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Interactions between hyperelastic bio-membranes and fluid play a crucial role in the flight
(or swimming) motion of many creatures, such as bats, flying squirrels and lemurs. Bio-
membranes are characterised by high stretchability and micro-bending stiffness, leading
to unique fluid—solid coupling properties (Mathai et al., 2023, Phys. Rev. Lett., vol. 131,
114003). This study presents a high-fidelity numerical exploration of the hyperelastic
characteristics of a pitching foil inspired by bio-membranes in fluid within a low Reynolds
number regime. The focus is on the effect of foil compliance on its self-propulsion
performance, mimicking natural propulsion mechanisms, with the foil free to move in
the horizontal direction. We find that with certain compliance, the foil may experience a
velocity crisis, meaning that its propulsive capability is completely lost. This phenomenon
is caused by the loss of beat speed when the foil’s passive deformation is out of phase with
the pitching motion. By contrast, the two motions can be in phase at proper compliance,
leading to an increased beat speed. This will significantly enhance propulsive velocity
up to 33 % compared with the rigid case. The results demonstrate the feasibility of
compliance tuning to circumvent the velocity crisis and improve the propulsive speed,
which are helpful in the design of micro aerial robots using biomimetic membranes.

Key words: membranes, propulsion, swimming/flying

1. Introduction

Creatures such as fish, bats, insects and birds generate aerodynamic or hydrodynamic
lift, propulsion and manoeuvring forces by oscillating their appendages, such as fins or
wings. For decades, these natural systems have served as a primary source of inspiration
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for biomimetic robotic designs capable of swimming or flying (Raj & Thakur 2016;
Duraisamy, Kumar Sidharthan & Nagarajan Santhanakrishnan 2019; Phan & Park 2020;
Bao et al. 2023; Othman et al. 2023). These biological structures are often defined by their
flexibility, thickness, and ability to undergo significant deformations. The force generation
mechanism is affected by a number of factors, such as the kinematics of the flapping foils
(e.g. amplitude, frequency and stroke mode) (Shoele & Zhu 2010; Wang, Tang & Zhang
2022), structure flexibility and its interaction with fluid (Zhu 2007), and foil—foil interplay
(Zhu et al. 2014a; Gungor, Khalid & Hemmati 2022).

To better understand the physical mechanism of bio-inspired swimming/flying and
improve its performance, numerous investigations have been conducted to explore the
fluid dynamics and fluid—structure interactions of flapping foils. These explorations date
back to the theoretical studies on rigid foils (Theodorsen 1935; Garrick 1936). Since
then, particularly in the past few decades, the fluid dynamics and near-body flow field
around the rigid foil doing heaving, pitching or combined motion have been extensively
studied through experiments (Triantafyllou, Triantafyllou & Gopalkrishnan 1991; Godoy-
Diana, Aider & Wesfreid 2008; Bohl & Koochesfahani 2009), numerical simulations (Zhu
2006; Das, Shukla & Govardhan 2016; Andersen et al. 2017) and theoretical analysis
(Triantafyllou, Triantafyllou & Grosenbaugh 1993; Fernandez-Feria 2016).

Compared with the rigid models, flexible foils exhibit higher similarity with the
biological structure, attracting more interest from scientists, and tremendous effort has
been spent on this issue. Through various investigations, it is commonly accepted that
structural chord-wise flexibility attributes to highly efficient force generation through
flapping motions. For example, by experimentally exploring the performance of a flexible
panel undergoing leading-edge pitching motion, Dewey et al. (2013) reported up to
100—200 % and 100 % enhancement in thrust generation and propulsive efficiency,
respectively, compared with a rigid panel. Other studies that investigate this problem
include physical experiments (e.g. Yamamoto et al. 1995; Heathcote et al. 2003; Quinn,
Lauder & Smits 2014; Iverson et al. 2019) and numerical simulations (Alben 2008; Tang
& Lu 2015; Olivier & Dumas 2016), and all demonstrate a similar beneficial effect. Two
physical explanations have emerged to explain this phenomenon: (i) flexibility leverages
resonance to maximise plate/fin amplitude (Quinn, Lauder & Smits 2015; Fernandez-
Feria & Alaminos-Quesada 2021); and (ii) flexibility tunes aerodynamic variables such as
camber and angle of attack to maximise the thrust-to-drag ratio (Kang et al. 2013; Floryan
& Rowley 2018; Eldredge & Jones 2019).

Beyond uniform and constant flexibility, spatially varying and time-dependent structural
stiffness, often employed by biological swimmers through muscle control to enhance
performance, also plays a pivotal role in the effectiveness of flapping foils. Floryan &
Rowley (2020) modelled a passively flexible foil with distributed flexibility, finding that
thrust gain can be achieved by tuning the stiffness distribution to activate resonance or by
concentrating stiffness towards its leading edge. Efficiency improvement, however, is only
enabled by concentrating stiffness away from the leading edge at low motion frequency.
Yudin et al. (2023) and Shi et al. (2020) studied the swimming performance of flexible
flapping plates with time-varying flexibility. Both studies found that oscillating stiffness
has a significant impact on thrust generation, while its effect on propulsive efficiency is
comparatively smaller.

All the studies mentioned above focus on inextensible, bending-dominated foils.
There is another category of biological structures — stretching-dominated, compliant
bio-membranes used by creatures like bats, flying squirrels, and lemurs. Compliant bio-
membranes are characterised by negligible thickness, zero bending stiffness, and high
stretchability. Investigations on this type of structure are still at initial stages (Tiomkin &
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Raveh 2021). There are several studies concentrating on the static aerodynamic response of
bat-inspired membrane foils mounted in uniform steady flows (Waldman & Breuer 2017)
or confined flows (Li et al. 2024). Other studies emphasise the unsteady flow-structure
interactions of flapping membrane foils. For example, Tregidgo, Wang & Gursul (2013)
presents an experimental analysis about the impact of angle of attack upon a membrane
foil’s elastic deformation, and the resultant flow field. Schunk, Swartz & Breuer (2017)
explore the influence of aspect ratio and stroke pattern on force generation of a flapping
bat-inspired membrane wing through experiments. Cheney et al. (2022) examine the
function of small muscles embedded in the armwing membrane of Jamaican fruit bats,
finding that actively modulating the wing’s compliance is able to control its camber and
achieve drag reduction.

Similar to the bending-dominated foils, how structural compliance (or flexibility) affects
the propulsive performance is also a hot topic for membrane foils. A number of works
on this issue have demonstrated that the compliance significantly enhances the lift/thrust
generation and propulsive efficiency (Attar et al. 2011; Jaworski & Gordnier 2012, 2015).
More recently, Joshi et al. (2020) examined the flapping dynamics of a full-scale bat wing
by using a three-dimensional variational fluid-flexible multi-body numerical framework,
revealing that the flexible wings generate more unsteady lift compared to the rigid
counterpart owing to the high wing-tip velocity due to the elastic deformation of the
wings. Through a two-dimensional potential flow model with small-amplitude deflections,
Tzezana & Breuer (2019) identified a thrust—drag transition of a flapping membrane wing
in a free stream, which is accompanied by a wake mode transition. Nevertheless, these
investigations mostly consider linearly elastic material within the small strains regime,
which seriously limits accurate description of the large deformation of most biological
membrane structures (e.g. bat wing; Swartz et al. 1996) that are hyperelastic (nonlinear).
Furthermore, all the existing bio-inspired membranes are tethered in a uniform stream
while making prescribed motions, which is not the case for their natural counterparts,
whose membrane wings or fins are free to move horizontally. Even though there are
numerous investigations on the self-propelled locomotion of bending-dominated flapping
foils (Peng, Huang & Lu 2018; Lin et al. 2020; Benetti Ramos et al. 2021; Chao, Jia & Li
2024), such attempts in the context of stretching-dominated membrane foils are still rare.

Therefore, high-fidelity free-locomotion simulations on the fluid—hyperelastic
interaction are required to grasp the deformation mechanism of membrane foils and its
influence on the propulsive performance. We herein present a numerical study by coupling
fluid dynamics and hyperelasticity within the immersed boundary framework (Peskin
2002) to examine the propulsive capability of a self-propelled compliant membrane foil
undergoing prescribed pitching motion. We are particularly interested in the nonlinear
interplay between the hyperelastic structure and fluid. The results could pave the way for
the development of more efficient bio-inspired systems, and even be used directly to guide
the prototype design.

The remainder of this paper is organised as follows. The mathematical formulation
and numerical method are first presented in §2. The numerical model validation is
then described in § 3, followed by the discussion of detailed results in §§4—7. Finally,
concluding remarks are addressed in § 8.

2. Mathematical formulations

As displayed in figure 1, we consider a one-dimensional hyperelastic membrane foil
immersed in a stagnant fluid. The chord-wise length ¢ (i.e. the distance between the
leading and trailing ends) is a constant. Compared to c, the foil thickness is negligible.
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Figure 1. (a) Schematic of a compliant foil undergoing prescribed pitching motion in a stagnant fluid. The long
dashed line indicates the reference state, and the solid line is the deformed foil; r. is the relative displacement
vector of the centroid to the reference state, and y. is the normal component of r.. (b) A representative
schematic showing tension—strain curves for linear elasticity and the Gent model.

The structure is initially pre-stretched by ratio 4o = c¢/L, in which L is the natural length.
The material features zero-bending rigidity and nonlinear stretching behaviour, so we
use the two-parameter Gent model (Das, Breuer & Mathai 2020; Mathai et al. 2023) to
describe the tension—deformation relationship, i.e.

GJIn(A—272)

- Jn—hL+3

in which G denotes the material shear modulus, J,, is the locking parameter, and I;
denotes the first invariant of the left Cauchy—Green deformation gradient tensor. For this
uniaxial stretching scenario, we have [1 = A2 42271 where A is the stretch ratio. In the
present study, J,, is chosen to be infinitely large such that T = G(1 — 172).

The leading edge is fixed transversely and free to move in the axial direction. To propel
itself forwards, the foil will perform a prescribed pitching motion in which the trailing edge
rotates periodically around the leading edge with frequency w. As shown in figure 1(a),
the long dashed line indicates the prescribed motion, while the solid line represents the
actual state of the foil counting on the structural passive deformation.

To describe the passive deformation, we employ a structural dynamic equation defined
in a Lagrangian coordinate system (attached to the foil), which is written as

PX(@s, 1) 9 aX(s 1)
o= 3z (G001 =)
in which m represents the line density of the foil, X = (x, y) is the instantaneous position
within the Eulerian reference of the structural particle whose arc distance to the leading
edge along the foil is s:€ [0, c], F = (Fx, Fy) is the hydrodynamic load, g = ge is
the gravitational acceleration vector, and the stretch ratio A is expressed as Ag(d X /ds -
dX/ds)!/2. Appendix A contains more details about (2.2). The boundary conditions are

¥l,—o =0, 2.3)
X|s:c - X|s:0 = C[COS(@), sin(@)], 2.4)

, (2.1)

+ F(S9 t) + mcg: (22)

me

in which 6 = 6 sin(wr) represents the cyclic trajectory of the pitching motion.
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The hydrodynamic load F will be accessed by solving the incompressible
Navier—Stokes equations, i.e.

ou
IOf(§+V.(uu)):—Vp+MV2u+f, (2.5)

V.u=0, (2.6)

in which p s stands for fluid density, u is the fluid velocity vector, p is the pressure, u is the
dynamic viscosity of fluid, and f is the momentum forcing to satisfy the no-penetration
boundary condition on the foil. All fluid variables are defined in the Eulerian coordinate
system x = (x, y). The fluidic and structural equations are solved independently and
then coupled by using a feedback scheme within the direct-forcing immersed boundary
framework (Peskin 2002; Bi & Zhu 2019). In this approach, the hydrodynamic load (i.e.
fluid—structure interaction force) can be obtained through a penalty algorithm that matches
the solutions from the two equations.

For normalisation, we choose the fluid density o, foil chord length ¢, and wc
as characteristic density, length and velocity, respectively. Unless otherwise specified,
normalised variables share the same symbol with their dimensional counterparts, for
simplicity. Therefore, the dimensionless forms of (2.2) and (2.5) become

92X (s, 1t 9 X (s, 1
ROXGD 0 (a0 —aHP XS DN p ) v Fre 2.7)
o2 os ds
and
du I _,
—+V-(wu)=—Vp+—Vou+f, (2.8)
at Re

in which the mass ratio R, aeroelastic number Ae, Reynolds number Re and Froude number
Fr are defined by

me G ,ofCZa) meg

R= , Ae=———, Re= , Fr=——5-—=. 2.9
prc prcdw? n pfctw? 29)

For numerical methodology, the Navier—Stokes equations are handled with the
conventional fractional step method (Kim, Baek & Sung 2002) on a staggered Cartesian
grid. In this method, the fluid velocity and pressure are decoupled with the LU
decomposition. Hereby, a provisional velocity field is first updated by using the prior
fluidic information. The obtained velocity field is then used for pressure update by solving
the Poisson equation. Finally, the velocity field can be corrected with the pressure to fulfil
the continuity constraint.

The structure is uniformly discretised with N Lagrangian nodes. Herein, the cell size
is As =c/(N — 1). The tension-related term of (2.7) is accessed with the centred finite
difference approximation, i.e.

d 3. 0X;
P(X) = (Ae Ao(1 — 4; 3)8—;>

Ae Ay 3 3
= AS2 ((1 —/li+1/2)(Xi+1 - Xi) — (1 _/lifl/Z)(Xi — Xi—1)>,
i=2,...,N—1, (2.10)
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in which 4;41/2 = 40 |X;41 — X;|/As. An explicit Runge—Kutta method is employed for
the time-marching of the structural equation with time interval A¢:

At
m =AtV" k= ?((D(Xn) + F" +Fre),
At
my = At (V' +0.5ky), kr = ?(CD(X'Z +0.5m;) + F" +Fre),
At
{ m3=Ar (V" +0.5ky), k3 = ?(Q(Xn +0.5my) + F" +Fre),

At
my=At (V" +k3z), ky= ?(05()(" +m3)+ F" + Fre),

x+—xn g™ +2my +2m3 +my yrHl —pn o ki+2ky +2k3 + ky
6 ’ 6 ’
(2.11)
in which the subscript indicates time index, and V represents structural velocity,
ie. dX/ot.

All simulations of this study will be performed in a rectangular domain measuring
40c x 10c. The longitudinal size 40c is sufficiently large to ensure that the foil does not
move out of the domain. Symmetric boundary conditions are used at the far-field bound-
aries. Based on the sensitivity study in Appendix C, uniform grids with Ax = Ay =0.01
are used in the vicinity of the foil, and the time step (A¢?) is set to be 0.0002 throughout
the study. Moreover, we choose the number of Lagrangian points (V) along the foil
to be 150.

3. Relaxation test of the membrane foil

In this section, free vibration of the membrane foil in stagnant fluid will be simulated
first, then the numerical results are compared with theoretical predictions. As displayed
in the inset of figure 2, the foil is subject to a gravitational field and released from a
flat configuration (initial state). The body undergoes underdamped oscillation due to the
viscous effect of fluid until reaching its steady or static state (a catenary).

Not involving any prescribed motion, the reference velocity for this scenario is hereby
replaced by w/(pfc). Accordingly, the coefficients of (2.7) and (2.8) should be redefined,
except R. Specifically, Re is assigned to unity, and Ae and Fr physically represent the ratios
of elasticity and gravity to viscosity, i.e.

Gpyc megpsc®
=——, Fr=—75—.
w W
Two simulations with Ae =30, Fr=3 (case 1) and Ae =300, Fr=20 (case 2)

will then be conducted. Other parameters are dg=1.05, R =5.0. According to the
derivation of Appendix A, the normalised natural frequencies for these two cases can be

calculated by
Ae (A9 — A5°
P e( 0 0 ) (3 2)
" R+R, '

in which R, indicates the added mass of the foil vibrating in quiescent fluid, which is
approximated to 0.68 (Minami 1998).

Ae (CRY)
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Figure 2. (a) Time evolution of the vertical location of the foil’s central point during the free vibration.
(b) Static shapes of the foil under gravity; the solid line represents the theoretical prediction, and the dashed
line indicates the numerical result.

With these relaxation tests, the natural frequencies can also be measured with the
logarithmic decrement (§) of the decaying trajectory as shown in figure 2(a), i.e. w, =
/41?2 + 82/ T. The obtained natural frequencies turn out to be 2.8 and 8.9 for these two
cases, which are close to the theoretical ones (2.6 and 8.7) calculated by (3.2). Moreover,
the static states of the foil from the numerical simulations are presented in figure 2(b).
According to Appendix B, the static shapes can also be theoretically predicted by the
following formulations:

HA2 3H 0.5 —
x(s) = 3 of + 3 (sinh_l (_mch) — ginh™! ( e8¢ mcgs))’
G5+ 2) meg(Ay + 2) 2H H

(3.3)

© 2(meges — megs?) 3 <\/H2 +(0.5mcgc)?> — H? + (0.5m.gc — mcgs)z)
y(s) = :

2G5 +2) meg (A +2)
(3.4
3 2
Me8C _ g | L0 DMme8C_ Agmesc) (3.5)
2H 6H 6G

As displayed, the geometry shapes of the static foils from the numerical simulation match
well with those from the theoretical analysis. The maximum difference, which takes place
at the mass centre (s = 0.5), is less than 0.2 %, verifying the accuracy of the hyperelastic
solver again.

4. Velocity crisis in pitching motion

We next examine the propulsive performance of the membrane foil making purely pitching
motion. Table 1 lists the variables involved in the simulations. The emphasis of this
research is on the influence of the structural compliance and pitching amplitude on the
system dynamics, so parametric studies on these two variables are conducted by varying
Ae and 6 over proper ranges. Specifically, Ae ranges from 1.0 (relatively soft foil) to 100
(stiff one), and 6 lies in [21t/36, 7 /36] in radians. The above variable domains are
determined via pilot tests, through which we found that when Ae reaches 100, the foil
is stiff enough to be treated as a rigid structure, so it is meaningless to go beyond 100;
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Ae 0 R

1-100 21/36—7m/36 0.2

Re Ao
200 1.05

Table 1. Summary of parameters used in the current study.
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Figure 3. (a) Mean velocity V, versus Ae for various pitching amplitudes 6; the filled symbols indicate the
optimal cases in terms of velocity. (b) Comparison between the optimal cases (filled bars) and the corresponding
rigid cases. (c) Power expenditure P versus Ae. (d) Cost of transport versus Ae.

when Ae < 1 or § > 71/36, high-order structural deformation can be triggered easily,
resulting in considerable high-order fluctuation in the generated aerodynamic force, which
will significantly undermine the propulsion stability of the flapping system; for § < 27 /36,
the resultant propulsive speed is too small for mechanism exploration. Other parameters
are set to be constant. Specifically, following Tzezana & Breuer (2019), the pre-stretch ratio
Ap equals 1.05. The mass ratio R is chosen to be 0.2, such that the acceleration period is
shortened, which saves computational time and domain size. Finally, the frequency-based
Reynolds number Re is fixed at 200, while a parametric study on Re is provided in § 6.
There is no gravitational effect, so Fr is set to be zero. Hereafter, all simulation results are
extracted when the system reaches a steady state.

We present the propulsive performance of the system in figure 3 in terms of average
propulsive speed V,, average power expenditure P, and cost of transport (COT), which
are defined by
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B Jr V() de szT S F(t,s)-V(t,s)dsdt

Va — COT -

T T ' TV,
Here, T =27 /w is the period, I represents the Lagrangian domain attached to the foil,
V (¢, s) is the instantaneous velocity vector of the foil, and V (¢) is the spatial average value
of the horizontal component of V.

Figure 3(a) shows the variation of V, with Ae. Results of rigid foil (labelled by co)
are also displayed for reference. As displayed, the effect of compliance is significantly
different from that of bending-dominated foils. In that scenario, the performance of
flapping foil is optimal at an intermediate flexibility, after which as the foil gets stiffer,
the performance will gradually decline, converging to the level of the rigid case. In
this scenario, however, after hitting an optimal point (marked by filled symbols), the
velocity will undergo an abrupt collapse before converging to the rigid case. We refer
to this phenomenon as ‘velocity crisis’. One exception is the sequence for 6 = 27/36,
where the velocity variation is trivial due to the small amplitude, so the velocity crisis is
inconspicuous. Higher # tends to cause a more pronounced velocity crisis, and there is
even a secondary collapse when 6 is higher than 57 /36.

A closer inspection shows that for all cases that we consider here, most flexible foils fail
to create higher propulsive speed than the rigid ones due to the velocity crisis except in
a few cases before the collapse. The greatest flexibility-induced velocity improvement al-
ways takes place just before the collapse, as indicated by filled symbols, except for the case
6 =27/36. We present the largest improvement rate for various 6 in figure 3(b), where
empty bars represent the velocity of rigid cases, while filled bars are the optimal cases.
(Notice that § =2m/36 is not involved here because there is no velocity peak within
the range that we consider in this case.) It shows that the flexible membrane foil has
the potential to achieve a 20—30 % increase in velocity when the pitching amplitude is
relatively small (e.g. <57/36), whereas this value for large-amplitude cases is only at the
level of 10 %.

Figures 3(c) and 3(d) present the energetics of this process. Not surprisingly, the
overall trend is that larger pitching amplitude and flexibility tend to cost more energy P.
Exceptions are the abrupt expenditure jumps accompanied by the velocity collapse. This
implies the same physical origin behind the two phenomena. As a result, the cost of
transport also experiences a jump within the same regime, leading to the most inefficient
locomotion. Indeed, it is seen that the rigid foil always has the lowest COT, meaning
that the system becomes less efficient when flexibility steps in, which is contradictory to
the observation for bending-dominated flapping foils as discussed in § 1. This is mainly
attributed to the fact that the flexible deformation for membrane foils is rooted in tangential
stretching, not in the form of adaptive deformation in the transverse direction, such that the
aforementioned efficiency enhancement mechanisms that are valid for bending-dominated
foils lack a foundation to exist in the current scenario.

To summarise, the advantage of flexible membrane foils over rigid ones lies in the
velocity enhancement. But this is only accomplished before the velocity collapse, and
with a compromise of efficiency. Therefore, unlocking the secret of the velocity crisis is a
prerequisite for fully exploiting this advantage in bio-inspired systems, and will probably
shed light on how natural systems circumvent or control this crisis.

“.1)

5. Physical insights
We then proceed to explore the underlying physics of the velocity collapse. First, the
focus will be placed on the sequence for & = 51t /36, which causes a noticeable collapse.
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0 =57/36, and (b) Ae =2, 3, 5 and 6 = 77 /36. The time history of the pitch angle 6 (normalised by the pitch
amplitude 0) is also presented.
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Figure 5. Velocity increase rate ¢ (green symbols) and time-averaged net force F,, over the recovery phase
(red symbols) versus Ae for (a) & = 57/36 and (b) 6 = T71/36. Here, ¢ and F,, are calculated by (5.1) and (5.2).

Figure 4(a) plots time histories of the foil velocity during a motion cycle for the ante-
collapse (Ae =3) and post-collapse (Ae =35) cases of this sequence. The black solid
line indicates the pitch angle. It is found that the velocity drop from the ante-collapse
to the post-collapse case is initiated in the recovery phase, but lasts until the downstroke
or upstroke phase. We then calculate the time-averaged velocity drops during these two
phases, which turn out to be 0.22 and 0.11, respectively. This means that the velocity
collapse is mostly contributed from the velocity drop during the recovery phase. Given the
fact that the velocity collapse mainly takes place in the recovery phase where the trailing
edge moves back to the equilibrium position and simultaneously pushes fluid backwards
for thrust production, it is expected that the velocity collapse is likely originated from
thrust collapse during this period. As shown in figure 4(b), we obtain the same observation
for the sequence § = 77/36, whose mean velocity drops of recovery and downstroke or
upstroke phase are 0.25 and 0.05, respectively.

The thrust collapse can be substantiated by figure 5, in which we plot the time-averaged
net aerodynamic force in the propulsive direction over the recovery phase (F;,) for various
Ae, and for illustration, the propulsive velocity increase rate ¢ is also presented. Here, F},
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Figure 6. Instantaneous configurations of the foil within a pitching cycle. The green solid line represents the
foil’s geometric shape at + = 0.257, the green dashed line for t = 0.5T, the red solid line for t = 0.757 , the red
dashed line for t = T, and the other dark solid lines are for other time instants. All snapshots are pulled back
to the horizontal position for better illustration, and their original version is provided in figure 7 as reference.
Here, 8 = 57t/36.

and ¢ are calculated by

1 0.5T pl1 T 1
F,=~ / / F,dsdr + / / F,dsdt ] /(0.25T) (5.1)
2 \Joast Jo 0.75T JO

and
e=(Va—V))/ V], (5.2)

where Fy is the horizontal fluid—structure interacting force density, and V) is the
propulsive velocity for the rigid foil. As displayed, the velocity crisis coincides with the
force collapse, indicating that insufficient thrust during the recovery phase is the main
cause of the velocity stall. The thrust generation is closely related to the beat speed
of the foil, which depends on the coupling of the prescribed pitching motion and the
passive structural deformation. In what follows, therefore, we compare the foil deformation
patterns of various Ae in order to disclose the underlying physics of the thrust collapse.

Figure 6 presents the body deformation for the sequence for 6 = 51/36. Snapshots at
various time instants are all rotated back to the horizontal level and superimposed for
illustration. The green solid, green dashed, red solid and red dashed profiles represent the
foil shapes at t =0.25T, 0.5T, 0.75T, T, respectively. As displayed, the foil is spindle-
shaped for all cases of this sequence, meaning that it is in the first mode (half sine)
deformation. However, each case exhibits distinct vibratory characteristics in respect of
amplitude (which decreases with Ae) and phase, which both have tremendous influence on
the beat speed.

For the case Ae =3, the foil has the largest deformation (the most curved cambers
indicated by the green/red solid lines) right at the beginning of the recovery phase,
t =0.25T, 0.75T, and gets less deformed at the end of the phase, t =0.5T7, T (indicated
by the green/red lines). Even though this process may not be monotonic, its overall
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Figure 7. Instantaneous configurations of the foil within a pitching cycle, for 8 = 57/36.

dynamic is in phase with the prescribed motion. The implication is that extra beat speed
is created by this passive deformation, leading to a velocity enhancement compared with
the rigid foil. For the case Ae =5, however, the passive deformation seems out of phase
with the prescribed motion, resulting in a beat speed loss during the recovery phase,
which can be the main reason for the thrust (herein velocity) collapse at Ae =5. This
phenomenon can also be interpreted from the perspective of energy transfer. When Ae = 3,
the elastic energy of the foil is released and converted to the kinetic energy of jet flow
during the recovery phase, whereas when Ae =5, the foil gains elastic energy from the
fluid field. Therefore, the foil deformation in the case Ae =3 exerts a positive effect on
the thrust generation, while the case Ae =5 has a negative effect. Moreover, even though
the negative effect still exists in cases Ae =9 and 15 as shown in figure 6, its intensity
is diminishing due to the reduced passive deformation amplitude as the foil gets stiffer.
This explains why after the collapse, the velocity V,, quickly recovers and converges to the
rigid case.

We then utilise the vertical displacement of the foil centroid (y,) in figure 6 to quantify
the passive deformation, where y. is a proper indicator for the structural deformation
because only the first mode is observed in these cases. Physically, it represents the normal
component of the displacement of the centroid relative to the undeformed state (reference
state) as indicated in figure 1(a), i.e. y. =r - n, n = [sin(9), cos(#)]. Here, the dynamic of
r. depends on the nonlinear interplay of the natural hyperelasticity and external fluid load.
So y. measures the foil’s deviation magnitude from its reference state when deformed.
Figure 8(a) plots the time histories of y. for various Ae in this sequence. It shows that as
Ae increases, the foil tends to undergo more complicated fluctuation, in that other than
the prescribed motion frequency, higher-order frequency stemming from the nonlinearity
steps in. Notwithstanding the complexity, the boundary values of y. of the recovery phases
are insightful to approximate the overall effect of the passive deformation upon the beat
speed. Herein, we define a new variable x as

1 ¥¢(0.25T) — y.(0.5T) _ Ye(0.75T) — yo(T)
X=3 0.25T 025T '

Here, x represents the average time change rate of y. during the recovery phases, and thus
can be considered as an additional beat speed exerted by the passive deformation. Higher
x means a more beneficial effect on the beat speed, and negative x indicates a diminishing
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Figure 8. (a) Time histories of y. for various Ae. (b) Velocity increase rate ¢ (green symbols) and added beat
speed x (red symbols) versus Ae. Here, x is defined by (5.3), and 6 = 57t/36.
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Figure 9. Same as figure 6 but for § = 71/36. The blue curves represent the second deformation mode, and
they take place at different time instants for various Ae. The original snapshots before rotating are provided in
figure 10 as reference.

effect. We present this quantity versus Ae in figure 8(b), together with the velocity increase
rate €. As expected, the two quantities share the same trend, suggesting that the added beat
speed x induced by the foil deformation is a predominant factor determining the propulsive
performance. Quantitatively, this confirms our previous findings: it is the increased beat
speed (x > 0) of flexible foils that leads to the velocity enhancement compared with the
rigid one, and the propulsive velocity collapse is caused by the collapse of beat speed.
Next, we demonstrate the foil deformation for the sequence for § = 77/36 in figure 9.
There are mainly two differences compared with the previous sequence for 6 = 57/36.
First, the body fails to exhibit a perfect spindle shape as before because of considerable
tangential displacement along the membrane foil. Second, the second deformation mode
(full sine) is triggered at some instants marked with blue profiles. Despite the differences,
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Figure 10. Instantaneous configurations of the foil within a pitching cycle, for 6 =7m/36.
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Figure 11. Same as figure 8 but for § = 71/36.

the physical mechanism of the velocity collapse that we concluded in the previous
sequence is still valid here. Specifically, at Ae = 2, the overall foil deformation during the
recovery phase is in phase with the pitching motion, leading to the maximum propulsive
velocity as shown in figure 3(a). After that, the velocity collapse happens at Ae = 3, where
the deformation is approximately out of phase with the pitching motion. Similarly, we
present the time evolution of y. for various Ae, and the variation of ¢ and x with Ae in
figure 11 for this sequence. It is seen that the collapse of ¢ more or less coincides with
the steep drop of x from a positive value to a negative one, and the two quantities trend
upwards to zero simultaneously. The correlation of € and x approximately aligns with the
pattern that we have previously observed.

However, it is necessary to point out that the consistency of the change trends of
these two quantities is undermined compared with figure 8(b). This may be attributed
to the increased complexity of foil deformation, particularly the involvement of the second
mode. In this sense, the dynamics of the foil centroid (y.) alone is insufficient to capture
the deformation of the entire structure, thus is unable to quantify the impact of passive
deformation upon the beat speed as precisely as before. Therefore, the definition of added
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Figure 12. (a) The mean velocity V,, versus Ae for various Reynolds numbers. (b) The velocity collapse
amplitude A, as indicated in (a), and the corresponding collapse of the added beat speed A, . 6 = 5m/36.

beat speed needs to be revised by incorporating the dynamics of the foil as a whole, which
will be our future exploration.

6. Effect of Reynolds number

Since the system is self-propelled, the propulsive-speed-based Reynolds number is case-
dependent in the present work, and its highest value is approximately 50 according to
figure 3(a). This value is within the locomotion regime of micro-swimmers, but lower
than that of bats. One may raise the following question: how does the viscosity affect the
velocity crisis? In this section, therefore, we provide results of further investigation into the
effect of Reynolds number upon the propulsive speed of the membrane foil. For this study,
we fix the pitching amplitude at 57t/36, and Re varies over 200 < Re < 800. Figure 12(a)
presents the average velocity V,, versus Ae for various Re. It shows that increasing Re tends
to improve the locomotion speed V,, due to the reduced viscous drag. However, the velocity
collapsing and rebounding points (Ae at which the collapse and rebound happen) remain
unchanged as Re varies. This implies that the viscous effect exerts negligible influence on
the phase of the passive structural deformation of the membrane foil. Notwithstanding this,
the collapse amplitude A, (velocity difference of the ante- and post-collapse cases, Ae =3
and Ae =35, respectively) grows gradually as Re increases, as shown in figure 12(b),
meaning that higher Re tends to create more pronounced velocity collapse. This can
be attributed to the increased added beat speed collapse (A, = x(Ae =3) — x(Ae =)5))
between the two cases according to our previous analysis.

7. Wake patterns

Vortex formation and organisation are issues of central importance to flapping foils
because they directly affect the propulsive force generation. We present the vortex-
shedding behaviours of the flapping foil in this section, and we are particularly interested
in the impact of the velocity collapse on the wake pattern. Figure 13 presents the vorticity
contours of wake structures for various Ae in the sequence 6 = 57/36. It demonstrates
that most cases in this sequence create a reversed von Kdarmédn vortex street in the
wake, in which a pair of vortices with opposite signs are alternately shed per oscillation
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Figure 13. The instantaneous vorticity contours of wake patterns for 6 = 57/36. The blue and red contours,
respectively, represent anticlockwise and clockwise rotating vortices. All snapshots are extracted at t =T .
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Figure 14. Same as figure 13 but for 6 = 77/36.

period, forming a row of anticlockwise-rotating vortices located above the centreline, and
the other row of clockwise-rotating vortices below the centreline. One exception is the
velocity collapse case, in which a chaotic vortical structure is obtained. This is physically
reasonable because the absence of flow velocity (accordingly, the Strouhal number is
close to infinity) makes vortices concentrate around the foil, rather than quickly diffusing
downstream. ~

Figure 14 shows the wake patterns for 6 = 77/36. Apart from the reversed von Karman
vortex street, two other wake patterns are obtained: the deflected reversed von Kiarmén
vortex street, and the 2P wake, with two vortex pairs being shed per oscillation period.
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Figure 15. Wake patterns with different pitching amplitude 6 and aeroelastic number Ae. The red triangles
represent reversed von Kdrman wake, blue diamonds indicate 2P wake, pink circles indicate deflected reversed
von Kdarman wake, and dark stars mean chaotic wake.

The 2P wake can be attributed to the increased pitching amplitude (Zhu et al. 2014b). It is
also interesting to note that the velocity collapse in this sequence does not cause chaotic
vortices in the wake. We attribute this to the fact that its residual velocity after the collapse
is not as negligible as the previous sequence as shown in figure 3(a).

Throughout the parameter space that we consider, we identified only the aforementioned
four distinct wake patterns. Figure 15 shows the phase diagram for the four typical wake
patterns in the —Ae plane. Notice that some cases in the sequence 37/36 are assigned
no symbols, and sequences smaller than 37/36 are not presented here. This is because
the viscous effect in these cases is overwhelmingly strong such that vortices are quickly
dissipated away once shed. As a result, there is no discernible vortical structure in the
wake. The figure shows that most cases exhibit reversed von Kdrman wake, which is
consistent with the observation of Peng er al. (2022) that flapping foils tend to create
either reversed von Karman or deflected wake in the quasi-steady state where the thrust
is balanced by drag. Exceptions are those near the velocity collapse region. For example,
2P wakes are produced when the velocity is about to collapse at Ae = 3 for the sequences
for 6 = 671/36 and 77t/36. However, the 2P wake may also be seen when the propulsive
velocity reaches a high level such as in the case Ae =2, 6 = 71/36. So there is no direct
connection between the two issues. Nevertheless, the wake is likely to get chaotic as the
foil completely stalls.

The influence of wake patterns upon the propulsive capacity can be reflected by the time-
averaged downstream flow that they induce. Thrust is produced when the downstream flow
is in the form of jet flow, while trivial thrust or drag can be created if it has the form of a
drag wake. In figure 16, we present the time-averaged horizontal flow velocity (V) relative
to the foil from a sampling window as shown in figure 13(d). The window moves together
with the foil and V, is defined by

(ux(t, x)+ V() dt

_Jr
V. (x) = T , (7.1)
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Figure 16. Distributions of time-averaged fluid velocity V, relative to the foil in the axial direction, where V.
is defined by (7.1).

in which u, denotes the instantaneous horizontal fluid velocity, and V is the propulsive
speed of the foil whose direction is opposite to that of the x axis. The ante- and post-
collapse cases (i.e. Ae=3,5 for 6= 51/36, and Ae =2, 5 for 6= 71 /36) encompass
the four wake patterns that we have identified, so only these four cases are considered
here. As shown in figure 16(a), the reversed von Kdrmén vortex street is able to induce a
clear jet flow such that considerable propulsive velocity is achieved for the ante-collapse
case 6 = 57/36. Its post-collapse case accompanied by a chaotic wake (see figure 13d),
however, tends to create a reverse flow region (see figure 16b) instead, which severely
undermines the thrust generation and propulsive speed. For § = 77/36, a bifurcated jet
flow is obtained in figure 16(c) due to the 2P wake of the ante-collapse case. The jet flow
becomes weaker and asymmetric in figure 16(d), leading to the velocity collapse.

8. Conclusions

The interaction of hyperelastic membrane with fluid is common in nature, particularly in
the flying motion of many animals. High-fidelity modelling of this problem is important
for not only behavioural biology research but also the development of efficient bio-inspired
robots. Yet studies of this kind are rare. Therefore, we present a numerical exploration to
fill this gap.

First, the governing equation of a biomimetic hyperelastic membrane foil is formulated
within a Lagrangian coordinate system by using free-body analysis, then it is coupled with
Navier—Stokes equations within an immersed boundary framework that enables convenient
treatment of largely deformed interface. An explicit Runge—Kutta method is employed for
the time-marching of the nonlinear structural equation. The accuracy of the developed
numerical model is validated through relaxation tests of a hyperelastic filament in ambient
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fluid subject to gravitational field. The simulation results are consistent with theoretical
predictions, showing good accuracy of the model.

By using the fluid—structure interaction model, we then investigate the hyperelastic
characteristics of a bio-inspired membrane foil doing periodic pitching motion in fluid for
self-propulsion. A parametric study is conducted to explore the effect of pitching ampli-
tude and membrane compliance (characterised by the aeroelastic number). The frequency-
based Reynolds number, pre-stretch ratio and mass ratio between the foil and fluid are all
kept unchanged. Unlike the traditional bending-dominated flapping foils whose propulsive
performance will certainly be improved once the foil (unless the structure is super-flexible)
undergoes passive deformation, the compliant membrane foil displays very complicated
characteristics depending on its compliance. Specifically, the propulsive performance can
be improved on some occasions when the passive deformation is in phase with the active
pitching motion because of the increased beat speed. Otherwise, the two motions might
be out of phase on other occasions, leading to a beat speed loss. As a result, the system
is significantly undermined in its propulsive capability, and even gets stuck in a velocity
crisis. Moreover, parametric study on Reynolds number Re suggests that higher Re tends to
magnify the velocity crisis. Finally, four wake patterns of the flapping membrane foil are
successfully identified, and their connection with the propulsion performance is illustrated.

Despite the mechanism of the propulsive improvement and crisis that has been
disclosed, it is still a challenge to predict the foil deformation mode in advance given its
structural properties and the kinematics of the prescribed motion due to the sophisticated
and nonlinear fluid—structure interactions. Moreover, the solid—fluid density ratio R and
pre-stretch ratio Ag are also crucial factors determining the hyperelasticity of the foil. The
effect of these parameters is not considered in this work. Clearly, the present study is only
the start to further explore hyperelastic swimmers. Much more work still needs to be done.
Last but not least, it is unclear whether natural systems such as bats are also faced with this
crisis, and if so, what active control strategy or passive structural property has evolved to
circumvent the velocity crisis. These unsolved issues will be our future research directions.
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Appendix A. Free-body analysis

As displayed in figure 17, a uniform extensible cable with zero bending stiffness hangs
between two fixed points A and B at the same level. The structure is initially pre-stretched
by ratio 4g =c/L. Here, s € [0, c] stands for the arc length of any arbitrary particle along
the cable from point A at its initial state. The corresponding values at its natural and
deformed state are sg € [0, L] and ¢, respectively. Consider a small free body of length As
of the cable at location s, as shown in figure 17(a). The dynamic equation of the free body
is given by
2
mca x(s) As—1 0x(s) + i (1: ax(s)) As — Tax(s)
912 ac s o
2
VS ) D (T ay(s)) o D)
02 9 s 0 aC

+ Fx As, (AD)

+Fy As —mcg As.  (A2)
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(@) ()90, (b)
y

w(3x/3) Ay '\.QFXAS w(3x/00) + (3/05)(x(dx/90)) As
Yy Ax

m,gAs T/00) +(3/ds)(x(y/9¢) As
B

Natural length of the cable: L
Pre-stretched(initial) length: ¢
Horizontal distance between A and B: 1

Figure 17. Schematic of an extensible one-dimensional foil and its free-body diagram on force balance.
After cancelling out As, the above equations can be written in the vector form
PX(s) 9 [ aX(s)
Me— 7 =5 \7
at as ag

) +F(s)+m.g. (A3)

Note that
dX(s) _ 0X(s) ds 0dsg . 0X(s) Ao

L , (A4)
ag as asg d¢ as A4
where A represents the stretch ratio, equal to ¢ /dsp.
Furthermore, the Gent hyperelastic model yields
t=G(—17%). (A5)

Upon substitution of (A4) and (AS) into (A3), the resultant governing equation becomes

2X(s) 0 Gl — 43
m,—F}m— = — —
oz s U0

L% [oX X A
0% T s T as

Under the circumstance of free vibration with small deformations, the horizontal stretch
is negligible, and only the vertical deflection matters, so the above equation can be reduced
to a wave equation,

90X (s)
as

) + F(s)+m.g, (A6)

where

3%y(s)
952

2
mca y(s) =G(/l() _/162)

or2 ’ (A8)

whose natural frequency w, equals nt \/G(/l() — /152)/mc/c, n=1,23,...

Appendix B. Hyperelastic catenary

In this appendix, we explore the natural shape of a pre-stretched Gent cable under the
gravitational effect of hanging between two fixed points. As shown in figure 17(b), we
consider a span of cable between point A and location s, and formulate all forces acting on
this cable span. Here, H and V indicate the bracing forces of point A. The static equations
read
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T i = H (balance of force in x direction), B1)
d
T z (;) =V —m.gs (balance of force in y direction), (B2)
de()\? | [dy(s))>
x(s) +(=2 s) =1 (geometric constraint), (B3)
de d¢

dg g\~
T=G ﬂod— — (ﬂod—> (tension-deformation relation). (B4)
s s

We square both sides of (B1) and (B2), and superpose them, leading to
2= H?+ (V —mgs)>. (B5)

Since |d¢/ds — 1| is a trivial number for small deformations, (B4) can be

approximated by
G|A ! G| A+ 2 a 1 (B6)
T— -—=|= = ]l—=-1}.
/l% 0 /l% ds

d¢ AT +3G

Therefore we obtain

@ _ AT B7
s (+2)G ®7
Then we have
dx dxd¢  H 3jt+3G  HJ N 3H E8)
ds deds T ([+2) G (F+2)G (B +2) VHZ+(V —megs)?
and
dy dyd¢ V —mcgs /l%t+3G (V. —megs) /l(z) 3(V—megs)
—_ = = 3 = 3 .
ds d¢ds T (+2)G (19 +2)G (23 + 2)\/H2+(V— megs)*
(B9)

By integrating the above two equations over s and using the boundary condition at s =0,
one finds the explicit expressions for x and y, i.e.

HA? 3H 1% vV —
x5y = O : (sinh_l (—) — sinh™! (ﬂ)) (B10)
G(4+2) meg(4)+2) H H

/2 2 _ 2 _ 2

y(s) =
G (2 +2) meg (A3 +2)
The two unknowns H and V are determined by the boundary conditions at point
B: x(c) =1, y(c) =0. Indeed, V can be easily obtained through the system symmetry,
equalling 0.5m.gc, which automatically satisfies y(c) =0. Plugging V =0.5m.gc into
x(c) =1, one finds H by solving the equation

mege _ (lmcg(ﬂg +2) /lgmcgc>

(B11)

= B12
6H 6G ®B12)
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Figure 18. (a) Time histories of the propulsive speed of the foil within a period for various grid sizes, At =
0.0002. (b) Time histories of the propulsive speed of the foil within a period for various time steps, Ax = Ay =
0.01. The number of Lagrangian points along the foil is N = 150.
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Figure 19. Vorticity contours for the cases Ax, Ay =0.01 and Ax, Ay =0.006 at time instant t = 0.87 .

Appendix C. Sensitivity study

Here, we present a sensitivity study about the spatial and temporal steps to find their
proper values for subsequent simulations. The baseline case here is selected as Ae =
20, 0 =571/36, R=0.2, 190=1.05, Re =800. Figure 18(a,b) plot time evolutions of
the foil’s speed within a pitching cycle for various grid sizes and time steps, respectively.

1018 A8-22


https://doi.org/10.1017/jfm.2025.10491

https://doi.org/10.1017/jfm.2025.10491 Published online by Cambridge University Press

Journal of Fluid Mechanics

These show that the speed evolution is not sensitive to the grid size and time step if they
are sufficiently small. Moreover, figure 19 presents the wake vorticity distributions for
the two cases where the fluidic grid size is sufficiently small, showing that the vorticity
is adequately resolved. Based on these tests, the grid size Ax, Ay and time step At are
chosen to be 0.01 and 0.0002, respectively.
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