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Abstract
Two desert cyanobacterial strains, Chroococcidiopsis sp. CCMEE 010 and CCMEE 130, capable far-red light
photoacclimation (FaRLiP), were investigated for the stability of biosignatures after six years of desiccation.
Biosignature detectability was demonstrated by confocal laser scanning microscopy and Raman spectroscopy thus
highlighting that these two FaRLiP cyanobacteria are a novel reservoir of an array of pigments, encompassing
canonical chlorophyll a, far-red shifted chlorophylls, phycobilins and carotenoids. The recorded signals were
comparable to those of dried cells of Chroococcidiopsis sp. CCMEE 029, CCMEE 057 and CCMEE 064, not
capable of FaRLiP acclimation and previously reported for biosignature stability and survivability after exposure to
space and Mars-like conditions during the BIOMEX (BIOlogy and Mars EXperiment) and BOSS (Biofilm
Organisms Surfing Space) low Earth orbit missions. Since infrared-light driven photosynthesis has implications for
the habitability of Mars as well as exoplanets, the stability of far-red shifted chlorophylls in dried Chroococcidiopsis
is a prerequisite for future experimentations under simulated planetary conditions in the laboratory or directly into
space. It is anticipated that post-flight investigations of FaRLiP cyanobacteria as part of the BioSigN
(Bio-Signatures and habitable Niches) space mission will contribute to gather novel insights into biosignature
degradation/stability and thus prepare future planetary exploration missions to Mars. In addition, the scored
viability of strains CCMEE 010 and CCMEE 130 after prolonged desiccation is relevant to investigate life
endurance under deep space conditions, as planned by the BioMoon mission that aims to expose dried and
rehydrated extremophiles on the Moon surface after exposure to deep space.
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Introduction

There is strong evidence that many potentially habitable worlds exit in our galaxy: in the Solar System
environments that might have hosted life in the past or even today have been identified. Those include
the surface of early Mars, the sub-surface of present-day Mars, the oceans of the icy moons Europa and
Enceladus, or even the clouds of Venus, along with thousands of exoplanets orbiting in the habitable
zone of their star (Styczinski et al., 2024; Cockell et al., 2024). Hence, understanding how biosignatures
change over time and how they are modified by space conditions is critical for space exploration
missions searching for life (Dartnell et al., 2012; Dartnell and Patel, 2014).

Since everything we know about biology derives from Earth, microorganisms living in extreme
environments, the so-called extremophiles, are the best-case scenario to identify protective
biomolecules that can serve as biomarkers and to investigate biosignature stability/degradation under
planetary simulations in the laboratory or in space (Martins et al., 2017; Jorge-Villar and Edwards,
2013; Wilhelm et al., 2018). Microbial pigments are promising biosignatures because they can be easily
detected by Raman spectroscopy (Jehlička et al., 2022), carotenoids, chlorophylls, phycocyanins and
scytonemin have been all detected in extreme habitats and included in a biosignature library of Raman
spectra (Varnali and Edwards, 2014). Extremophiles are not only a valuable reservoir of biosignatures
but also model systems to evaluate the habitability of other planets (Merino et al., 2019). For example,
increasing dryness in deserts causes a shift from edaphic to lithic communities, so that it has been
proposed that during the loss of surface habitability of Mars, if life ever occurred it may have retreated to
sub-surface niches (Davila and Schulze-Makuch, 2016).

Cyanobacteria of the genus Chroococcidiopsis colonize lithic niches in extremely dry deserts, and
since their discovery they have been pointed as a model organism to search for life on Mars (Friedmann
and Ocampo, 1976). Although there is no general agreement if photosynthesis ever occurred on Mars
(Cockell and Raven, 2004; Westall et al., 2015), the capability of certain cyanobacteria of using far-red
light to drive photosynthesis offer a new scenario for the habitability of Mars (Antonaru et al., 2023;
Billi et al., 2022). On Earth these cyanobacteria inhabit niches depleted in visible light (VL) and
enriched in far red light (FRL) and have developed an adaption known as far-red light photoacclimation
(FaRLiP) consisting in the remodeling of the photosynthetic apparatus and production of far-red shifted
chlorophylls (Gan and Bryant, 2015). In particular, the colonization of FaRLiP cyanobacteria of rocks
and caves (Behrendt et al., 2015; Antonaru et al., 2023) has implications for the habitability of Mars
since a putative photosynthetic life form might have retreated to sub-surface niches and caves.

Moreover, far-red photosynthesis has implications for the habitability of exoplanets. Exoplanets
orbiting M stars have a light spectrum peaking in the far-red and infrared that might support oxygenic
photosynthesis (Lehmer et al., 2021). The feasibility of oxygenic photosynthesis under M-dwarf light
has been pointed out by documenting the capability of cyanobacteria and more complex
photosynthetic organisms to grow and produce oxygen under laboratory simulations of M-dwarf
light (Battistuzzi et al., 2023, 2023a).

The current knowledge on how biosignatures respond to space and Mars-like conditions has been
largely achieved thanks to space missions that used the ESA-EXPOSE facility installed outside the
International Space Station (ISS) allowing the exposure of extremophiles and their molecules to space
and Mars-like conditions (Cottin et al., 2017). The BIOMEX (BIOlogy and Mars EXperiment) space
experiment showed that after exposure for 469 days to Mars-like simulations, out of seven
biomolecules, only three (chlorophyllin, quercetin and melanin) were still detectable on UV-exposed
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samples although with a reduced Raman signal, while slightly reduced Raman signals occurred in
biomolecules mixed with regoliths to mimic sub-surface environments (Baqué et al., 2022).

The desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 was exposed to space and Mars-like
simulations along with other extremophiles during the BIOMEX experiment (de Vera et al., 2019). Post-
flight analyses of dried cells mixed with Martian mineral analogs revealed detectable pigments and
genomic DNA thanks to the UV shielding provided by the regoliths (Billi et al., 2019a). Three desert
strains of Chroococcidiopsis, namely CCMEE 029, CCMEE 057 and CCMEE 064, were exposed to
space and Mars-like simulations as dried biofilms during the BOSS (Biofilm Organisms Surfing Space)
space mission (Cottin and Rettberg, 2019). Post-flight analyses revealed unbleached photosynthetic
pigments in the bottom layers of the biofilms that were shielded against UV radiation by top layer-cells
(Billi et al., 2019b). However, none of these Chroococcidiopsis strains were capable of FarLiP adaption
(Billi et al., 2022; Antonaru et al., 2023).

Novel insights into biosignature detectability of extremophiles under simulations of Mars- and icy moon-
like conditions will be delivered by the BioSigN (Bio-Signatures and habitable Niches) space mission that
will use the foreseen Exobio facility to be installed outside the ISS (2027-2028), thus preparing future
planetary exploration missions to Mars, Enceladus and Europa (de Vera and Baqué, 2024).

The overarching goal of the present work was to investigate the suitability for the of BioSigN space
mission of two desert strains of Chroococcidiopsis, namely CCMEE 010 and CCMEE 130, capable of
FaRLiP acclimation and both possessing far-red shifted chlorophylls (Antonaru et al., 2023; Billi et al.,
2022). Since BioSigN will expose dried microorganisms, the assessment of desiccation tolerance and
stability of sub-cellular dried components is mandatory. Therefore, these two strains were investigated
for biosignature detectability and survival after 6 years of storage in the air-dried state. The detectability
of photosynthetic pigments and genomic DNA was assessed at the single-cell level by using confocal
laser scanning microscopy (CLSM), while carotenoids were detected with Raman spectroscopy. Then,
biomarker detectability was compared with that of dried cells of Chroococcidiopsis strains that were
exposed to space and Mars-like conditions during the BIOMEX and BOSS space experiments (Billi
et al., 2019a, b). Biosignature detectability was assessed in strains CCMEE 057 and CCMEE 064 after
6 years of air-drying, and in CCMEE 029 after 10 years. Finally, the occurrence of survivors in all five
strains was evaluated after 72 h-rehydration by using an indirect method based on Calcein-AM and by
assessing their capability to enter cell division after transfer into a fresh growth medium.

Materials and methods

Cyanobacterial strains and sample preparation

The five Chroococcidiopsis strains used in this study are part of the Culture Collection of
Microorganisms from Extreme Environments (CCMEE) established by E. Imre Friedmann and Roseli
Ocampo-Friedmann (Table 1) and were cultured in BG11 medium in 50-mL vented flasks placed in an

Table 1. List of Chroococcidiopsis sp. CCMEE strains used in this study

CCMEE
strain Sampling site

Rock substrate/
colonization

FaRLiP
capability

Air-dried storage
(years)

010 Negev Desert,
Israel

Granite/chasmoendolithic yes 6

029 Negev Desert,
Israel

Limestone/
chasmoendolithic

no 10

057 Sinai Desert, Egypt Granite/chasmoendolithic no 6
064 Sinai Desert, Egypt Stone pavement/hypolithic no 6
130 Canyonlands, Utah Sandstone/cryptoendolithic yes 6
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incubator at 25°C, without shaking. Cultures under visible light were exposed to a photon flux density
of 20 μmol m-2 s-1 provided by white tubular led lights (OSRAM LEDs). Cultures under far-red light
were exposed to a photon flux density of 5 μmol m-2 s-1 provided by far-red tubular led lights (OSRAM
LEDs). Dried samples were prepared by filtering cell aliquots on Millipore filters and air-dried
overnight in a sterile hood and stored in sealed plastic bags in the dark under room conditions.

Confocal laser scanning microscopy

Cells were recovered from small fragments (about 2 mm2) by using 500 μL BG-11 medium and after
centrifugation resuspended in 20 μL Phosphate Buffered Saline (PBS) buffer containing 1.5% agarose
and immobilized onto a microscopy slide and observed with a confocal laser scanning microscope
(CLSM, Olympus Fluoview 1000) by using a 60X objective. Photosynthetic pigments were imaged
with a 635 nm laser and collecting the fluorescence emission from 650 to 680 nm for phycobilisomes
and chlorophylls. Genomic DNA was visualized at the CLSM with a 405-nm excitation laser after
staining with Hoechst as follows: cells were harvested by gentle centrifugation and resuspended in 1 mL
PBS withHoechst 33342 (Thermo Fisher Scientific Inc.) at final concentration of 5 μg/ml and incubated
in the dark at room temperature for 15 minutes. Then the cells were washed once with PBS buffer and
resuspended in 20 μL PBS buffer containing 1.5% agarose for slide preparation. CLSM lambda scans
were obtained by using a 488-nm excitation laser and collecting the emission from 550 to 800 nm. Curve
plotting was performed using the GraphPad Prism program (GraphPad Software, San Diego, CA).

For cell viability, small fragments (about 2 mm2) of dried samples were inoculated in BG-11 medium
under optimal growth conditions for 72 h. Calcein staining was performed as follows: cells were
harvested by gentle centrifugation and resuspended in 500 μL of fresh BG-11 containing 10 μL Calcein-
AM (Thermo Fisher Scientific Inc.; 1 mg/mL dimethylsulfoxide). The suspension was incubated in the
dark at room temperature for 90 minutes (Mullineaux et al., 2008). Then cells were washed three times
with PBS buffer, resuspended in 20 μL PBS buffer containing 1.5% agarose for slide preparation and
observed at the CLSM with a 488-nm excitation laser.

Raman Spectroscopy: Set-up and spectra parameters

Raman measurements were performed with a confocal WITec alpha300 Raman microscope operating at
room temperature, under ambient atmospheric conditions. The Raman laser excitation wavelength was
532 nm and the spectral resolution of the spectrometer 4–5 cm-1. A Nikon 10× objective, with a 0.25
numerical aperture, was used to focus the laser on a 1.5 μm spot. The surface laser power was set at 1 mW.
A spectral calibration was performed with a pure silicon test sample. Spectra were acquired directly on
fragments of about 2 mm2 of the Millipore filters for the dried samples and on 10 μL air-dried drops on a
microscopy glass slide for the liquid samples. Acquisition time was kept between 0.5 and 1 s to avoid
signal saturation from photosynthetic pigments’ fluorescence with 1 accumulation. Single spectra, line
scans and image scans with up to 30 μm× 30 μm and up to 400 image points (only for selected samples)
were obtained thus collecting a minimum of 50 measurements per sample. The spectra were visualized
directly with the instrument’s software (Control5) and processing was further implemented with Python
library RamanSpy (Georgiev et al., 2024) for spectra pre-processing (cosmic ray removal, cropping and
background subtraction) and plotting of the average spectra from the n>50 measurements.

Results

Detection of photosynthetic pigments and genomic DNA

The detectability of biosignatures was investigated in all the samples by CLSM (Figure 1). The
visualization of the FaRLiP strains Chroococcidiopsis sp. CCMEE 010 and CCMEE 130 with a 635-nm
laser revealed an intense pigment autofluorescence indicating high content of phycobiliproteins and
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chlorophylls in most of the cells of both strains, although cells with a reduced autofluorescence were
also visualized. By applying a 405-nm laser, Hoechst-stained nucleoids could be identified in each cell
regardless of the intensity of pigment autofluorescence. A blue-fluorescent envelope occurred around
dried cells of strain CCMEE 130 but not in strain CCMEE 130.

Similarly, dried samples of strains CCMEE 029, CCMEE 057 and CCMEE 064 showed cells with
either an intense or reduced pigment autofluorescence, each one with Hoechst-stained nucleoids.
Images with the 405-nm laser revealed the presence of a blue-fluorescent envelope around Hoechst-
stained dried cells of CCMEE 057 and CCMEE 064, that was absent in hydrated cells of all both strains
(not shown).

Spectral features of photosynthetic pigments

The stability of the far-red shifted chlorophylls in Chroococcidiopsis sp. CCMEE 010 and CCMEE 130
grown for two weeks under far-red light and then air-dried and stored for 6 years, was evaluated by
CLSM-λscan analysis by using excitation with a 488-nm laser (Figure 2). In strain CCMEE 010 the
emission spectrum was similar in shape and intensity in both dried cells and hydrated control. A peak at
650–660 nm due to phycobiliproteins, mainly allophycocyanin, and one peak in the 675–695 nm range
due to chlorophyll a. An additional peak in the 720–750 nm range corresponding to far-red shifted
chlorophylls was also detected in both dried and hydrated cells of strains CCMEE 010 and CCMEE 130
(Figure 2A). A similar spectrum was obtained for dried and hydrated cells of strain CCMEE 130
(Figure 2B).

Figure 1. CLSM imaging of photosynthetic pigments (635-nm excitation laser) and Hoechst-stained
nucleoids (405-nm excitation laser) in Chroococcidiopsis. Strains CCMEE 010 and CCMEE 130 were
grown under far-red light and desiccated for 6 years. Strains CCMEE 029, CCMEE 057 and CCMEE 064
were grown under visible light and desiccated for 6 years (057 and 064) or 10 years (029). Bar= 5 μm.
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Raman signal of carotenoids

The effect of prolonged desiccation on the detectability of carotenoids in Chroococcidiopsis sp.
CCMEE 010 and CCMEE 130 was determined by Raman analyses using a 535-nm laser for excitation
by comparing cells grown under far-red light and then air-dried for 6 years with hydrated used as control
(Figure 3). Each sample showed a typical Raman signal mainly due to carotenoids with three distinct
peaks at 1009, 1150 and 1515 cm-1, corresponding to in-plane rocking modes of CH3, groups attached to
the polyene chain coupled with C-C bonds, and in-phase C-C stretching (ν2) and C=C (ν1) vibrations of
the polyene chain in carotenoids, respectively. The spectra were normalized for clarity. No evident
differences occurred in the intensity of the carotenoid main peaks among dried and hydrated cells of
strains CCMEE 029, CCMEE 057 and CCMEE 064.

Detection of surface pigments

The presence of fluorescent pigments observed in the envelope of dried cells of strain CCMEE 130 after
Hoechst staining at the CLSM (Figure 1) was further evaluated in the absence of any staining. Cells
grown under far-red light showed a blue autofluorescence of the envelope when excited with a 405-nm
laser and a red autofluorescence of photosynthetic pigments when excited with a 635-nm laser
(Figure 4A). The CLSM λscan with a 405-nm laser of three regions of interest selected in the cell
envelope yielded a spectrum with a peak of faint intensity at 430–435 nm possibly due to scytonemin
(Klicki et al., 2018), while the fourth region of interest selected in the cytoplasm showed an intense peak
in 675–695 nm range due to photosynthetic pigments (Figure 4C).

As shown in Figure 4C, no Raman signal for to scytonemin or scytonin, was detected, that generally
have similar spectra with bands near 1600, 1550, 1400, 1300 and 1180 cm-1 (Edwards et al., 2023).

Survival after prolonged desiccation

The Calcein staining was used to investigate the viability of Chroococcidiopsis sp. CCMEE 010 and
CCMEE 130 grown for two weeks under far-red light and then air-dried for 6 years (Figure 5). Before
the staining dried cells were rehydrated under optimal growth conditions because the assay is based on a
nonfluorescent dye that is converted by esterases into green-fluorescent Calcein. The imaging with the
CLSM using a 488-nm excitation laser revealed a strong green, fluorescent signal throughout the
cytoplasm of the hydrated controls of both strains CCMEE 010 and CCMEE 130 indication the viability
of the cells. When dried samples were rehydrated for 2 hs no esterase activity was detected (not shown).
After 72-h hydration both strains CCMEE 010 and CCMEE 130 showed a dot-like green, fluorescent

Figure 2. CLSM-lambda-scan of photosynthetic pigments in dried FaRLiP Chroococcidiopsis. Strain
CCMEE 010 (A) and CCMEE 130 (B). Cells were grown under far-red light and desiccated for 6 years;
hydrated cells were grown in liquid cultures under far-red light and used as control. Graphs represent
normalized fluorescence intensity versus emission wavelength.
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Figure 3. Raman spectra from Chroococcidiopsis. Strains CCMEE 010 and CCMEE 130 were grown
under far-red light and desiccated for 6 years (D); hydrated controls were grown in liquid cultures
under far-red light (L). Strains CCMEE 029, CCMEE 057 and CCMEE 064 were grown under visible
light and desiccated for 6 years (057 and 064) or 10 years (029) (D); hydrated controls were grown in
liquid cultures under visible light (L).

Figure 4. CSLM and Raman analysis of Chroococcidiopsis sp. CCMEE 130 grown under far-red light.
Merge image of optical sections obtained with a 405-nm and 635-nm laser (B); spectral profiles of four
regions of interest (ROI) excited with a 405-mn laser (B). Raman spectrum obtained with a 532-nm
laser. Bar= 10 μm.
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signal in about 20% of the cellular population, regardless the presence of the photosynthetic pigment
autofluorescence. Similarly, after 72h-rehydration, esterase activity was detected in strains
CCMEE 029, CCMEE 057 and CCMEE 064.

Discussion

The biosignature detectability in Chroococcidiopsis sp. CCMEE 010 and CCMEE 130, two desert
strains of capable of FaRLiP acclimation (Antonaru et al., 2023; Billi et al., 2022), after 6 years of
desiccation was demonstrated. The combined use of CLSM and Raman spectroscopy highlighted the
permanence of canonical chlorophyll a, far-red shifted chlorophylls, phycobilins and carotenoids as
well as of Hoechst-stained genomic DNA, all considered unambiguous traces of life (Malaterre et al.,
2023). No evident variation in biosignature detectability occurred between dried cells of these two
strains and strains CCMEE 029, CCMEE 064 and CCMEE 057 that were previously exposed to space
and to Mars-like conditions (Billi et al., 2019a, b). Such feature of Chroococcidiopsis sp. CCMEE 010
and CCMEE 130 provides a prerequisite necessary for the implementation into the BioSigN space
mission that will investigate survival and biomarker detectability in dried extremophiles exposed to
Mars- and open space conditions by using the foreseen ESA’s Exobio facility outside the ISS (de Vera
and Baqué, 2024).

CLSM imaging of dried CCMEE 010 and CCMEE 130 revealed the permanence of
phycobiliproteins and chlorophylls due to their intrinsic fluorescence, that was comparable to that of
dried CCMEE 029, CCMEE 064 and CCMEE 057. Moreover, the peak typical of far-red shifted
chlorophylls was identified with CLSM-λscan in dried CCMEE 010 and CCMEE 130 acclimated to far-
red light before desiccation. Therefore, these two FaRLiP strains are a unique reservoir of pigments to
be investigated under planetary simulations to be performed in the laboratory or in space. The
detectability of pigment autofluorescence is relevant in a scenario in which fluorescence microscopy

Figure 5. Viability of Chroococcidiopsis examined by Calcein staining. Merge images of
photosynthetic pigments (635-nm excitation laser) and Calcein-stained cells (488-nm excitation laser).
Dried cells and hydrated controls of strains CCMEE 010 and CCMEE 029 were grown under far-red
light; dried and hydrated controls of strains CCMEE 029, CCMEE 057 and CCMEE 064 were grown
under visible light. Bar= 5 μm.
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and flow cytometry have been proposed as a potential technology for in situ life detection on icy moons
and polar ice caps of Mars (Nadeau et al., 2008; Wallace et al., 2024). The fact that Hoechst- stained
DNA was detected in dried Chroococcidiopsis cells after years of air-drying is relevant since the
feasibility of using fluorescent dye labeling as a tool for life detection has been proposed in combination
with the detection of intrinsically fluorescent molecules for searching sign of life onMars (Nadeau et al.,
2008). Moreover, Nanopore sequencing is currently under validation in diverse environments to support
the search for nucleic-acid based life beyond Earth (Carr et al., 2020; Sutton et al., 2019).

Raman spectra of dried strains CCMEE 010 and CCMEE 130 showed only a slightly reduced
intensity of the carotenoid peaks compared to hydrated controls, thus suggesting the capability of these
two desert cyanobacteria to efficiently stabilize sub-cellular components as reported for strain CCMEE
029 (Baqué et al., 2020). The Raman detectability of carotenoids is relevant since miniaturized Raman
instrumentation has the potential to be used in planetary exploration rovers (Edwards et al., 2021).
Currently on Mars NASA Perseverance rover is using two miniaturized Raman spectrometers (Maurice
et al., 2021; Razzell Hollis et al., 2022) while the ESA Rosalind Franklin rover to be launched in 2028 is
equipped with a Raman Laser Spectrometer (Rull et al., 2017; Rull and Martínez-Frías, 2006). A Raman
instrumentation has been suggested for the NASA Europa Lander Mission, a conceptual study to search
for life on Europa by using in situ techniques (Hand et al., 2022).

The stability of sub-cellular components in dried cells of the two Chroococcidiopsis FaRLiP strains
makes them a novel reservoir of biosignatures to be investigated and contribute to future planetary
exploration missions to Mars as well as to biosignature detection on exoplanets. In fact, pigments like
canonical chlorophylls, far-red shifted chlorophylls and carotenoids might target life beyond the
photosynthetic one, just because on Earth, microbial pigmentation has been developed for different
purposes beyond light capture (Barreto et al., 2023). Therefore, FaRLiP cyanobacteria are relevant for
searching biosignatures of photosynthetic life powered by infra-red light in sub-surface environments,
but also of non-photosynthetic, pigmentated life in sub-surface environments supported by chemical
energy (Cockell et al., 2016). Moreover, since the absorption and reflection of light harvesting pigments
can serve as surface biosignatures for exoplanets (Schwieterman et al., 2018), FaRLiP cyanobacteria are
suitable model system for laboratory simulations to investigate the boundary conditions of the
habitability of exoplanets around M stars and detectability of exotic photosynthetic life. Because in
literature theoretical investigations and some indices are even considering a potential of photosynthesis
in deep sea and hydrothermal areas (Beatty et al., 2005; Yurkov et al., 1999), the potential of
photosynthesis in the deep sea using far IR cannot be neglected. Therefore, a small likelihood to
postulate the presence of photosynthesizing organisms in the icy ocean worlds in our solar system could
be possible (Fisher et al., 2024).

CLSM imaging of strain CCMEE 130 suggested the presence of scytonemin-like compounds that
were secreted in the cell envelope and that yielded an emission at about 430–435 nm when exited with a
405-nm laser (Klicki et al., 2018). Such a capability is relevant since scytonemin is a UV-absorbing
pigment that possesses also antioxidant properties (Sen and Mallick, 2022). However, the presence of
scytonemin, or scytonin, in the envelope of CCMEE 130 grown under far-red light was not confirmed
by Raman spectroscopic probing. Nevertheless, the production of UV-screening compounds in FaRLiP
cyanobacteria under far-red light is largely unknown and reported so far only for Chlorogloeopsis
fritschii sp. PCC 6912 (Llewellyn et al., 2020). So, it could be speculated that, if produced the amount of
scytonemin in CCMEE 130 was not enough to be detected. Indeed, the synthesis of scytonemin has
been reported for two desert Chroococcidiopsis strains in response to other stress rather than UV
radiation, for instance under osmotic stress in the absence of UV radiation (Dillon et al., 2002; Casero
et al., 2021), but also in response of periodic desiccation under UV radiation (Fleming and
Castenholz, 2007).

Finally, the fact the number of survivors scored among Chroococcidiopsis sp. CCMEE 010 and
CCMEE 130 desiccated for 6 years was comparable to that of CCMEE 029 after for 4 years of desiccation
(Billi, 2009), further supports their suitability for implementation in the BioSigN space mission that
foresees one-year exposure of dried extremophiles to Mars- and icy-moon simulation outside the ISS.
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Moreover, based on the comparable stability of their sub-cellular components with that of strains
CCMEE 029, CCMEE 064 and CCMEE 057 already tested in space, it is anticipated that post-flight
analysis might contribute to gather novel insights into survival potential and biosignature detectability. The
biosignature stability and survivability scored in the present work after prolonged desiccation are an
important prerequisite to future investigation on how extremophiles respond to deep space, as proposed by
the BioMoon space mission that aims to expose to the lunar environment dried cells as well as cells that
will be rehydrated on the Moon after exposure to deep space (Cockell et al., 2024).
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