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T. SKAUGEN, F. RANDEN

Norwegian Water Resources and Energy Directorate, Oslo, Norway
E-mail: ths@nve.no

ABSTRACT. A good estimate of the spatial probability density function (PDF) of snow water equivalent
(SWE) provides the mean of the snow reservoir, but also enables modelling of the changes in snow-
covered area (SCA), which is crucial for the runoff dynamics in spring. The spatial PDF of accumulated
SWE is here modelled as a sum of correlated gamma-distributed variables, called units. The spatial
variance of accumulated SWE is evaluated by the covariance matrix of the units. For accumulation
events, there are only positive elements in the covariance matrix, whereas for melting events there are
both positive and negative elements. The negative elements dictate that the correlation between melt
and SWE is negative. After accumulation and melting events, the changes in the spatial moments are
weighted by changes in SCA. Results from the model are in good agreement with observed spatial
moments of SWE and SCA and found to provide better estimates of the spatial variability than the
current model for snow distribution used in the Norwegian version of the Swedish rainfall-runoff model
HBV. The parameters in the distribution model are estimated from observed historical precipitation, so

no calibration parameters are introduced.

INTRODUCTION

Snow is an important hydrological parameter in the North-
ern Hemisphere, and quantifying the snow reservoir is
necessary for water resources assessment and for mitigating
the potential hazard of the spring flood. In order to
successfully simulate the temporal evolution of the snow
reservoir, snowmelt and the snow-covered area (SCA), the
spatial probability density function (PDF) of snow water
equivalent (SWE) plays a key role (Buttle and McDonnell,
1987; Liston, 1999; Luce and others, 1999; Essery and
Pomeroy, 2004; Luce and Tarboton, 2004). Furthermore, the
spatial PDF of SWE is known to vary throughout the snow
season. This was observed by Pomeroy and others (2004)
during the melt period and through the entire snow season
by Alfnes and others (2004). The algorithms used to describe
the spatial PDF of SWE in hydrological models thus have to
take this feature into account.

The spatial PDF of SWE often serves as the basis for
modelling SCA. The temporal development of SCA is
important in hydrology and in land surface schemes in
atmospheric models. The dynamics of runoff is affected by
changes of the area generating meltwater, and flux
accounting must be carried out separately for snow-free
and snow-covered fractions of a grid in a land-surface
scheme (Liston, 1999; Essery and Pomeroy, 2004). The
snow-cover depletion curve (SDC) can be derived from the
spatial PDF of SWE and describes the relationship between
SCA and spatially averaged SWE (Martinec and others,
1994; Luce and others 1999; Luce and Tarboton, 2004).
Luce and others (1999) derived the SDC from integrating a
generic PDF of SWE which shifts to the left as melting
proceeds. Essery and Pomeroy (2004) assumed a log-
normal distribution of SWE when they showed how the
sign of the correlation between melt and SWE influences
the SDC. Shamir and Georgakakos (2007) discussed the
high interannual variability in SDC for single catchments,
which translates to interannual variability in spatial PDF
of SWE.
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A highly relevant parameter that has to be taken into
account when modelling snowmelt and the evolution of
snow-free areas is the correlation between SWE and melt.
Essery and Pomeroy (2004) show that, given a PDF for SWE,
the relation between changes in SCA and mean SWE (i.e. the
SDC) varies according to the sign and magnitude of the
correlation between melt and SWE. There has been some
debate in the literature regarding the nature of this correl-
ation, and Faria and others (2000) found that the spatial
distribution of daily melt was negatively correlated to the
distribution of SWE within a boreal forest stand. Pomeroy
and others (2004), however, found no spatial covariance
between melt energy and SWE in dense mature spruce
forest, although this does not directly describe the correl-
ation between melt rate and SWE. Furthermore, Pomeroy
and others (2004) found negative correlation at small scales
(<100 m) and medium scales (<2000 m), and even positive
correlations at the catchment scale (<200 km). In addition to
these non-conclusive findings, both Pomeroy and others
(2004) and Skaugen (2007) reported that the relationship
between spatial mean and variance of SWE is not monoton-
ous throughout the accumulation and melting season. At the
very beginning of the melting season the spatial mean
decreased, whereas the variance increased slightly and later
declined with the mean. This behaviour is also seen in
studies in the Swiss Alps, where the spatial mean of SWE
plotted against the spatial standard deviation shows that
their relation is not monotonous (Egli and Jonas, 2009; Egli
and others, 2011). In the Swiss studies, this phenomenon is
called hysteresis, suggesting that predicting the variance
requires the history of the mean and not just the mean.

In Skaugen (2007) a method for estimating a temporally
varying spatial PDF of SWE was introduced. This distribution
can reproduce the observed variability in shape of the PDF
caused by accumulation and melting events. The spatial
distribution of SWE presented in Skaugen (2007) could,
however, be applied only to snow-covered areas, and did
not take into account the development of snow-free areas in
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a catchment. In order to take the method a step further and
make it suitable for implementation in a hydrological model,
changes in SCA are derived from the spatial PDF of SWE and

the intensity of the melting event.

Correlation between snowfall events and also between
accumulated SWE and melt plays a crucial role in the
proposed method for estimating the spatial PDF of SWE. In
our study we discuss how the correlation between melt and

SWE and the hysteresis effect may be linked.

In this study we compare estimates of spatial moments of
SWE (mean and standard deviation) and SCA, modelled with
the snow distribution routine of the HBV model and the
model developed in this paper, against observed values. The
main objective is to present a method for estimating
the spatial PDF of SWE at the catchment scale while taking
changes in SCA into account. The proposed method is
parameterized solely from observed precipitation data and
does not introduce any parameters to be calibrated.

The next section presents the methods used to estimate
the spatial moments of SWE. The method builds on the
results presented in Skaugen (2007), and spatial SWE is
hence modelled as a two-parameter gamma distribution.
Furthermore, the challenge of estimating the spatial mo-
ments of SWE after both accumulation- and melting events is
treated separately and special emphasis is placed on how

changes in SCA affect the moments.

METHOD
Unit fields

In Skaugen (2007), the PDF of accumulated SWE was
approximated as a correlated sum of gamma-distributed unit
fields, y(x), where x represents space. For the remainder of
this paper the unit y(x) is denoted y. The unit fields of
snowfall are distributed in space according to a two-
parameter gamma distribution, y = G(vy, ap), with PDF

vo . o—1 4—p

f”OrVO (y) = F(l/o) Qo )’ S Y «p, 1o, y >0

where ag and vg are scale and shape parameters respect-
ively. The mean of the unit equals E(y) = vo/ap, and the
variance equals Var(y) = vy /ao?. The choice of distribution
is motivated from studies reporting the gamma distribution
as a suitable choice for the spatial distribution of precipi-
tation (Onof and others, 1998; Mackay and others, 2001),
SWE (Kutchment and Gelfan, 1996; Skaugen, 2007) and
snow depth (Egli and others 2011). Skaugen (2007) found
that the gamma distribution was in good agreement with the
observed spatial distributions of SWE. It can also be noted
that the presented method applies to the catchment scale,
where the variability of precipitation influences the vari-
ability of snow depth (Liston, 2004). The values for v and «q
can be estimated from the observed spatial mean and
standard deviation sampled from precipitation events. From
analysis of 19year long time series of precipitation from
various areas in Norway, the spatial mean, m, and standard
deviation, s, of precipitation were found to follow a
functional relationship of the type s=am" (Skaugen and
Andersen, 2010), where a and h are determined using
nonlinear regression. Once a suitable choice of the mean of
the unit is chosen, the corresponding spatial standard
deviation, s, can be estimated from s=am” and v, and ag

can be determined using Eqn (2) below.
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During the snow season, the snowpack may experience a
series of melting and accumulation events. These two
processes have different spatial frequency distributions and
are differently correlated in space. Estimating the spatial
variance of SWE after a series of alternating melt and
accumulation events is thus a challenge and must include
the covariance between the units. Furthermore, SCA varies
throughout the season, which necessarily gives a non-
homogeneous spatial field of SWE. In this study, SCA is set
equal to 1 (full coverage) for every snowfall event, whereas a
melting event implies a reduction in coverage.

The procedure for estimating the spatial PDF of SWE is to
estimate the spatial conditional mean, E(Z'(t)), and vari-
ance, Var(Z/(t)), of accumulated SWE, Z'(t), as functions of
the units, y, and weighted by changes in SCA. The spatial
PDF of SWE is subsequently modelled as a gamma distri-
bution with parameters

E[Z (0]’ E[Z(1)]
V= V0] M T Va0 @)

The distribution of Z does not contain zeros and is hereafter
called conditional (i.e. conditional on snow). For the non-
conditional PDF of SWE, which also includes zeros, the
variable SWE is denoted =z.

Moments and parameters of the gamma distribution
of an individual snowfall event

We start the procedure for determining the spatial moments
of SWE by investigating a simple case, namely a single
snowfall event. According to Skaugen (2007), the spatial
mean of a snowfall event that comprises n units,

Z(t) = X"y, can be written as

n
Vo

E[Z(0] =) E(yi)=n—, (3)

= @0

and the variance as

n(t)
Var[Z(t)] = ZVar(y;) +2 Z Cov(yi, ¥)) (4)
i=1 i<j
Note that we have n(n-1) covariance elements since the
trace of the covariance matrix consists of the variance for
each individual y. We estimate the covariance between the
units as the average covariance over the n(n-1) pairs of
units, and equal to a fraction c(n) of the variance of the
individual y’s, Cov(y;, y;) = c(n) 23 This is a departure from
Skaugen (2007) where c is a tuned, non-dynamic value and
not a function of the number of units n. The variance of Z/(t)
is thus

Var[Z'(t)] = nV_o2+ n(n— 1)c(n)y—02
(7)) (7))

Vo
=n—=[1+(n—1)c(n
501+ (0= 1)e(n)
Since c(n) is the ratio between covariance and variance, it is

the average correlation for the n(n-1) pairs of units and
equal to

el = VOV je) = ©

The estimation for a single event of n units is carried out
using Eqns (3) and (5). With an estimate of the spatial
variance from the relationship s=am" we can also estimate
the correlation coefficient in Eqn (6).


https://doi.org/10.3189/2013AoG62A162

Skaugen and Randen: Spatial distribution of snow water equivalent

The average correlation c(n) is a declining function of n,
which corresponds with the results of Zawadski (1973) who
found that the temporal correlation of precipitation is a
rapidly declining function of time. To estimate the condi-
tional moments from individual snowfall events, we have no
apparent use for the estimate of the covariance between the
units. The following subsections show, however, how
sequences of melting and accumulation events, together
with changes in SCA, complicate the estimate of the spatial
moments of SWE.

Accumulation events on a previous snow reservoir

Let the snow reservoir, consisting of n units, be increased by
a new snowfall of u units. Our task is to estimate the
moments of the new spatial PDF of SWE. The snow coverage
prior to the snowfall event is denoted SCA;_; whereas the
SCA after the event is set equal to full coverage, SCA; = 1.
We determine the mean and the variance for the previously
covered part SCA;_; and newly covered part (1 — SCA;_;)
separately. The moments for these two areas are assumed
independent and the moments for the new totally covered
area are estimated as

E[Z'(t)] = SCA1 E[Z' (t)]sca,
+ (1 = SCA)E[Z (D)1 -sca, 1)
and
Var[Z'(t)] = SCA.1* Var[Z' (t)]sca,
+ (1 = SCA(_1)? Var(Z ()] _sca, 1)

Hence, the task is to estimate the mean and variance for the
two areas SCA;_; and 1—SCA,_q, i.e. E[z’(t)]SCAM/

E[Z' ()] -sca, ) VarlZ'(D)]sca, , and Var[Z'(t)] 4 _sca, -

The mean

The mean is simply estimated as the sum of the units times
the unit mean. For the two areas, the mean is
E[Z'(O)]sca, , =(n+ u)vo/ao and E[Z'(1)]1_sca, ,)= Uro/ o,
respectively. The mean for the new totally covered area is
thus

E[Z(8)] = SCA(n + u) 2 + (1 — SCAYU-2  (7)
Qo Qo

The variance
For the newly covered area, 1 — SCA;_4, the variance is
estimated using Eqn (5) as

Varlz (01 sca,, =y + Uy (u=T)e(u)
Estimating the variance for the previously covered area, we
need to consider the covariance matrix. The matrix is at all
times symmetric, and we can view the additional snowfall as
an extension of the elements of the matrix, so that after a
snowfall event of u units the original n x n matrix becomes a
matrix of (n+ u) x (n+ u) elements. We proceed to esti-
mate the four parts of the matrix separately,
Varpxn, 2Covpy, and Var,y, (Fig. 1), and finally estimate
Var[Z'(t)]sca, as the sum of these parts.

The variance of the previous n events, Varny,, Iis
expressed by the updated parameters (Eqn (2)) of the gamma
distribution at time t —1 and equal to Var,., = %. This
variance may differ from that obtained by Eqn (5), using n,
because there may be a history of accumulation and melting
events which prevents Var,y, from being a straightforward
function of n, as is the case in Eqn (5). The sum of the
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n u
n Var Cov__,
u Cov, , Var,

Fig. 1. Covariance matrix for n+u units. Since the matrix is
symmetrical, Covpy, and Cov,x, are equal.

elements in the covariance matrix for Cov,y, (and Cov,xp) is
u- ng—% Cacc, and the sum for Var,, is ug—% + u(u— 1)(‘;—%c(u).
The correlation coefficient, c,.., is estimated as if the total
variance Var[Z'(t)]sc,, and Var,y, were estimated using Eqn
(5) with u+n and n elements respectively. This is an
approximation since we do not know if Var,y, is estimated
by Eqn (5) or may be the result of previous accumulation and
melting events as discussed above. The equation

Var(pyu)x(n+u) = Varnxn + 2Covpxy + Varyxy

is then solved for c,... The correlation coefficient ¢, is thus
estimated as

v v
(n+u)—(2)qL (n+u)(n+u-— 1)—2(:(n+ u)
@ @
14 14 14
= n—g+n(n— 1)—26(n) +2u- n—gcaCC
o o o
140 o
D ulu—1=22
+ ua(z) u(u )a(z, c(u)
which gives

(n+u)(n+u—"T)c(n+u)=n(n—1)c(n) +2u - NCaec
+ u(u—"1)c(u)
and finally

(n+u)(n+ u—"1)c(n+u)—n(n—1)c(n)—u(u—1)c(u)
2u-n

Cacc =

As the four parts of the covariance matrix describing the
variance of the previously covered area are now estimated,
we can write Var[Z'(t)]scy, ,as

v 140) 140)
Var[z/(t)}SCAH = ;—k 2u- na—%cacc + ua—%

+ u(u— 1)V—gc(u)
o

and, finally, the spatial variance of the total snow-covered
area, SCA;, as:

Var[Z (t)lsca, = SCA+? Var[Z (t)]sca,

+ (1 —SCA,_1)? Var(Z ()] 4 _sca, 1) ®
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Melting events

Let the snow reservoir, consisting of n units, be reduced by u
units after a melting event. The snow coverage before and
after the melting event is SCA;_; and SCA, respectively,
where SCA; < SCA;_;. We set SCA;_; as 1, so that SCA; is
the relative reduction in snow coverage due to melting, and
not the catchment value. The reduction in snow coverage
poses a problem in that we have to separate between non-
conditional (the area includes a fraction of zero values) and
conditional moments. We thus have to determine the spatial
moments for the area of the new coverage SCA; (conditional
moments) and for the area which includes the previously

covered part, SCA;_1 (non-conditional moments).

The mean

The non-conditional mean after the melting event is
estimated as E[z(t)] = (n — u) £ and the conditional mean is

0]

E17(t)] = E2(1)]/SCA, = ﬁ (n—u

We note that the difference in conditional means before and

after the melting event is

Vo

E[Z/(t= )] = EZ (0] = .2 [ = (n = 0) [SCA] = e

where ' is the conditional number of melted units.

&%)

The variance

When assessing the conditional variance after the melting
event, the melting event is seen as an extension of the
elements of the covariance matrix, similarly to accumulation
events. The original n x n matrix becomes, after melting '
units, a matrix of (n+ u") x (n + u') elements. We proceed,
as in the case of accumulation, to estimate the four parts of
the matrix separately (Var,x,, 2Covyx, and Vary.,; see
Fig. 1 and substitute u with «) and finally estimate

Var[Z'(t)]sca, as the sum

Var[z’(t)]SCAr = Var,x, +2Covyxy + Vary v

The only possible negative contribution in Eqn (10) is
Covyxn, since both Varpy, and Vary, ., are by definition
positive. Negative covariance implies that melting is
negatively correlated with SWE, i.e. melting is more intense

from areas with less SWE.

The variance of the n events prior to the melting, Var,«,,
is expressed by the updated parameters of the gamma
distribution (Eqn (2)) at time t — 1 and equal to Varpyx, = %

The negative covariance contribution Covyy

Covyxn) between melt and SWE is estimated as

Vo
CoVxy = 2U'n—5 Coie
o

The nature of the correlation ¢ is unknown, but we can
estimate the limiting values for no melt (¢ =0) and
complete melt (¢ = n). When (v = 0), the covariance is
obviously zero, but for the latter case the total variance
becomes zero and we can estimate c,; from Eqn (10),

Varnx, + Varyxuy = 2Covy«n, which gives

v 14 1Z0) o
SN+ n(n— 1)§C(”) = 2”2§let(”)
0

0 0
and

2n \ na?yy

Con(1) = ( il ) [+1+ (n = 1)e(n)]
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For specific values of ¢ (U < n), we approximate ¢, (t') as
a linearly increasing function of v’

u' 1 vad
" _ 0
Cmie(U') = " [ﬁ <na2u0> + 14 (n="1)c(n) (12)
The variance of the melting events is estimated using Eqn (5):
Varyo = 00+ 4 = 1) 23c()  (13)
@9 @9

Finally, the total variance of the new conditional distribution
after a melting event is computed as

Var[Z(t)] = OTVZ — 2u’n%cmh(u’)
L) /0 ’ Yo ’ (14)
+u—S+u U —1)=c(d)
ap ap

Estimating changes in snow-covered area (SCA)

Recall that after a snowfall event, SCA for the area of interest
is set equal to 1 (the same procedure as applied in the HBV
model). After a melt event, however, the estimation of
changes in SCA is somewhat more elaborate. In Dingman
(1994) the energy requirements for transforming a snowpack
into meltwater are stated as Q = Q; + Q, + Q5 where the
different energy quantities refer to warming the snowpack to
a uniform temperature of 0°C (Q4), producing a certain
fraction of meltwater contained in the snowpack (Q,) and
transforming the snow into meltwater (Qs):

Q1 = 7Cipwhm(Ts - Tm)
Q> = huretpuw s
Q= (hm - hwret)prf

where hy, is SWE, hye is free water stored in the snowpack
(usually a fixed percentage of SWE in hydrological models),
¢ is the heat capacity of ice, p,, is the density of water, T,
and T, are snowpack and melting point temperatures,
respectively, and s is the latent heat of fusion. All the
energy quantities are linear functions of the depth, h, of
SWE, so an assumption that areas with the least SWE are the
first to become snow-free due to smaller energy require-
ments appears reasonable. This assumption is used to
estimate the reduction in SCA after a melting event. Previous
sections propose a gamma distribution, f,, with parameters v
and a as a model for the PDF of SWE,
fL(Z) = ﬁa”x”qe’”zl o,v,Z >0

We also assume that the spatial frequency of melt has a
gamma distribution, f,. Various studies suggest gamma- or
log-normal distribution for melting (Essery and Pomeroy,
2004; Skaugen, 2007), but a uniform distribution has also
been used (Liston, 1999; Egli and Jonas, 2009). It is further
assumed that the parameters of f; follow the same principles
as for accumulation, i.e. that the moments can be estimated
using Eqns (3) and (5) with « replacing n. At all times v’ < n,
which implies that until the final melting event occurs, f is
more skewed to the left than f,.

Based on the above, and also on the theoretically
established negative correlation between melt and SWE,
we state that all points with SWE values less than some value
X will be left snow-free. This gives us a reduction in the
spatial extent of SCA equal to a = fg( f, dx. We furthermore
argue that the value of X is the value where the frequencies
of the melt distribution, £, are equal to the frequencies of the
accumulation distribution, f,. This is because the areal
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coverage of the melt values less than X (s = foxfs dx) is
greater than the areal coverage of the accumulated values

less than X (a= f(f f, dx). In addition, since f. is not
bounded to the right, some areas with higher values of
SWE than X will be left snow-free after a melting event. For
example, if we consider discrete PDFs of the accumulation
and melt distribution (p, and py), then a fraction of the total
snow-covered area will contain SWE values in the interval
defined by, say, SWE= X+ x. A smaller fraction of the area
with values in the interval SWE = X + x will be left snow-free
since py(X+x) is smaller than p,(X+x). When we consider
the total snow-covered area, a fraction of all the frequencies
of the accumulation distribution f, for SWE values higher
than X will be left snow-free. If these frequencies are
summed they will thus represent the area for SWE values
higher than X that are left snow-free, 1 —s= [\"f. The
reduction in SCA after a melting event is thus

SCAeg=a+1—s (15)

Recall that the reduction in SCA,.q is relative, i.e. it is the
reduction from the previous snow cover, which is also the
probability space of both f, and £, and thus equal to 1.

RESULTS

In this section we first show how the results of the proposed
algorithms for estimating the spatial moments of SWE and
SCA (hereafter called the G_model) compare with observed
data and with the model used for estimating the spatial
distribution of SWE in the Swedish rainfall-runoff model,
HBV (Bergstrom, 1992; Seelthun, 1996). We then present
observations of observed spatial snowmelt, which justifies
the assumption of gamma-distributed snowmelt.

In the snow distribution routine in the HBV model
(hereafter called the LN_model) the spatial distribution of
snow is modelled as the sum of uniformly and log-normally
distributed snowfall events. In the LN_model, a uniform
spatial distribution of SWE is used up to a specified threshold
of accumulated SWE. For additional snowfall events, each
snowfall event is log-normally distributed through a cali-
brated coefficient of variation (CV) at a specified set of
quantiles, i.e. each additional snowfall event has a spatial
PDF of fixed shape (through the calibrated CV) regardless of
its intensity. The spatial distribution of melt is uniform, and
reduction in SCA occurs when the SWE associated with a
quantile becomes zero. The reduction in SCA is thus the sum
of quantiles with zero SWE. The snow routine of the HBV
model does not keep track of the spatial moments of
accumulated SWE, so it is not straightforward to assess the
modelled spatial PDF for this model. In this study, the SWE
values for the different quantiles are fitted to a log-normal
distribution, and the spatial moments are derived from the
parameters of the fitted distribution. The estimated quantiles
were well represented by the fitted log-normal distribution.

Comparing estimated spatial mean, standard
deviation and SCA with observed data

In order to assess the performance of the G_model, we need
to compare the results against observed data. Two such
datasets exist in Norway. The first is the dataset from
Norefjell in southern Norway and was previously presented
in Skaugen (2007). At Norefjell, snow surveys at 1000 m
a.s.l. were carried out every second week along a 2 km long
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snow course during the winters 2002/03 and 2003/04. Snow
depth was measured every 10 m, and density measurements
were taken twice for each snow course. Average snow
density was measured from two snow pits at locations with
average snow depth. This provided a time series of snow
course data covering an entire snow season from the start of
accumulation to the end of the melting period. Twenty-five
surveys were made at this site. The second dataset is from
the Norwegian Water Resources and Energy Directorate
(NVE) research site for snow at Filefjell, southern Norway
(Stranden and Gronsten, 2011). The site is located at
1000ma.s.l., and has a stable snow cover throughout
November—April. The vegetation is grass and willow thicket
(<50cm). About 45 stakes are placed at a flat stretch of
450 m, ensuring that exactly the same point is measured for
each sample. At the stakes snow depths and densities were
usually measured once a week throughout the melting
season. For each survey of snow depths, snow density was
measured at every tenth stake using a snow tube (Dingman,
2002, p. 174). Seven surveys were made in 2011 and eight
in 2012. Both sites represent areas smaller than the typical
catchment scale, but assessments of SWE at catchment level
are usually carried out using snow surveys of a similar
spatial scale. SCA is estimated for the sites by counting the
zero fraction of measurements. From the observed condi-
tional spatial mean of SWE and SCA, we can derive the non-
conditional values of accumulation and melt (n and u),
which is input to the snow distribution models. The output
from the models is the conditional mean, standard deviation
and SCA. Figures 2—4 show observed and estimated (by Eqns
(7-9) and (14) for the G_model) conditional mean and
standard deviation, SCA and CV for Norefjell and Filefjell.
For the G_model the parameters ap and vy are estimated
from precipitation data according to the procedure de-
scribed previously and in Skaugen and Andersen (2010).
The spatial mean and standard deviation of precipitation
were sampled for an area of 40 x 40 km? for Norefjell and
30 x 30 km? for Filefjell, and the relationships s=am” were
established. The mean of a unit was chosen to be
E(y)=m=0.1 (mm).

The parameter CV for the LN_model was calibrated to
optimize the estimation of the spatial standard deviation of
SWE. The optimal value calibrated for the 2011 season at
Filefjell was used to estimate the 2012 season.

Table 1 shows the root-mean-square error (RMSE) for the
simulated spatial mean, standard deviation, SCA and CV.
The G_model has better RMSE scores for CV than the
LN_model for all series. For spatial standard deviation and
SCA the G_model gives better RMSE scores for two of the
three series. For the spatial mean, the LN_model is better for
two of the three series. Note especially that for the Filefjell
2012 series, for which the LN_model is not calibrated, the
G_model is only slightly inferior in estimating the spatial
mean and considerably better in estimating the other
parameters (see also Figs 2—4).

Spatial distribution of snowmelt

For the 2009-12 snow seasons, attempts were made to
measure the spatial distribution of snowmelt at Filefjell. The
spatial distribution of snowmelt was estimated from differ-
ences in SWE at the stakes if consecutive measurements
showed a decline in SWE. Figure 5 presents three melt
events where we have plotted the empirical cumulative
distribution functions together with estimated gamma
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Fig. 2. Observed and simulated (by G_model and LN_model) conditional mean (a), standard deviation (b), SCA (c) and CV (d) for Norefjell.
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Fig. 3. Same as Figure 2 but for Filefjell 2011.
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Fig. 4. Same as Figure 2 but for Filefjell 2012.

distributions. The moments needed for estimating the
parameters are estimated using Eqns (3), (5) and (6), and
Egn (2) is used to estimate the parameters. Note that the
input to the estimation of the parameters is just the average
melted amount, u. When applying a Kolmogorov-Smirnov
test, we find that for 8 of the 12 observed melting events we
could not reject the hypothesis that the empirical spatial
distribution was gamma-distributed. Choosing the gamma
distribution as the melt distribution, £, is hence justified.

DISCUSSION

In Figures 2—4 we observe an increase in observed spatial
standard deviation at the onset of the melting period. For
both Norefjell and Filefjell the maximum observed standard
deviation can be seen to appear some time after the
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maximum SWE (at 15 May for Norefjell, 18 April for Filefjell
2011 and 9 May for Filefjell 2012). This feature has been
described by Pomeroy and others (2004) and Skaugen (2007)
and was dubbed the ’hysteretic’ effect of the spatial
variability of SWE by Egli and Jonas (2009) and Egli and
others (2011). The standard deviation simulated by the
G_model captures this phenomenon to some degree, in that
the highest simulated standard deviation coincides with the
observed (Norefjell and Filefjell in 2011), whereas the spatial
standard deviation of the LN_model continues to increase
after this time. If we consider the last two terms in Eqn (10)
(Egns (11) and (13)), we find that these terms regulate
whether the changes to the variance prior to the melting
event, Var,,, = % are negative or positive. At the start of the
melting season, the negative contribution of Eqn (11) is more
than compensated by Eqn (13), and the variance is increased

Table 1. RMSE for the G_model and the LN_ model. Bold values indicate the better estimate of G_model and LN_model. The LN_model for

2012 at Filefjell uses a CV calibrated using the data from 2011

Norefjell Filefjell
G_model LN_model G_model LN_model G_model LN_model
2002-03 2002-03 2011 2012 2012
Mean (mm) 25.8 104 25.9 32.9 4.2 3.71
Std dev. (mm) 12.9 15.5 5.8 11.7 33.4
SCA (fraction) 0.03 0.06 0.14 0.06 0.02 0.06
CV (SWE) 0.10 0.18 0.02 0.18 0.04 0.13
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Fig. 5. Spatial empirical and gamma cumulative distribution function for three measured melting events at Filefjell.

or stable. As the melting season proceeds, the negative
contribution increases and the total variance decreases.

Note that as a mathematical consequence the sign of the
correlation between SWE and melt comes out negative, since
otherwise the variance would never decrease. The sign of this
correlation has been debated in the literature (Faria and
others, 2000; Essery and Pomeroy, 2004; Skaugen, 2007), but
it follows from the derivation of the spatial variance of SWE in
this paper, and also from physical reasoning (that less energy
is required to melt smaller amounts of SWE), that correlation
between melt and SWE is negative.

The method proposed in this study is only parameterized
from observed spatial statistics of precipitation. Besides
showing that the spatial variability of precipitation to a large
degree determines the spatial variability of SWE, the benefit
of not having to use calibrated parameters is clearly seen in
Table 1 and Figure 4. The LN_model, calibrated on 2011
data, is clearly inferior to the G_model when simulating the
2012 season. This exercise shows that the LN_model has less
skill than the G_model when simulating a snow season for
which it is not calibrated.

To our knowledge, this is the first time the empirical
spatial distributions of snowmelt have been presented.
Figure 5 shows that a gamma distribution for snowmelt is
entirely plausible and that more intense melt gives a

https://doi.org/10.3189/2013A0G62A162 Published online by Cambridge University Press

less skewed distribution (e.g. cf. Fig. 5a and b). The
observed distributions of snowmelt thus support the
assumption that the spatial frequency distribution of melt
can also be modelled as a sum of correlated gamma-
distributed variables.

CONCLUSIONS

A method for estimating the spatial statistical moments of
SWE is proposed. Given the spatial moments, the spatial
frequency distribution for SWE can be approximated. The
distribution is dynamic in that its parameters change
according to melt and accumulation events. A statistical
model for the spatial PDF of SWE serves as the basis for
methods like the snow depletion curves, but here facilitates
an algorithm for estimating changes in SCA. The simulated
SCA compares well with observed data.

The estimated moments of SWE agree very well with
observed moments; in particular, the spatial standard devi-
ation and coefficient of variation is better modelled than by
the standard method currently used by the Norwegian
version of the HBV model.

Through the mathematical-statistical formulation of the
model, the correlation between melt and SWE is necessarily
negative. Through this result, the "hysteretic’ effect reported
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by several authors for the spatial standard deviation of SWE
is explained.

This study also presents empirical spatial distributions of
snowmelt. It is shown that the distribution can be modelled
as a sum of correlated gamma-distributed variables and
approximated by a gamma distribution.

In an ongoing study the algorithms developed for relating
the PDFs of SWE and melt to changes in SCA is used to
update the snow reservoir from satellite-derived SCA.
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