lie triple system, and thus defines a unique complete totally
geodesic submanifold N such that pe N, T,(N) = O(M). Let 7(?) be a
complete geodesic in M with 7(0) = p, parametrized by arclength. By
Lemma 2.3 the composition curve (fo7)(¢) is a Frenet curve in M®(c).
Denote by x,(2), - - -, £,_,(f) the Frenet curvature functions of (f-7)(#), and
by {V,(t); 1 £j £ £} the Frenet /-frame of (fo7)(¥). Then the parallelity
of f means that V, = V,(0)e Oy(M) = T,(N) for j =1, ---,4. Let c(t) be
the Frenet curve in N of osculating rank £ with the curvature functions
£, - -+, k,_,(¢) and the initial conditions: ¢(0) =p, V,, - -+, V,. Since N is
totally geodesic in M"(c), the curve c(f) is a Frenet curve in M*(c) with
the same curvature functions and initial conditions. Hence we have
(fo1() = c(?) by the uniqueness of Frenet curves. This means that f(M) C
N. The claim that O}M) = T,(N) is obvious by the parallelity of f.

The second claims (a), (b), (¢) are almost trivial by Lemma 2.1. To
complete our proof we may show that dimg; OX(M) = dim M in the case
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(c) of Lemma 2.1. Put Nj(M) = {¢5(X, Y); X, Ye T ,(M)};. Then we have
N}(M) = {JT,(M)}+. Since the subspace O)(M) is J-invariant, the sub-
space N;-(M) is also J-invariant. Hence, by Lemma 2.2, (3), we have ¢} =
0, and thus O)(M) = T (M) ® JT,(M). This implies that dim; O (M) =
dim M. g.e.d.

Remark 2.5. Let M be a simply connected riemannian symmetric
space and f a parallel isometric immersion of M into M™(c), c 0. As
described in Introduction, such f’s have completely classified when they
are of type (a) or of type (b) (c <0). Moreover, by the argument of
Ferus [4], f of type (b) (c > 0) is an equivariant immersion of M into
RP*(c/4). Hence the classification of such f’s is reduced to that of parallel
isometric immersions of M into the Euclidean sphere S*(c/4) of constant
sectional curvature c/4 (Ferus [3] for the classification).

§ 3. Parallel submanifolds of type (c), ¢ >0

A complex space form M’(c), ¢ > 0, is the complex projective space
CP(c) of constant holomorphic sectional curvature c. Let D, be an (r, + 1)-
dimensional irreducible symmetric bounded domain of tube type and D,
=—> C"*! the Harish-Chandra imbedding. Then the Shilov boundary S;
C 9D, is an (r, 4+ 1)-dimensional compact submanifold in C"*!. The space
C7*! has the canonical hermitian inner product: C(z, w) = > 74, 2,w; for
z=(2;), w=(w;)e C"*', and thus the positive definite inner product:
{(z, wy; = Re C(z, w). The flat riemannian metric on C"*' induced from
the inner product {( D, is also denoted by { »,. Let ¢, be a positive
number and S¥i*'(c,) the hypersphere of radius 1/4/c, with the center 0.
Since S, is contained in some hypersphere, there exists a real number a;
such that a,-S, C S*i*(c,). Put M, = a,-S,. Then the submanifold N,
c 8%i*!(c,) is a symmetric R-space. For symmetric bounded domains and
symmetric R-spaces, we refer readers to [16], [18].

Now we have completely classified r-dimensional complete totally real
parallel submanifolds of CP7(c) (Naitoh-Takeuchi [12]). The classification

is performed as follows. For an object 2 =(D,, ---, D,;c,, ---,¢,), s =1,
such that
(3.1) idime D, =71+ 1, o1 1fe; = e,

we define a compact submanifold Mg by
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M, =M, X - X M, C S§7"+(c,/4) X --- X 8¥+1(c,/4)
c SZT+1(C/4) e Cr+1 .

Then the submanifold JQI'Q is totally real in C7*'. The riemannian sub-
mersion z: S**!(c/4) — CP"(c), which is called the Hopf fibring, is a principal
S'-bundle. For a point ze S**'(c/4), the horizontal space H, is invariant
by the complex structure i of C™*'. Then i|H, is compatible with the
complex structure J on T,,(CP7(c)) by the differential x,,. Since M, is
invariant under the S'-action, M, = n(Mg) is an r-dimensional compact
totally real submanifold of CP’(c).

TaHEOREM 3.1 (Naitoh-Takeuchi [12]). (1) For an object 9 = (D, -- -,
D;;c, ---,c,) satisfying (3.1), the r-dimensional compact totally real sub-
manifold M, is parallel.

(2) An r-dimensional complete totally real parallel submanifold of
CP'(c) is congruent to some M,.

(3) Forobjects? =(D,, ---,D;;c, ---,¢), 2 =D, ---,Dl;cf, ---,¢))
satisfying (3.1), the submanifolds M,, M, are congruent to each other if
and only if s =1t and there exists a permutation ¢ such that D.,; = D,
¢y = ¢; for all j.

Suppose that an r-dimensional complete totally real parallel submani-
fold M is not of type (¢). Then, by Theorem 2.4, M is totally geodesic.
This submanifold M is realized by the object 9, = (Dyy,,,; ¢) where Dy,
is the irreducible symmetric bounded domain of type IV,,,.

CoroLLARY 3.2. All the r-dimensional complete totally real parallel
submanifolds of type (c) are realized by objects 9 satisfying (3.1) except 9,.

Remark 3.3. The classification of totally real parallel isometric im-
mersions of r-dimensional simply connected riemannian symmetric spaces
into CP7(c) is reduced to that of r-dimensional complete totally real para-
llel submanifolds of CP7(c) (cf. [11], [12]).

An isometric immersion f of a riemannian manifold M into a rieman-
nian manifold M is called 2-isotropic if |o(X, X)| = 2 for a unit vector
X of M, where || denotes the length of a normal vector {. A 0-isotropic
immersion is totally geodesic. Nonzero isotropic parallel immersions f
into CP™(c) have been studied in [10]. Nonzero isotropic parallel immer-
sions f into CP™c) of type (a) or (b) have been completely classified in
[10], [15].
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Let L™ € CP7(c) be an r(= 2)-dimensional A-isotropic complete parallel
submanifold of type (c). Then we have shown that the universal rieman-
nian covering of L™ is isometric to one of riemannian symmetric spaces
R’ R X S%¢ = 2), SU(3)/SO), SU(3), SU(6)/Sp(3), E,/F, and that 2=
v/ ¢/24/2 ([10, Theorem 4.13]). Moreover we have constructed submanifolds
L" concretely and uniquely when universal coverings are R* or R X S%{ = 2)
([10, Theorem 6.5]), and have given examples of L’ concretely when uni-
versal coverings are the other riemannian symmetric spaces ([11, Remark
5.4]). Let M” be an r(= 2)-dimensional simply connected riemannian
symmetric space and f: M” — CP™(c) be a A-isotropic parallel isometric im-
mersion of type (¢). We may assume that n = r by Theorem 2.4. Then
the image f(M) is a parallel submanifold of type (c) and f: M™— f(M) is
a universal riemannian covering (cf. [11], [12]). Hence, together with
Remark 3.3, we have the following

COROLLARY 3.4. Let M"™ be an r(= 2)-dimensional simply connected
riemannian symmetric space and f: M — CP7(c) a A-isotropic parallel im-
mersion of type (c). Then M is isometric to one of the following spaces:

R, R X S™(n = 2), SU(3)/SO(3), SU(3), SU(6)/Sp(3), E/F, .
Moreover, the immersions are rigid and 2 = v ¢/2v/ 2.

Remark 3.5. Denote by D Dy,,, Du,, Dw,, Dy the irreducible
symmetric bounded domains of tube type corresponding to I, .., IL,., III,,

Im,m?

IV,,, exceptional types respectively. Then, the object 9 corresponding to
the submanifold f(M) is (D, ,, Dy, ,, D, ,; 3¢, 3¢, 8c), (D, ,, Dyv,,,; (n + 2)c,
(n + 2)c/(n + 1)), (Dyyy,; ¢), (Dyy;c), (Dyy,;¢), (Dg;c) according as M = R,
R X S8"(n = 2), SU(3)/SO(3), SU(6)/Sp(3), SU(3), E./F, respectively.

§ 4. Complete inverses of parallel submanifolds of type (c)

A complex space form M'(c), ¢ < 0, is the complex hyperbolic space
CH'(c) of constant holomorphic sectional curvature c. We recall funda-
mental properties for CH"(c). Let F be a hermitian form on the complex
vector space C™*! defined by

F(z, w) = —2W, + 2.}-1 2,W;

for z = (z;), w = (w;) € C"*'. It induces a non-degenerate symmetric bilinear
form <z, wd, = Re F(z,w) on C'*'. We also denote by ( ), the flat
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pseudo-riemannian metric on C"*' of signature (2, 2r) induced from { >,
and by F™*! the flat pseudo-riemannian manifold (C"*!, ( >;). (We denote
by C’*! the flat riemannian manifold (C™*!, { );).) Let H**(c/4) be a
real hypersurface in F™*' defined by H*(c/4) = {ze F™*!; F(z, 2) = 4/c}.
The hypersurface H**'(c/4), with the metric induced from { ), is a
pseudo-riemannian manifold of signature (1,2r). Let CH" be the base
manifold of the principal S'-bundle H?*"*!(c/4) with the action: z — e*z.
Identify tangent spaces T,(H**'(c/4)), ze H**'(c/4), with spaces {we F™*';
{w, z2)r = 0} and subspaces H,(H**'(c/4)) C T,(H**'(c/4)) with subspaces
{we F'*'; {w, @)y = {w, iz)y = 0}. The restriction of { ), into H,(H* *!(c/4))
is positive definite and the restriction =, |H,(H* *!(c/4)) is a linear isomo-
rphism onto T, (CH") where = denotes the projection of H* *!(c/4) onto
CH'’. Since the complex structure w — iw, we H,(H**'(c/4)), and the rest-
riction { >z|H,(H"*'(c/4)) are compatible with the S'-action, the linear
isomorphism induces an almost complex structure J and a riemannian
metric ( > on CH" such that

1, (X)) = J(1, X), (meX, 7, Y) =(X, YDy

for X, Ye H,(H*”*(c/4)). Then we can see that CH" is a Kéhlerian mani-
fold of constant holomorphic sectional curvature c. We denote by CH(c)
the Kihlerian manifold.

From now on notations E™*', { >z N¥*(c/4), n: N**'(c/4) — M'(c)
denote F'*', { >p, H"*'(c/4), m: H"*'(c/4) > CH™(c), or C™', { D>
S*+Y(c/4), m: S¥*!(c/4) — CP"(c) according as ¢ <0 or c¢ > 0 respectively.
The inclusion ¢: N¥*!(¢c/4) — E™*' is totally umbilical, i.e.,

(4.1) 0 (X, Y) = —(c/H{X, V)52

for X, Ye T,(N**'(c/4)) and the mean curvature vector field 7,(2) = —(c/4)-z,
ze N*+!(c/4), is parallel.

Let N and B be pseudo-riemannian manifolds. A submersion z: N —
B is said to be pseudo-riemannian if, for p € N, the restriction of the metric
into the vertical space V,(IN) is non-degenerate and the restriction of z,
into the orthogonal complement H,(INV) is an isometry onto T..,(B). Here
V(N) = U,en Vo(N) (resp. H(N) = U ,cy H,(N)) is called the vertical (resp.
the horizontal) subbundle of T'(IN). For a vector field X of N, its V(IV)-
component and H(N)-component will be denoted by 7"X and #X respecti-
vely. If v X = X (resp. #X = X), X is said to be vertical (resp. horizontal).
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If X is horizontal and projectable to a vector field X, of B, it is called
the horizontal lift of X, and denoted by X = h.¢4. X,.. If N, B are rieman-
nian manifolds, a pseudo-riemannian submersion is riemannian in the sense
of O’Neill [14]. He defined the fundamental tensors A, T for a rieman-
nian submersion. We can also define them for a pseudo-riemannian sub-
mersion in the same way as for a riemannian submersion. (See O’Neill
[14] for the definition of A, T.) The submersion z: N**(c/4) — M'(c) is
pseudo-riemannian with horizontal subspaces

H,(N**Yc/4)) = {w e T(N*"*'(c/4)); <w, 2z = {w, 12z = O}.

The Levi-Civita connections of N?'*!(c/4), M’(c) are denoted by Y,
V respectively. Let v be a normal vector field defined by v, = (v/[c|/2)z,
ze N**!(c/4). Then we have {v,, v,>)5 = —1, 1 according as ¢ <0, ¢ > 0.
Since each fibre of 7 is a geodesic in N**!(c/4), the fundamental tensor
T equals zero. Then we have the following identities:

4.2) VX =x#"3X, ViV =A,V+vTiV, VY= ViY+ A,Y
for horizontal vector fields X, Y and a vertical vector field V, and
(4.3) HVIX = Ay V, AHVYY = hi. VY,

for X =ht. X, Y= he.Y,. The fundamental tensor A for =z is given by

(4.4) {

Ay [T WX, Y if ¢ <0,
* —{ (WX, iYDsiv  ife>0.

(See O’Neill [14] for the proof of (4.2) ~ (4.4).)

Let M’ be an r-dimensional totally real submanifold of M"(c) and put
M = a-(M ") C N**'(c/4), which is called the complete inverse of M".
Set H, (M) T.(M) n HZ(N r+i(c/4)) for z e M. Then we have the orthogo-
nal decomposition T,(M) = V,(N**(c/4)) ® H(M) for the metric on M
induced from { ). Hence M has signature (1, r), (0, r + 1) according as
¢ <0, ¢ > 0 respectively, and =: M — M is a pseudo-riemannian submer-

sion with horizontal subspaces H,(M), ze M. The total reality of M im-
plies that

(4.5) GH(M), H(M)y 5 = {0} .

Let V, 7 be the Levi-Civita connections of M, M and 6, ¢ the second

https://doi.org/10.1017/50027763000020365 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020365

98 HIROO NAITOH

fundamental forms of M — N**'(c/4), M — M'(c) respectively. Then, by
(4.2) ~ (4.5), we have the following identities:

VoY =he. VY, 6X,Y)=htoX,,VY,),
(4.6) Vv = vV, X, iv) = (V]c|/2iX,
Vo X="V,v=0, 6(@,iv)=0

for vector fields X, Y of M which are horizontal lifts of vector fields X
Y, of M respectively (Lemma 1.1, [12]).

A submanifold N C R™ is said to be substantial if N is not contained
in any affine hyperplane of R™.

A pseudo-riemannian manifold is called complete if the Levi-Civita
connection is complete. A pseudo-riemannian manifold N is said to be a
pseudo-riemannian symmetric space if, for each point p € N, the geodesic
symmetry s, at p can be extended to a global isometry of N. A pseudo-
riemannian symmetric space is complete (cf. [7]).

ProposIiTiON 4.1. Let M™ be an r-dimensional totally real submanifold
of M'(c) and M'* the complete inverse of M". Then,

(1) M is minimal in M'(c) if and only if M is minimal in N**1(c/4),

(2) VM), H(M) are parallel subbundles of T(M),

(8) M is parallel in M7(c) if and only if M is parallel in N**(c/4),

(4) M is substantial in E™*' = R***,

Assume that M is parallel in M'(c) if ¢ < 0. Then,

(5) M is complete if and only if M is complete.

Proof. If ¢ > 0, our claims are results of Lemma 1.1, [12]. Assume
that ¢ < 0. Claims (1), (2), (3) are proved in the same way as in the case
¢ > 0. We show claims (4), (5).

(4) Assume that M is contained in some real hyperplane of F7!.
Then there exists a complex linear hyperspace V” of F’*' which contains
M (See the proof of Lemma 1.1, (3), [12]). Since M is totally real in F™*,
we have T.(M) N iT(M) = {0} for ze M. Identify T,(V) with V. Then
the complex linear subspace TZ(M )@ iT,(M ) is contained in V. This is
a contradiction since dimC{Tz(M) @ iTz(M)} =r+ 1. Hence M is sub-
stantial in F7*',

(5) Since H(J) is a parallel subbundle of T'(J), there exists a totally
geodesic maximal integral submanifold H" of H(M). Then H’ is rieman-
nian and =: H” — M" is an isometric immersion.
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If M is complete, so is H" by the maximality. Thus M" is complete.
Conversely, assume that M" is complete. Let { ) be a riemannian met-
ric on M constructed from the pseudo-riemannian metric { ), as follows:
(X+ V, Y4+ W) =<X, Y)r — KV, WY, for X, Ye H(M), V, We V().
Then =: (M, { )) — M is a riemannian submersion with the same hori-
zontal subbundle H(M ) as that of the pseudo-riemannian submersion z:
(M, { >r)— M. Note that (M, ¢ %) is complete by the compactness of
fibres. Let 7 be the Levi-Civita connection of (M, { )). If Xis a hori-
zontal vector field for n:(M, ¢ »M—M, so is 14 xX ([14]). This implies
that the maximal integral submanifold H" is totally geodesic in (M, « W
Hence H” is complete by the maximality. Now define ¢: S' X H™ — M
by ¢(e’, z) = e’z for e’ e S',ze H. Then ¢ is a covering map. In fact,
let { ) be a riemannian metric on S* such that {ie?, ie’)s5, = —4/c for
any 6. Then ¢ is isometric immersion of the complete riemannian mani-
fold (S, < D>s) X (H",{ »p) into (M, { %). Thus ¢ is a covering map.
Let (H", {”>») be the universal riemannian covering of (H", { ;). Since
(H", { >r) is a complete riemannian locally symmetric space, (H", T
is a riemannian symmetric space. Thus (S!, —( Ys) X (H", (" >;) is a
pseudo-riemannian symmetric space. This implies that the space is com-
plete. Hence (M, { >p)is complete through the pseudo-riemannian cover-
ing (%, =< D) X (H', {7 ) = (S, = Ds) X H, { e) = VL do).

q.e.d.

Let M be a complete parallel submanifold of a riemannian symmetric
space. Then M is a complete riemannian locally symmetric space and
thus the universal riemannian covering space of M is a simply connected
riemannian symmetric space.

ProposiTiON 4.2. Let MT™ be an r-dimensional complete totally real
parallel submanifold of M'(c). Then irreducible factors of the universal
covering space of M™ are isometric to some of the following riemannian
symmelric spaces:

SO(1, k)[SO(), SOk + 1)/SOk) (k> 2), SU(9)/SO), SU(),
SU@20)[Sp(é) (¢ = 3), EF,.

Proof. Let N be a riemannian symmetric space. Fix a point pe N
and denote by S*T,(IN)) the vector space of symmetric trilinear forms on
T,(N). Identify elements of S*T (IN)) with T,(IN)-valued bilinear forms
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on T,(N) through the metric { ). For e S*(T,(N)), Xe T,(N), define a
symmetric endomorphism z(X) of T,(IN) by z(X)Y = (X, Y) for Ye T,(N).
Let R?, f¥ be the curvature tensor, the holonomy algebra of N respectively.
Put A

My = {re S(T,(N)); ¥ = = 0}
and, for d e R,

dY, 2)X — (X, Z)Y) = R¥X, Y)Z — [(X), T(Y)]Z}

My(d) = My
»(@) {’e Y for X, Y, Ze Ty(N)

Assume that N is irreducible. Then dim 4, = 1 if N is one of the fol-
lowing spaces and their non-compact duals, and dim .#, = 0 otherwise:

4.7 SU(0)/S0(4), SU(¢), SU20)/Sp(8) (¢ = 3), EF,

(Naitoh [11], Lemma 4.2).

Let M be the universal riemannian covering space of M and N an
irreducible factor of M. Denote by & the second fundamental form of the
isometric immersion M — M'(c). Define an element gy S¥T,(N)) by

<6N(X: Y)’ Z> = <J6(X’ Y)’ Z>

for X, Y, Ze T,(N). Then there exists a real number s such that .#y(s)
5 Gy (Naitoh [11], Theorem 6.4, (A), (2)). If N is none of the spaces in
(4.7) and their non-compact duals, .#y(s) = {0}, i.e., 6y = O since dim .4y
= 0. Hence we have

RY(X, Y)Z = sKY, Z)X — (X, Z)Y)

for X, Y, Ze T,(N). This implies that N has constant sectional curva-
ture. Since N is irreducible, it is not flat, and thus is one of SO(1, k)/
SO(k), SO(k + 1)/]SO(k) (k = 2).

Let N* be one of the spaces in (4.7) and assume that N is the non-
compact dual of N*. Identify the tangent space 7,(IN) with a tangent
space T,{(IN*) by the duality. Then the curvature tensor R at p* is
identified with —R" at p, and thus the representation (fy., T,«(IN¥)) is
compatible with (fy, T,(N)) (See Helgason [6] for the duality). Since N*
is of compact type, there exists a number d > 0 such that #.(d) = {2 + 0}
(Naitoh [11], Proposition 4.4). Identify .# . with .#,. Since dim 4, =1,
there exists @« ¢ R such that 6y = ad. Then we have
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s(Y, ZyX — (X, Z)Y) = R"(X, Y)Z — [s5(X), 6.,(Y)]Z
= R¥X, Y)Z — «'[A(X), A(Y)]Z
and
d(Y,ZyX — (X, Z2)Y) = —RY(X, Y)Z — [A(X), AY)1Z
for X, Y, Ze T,(N), and thus
RY(X, Y)Z = (s — a’d)/(«" + DY, Z)X — (X, Z)Y) .

This implies that N has constant sectional curvature, which is a contra-

diction.
Hence N is one of SO(1, k)/SO(k), SOk + 1)/SO(k) (k = 2), and the
spaces in (4.7). q.e.d.

§5. Jordan triple systems and symmetric graded Lie algebras

In this section we recall Jordan triple systems and symmetric graded
Lie algebras, and define “orthogonal” Jordan triple systems and “‘ortho-
gonal” symmetric graded Lie algebras. These notions play important roles
for the classification of totally real parallel submanifolds of M'(c), ¢ + 0,
of type (c). The classification will be attained in the second series of this
paper.

Let V be a finite dimensional real vector space and {,, } a V-valued
trilinear form on V. Define endomorphisms L(X, Y), X, Ye V, by L(X, Y)Z
={X,Y,Z} for Ze V. An object (V,{ }) is called a Jordan iriple system
(abbreviated as JTS) if the following two conditions are satisfied:

(T 1) LX, Y)Z = L(Z, V)X,
WT 2) [LW, Z), LX, V)] = L(ILW, 2)X, Y) — L(X, L(Z, W)Y)

for W, Z, X, Ye V. The trace form B of a JTS(V,{ 1}) is a bilinear form
on V defined by f(X, Y) = Tr (X, Y) for X, Ye V. A JTS is called non-
degenerate if the trace form is non-degenerate. Then the trace form is
always symmetric. It is said that two JTS’s (V,{ }), (V/,{ V) are equi-
valent to each other if there exists a linear isomorphism g of V onto V’
such that g{X, Y, Z} = {g(X), g(Y), g(Z)Y for X, Y, Ze V.

For a JTS (V,{ }) we denote by &(V,{ 1) the set of non-degenerate
symmetric bilinear forms ¢ , > on V such that L(X, Y)' = L(Y, X) for X,
Ye V, where L(X, Y)' denotes the transpose endomorphism of L(X, Y) for
{ . It is known that the trace form B belongs to #(V,{ }) for a non-
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degenerate JTS (V, { }). Assume that #(V,{ }) #¢. An object (V,{ };
{ ) is called an orthogonal Jordan triple system (abbreviated as OJTS)
for aJTS(V,{ }) and a form { »eLA(V,{ }). Itis said that two OJTS’s
WV, { 4 D), (V,{ V; < )) are equivalent to each other if there exists
a linear isomorphism g of V onto V' such that g{X, Y, Z} = {g(X), g(Y),
g2)Y, (g(X), 8(Y))y =<(X, Y) for X, Ye V.

A symmetric Lie algebra (g, p) (abbreviated as SLA (g, p)) is a pair of
a finite dimensional real Lie algebra g and an involutive automorphism
o of g such that p +id,. Let

t={Xeg;p(X) =X}, p={Xeg;poX)=—X}.

An SLA (g, p) is called effective if the representation (ad (f)|,, p) of I is
faithful.

For an SLA (g, p) we denote by (g, p) the set of non-degenerate sym-
metric bilinear forms { ), on p such that ad (T")|,, T c¥, are skew sym-
metric for ¢ >, Assume that (g, p) = ¢. An object (g, p,  >,) is called
an orthogonal symmetric Lie algebra (abbreviated as OSLA) for an SLA
(8, p) and a form { ), e (g, o).

A complex symmetric Lie algebra (g, o, J,) (abbreviated as CSLA (g, p,
J,)) is a pair of an SLA (g, p) and an almost complex structure <J, on p
such that ad (7)|,odJ, = J,oad (T)|, for Tef. For a CSLA (g, p, J,) we
denote by (g, p, J,) the set of forms { ), e (g, p) such that {(J X, J,Y>,
=X, Y), for X, Yep. Assume that (g, p,J,) #+ ¢. An object (g, o, J,,
{ >,) is called a Hermitian symmetric Lie algebra (abbreviated as HSLA)
for a CSLA (g, p, J,) and a form { },e (g, o, J,).

An SLA (g, p) is called a symmetric graded Lie algebra (abbreviated
as SGLA) if the following four conditions are satisfied:

(SGL1) g=g.,+ g + g, is a graded Lie algebra, i.e., [g,, g.] C g,..
for u, ve Z, where g, = {0} for 2+ 0, +1.

(SGL2) p(g,) =g-, for p =0, =1

(SGL 3) g, acts faithfully on g_, + {0}.

(SGL 4) o == [9—1’ Ql]-
An SGLA (g = > g,, p) is called semi-simple if g is semi-simple. For a
semi-simple SGLA the condition (SGL4) is automatically attained from
other conditions. It is said that two SGLA’s (g = > g, p), (8’ = 2. g% 0)
are equivalent to each other if there exists a Lie algebra isomorphism r
of g onto ¢’ such that z(g,) =g, for p =0, £1 and rop = p’oz. Hereris
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called a symmetric graded Lie algebra isomorphism, abbreviated as SGLA-
isomorphism.

Let (g = >.g, p) be an SGLA. Then an OSLA (g, p, { ),) (resp. a
HSLA (g, p, J,, { ),)) is called an orthogonal symmetric graded Lie algebra,
abbreviated as OSGLA (resp. a Hermitian symmetric graded Lie algebra,
abbreviated as HSGLA). It is said that two OSGLA’s (g = 2> g, 0, D),
@ = Xa5 05 { ) (resp. HSGLA’S (@ = g0 0 {3 (& = 100 6s
Jy, { >,)) are equivalent to each other if there exists an SGLA-isomor-
phism 7z of (g = > g, p) onto (g’ = > 9., p’) such that {(«(X), «(Y)), = <X,
Yy, for X, Yep (resp. {z(X), «(Y)), =<(X,Y), for X, Yep and zodJ, =
Jy o 7).

We refer to Satake [16] for non-degenerate JTS’s and semi-simple
SGLA’s.

Now we study a correspondence between OJTS’s and OSGLA’s. Let
V,{ },{ >)bean OJTS. Put L ={L(X,Y); X, Ye V}z,a=V+L+V,
g, =V+0+0, gg=0+L+0, g =0+ 0+ V. Define a bracket pro-
duct [, ] on g by

(X, F, Y), (Z, G, W)]
(6.1 = (F(Z) — G(X), [F, G] — (1/2L(X, W)
+ (1/2L(Z, Y), G(Y) — F{(W))

for X, Y, Z, We V, F, GeL, and a linear isomorphism p of g by
(5.2) o X, F,Y)= (Y, -F', X)
for X, YeV, FelL.

Lemma 5.1. The object (g = > g, p) s an SGLA and is independent
of the choice of { >eP(V,{ }). Moreover f, p are given by

E={X LY, 2) - LZ Y),X); X, Y, Ze V],
P={X LY, 2)+ LZY), —X); X, Y, Ze V}g .

Proof. We show the Jacobi identity for the bracket product [, 1.

Note that

(5.3) LX, Y) = (Y, X),

(5.4) LX, Y)Z = LX, 2)Y,

(5.5) [F, L(X, Y)] = L(F(X), Y) — L(X, F(Y))
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for X, Ye V, FeL. In fact, (5.4) is attained by (5.3), (JT 1), and (5.5) is
attained by (5.3), (JT 2). Then the Jacobi identity is proved straightfor-
wardly by (5.3) ~ (5.5).

The identity (5.3) also implies that p is an involutive automorphism

of g. The other claims are obvious. qg.e.d.

We call this (g = g, p) the SGLA associated with a JTS(V,{ })
such that #(V,{ }) # ¢.

Let (V,{ }) be a JTS and (g = >, g,, o) the SGLA associated with
(V,{ D. For a form { »eS(V,{ }) define a symmetric bilinear form
< Dby

(X, F, —X),(Y,G, —Y), =<X, Y) + 2. (G(Z), W;)
=X, Y) + 205, (F(Z), W}y

for (X, F, —X), (Y, G, —Y)eyp, where 2F = >t ,(I(Z, W) + L(W,, Z))), 2G
= 2.9-1 (UZ], W) + LW}, Z)).

Lemwma 5.2. The form { ), is a well-defined form in (g, p).
Proof. We show that X%, (G(Z), W) = 25, KF(Z)), W}y. Note that

(UX, Y)Z, W) = LY, X)W, Z) = (LW, X)Y, Z)
= (LX, W)Z, Y) = (L(Z W)X, Y

for X, Y, Z, We V by (56.3), (JT1). Then we have

21 XG(Z), W = (12) 2., KIZj, W)Z, Wiy + KW}, Z)Z,, W)
== (1/2) ZH (<L(Zi3 Wi)ZJ," WJI> + <L(Zi5 Wl)W;’ ZJ,>)
= (1/2) 20 KUZ;, W)Zi, Wiy + LW, Z)Z], W)
= 2., <XF(Z), W} .

This implies that ( ), is a well-defined symmetric bilinear form on p.

Assume that (X, F, —X),(Y,G, —Y)>,=0 for (Y,G, —Y)ep. Put
G =0. Then we have (X, Y) =0 for Ye V, and thus X = 0 by the non-
degeneracy of ( ». Moreover, putting 2G = L(Z, W) + L(W, Z), we have
(F(Z), Wy =0 for Z, We V, and thus F = 0. Hence the form ¢ ), is
non-degenerate.

Finally we show that ad(T)|,, Tef, are skew symmetric for { ),
Put T=(0,K,0¢cf, 2F=LX,Y) + L(Y,X), 2F' = L(X", YY) + L(Y’, X")
e . Then we have
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O, [K, F],0), 0, F", 0)), = {[K, FI(X'), Y")
= —(F(X"), K(Y')) + <K(X"), F(Y')))
= —$ (0, L(X", K(Y")) + L(K(Y’), X"), 0), (0, F, 0)),
—3 (0, L(K(X"), Y) + L(Y’, K(X")), 0), (0, F, 0)),
= —4 0, —L(X’, K«(Y")) + L(K(Y"), X') + L(K(X"), Y')
—L(Y’, KXX")), 0), (0, F, 0)»,
= —30, [K, L(X", Y] + [K, L(Y’, X")], 0), (0, F, 0)),
= — {0, [K, F'],0), (0, F, 0)),

by (5.5). Hence we have

X K, X), (Y, F, =)}, (Y, F’, =Y')),
= (K(Y) — F(X), [K, F] + (112)((X, Y) + L(Y, X)),
—K(Y) + F(X)), (Y, F', =Y")),
= (K(Y) — F(X), Y') + (F'(X), Y) + {0, [K, F], 0), (0, F’, 0)),
= —<K(Y'), Y) — (F(X), Y') — <F'(X), Y))
— <, [K, F"], 0), (O, F, 0)),
= —&X, K, X), (Y, F', =Y')), (Y, F, = Y)),

for (X, K, X)ef, (Y,F, =-Y), (Y, F’,—-Y)ep. g.e.d.

We call this (g = > g, p, { »,) the OSGLA associated with an OJTS
(V,{ 1} < »), and denote the morphism by ¢:(V,{ },<{ »)—@ =2 4aun

2, D)
Let (g = > g, p) be an SGLA. Put V=g_, and define a V-valued
trilinear form { } on V by

(X, Y, 2} = —2[[X, o(Y)], Z]
for X, Y, Ze V. Then (V,{ }) is a JTS. In fact, we have

LX, Y)Z = —2[[X, o(Y)], Z] = —2[X, [p(Y), Z]]
= —2[[Z, p(Y)], X] = L(Z, )X

for X, Y, Ze V. This implies (JT 1). Note that

[o([X, o(Y)D), Z] = o([X, o(Y)], o(Z2)]) = —p([[o(Z), X1, o(Y)])
= —[Z, p(X)], Y] = —[[Y, p(X)], Z]

for X, Y,Ze V, and thus p([X, o(Y)]) = —[Y, p(X)] by (SGL 3). Then we
have
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[L(X, Y), L(Z, W)] = 4[ad ([X, o(Y)D |y, ad ([Z, o(W)])|+]
= 4 ad ([[X, p(Y)], [Z, o(W)ID|»

= 4 {ad ([[[X, o(Y)], Z], o(W)DI» + ad ([Z, [[X, o(Y)], o(W)ID) |}
= LIL(X, Y)Z, W) — (Z, L(Y, X)W)

for X, Y, Z, We V. This implies (JT 2).

This (V,{ }) is called the JTS associated with an SGLA (g = ) g,, p)-

Let (g = > g, p) be an SGLA and (V,{ }) the JTS associated with
the SGLA. For a form { ), e ¥(g, p) define a symmetric bilinear form
{ >on Vby

(X, Y) =X — po(X), Y — p(Y)),
for X, Ye V.

Lemma 5.3. Let ( ) be a symmetric bilinear form on V defined as
above from { »,e #(g, p). Then, { >eFL(V,{ ).

Proof. Note that

t={X+ o(X), [Y, p(2)] — [Z, o(Y)]; X, Y, ZE V}z ,
p={X— o(X), [Y, 0(D)] + [Z, o(Y)]; X, Y, Ze V}g

by (SGL4). Define a trilinear form « on V by

X, Y, Z) = {[X, o(Y)] + [¥, o(X)], Z — p(Z)),
for X, Y, Ze V. Then we have
(5.6) X, Y, Z)=a(Y, X, Z) .

Note that [X, o(Y)] + [Y, o(X)] = —[X + p(X), Y — p(Y)] for X, Ye V.
Since ad (T)|,, Tet, are skew symmetric for { ), we have

(56.7) X, Y, Z)= —a(X,Z,Y)

and moreover

(5.8) aX,Y,Z) =aZ,Y, X)

by (5.6), (5.7). Hence we have a = 0 by (5.6) ~ (5.8). This implies that
(5.9 P NgupN @D, =1{0}.

Assume that (X, Y) =0 for Ye V. Then we have (X — p(X),p N
(6.,®a)), = {0} by the definition of ¢( 3, and thus (X — p(X), p), = {0}
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by (5.9). Since { ), is non-degenerate, we have X — p(X) = 0 and thus
X = 0. This implies that { > is non-degenerate.
Finally we show that L(X, Y)' = L(Y, X) for X, Ye V. Note that

[([X, o(1)] — [Y, o(X)]), Z — o(Z)]
= [([X, o(Y)] — [Y, o(X)]), Z] — o([(IX, po(Y)] — [, o(X)]), Z])

for X, Y, Ze V. Then we have

QUX, Y) — L(Y, X)}Z, W)
= (—2KI(X, p(Y)] — [Y, o(XD), Z — p(2)], W — o(W)),
= HZ — p(Z), [(IX, p(Y)] — [Y, o(X)]), W — p(W)]),
= —<{Z,{LX,Y) - (Y, X)}W)
for X, Y, Z, We V. This implies that I(X,Y) — (Y, X), X, Ye V, are
skew symmetric for ( >. Note that

[Z + o(Z), [X, o(Y)] + [¥, o(X)]]
= [Z, [X, o(Y)] + [Y, o(XD]] — o([Z, [X, o(Y)] + [Y, o(XD]D)

for X, Y, Ze V. Then we have

QUX, Y) + L(Y, X)}Z, W)
= 2{([Z + o(Z), [X, p(Y)] + Y, p(X)1], W — o(W)),
= (=2KIX, o(V)] + 1Y, o(X)], [Z + p(Z), W — o(W)]),
= 2{[X, o(Y)] + [Y, o(X)], [Z, o(W)] + [W, o(D)]),
for X, Y, Z, We V. This implies that L(X, Y) + L(Y, X), X, Ye V, are
symmetric for { ». Hence we have L(X, Y)' = I(Y, X) for X, Ye V.
q.e.d.
We call this (V,{ },{ >) the OJTS associated with an OSGLA (g =
228, 0 < »,) and denote the morphism by ¢': (g = >, g, 0 { >, —(V,
{ LM
THEOREM b.4. (1) Two morphisms ¢, ¢* are invertible to each other.
(2) Two OJTS’s are equivalent to each other if and only if OSGLA’s
associated with them are equivalent to each other.
) Let(V,{ },{ > bean OJTS and (g = >3, 0, { ), the OSGLA
associated with (V, { 1, { >). Denote by j the trace form of (V,{ 1), and
by B,, B, the Killing forms of g, g, respectively. Then,

B((X, F, Y),(Z, G, W)) = B,(F, G) + 2Tr FG — (X, W) + 8(Y, 2))
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for (X, F,Y), (Z, G, Wyeg. Moreover,

for (X, F, —X), (Y,G, —Y)ep, where 2F = >, L(U,, V) + L(V,, U)).

4) Let(V,{ },{ >)bean OJTS and (g = > g, p, ¢ D, the OSGLA
associated with (V,{ },< ). Then the JTS (V,{ }) is non-degenerate
if and only if the SLA (g, p) is semi-simple.

(5) Assume that a JTS (V,{ }) is non-degenerate. Then the OSGLA
associated with (V,{ 1}, 2B) is (g = 22 @y 05 B,loxy)-

Proof. (1) Let (V,{ },<{ »)be an OJTS and (g = > g, p, { ), the
OSGLA associated with (V,{ }, { »). Moreover let (V/,{ V}, < )) be
the OJTS associated with (g = > g, o, ( »). Then we show that two
OJTS’s (V, { 1}, < M), (V',{ ¥,< )') are equivalent to each other. Iden-
tify V with V' by VaX—>(X,0,0)eg_, = V. Then we have

X, Y, Zy = —2[IX, o(V)], Z] = L(X, V)Z = (X, Y, Z}
for X, Y, Ze V, and
X, Y)Y = (X — p(X), Y — o(Y)), = (X, ¥

for X, Ye V. Hence OJTS’s (V,{ }, ¢ >, (V/,{ V¥, )’) are equivalent
to each other.

Conversely, let (g = > g, 0, { ») be an OSGLA and (V,{ },< ))
the OJTS associated with (g = > g, o, { >,). Moreover let (3’ = > g}, 0/,
{ >,) be the OSGLA associated with (V,{ },{ »). Then we show that
two OSGLA’s (g = 258w p, < Do) (@ = 2260 0/, < D,) are equivalent to
each other. Note that g} = {(0, ad (T")|g_,, 0); T'e g} by (SGL 4) for (g =
2.8, p)- Define a linear mapping z of g onto ¢’ by «(X + T + p(Y)) = (X,
ad(T)|g.,, Y) for X, Yeg_,, Teg, Then ¢ is injective by (SGL 3) for
(@ = 29w p). Since L(X, Y) = —2ad ([X, o(Y)]|,_, and L(X, Y)' = I(Y, X)
for X, Ye V=g_,, we have

(5.10) (ad (D)),_)" = —ad (o(T)),_,
for Tet by (SGL4) for (g = > g, p). Then we have
(X + T+ o(Y), Z+ S+ p(W)]) = {([X, S] + [T, Z])
+ ([T, ST + [X, o(W)] + [p(Y), Z]) + ([o(Y), ST + [T, o(W)D}
= ([X, S] + [T, Z], ad (IT, SD|,_, + ad ([X, o(W)D),_,
+ ad ([o(Y), ZD),_,, [Y, o(S)] + [o(T), W])
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= (2d (1)],_(2) — ad (S)|,_,(X), [ad (T)],_,, ad (S)],_]]

— (2(LX, W) — L(Z, Y)), (ad (S)|,_)'Y — (ad (T)],_)'W)
= [(X, ad (T),_,, Y), (Z, ad (S)],_, W)]
=[t(X + T+ oY), «(Z + S + o(W))]

by (5.1), (5.10), and thus r is a Lie algebra homomorphism. Since (g,)
=g, for p =0, £1, ¢ is an SGLA-isomorphism. Moreover we have

(co )X + T+ o(Y)) = o(Y + o(T) + p(X)) = (Y, ad (o(T))],_,, X)

— (¥, —@d (D)|,_), X) = ¢(X, ad (T)],_, V) = ¢/ o (X + T + p(Y¥)
for X, Yeg_,, Tet by (56.2), (5.10), and thus rop = p'oz. Let T, SepNg,
and put T = >, [Y,, o(Z)] + [Z,, o(Y})]. Since ad (U)|,, Uet, are skew sym-
metric for { ), we have

(T, 8y, = 25:<[Ys p(Z)] + [Z, (Y1), S),
= =22 LY: + oY), Z, — o(Z)), S),
= Zz <Zi - p(Zi)y [Yz + P(Yi), S]>v
= —20:4Z; — p(Z), [S, Y] — o([S, Y.},
= =25 {Z; ad (S)|,_(Y)) .

Note that ad (T)|,_, = (1/2) >, L(—Y,, Z) + I(Z,, —Y;). Then we have

GX 4+ T — oX), «(Y + 8 — oY)y
— (X, ad (D)),_, —X), (Y, ad (S)],_, — V),
— (X, Y) — 21 <ad (8)],_(Y), Z> = (X, Y) + (T, S,
— (X4 T— po(X), Y+ S — po(Y)),

for X, Yeg,, T, SepNng,. Hence (=36, 0 < D) @ =280 ¢
{ >,) are equivalent to each other.

@ Let (V,{ }, < D, (V,{ ¥,< ) be OJTS’s and (3 = 259, p
< @ =200l 0, { »y) the OSGLA’s associated with (V, { }, ( )),
V', { V¥, ) respectively. Assume that (V,{ },< ), (V,{ VY, )
are equivalent to each other, i.e., there exists a linear isomorphism g of
V onto V' such that {g(X), g(Y), g(2)} = g{X, Y, Z}, {g(X), g(Y))" = (X,
Y) for X, Y, Ze¢ V. Note that

G1) L(g(X), g(Y) = goL(X, Y)og™', (goFog™) =goFtog™!

for X, Ye V, Fe L. Define a linear isomorphism z, of g onto ¢’ by (X,
F,Y)=(g(X),goFog, g(Y)) for (X, F,Y)eg. Then we have
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(X, F, Y), (Z, G, W)]) = (8(F(2) — G(X)), g ([F, G] — (1/2L(X, W)
+ (12L(Z, Y))- g7, 8(G(Y) — F(W)))
=((goFog)g(Z) — (g-Gog ' )Ng(X)), [gcFog=',g0oGog']
— (1/2)L'(g(X), g(W)) + (1/2)L'(g(2), g(Y)), (g G~ g ")(g(Y))
— (goFog™)(g(W)))
= [(g(X), g Fog, g(Y)),(g(2),8-G-g", g(W))]
= [t (X, F, Y), t(Z, G, W)]

for (X, F,Y),(Z G, W)eg, and thus r, is a Lie algebra isomorphism.
Since 7,(g,) =g, for £ =0, +1, ¢, is an SGLA-isomorphism. Moreover
we have

(Tg°P)(X, F’ Y) = Tg(Y’ _F!’ X) = (g(Y)’ _goFlog-l, g(X))
= (g(Y)) _(goFOg—l)ty g(X)) = P/°Tg(X, F’ Y)
for (X, F, Y)eg. Then it is straightforwardly proved by (5.11) that ¢, is
an OSGLA-isomorphism of g onto g’. Note that 2g0Gog~! = >, L(g(U)),
g(V) + L(g(V), g(U)) for 2G = 35, (U, V)) + L(V,, U) e g, N p by (5.11).
Then we have
<Tg(X, F’ _X)’ Tg(Y9 G’ - Y)>p'
= {(&(X), goFog, —g(X)), (8(Y),8°Gog"', —8(Y))y

= (g(X), g(Y)) + 25:<g Fog~'(g(U)), g(V)))
= <X7 Y> -+ Zi <F(Ui)’ V1> = <(X’ F’ —X)9 (Y9 G: '_Y)>p

for (X, F, —X), (Y,G, —Y)ep. Hence OSGLA’s (g = >, g, 0, { Du, (@ =
228l 0, { D>y) are equivalent to each other.

Conversely, assume that OSGLA’s (g = 219, 0 ¢ D)), @ = 2.6L 0,
{ >,) are equivalent to each other, i.e., there exists an SGLA-isomorphism

v of (g =2.g, 0) onto (¢ =3 g, o) such that <{z(A), «(B)), = (4, B,
for A, Bep. Define a linear isomorphism g, of V=g_, onto V' =g/,
by g(X) = o(X) for Xe V=g_,. Then we have

{8.X), g(Y), 2(2)} = —2[[g(X), p'(g(Y))], 8(2)]
= —2[[«(X), «(o(Y))], 2(2)] = «(—2[[X, po(Y)], Z]) = g{X, Y, Z}

and

(8{X), g{Y)) = {o(X) — p'(e(X)), «(Y) — p'((Y))),
= (X — p(X)), o(Y — p(Y)))y = (X — p(X), Y — p(Y)), = <X, ¥
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for X, Y, Ze V. Hence OJTS’s (V,{ },< D), (V/,{ V, < ) are equi-
valent to each other.

(8) Note that Tr (X, Y) =Tr L(Y, X)) = Tr (Y, X) for X, Ye V.
Then the first identity is proved in the same way as in Koecher [8], II,
§4.

Now we show the second identity. Since (0, F,0) = >, [(U, 0, U),
(V,,0, —V))], we have

Bq((oy F: O)» (07 G’ O)) = _Zz Bg(( ‘/i’ 07 - Vi)’ [(Ui’ 09 Uz)’ (0’ G’ O)])
= 2. B((V, 0, = V), (GU), 0, —G(UY)) = 2 25, (G, V)

and thus

BB((X9 F, _X)a (Y, Ga - Y)) = Bg((o’ F, 0)7 (09 G’ 0)) + 2ﬁ(X’ Y)
= 2{20, B(GU)), V) + (X, Y)}

for (X, F, —X), (Y,G, —Y)ep.

(4) Assume that (V,{ }) is non-degenerate and that B,((X, F,Y),
(Z'G, W)) =0for (X, F, Y)eg. Putting F =0, X =0 (vesp. F =0, Y = 0),
we have B(Y, Z) = 0 for Ye V (resp. f(X, W) = 0 for Xe V) by (3). These
imply that Z= W = 0. Note that (0, L(4, B), 0) = —2[(A, 0, 0), (0, 0, B)]
for’A, Be V. Then we have

0 = B((0, G, 0), (0, L(4, B), 0)) = —2B,((0, G, 0), [(4, 0, 0), (0, 0, B)])
= 2B([(4, 0, 0), (0, G, 0)], (0, 0, B)) = —2B,((G(A), 0, 0), (0, 0, B))
= 28(G(A), B)

by (3). This implies that G = 0. Hence g is semi-simple.

Conversely, assume that (V,{ 1) is degenerate, i.e., there exists a
nonzero vector Ze V such that f(Z, Y) =0 for Ye V. Then we have
B,(Z,0,0), (X, F,Y))= —B(Z,Y) =0 for (X, F, Y)eg by (3). This implies
that g is not semi-simple.

The claim (5) is obvious by (3). q.e.d.

A finite dimensional algebra A over R is called a Jordan algebra
(abbreviated as JA) if the following two conditions are satisfied:

31y XY=YX,
J2) X (X'Y)=X(X*Y)

for X, Ye A. Define linear endomorphisms T, Xe A, of A by T,(Y) =
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X-Yfor YeA. Put V, = A and define a V,-valued trilinear form { },
on V, by

(5.12) (X, Y, 2}, = (X-Y)-Z+X(Y-Z)— Y-(X-Z)

for X, Y, Ze V,. Then the object (V,, { },) is a JTS (cf. Satake [16]).
This (V4 { },) is called the JTS coming from a JA A. If A has the unity
E, we can recover the Jordan product - by X- Y ={X, Y, E}, ={X, E, Y},
= {E, X, Y},. Denote by #(A) the set of non-degenerate symmetric bilin-
ear forms ( > on A such that T, Xe A, are symmetric for ( >. An
object (A, { ) is called an orthogonal Jordan algebra (abbreviated as
OJA) for a JA A and a form ( ) e #(A). Note that F(A) C L (V4 { 1)
In fact, let ( >eF(A). Since L (X,Y) = Ty.y + [Ty, Ty] by (6.12), we
have

LuX, V)Z, W) = (Tx.x(2), W) + Tx, T¥l(Z), W)
= (Z, Ty x(W)) + <Z, [Ty, T<I(W)) = {Z, LY, X)W)

for X, Y, Z, We A = V,, and thus L(X, Y)' = LY, X). This implies that
{ >eP(Vy{ 1) We call this (Vi { }4 ( D) the OJTS coming from
an OJA (A, { »). Moreover assume that A has the unity E. Then &(A)
=%V, { }o). In fact, let ¢ >eA(V,{ }). Since Ty = id, we have

T(2), W) = (Tx.5 + [Tx, TsN(2), W) = (LAX, E)Z, W)
= (Z, LAE, X)W) = {Z, T(W))

for X, Z, We A=V,

Now it is said that two OJA’s (4, { ), (A, { ) are equivalent to
each other if there exists an algebra isomorphism g of A onto A’ such
that (g(X),g(Y)Y' = (X, Y> for X, Ye A. If two OJA’s are equivalent
to each other, the OJTS’s coming from them are equivalent to each other.
But the converse is not necessarily true.

Let (V,,{ }4 < D) be the OJTS coming from an OJA (4, { ») with
unity E, and (g, = >, (@) 00 { D) the OSGLA associated with (V,,{ 1},
< ). (For simplicity, we call this (g3, = >, (81, o4 { >,) the OSGLA
coming from (A, { }).) Put J=(E,0,E)et, and J,, = ad (J)|p..

TaeOREM 5.5. (1) Let (A4, { D) be an OJA with unity E and (g, =
2.4 04 < Dy, the OSGLA coming from (A, { ). Then (8, = 3 (8.
00 Jop < Du)) s always an effective HSGLA such that L,>1id,.

(@) Let (A, { D), (A, { D) be OJA’s with unities E, E’, and (g, =
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Z (gA)ll’ KOA’ e]DA’ < >Pa)? (gA' = Z (gA')/l’ (011/’ J&‘A” < >DA') the HSGLA’S coming
from (A, { ), (A7, { ) respectively. Then (A, { D), (A7, { ') are equi-
valent to each other if and only if (g, = 2,@Dw 0 Jop < Dud)y @uw =
23084 ) pars o < D,,) are equivalent to each other.

Proof. (1) Note that Ty., are symmetric and [Ty, Ty] are skew sym-
metric in identities: L (X, Y) = Ty.y + [Ty, Tyl, X, Ye A. Then we have

(,. 13) (QA)() N pA = {(Oa TX~Y’ 0); X’ Ye A} = {(07 TX} 0); Xe A} )
> {(QA)O N fA = (0, [TX’ TY]) 0); X7 Ye A}

since A has the unity E. Now we have

JPA((X’ TY9 —X)) - [(E, O) E)’ (X, TY’ —X)]
= (=Ty(E), QI/2{LE, X) + L(X, E)}, Ty(E)) = (=Y, Ty, Y)

for (X, Ty, —X)ep, and thus (J,)° = —id,,. Since

[(Es O’ E)3 ()(a [TY, TZ]; X)]

= (= [Ty, TI(E), —(1/2{L(E, X) — L(X, E)}, [Ty, T2)(E))
=(0,0,0)=0,

J=(E, 0, E) is contained in the center of f, and thus ad (U)|p,od,, =
J,,cad (U)|p, for Uet,. Hence (g, = >, (@m0 S { D, is an HSGLA.

Since L(E, E) = id,, we have id, e L,. We show that (g, p,) is effec-
tive. Let (X, F, X) e f, and assume that [(X, F, X), (Y, G, —Y)] = 0 for (Y,
G, —Y)ep, Putting Y=0, G=id,, we have (X,0, —X) = 0 and thus
X =0. Moreover, putting G = 0, we have F(Y) =0 for Ye A = V, and
thus F = 0. Hence (g, p,) is effective.

(2) Assume that (A, { ), (47, { ') are equivalent to each other,
i.e., there exists an algebra isomorphism « of A onto A’ such that {a(X),
a(Y)y = (X, Y) for X, Ye A. Note that «(E) = E’. Define a linear iso-
morphism g, of V, onto V, by g.(X) = a(X) for Xe V, = A. Then (V,,
{ }s < D) is equivalent to (V,,{ 1}, { ') by g.. Hence, by Theorem
5.4, (2), (@.= 2] @w 04 { Dy0) 1s equivalent to (g, = 22 @u)i 045 € Dvar)
by z,,. Since 7, (E,0,E) = (E’,0, E’), we have

ooy = g, 0ad (B, 0, E))|,, = ad (B, 0, E))|,, 0 7e, = 07, -

Hence HSGLA’s (g, = 2] (QA);U Pa Iy < >m)’ v =22 (gA')w Pars o < Dpw)
are equivalent to each other.
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Conversely, assume that (94 = Z (QA)/n P me < >p4)’ (gA' = Z (gA’)/u
0us Jowr { Dpu) are equivalent to each other, i.e., there exists an SGLA-

isomorphism 7 of (g, p,) onto (g, p,) such that cod,, = dJ,, 07, (z(A4), z(B)),,.
= {4, B),, for 4, Bep,. Since r is a Lie algebra isomorphism, we have

ad (E', 0, E)) o], = road (E, 0, E))|,, = ad («(E, 0, E))oz|,, .
Note that z(t,) = f,, «(p,) = p,. Since (g, p,) is effective, we have
(514) T((E> O’ E)) = (El, O, E/) .

Now, by Theorem 5.4, (2), (V, { }., { ») is equivalent to (V,,{ }.,
{ >) by g. Then g(E) = E’ by (5.14). Define a linear isomorphism «
of A onto A’ by a(X) = g(X) for Xe A = V,. Then we have

«(X-Y) = ofX, Y, E}, = g{X, Y, E}, = {8.X), 8(Y), 8.(E)}.o
= {gX), 8(Y), E'}, = a(X)-a(Y)

for X, Ye A. Hence « is an algebra isomorphism. This implies that (A,
{ D), (A,  )) are equivalent to each other. q.e.d.

Remark 5.6. The proof for the effectivity of (g, p,) depends only on
the fact that L,>id,. Hence the OSGLA (g = > g.p, { »,) associated
with an OJTS(V,{ 1}, { ) is effective if L>id,.

Let (g = >, g, 0 { >, be the OSGLA associated with an OJTS (V,
{ L, < ). AssumethatLsid,. Putp = (0, —id, 0) € p and define an invo-
lutive automorphism @ of the complexification of g by # = exp ad (zv — 1p).
Then we have (X, F,Y) = (—X, F, —Y) for (X, F, Y)eg. Hence 4 leaves
g, I, p invariant. Set

tb=tNg ={0,F,0;FeL, F' + F =0}
m=1fnN@g,:Dg)={X0X); Xe V}%
Then f,, m are eigen spaces of eigen values 1, —1 of the effective SLA

(f, 6) respectively.
Let K = Ad, () = {exp ad ()|,}zen © GL (p) and set

K, = {ke K; k(p) = v}.

Then K, is a closed subgroup of K. Since (g, p) is effective by Remark
5.6, the Lie algebras of K, K, are isomorphic to f, f, respectively. Note
that K6-' = K and that the Lie algebra of K, = {ke K; 0k9-' = k} is iso-
morphic to ¥, by the effectivity of (g, p). Since
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kOk-' = exp ad (v — 1k(»)) = exp ad (zy/ —1p) = 6

for ke K,, we have K, C K,. Hence the pair(K, K,) is a symmetric pair.

Let K(v) be the K-orbit space of ». Then K(v) is diffeomorphic to
the homogeneous space K/K, The tangent space T,(K(v)) is identified
with the subspace [m, v] = {(X, 0, —X)}: X e V}. Note that the decomposi-
tion p = {(X,0, —X); Xe VI1®{(©, F,0); FeL, F' = F} is orthogonal for
{ >, by (6.9). Since K acts isometrically for { ), the orbit space K(y),
with the metric induced from { ), is a pseudo-riemannian symmetric
space.

THEOREM 5.7. (1) Let (3= 2.8, o, { »,) be the OSGLA associated
with an OJTS(V,{ }, { D). Assume that L>id,. Then the orbit space
K@) is a complete parallel submanifold of a pseudo-Euclidean space (p,

<
(@ Let (8= 22w 045 4o Dy) be the HSGLA coming from an

OJA (A, { )). Then L,>id, and the orbit space K(v) is a complete totally
real parallel submanifold of a pseudo-Hermitian space (P, J,,, { >,.)-
Moreover K(v) is left invariant by the S'-action: exptJ,, t€ R.

Proof. (1) We show that K(v) C (p, { ), is parallel. Denote by ¢
the second fundamental form of K(v). Since the inclusion K(y) = (p,
{ »,) is equivariant, it is sufficient to see our claim at » € K(»). Identify
the tangent space T,(K/K,) at o = K with the subspace m. Then the deri-
vative '*¢ of ¢ at v is given by

(F*o)(4, B, C) = {ad (4) ad (B) ad (C)v}, 1,

for 4, B, Cem, where {x}, ,, denotes the g, N p-component of x for the
decomposition p =g, N P D (G-, D g) N p (See Ferus [5], Lemma 1 for the
proof). Let 4=(X,0,X), B=(Y,0,Y), C=(Z,0,Z) for X, Y, Ze V.
Then we have

ad (4) ad (B) ad (C)y = ad (4) ad (B) (Z, 0, —Z)
= ad (4) (0, A/2}{L(Y, Z) + L(Z, Y)}, 0)
= (—(12(L(Y, 2) + L(Z, Y)}X, 0, 1/20{L(Y, Z) + L(Z, Y)}X)

and thus (F*o)(4, B,C) = 0 for 4, B, Cem. This implies that K(») is a
parallel submanifold.

(2) We show that K(v) = (b, oJ,,, { ), is totally real. Since the
inclusion is equivariant, it is sufficient to see our claim at » € K(v). Note
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that T(K(v)) = {(X, 0, —X); X e A}, N(K({®)) = {(0, T4, 0); X € A}. Then we
have J,(X,0, —X) = [(E, 0, E), (X, 0, —X)] = (0, T, 0) € N(K(»)) for Xe A
= V,. This implies that K(v) is totally real in (p,, J,,, { D,0-

The other claims are obvious. g.e.d.

Remark 5.8. Let M’ be an r-dimensional complete totally real parallel
submanifold of M7’(c), ¢ #+ 0, and M N**Yc/4) C E™*' the complete
inverse of M’. Denote by ¢ the second fundamental form of Mt c Er,
Fix a point pe M and put A = T,,(M ). Define a product - on A by XY
=16(X, Y)for X, Ye A. Let {( ) be the restriction of the pseudo-rieman-
nian metric ( )z into A = T,,(M ). Then (4,< >) isan OJA. The proof
will be given in the second series of this paper.

REFERENCES

[1] B. Y. Chen-K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc., 193
(1974), 257-266.

[ 2] P. Dombrowski, Differentiable maps into riemannian manifolds of constant stable
osculating rank I, J. Reine Angew. Math., 274/275 (1975), 310-341.

[3] D. Ferus, Symmetric submanifolds of euclidean space, Math. Ann., 247 (1980),
81-93.

[ 4] ——, Immersions with parallel second fundamental form, Math. Z., 140 (1974),
87-93.

[51] , Immersionen mit paralleler zweiter Fundamentalform: Beispiele und Nicht-
Beispiele, Manuscripta Math., 12 (1974), 153-162.

[ 6] S. Helgason, Differential Geometry, Lie groups and Symmetric spaces, Academic
Press, New York, 1978.

[7] S. Kobayashi and K. Nomizu, Foundations of Differential geometry I, II, Wiley
(Interscience), 1963 and 1969.

[ 8] M. Koecher, “An elementary approach to bounded symmetric domains”, Lect.
Notes, Rice Univ., Houston, 1969.

[9] M. Kon, On some complex submanifolds in Kaehler manifolds, Canad. J. Math.,
26 (1974), 1442-1449.

[10] H. Naitoh, Isotropic submanifolds with parallel second fundamental form in P™(c),
Osaka J. Math., 18 (1981), 427-464.

[11] ——, Totally real parallel submanifolds in P"(c), Tokyo J. Math., 4 (1981), 279-306.

{121 H. Naitoh and M. Takeuchi, Totally real submanifolds and symmetric bounded
domains, Osaka J. Math., 19 (1982), 717-731.

[13] H. Nakagawa and Takagi, On locally symmetric Kaehler submanifolds in a complex
projective space, J. Math. Soc. Japan, 28 (1976), 638-667.

[14] B. O’Neill, The fundamental equations of a submersion, Michigan Math. J., 131
(1966), 459-469.

[15] J. S. Pak, Planar geodesic submanifolds in complex space forms, Kodai Math. J.,
1 (1978), 187-196.

[16] I. Satake, Algebraic structures of symmetric domains, Iwanami Shoten, Publishers
and Princeton Univ. Press, 1981.

[17] W. Striibing, Symmetric Submanifolds of Riemannian Manifolds, Math. Ann., 245
(1979), 37-44.

https://doi.org/10.1017/50027763000020365 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020365

PARALLEL SUBMANIFOLDS 117

[18] M. Takeuchi, Polynomial representations associated with symmetric bounded do-
mains, Osaka J. Math., 10 (1973), 441-475.

, Parallel submanifolds of space forms, In: Manifolds and Lie groups (Papers

in honor of Y. Matsushima), Birkh&user, 1981.

[19]

Department of Mathematics
Yamaguchi University
Yamaguchi, 753 Japan

https://doi.org/10.1017/50027763000020365 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020365



