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Abstract
We establish the asymptotic expansion in 𝛽 matrix models with a confining, off-critical potential in the regime
where the support of the equilibrium measure is a finite union of segments. We first address the case where the
filling fractions of these segments are fixed and show the existence of a 1

𝑁 expansion. We then study the asymptotics
of the sum over the filling fractions to obtain the full asymptotic expansion for the initial problem in the multi-cut
regime. In particular, we identify the fluctuations of the linear statistics and show that they are approximated in law
by the sum of a Gaussian random variable and an independent Gaussian discrete random variable with oscillating
center. Fluctuations of filling fractions are also described by an oscillating discrete Gaussian random variable. We
apply our results to study the all-order small dispersion asymptotics of solutions of the Toda chain associated with
the one Hermitian matrix model (𝛽 = 2) as well as orthogonal (𝛽 = 1) and skew-orthogonal (𝛽 = 4) polynomials
outside the bulk.
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1. Introduction

This paper is concerned with the asymptotic expansion for the partition function and the multilinear
statistics of 𝛽 matrix models. These laws represent a generalisation of the joint distribution of the N
eigenvalues of the Gaussian Unitary Ensemble [Meh04]. The convergence of the empirical measure of
the eigenvalues is well known (see, for example, [dMPS95]), and we are interested in the all-order finite
size corrections to the moments of this empirical measure. Much attention has been paid to this problem
in the regime when the eigenvalues condense on a single segment, usually referred to as a one-cut
regime. In this case, a central limit theorem for linear statistics was proved by Johansson [Joh98], while
a full 1

𝑁 expansion was derived first for 𝛽 = 2 [APS01, EM03, BI05] and then for any 𝛽 > 0 in [BG11].
However, the multi-cut regime was, until recently, poorly understood at the rigorous level, except for
𝛽 = 2, which is related to integrable systems and can be treated with the powerful asymptotic analysis
techniques for Riemann–Hilbert problems; see, for example, [DKM+99b]. Nevertheless, a heuristic
derivation of the asymptotic expansion for the multi-cut regime has been proposed to leading order by
Bonnet, David and Eynard [BDE00] and extended to all orders in [Eyn09], in terms of Theta functions
and their derivatives. It features oscillatory behaviour, whose origin lies in the tunneling of eigenvalues
between the different connected components of the support. This heuristic, originally written for 𝛽 = 2,
can be trivially extended to 𝛽 > 0; see, for example, [Bor11].
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More recently, M. Shcherbina has established this asymptotic expansion up to terms of order 1
[Shc11, Shc12]. This allows us to observe, for instance, that linear statistics do not always satisfy a
central limit theorem (this fact was already noticed for 𝛽 = 2 in [Pas06]). In this work, we go beyond the
𝑂 (1) and put the heuristics of [Eyn09] to all orders on a firm mathematical ground. Our strategy is to
first study the asymptotics in the model with fixed filling fractions and then reconstruct the asymptotics
in the original model via a finite-dimensional analysis. As a consequence, we obtain a replacement for
the central limit theorem for linear statistics and for filling fractions. Besides, we treat uniformly soft
and hard edges, while [Shc12] assumed soft edges.

For 𝛽 = 2, we can establish the full asymptotic expansion outside of the bulk for the orthogonal
polynomials with real-analytic potentials and the all-order asymptotic expansion of certain solutions
of the Toda lattice in the continuum limit. The same method allows us to rigorously establish the
asymptotics of skew-orthogonal polynomials (𝛽 = 1 and 4) away from the bulk, derived heuristically in
[Eyn01]. To our knowledge, the Riemann–Hilbert analysis of skew-orthogonal polynomials is possible
in principle but is cumbersome and has not been done before, so our method provides the first proof
of these asymptotics. After this work was released, this method was extended to treat more general
Coulomb-like interactions in [BGK15]. We also note that a proof of the asymptotics up to 𝑜(1) with
𝛽 = 2 was obtained by the Riemann–Hilbert approach in the two-cuts situation in [CGMcL15] and in
the k-cut situation with 𝑘 ≥ 2 in [CFWW].

Since the first release of this work, several authors have considered asymptotic questions in the multi-
cut regime of 𝛽-ensembles. A recent approach to central limit theorems inspired by Stein’s method was
proposed in [LLW19], but it is restricted to the one-cut regime. The transport method introduced in
[BGF15] allowed the rigidity of eigenvalues [Li16] and universality [B18] in the multi-cut regime to
be established. In [BLS18], the validity of central limit theorems for linear fluctuations has also been
extended to include test functions with weaker regularity assumptions and to critical cases (and then test
functions in the range of the so-called ‘master operator’). Beyond being a source of inspiration for these
works, and the first rigorous article where Dyson–Schwinger equations were used to derive central limit
theorem in the multi-cut regime, the present article contains results that still did not appear anywhere
else, such as the asymptotics of to (skew) orthogonal polynomials and integrable systems (see Section 2),
a discussion about the relation with Chekhov–Eynard–Orantin topological recursion (see Section 1.5),
and the detailed use of precise estimates of beta ensembles with fixed filling fractions to estimate the
free energy in multi-cut models and the reconstruction of the Theta function (see Section 8). Besides,
Shcherbina derives in [Shc12] via operator methods and for soft edges an expression of the order N in
the free energy in terms of the entropy of the equilibrium measure and a universal constant. Our work
proves a similar formula both with soft and hard edges and with a different method based on complex
analysis.

Our results on the asymptotics of the partition function have been used (e.g., to study the asymptotics
of the determinant of Töplitz matrices in [Mar20, Mar21]). The ideas that we introduce to handle
the multi-cut regime are extended in a work in progress [BGG] to study the fluctuations of discrete
𝛽-ensembles appearing in random tiling models in nonsimply connected domains (with holes and/or
frozen regions).

For Coulomb gases in dimension 𝑑 > 1, carrying out the asymptotic analysis when the support
of the equilibrium measure has several connected components remains, in general, an open problem.
Some specific 𝑑 = 2, 𝛽 = 2 situations have been treated in [ACC, ACCL] relying on the determinantal
structure of these models. In general, probabilistic methods in the spirit of this article that do not rely
on integrability, and therefore could address arbitrary 𝛽 > 0 (where integrability is absent), are still
insufficiently developed.

1.1. Definitions

1.1.1. Model and empirical measure
We consider the probability measure 𝜇𝑉 ;B

𝑁 ,𝛽 on B𝑁 given by
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d𝜇𝑉 ;B
𝑁 ,𝛽 (𝜆) =

1
𝑍𝑉 ;B
𝑁 ,𝛽

𝑁∏
𝑖=1

d𝜆𝑖 1B (𝜆𝑖) 𝑒−
𝛽𝑁

2 𝑉 (𝜆𝑖 )
∏

1≤𝑖< 𝑗≤𝑁
|𝜆𝑖 − 𝜆 𝑗 |𝛽 . (1.1)

B is a finite disjoint union of closed intervals of R possibly with infinite endpoints, 𝛽 is a positive
number and 𝑍𝑉 ;B

𝑁 ,𝛽 is the partition function so that (1.1) has total mass 1. This model is usually called
the 𝛽-ensemble [Meh04, DE02, For10]. We introduce the unnormalised empirical measure 𝑀𝑁 of the
eigenvalues

𝑀𝑁 =
𝑁∑
𝑖=1

𝛿𝜆𝑖 ,

and we consider several types of statistics for 𝑀𝑁 . We sometimes denote L = diag(𝜆1, . . . , 𝜆𝑁 ).

1.1.2. Correlators
We introduce the Stieltjes transform of the n-th order moments of the empirical measure, called discon-
nected correlators:

𝑊𝑛 (𝑥1, . . . , 𝑥𝑛) = 𝜇𝑉 ;B
𝑁 ,𝛽

[( ∫
R

d𝑀𝑁 (𝜉1)
𝑥1 − 𝜉1

· · ·
∫
R

d𝑀𝑁 (𝜉𝑛)
𝑥𝑛 − 𝜉𝑛

)]
.

They are holomorphic functions of 𝑥𝑖 ∈ C \B. It is more convenient to consider the correlators to study
large N asymptotics:

𝑊𝑛 (𝑥1, . . . , 𝑥𝑛) = 𝜕𝑡1 · · · 𝜕𝑡𝑛
(

ln 𝑍
𝑉− 2

𝛽𝑁

∑𝑛
𝑖=1

𝑡𝑖
𝑥𝑖−•

;B
𝑁 ,𝛽

)���
𝑡𝑖=0

= 𝜇𝑉 ;B
𝑁 ,𝛽

[ 𝑛∏
𝑖=1

Tr
1

𝑥 𝑗 − L

]
𝑐
. (1.2)

By construction, the coefficients of their expansions as a Laurent series in the variables 𝑥𝑖 (sufficiently
large) give the n-th order cumulants of 𝑀𝑁 . If I is a set, we introduce the notation 𝑥𝐼 = (𝑥𝑖)𝑖∈𝐼 for a set
of variables indexed by I; their order will not matter as we insert them only in symmetric functions of
their variables (like𝑊𝑛,𝑊𝑛, etc.). The two types of correlators are related by

𝑊𝑛 (𝑥1, . . . , 𝑥𝑛) =
𝑛∑
𝑠=1

∑
𝐽1 �∪··· �∪𝐽𝑠=�1,𝑛�

𝑠∏
𝑖=1

𝑊 |𝐽𝑖 | (𝑥𝐽𝑖 ),

where �∪ stands for the disjoint union. If 𝜑𝑛 is an analytic (symmetric) function in n variables in a
neighbourhood of B𝑛, then the n-linear statistics can be deduced as contour integrals of the disconnected
correlators:

𝜇𝑉 ;B
𝑁 ,𝛽

[ ∑
1≤𝑖1 ,...,𝑖𝑛≤𝑁

𝜑𝑛 (𝜆𝑖1 , . . . , 𝜆𝑖𝑛 )
]
=
∮

B

d𝜉1
2i𝜋

· · ·
∮

B

d𝜉𝑛
2i𝜋

𝜑𝑛 (𝜉1, . . . , 𝜉𝑛)𝑊𝑛 (𝜉1, . . . , 𝜉𝑛). (1.3)

We remark that the knowledge of the correlators for an analytic family of potentials (𝑉𝑡 )𝑡 determines
the partition function up to an integration constant since

𝜕𝑡 ln 𝑍𝑉𝑡 ;B
𝑁 ,𝛽 = − 𝛽𝑁

2
𝜇𝑉𝑡 ;B
𝑁 ,𝛽

[ 𝑁∑
𝑖=1

𝜕𝑡𝑉𝑡 (𝜆𝑖)
]
= − 𝛽𝑁

2

∮
B

d𝜉
2i𝜋

𝜕𝑡𝑉𝑡 (𝜉)𝑊 𝑡
1 (𝜉),

where 𝑊 𝑡
1 is the first correlator in the model with potential 𝑉𝑡 , and the notation

∮
B d𝜉 · · · means

integration along a contour in C \ B surrounding B with positive orientation. If the integrand has poles
in C \ B (e.g., it depends on extra variables 𝑥𝑖 ∈ C \ B that are not integrated upon and has poles at
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𝜉 = 𝑥𝑖), the contour should be chosen (unless stated otherwise) so that the poles remain outside. The
notation should not be confused with

∫
B d𝜉 · · · , which is the Lebesgue integral on B ⊆ R.

1.1.3. Kernels
Let c be a n-tuple of nonzero complex numbers. We introduce the n-point kernels:

K𝑛,c(𝑥1, . . . , 𝑥𝑛) = 𝜇𝑉 ;B
𝑁 ,𝛽

⎡⎢⎢⎢⎢⎣
𝑛∏
𝑗=1

det𝑐 𝑗 (𝑥 𝑗 − L)
⎤⎥⎥⎥⎥⎦

=
𝑍
𝑉− 2

𝛽𝑁

∑𝑛
𝑗=1 𝑐 𝑗 ln(𝑥 𝑗−•);B

𝑁 ,𝛽

𝑍𝑉 ;B
𝑁 ,𝛽

. (1.4)

When 𝑐 𝑗 are integers, the kernels are holomorphic functions of 𝑥 𝑗 ∈ C \ B. When 𝑐 𝑗 are not integers,
the kernels are multivalued holomorphic functions of 𝑥 𝑗 in C \ B, with monodromies around the
connected components of B and around ∞. The right-hand side of (1.4), where we used ln, has the
same multivalued nature. Alternatively, both sides of (1.4) can be defined as single-valued functions of
𝑥1, . . . , 𝑥𝑛 by choosing a determination of the logarithm in a domain D of the form C \ ℓ, where ℓ is a
smooth path in C from 0 to ∞, and using 𝑧𝑐 = 𝑒𝑐 ln 𝑧 for the left-hand side.

In particular, for 𝛽 = 2, K1, (1) (𝑥) is the monic N-th orthogonal polynomial associated to the weight
1B (𝑥) 𝑒−𝑁 𝑉 (𝑥)d𝑥 on the real line, and K2, (1,−1) (𝑥, 𝑦) is the N-th Christoffel–Darboux kernel associated
to those orthogonal polynomials; see Section 2.

1.2. Equilibrium measure and multi-cut regime

By standard results of potential theory and large deviations – see [Joh98, BAG97] or the textbooks
[Dei99, Theorem 6] or [AGZ10, Theorem 2.6.1 and Corollary 2.6.3] (note there that B = R, but the
generalisation to integration over general sets B is straightforward) – we have the following:

Theorem 1.1. Assume that 𝑉 : B → R is a continuous function, and if V depends on N, assume also
that 𝑉 converges towards 𝑉 {0} when N goes to infinity in the space of continuous functions over B for
the sup norm. Moreover, for 𝜏 ∈ {±1} with 𝜏∞ ∈ B, assume that

lim inf
𝑥→𝜏∞

𝑉 {0} (𝑥)
2 ln |𝑥 | > 1.

We consider the normalised empirical measure 𝐿𝑁 = 𝑁−1 𝑀𝑁 in the space P (B) of probability
measures on B equipped with its weak topology. Then, the law of 𝐿𝑁 under 𝜇𝑉 ;B

𝑁 ,𝛽 satisfies a large
deviation principle with scale 𝑁2 and good rate function J given by

𝐽 [𝜇] = 𝐸 [𝜇] − inf
𝜈∈P (B)

𝐸 [𝜈], 𝐸 [𝜇] = 𝛽

2

∬
B2

d𝜇(𝜉)d𝜇(𝜂)
(𝑉 {0} (𝜉) +𝑉 {0} (𝜂)

2
− ln |𝜉 − 𝜂 |

)
.

(1.5)

As a consequence, 𝐿𝑁 converges almost surely and in expectation to the unique probability measure
𝜇𝑉eq on B which minimises E. 𝜇𝑉eq has compact support, denoted S. It is characterised by the existence of
a constant 𝐶𝑉 such that

∀𝑥 ∈ B, 2
∫

B
d𝜇𝑉eq (𝜉) ln |𝑥 − 𝜉 | −𝑉 {0} (𝑥) ≤ 𝐶𝑉 , (1.6)

with equality realised 𝜇𝑉eq almost surely.
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The goal of this article is to establish an all-order expansion of the partition function, the correlators
and the kernels in all such situations.

1.3. Assumptions

We will refer throughout the text to the following set of assumptions. An integer number 𝑔 ≥ 0 is fixed.

Hypothesis 1.1.

◦ (Regularity) 𝑉 : B → R is continuous, and if V depends on N, it has a limit 𝑉 {0} in the space of
continuous functions on B for the sup norm.

◦ (Confinement) For 𝜏 ∈ {±1} so that 𝜏∞ ∈ B, lim inf𝑥→𝜏∞
𝑉 (𝑥)

2 ln |𝑥 | > 1. If V depends on N, we require
its limit 𝑉 {0} to satisfy this condition.

◦ ((𝑔+1)-cut regime) The support of 𝜇𝑉eq is of the form S =
⋃𝑔

ℎ=0 Sℎ , where Sℎ = [𝛼−ℎ , 𝛼
+
ℎ] are pairwise

disjoint and 𝛼−ℎ < 𝛼
+
ℎ for any ℎ ∈ �0, 𝑔�.

◦ (Control of large deviations) The effective potential𝑈𝑉 ;B
eq (𝑥) = 𝑉 (𝑥) −2

∫
B ln |𝑥− 𝜉 |d𝜇𝑉eq (𝜉) for 𝑥 ∈ B

achieves its minimum value for 𝑥 ∈ S only.
◦ (Off-criticality) 𝜇𝑉eq has a density of the form

d𝜇𝑉eq

d𝑥
=
𝑆(𝑥)
𝜋

𝑔∏
ℎ=0

(𝛼+ℎ − 𝑥)
𝜌+ℎ/2(𝑥 − 𝛼−ℎ )

𝜌−ℎ/2, (1.7)

where 𝜌•ℎ is +1 (resp. −1) if the corresponding edge is soft (resp. hard), and 𝑆(𝑥) > 0 for 𝑥 ∈ S. Hard
edges must be boundary points of B.

Note that if 𝑉 {0} is real-analytic in a neighbourhood of B, the (𝑔 + 1)-cut regime hypothesis is always
satisfied (the support consists of a finite disjoint union of segments) and S is analytic in a neighbourhood
of S. We will hereafter say that V is regular and confining in B if it satisfies the two first assumptions
above. We will also require a stronger regularity for the potential.

Hypothesis 1.2.

◦ (Analyticity) V extends to a holomorphic function in some open neighbourhood U of S.
◦ ( 1

𝑁 expansion of the potential) There exists a sequence (𝑉 {𝑘 })𝑘≥0 of holomorphic functions in U and
constants (𝑣 {𝑘 })𝑘≥1 such that, for any 𝐾 ≥ 0,

sup
𝜉 ∈U

���𝑉 (𝜉) − 𝐾∑
𝑘=0

𝑁−𝑘 𝑉 {𝑘 } (𝜉)
��� ≤ 𝑣 {𝐾+1} 𝑁−(𝐾+1) . (1.8)

In Section 6, we shall weaken Hypothesis 1.2 by allowing complex perturbations of order 1
𝑁 and

harmonic functions instead of analytic functions.

Hypothesis 1.3. 𝑉 : B → C can be decomposed as 𝑉 = V1 + V2 where:

◦ For 𝑗 = 1, 2, V 𝑗 extends to a holomorphic function in some neighbourhood U of B. There exists a
sequence of holomorphic functions (V {𝑘 }

𝑗 )𝑘≥0 and constants (𝑣 {𝑘 }𝑗 )𝑘≥1 so that, for any 𝐾 ≥ 0,

sup
𝜉 ∈U

���V 𝑗 (𝜉) −
𝐾∑
𝑘=0

𝑁−𝑘 V {𝑘 }
𝑗 (𝜉)

��� ≤ 𝑣 {𝐾+1}
𝑗 𝑁−(𝐾+1) .

◦ 𝑉 {0} = V {0}
1 + V {0}

2 is real-valued on B.
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The topology for which we study the large N expansion of correlators is described in §5 and amounts
to controlling the (moments of order p)×𝐶 𝑝 uniformly in p for a constant 𝐶 > 0. We now describe our
strategy and announce our results.

1.4. Main result with fixed filling fractions: partition function and correlators

Before coming to the multi-cut regime, we analyse a different model where the number of 𝜆s in a small
enlargement of Sℎ is fixed. Let A =

⋃𝑔
ℎ=0 Aℎ , where Aℎ = [𝑎−ℎ , 𝑎

+
ℎ] are pairwise disjoint segments such

that 𝑎−ℎ ≤ 𝛼
−
ℎ < 𝛼

+
ℎ ≤ 𝑎

+
ℎ , where the inequalities are equalities if the corresponding edge is hard and are

strict if the corresponding edge is soft. We introduce the set

E =
{
𝝐 ∈ (0, 1)𝑔

��� 𝑔∑
ℎ=1

𝜖ℎ < 1
}
. (1.9)

If 𝑵 = (𝑁1, . . . , 𝑁𝑔) is an integer vector such that 𝝐 = 𝑵
𝑁 ∈ E , we denote 𝑁0 = 𝑁 −

∑𝑔
ℎ=1 𝑁ℎ and

consider the probability measure on
∏𝑔

ℎ=0 A𝑁ℎ

ℎ :

d𝜇𝑉 ;A
𝑁 ,𝛽;𝝐 (𝝀) =

1
𝑍𝑉 ;A
𝑁 ,𝛽;𝝐

𝑔∏
ℎ=0

[ 𝑁ℎ∏
𝑖=1

d𝜆ℎ,𝑖 1Aℎ (𝜆ℎ,𝑖) 𝑒−
𝛽𝑁

2 𝑉 (𝜆ℎ,𝑖 )
∏

1≤𝑖< 𝑗≤𝑁
|𝜆ℎ,𝑖 − 𝜆ℎ, 𝑗 |𝛽

]
×

∏
0≤ℎ<ℎ′ ≤𝑔

∏
1≤𝑖≤𝑁ℎ

1≤𝑖′ ≤𝑁ℎ′

|𝜆ℎ,𝑖 − 𝜆ℎ′,𝑖′ |𝛽 . (1.10)

The empirical measure 𝑀𝑁 and the correlators 𝑊𝑛;𝑵/𝑁 (𝑥1, . . . , 𝑥𝑛) for this model are defined as in
§1.1 with 𝜇𝑉 ;A

𝑁 ,𝛽 replaced by 𝜇𝑉 ;A
𝑁 ,𝛽;𝑵/𝑁 . We call 𝜖ℎ = 𝑁ℎ

𝑁 the filling fraction of Aℎ . It follows from the
definitions that ∮

Aℎ

d𝜉
2i𝜋

𝑊𝑛;𝑵/𝑁 (𝜉, 𝑥2, . . . , 𝑥𝑛) = 𝛿𝑛,1 𝑁ℎ = 𝛿𝑛,1 𝑁𝜖ℎ (1.11)

for 𝑥2, . . . , 𝑥𝑛 ∈ C \ A. Indeed, from the definition of the correlators (1.2), 𝑊𝑛;𝑵/𝑁 (𝑥1, 𝑥2, . . . , 𝑥𝑛) for
𝑛 ≥ 2 can be expressed as a sum of products of moments of products of the n-tuple of random variables( ∑𝑁

𝑖=1
1

𝑥 𝑗−𝜆𝑖 − 𝜇
𝑉 ;A
𝑁 ,𝛽;𝝐 [

∑𝑁
𝑖=1

1
𝑥 𝑗−𝜆𝑖 ]

)𝑛
𝑗=1 which are linear in each of these variables. Therefore, we can

integrate over the variable 𝑥1 in each of these terms by Fubini’s theorem. The key observation is that∮
Aℎ

∑𝑁
𝑖=1

d𝜉
2i𝜋

1
𝜉−𝜆𝑖 is the number 𝑁ℎ of 𝜆𝑖s belonging to Aℎ . Since 𝑁ℎ is deterministic in the fixed filling

fraction model, it is equal to its expectation, and therefore, each of these terms vanish which implies
(1.11) for 𝑛 ≥ 2. When 𝑛 = 1, the cumulant is simply equal to the expectation of

∑𝑁
𝑖=1

1
𝜉−𝜆𝑖 , and the

previous remark proves (1.11).
We will refer to (1.1) as the initial model and to (1.10) as the model with fixed filling fractions.

Standard results from potential theory or a straightforward generalisation of [AGZ10, Theorem 2.6.1
and Corollary 2.6.3] imply the following:

Theorem 1.2. Assume V regular and confining on A. We consider the normalised empirical measures
𝐿𝑁 ,ℎ = 1

𝑁ℎ

∑𝑁ℎ

𝑖=1 𝛿𝜆ℎ,𝑖 ∈ P (Aℎ) for ℎ ∈ �0, 𝑔�. Take a sequence 𝑵 = (𝑁1, . . . , 𝑁𝑔) of g-tuple of
integers, indexed by N, such that

∑𝑔
ℎ=1 𝑁ℎ ≤ 𝑁 , and such that 𝑵/𝑁 converges to a given 𝝐 ∈ E when

𝑁 →∞. Then, the law of (𝐿𝑁 ,ℎ)0≤ℎ≤𝑔 under 𝜇𝑉 ;A
𝑁 ,𝛽;𝑵/𝑁 satisfies a large deviation principle with scale

𝑁2 and good rate function

𝐽𝝐 [𝜇0, . . . , 𝜇𝑔] = 𝐸
[ 𝑔∑
ℎ=0

𝜖ℎ𝜇ℎ

]
− inf

𝜈ℎ ∈P (Aℎ)
𝐸
[ 𝑔∑
ℎ=0

𝜖ℎ𝜈ℎ

]
,
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where 𝜖0 = 1 −
∑𝑔

ℎ=1 𝜖ℎ , 𝑁0 = 𝑁 −
∑𝑔

ℎ=1 𝑁ℎ and E is defined in Equation (1.5). As a consequence,
the empirical measure 𝐿𝑁 ;𝝐 =

∑𝑔
ℎ=0

𝑁ℎ

𝑁 𝐿𝑁 ,ℎ converges almost surely and in expectation towards the
unique probability measure 𝜇𝑉 ;A

eq;𝝐 on A which minimises E among probability measures with fixed mass
𝜖ℎ on Aℎ for any ℎ ∈ �0, 𝑔�. It is characterised by the existence of constants 𝐶𝑉 ,A

𝝐 ,ℎ such that

∀ℎ ∈ �0, 𝑔�, ∀𝑥 ∈ Aℎ , 2
∫

B
d𝜇𝑉 ;A

eq;𝝐 (𝜉) ln |𝑥 − 𝜉 | −𝑉 {0} (𝑥) ≤ 𝐶𝑉 ;A
𝝐 ,ℎ , (1.12)

with equality realised 𝜇𝑉 ;A
eq;𝝐 almost surely. 𝜇𝑉 ;A

eq;𝝐 can be decomposed as a sum of positive measures 𝜇𝑉eq;𝝐 ,h
having compact support in Aℎ , denoted S𝝐 ,ℎ . Moreover, if 𝑉 {0} is real-analytic in a neighbourhood of
A, the support S𝝐 ,ℎ consists of a finite union of segments.

Later in the text, we shall consider 𝜇𝑉 ;A
eq;𝑵/N with 𝑵 = (𝑁1, . . . , 𝑁𝑔) a vector of positive integers so that∑𝑔

ℎ=1 𝑁ℎ < 𝑁: this will denote the unique solution of (1.12) with 𝝐 = 𝑵/𝑁 . 𝜇𝑉 ;A
eq appearing in Theorem

1.1 coincides with 𝜇𝑉eq;𝝐★ for the optimal value 𝝐★ = (𝜇𝑉 ;A
eq (Aℎ))1≤ℎ≤𝑔, and in this case, S𝝐★,ℎ is actually

the segment [𝛼−ℎ , 𝛼
+
ℎ]. The key point – justified in Appendix 1 – is that, for 𝝐 close enough to 𝝐★, the

support S𝝐 ,ℎ remains connected, and the model with fixed filling fractions enjoys a 1
𝑁 expansion.

Theorem 1.3. If V satisfies Hypotheses 1.1 and 1.3 on A, there exists 𝑡 > 0 such that, uniformly for
integers 𝑵 = (𝑁1, . . . , 𝑁𝑔) such that 𝑵/𝑁 ∈ E and |𝑵/𝑁 − 𝝐★ |1 < 𝑡, we have an expansion for the
correlators, for any 𝐾 ≥ 0,

𝑊𝑛;𝑵/𝑁 (𝑥1, . . . , 𝑥𝑛) =
𝐾∑

𝑘=𝑛−2
𝑁−𝑘𝑊 {𝑘 }

𝑛;𝑵/𝑁 (𝑥1, . . . , 𝑥𝑛) +𝑂 (𝑁−(𝐾+1) ). (1.13)

Up to a fixed 𝑂 (𝑁−(𝐾+1) ) and for a fixed n, Equation (1.13) holds uniformly for 𝑥1, . . . , 𝑥𝑛 in compact
regions of C \ A. The𝑊 {𝑘 }

𝑛;𝝐 can be extended into smooth functions of 𝝐 ∈ E close enough to 𝝐★.

We prove this theorem, independently of the nature soft/hard of the edges, in Section 5 for real-
analytic potential (i.e., Hypothesis 1.2 instead of 1.3). For 𝛽 = 2 and potential V independent of N, the
coefficients of expansion 𝑊 {𝑘 }

𝑛;𝑵/𝑁 = 0 are zero for 𝑘 = (𝑛 + 1) mod2, as is well known for hermitian
random matrix models (see (1.16) and the remarks on 𝛽-dependence in Section 1.5). The result is
extended to harmonic potentials (i.e., Hypothesis 1.3) in Section 6.1. In Proposition 5.6, we provide an
explicit control of the errors in terms of the distance of 𝑥1, . . . , 𝑥𝑘 to A, and its proof makes clear that
the expansion of the correlators is not expected to be uniform for 𝑥1, . . . , 𝑥𝑛 chosen in a compact of
C \ A independently of n and K (namely, it is uniform only for K fixed). Note that we will sometimes
omit to specify the dependence in A, 𝑉 , etc. in the notations (e.g., for the equilibrium measure, for the
correlators and their coefficient of expansions), but we will at least include it when this dependence is
of particular importance.

We then compute in Section 7 the expansion of the partition function, thanks to the expansion of
𝑊1;𝑵/𝑁 and 𝑊2;𝑵/𝑁 , by an interpolation that reduces the strength of pairwise interactions between
eigenvalues in different segments while preserving the equilibrium measure. At the end of the inter-
polation, we are left with a product of (𝑔 + 1) partition functions in a one-cut regime, for which the
asymptotic expansion was established in [BG11].

Theorem 1.4. If V satisfies Hypotheses 1.1 and 1.3 on A, there exists 𝑡 > 0 such that, uniformly for
g-dimensional vectors of positive integers 𝑵 such that 𝑵/𝑁 ∈ E and |𝑵/𝑁 − 𝝐★ |1 < 𝑡, we have for any
𝐾 ≥ 0,

𝑁! 𝑍𝑉 ;A
𝑁 ,𝛽;𝑵/𝑁∏𝑔
ℎ=0 𝑁ℎ!

= 𝑁
𝛽
2 𝑁+𝜘 exp

( 𝐾∑
𝑘=−2

𝑁−𝑘 𝐹 {𝑘 };𝑉
𝛽;𝑵/𝑁 +𝑂 (𝑁−(𝐾+1) )

)
, (1.14)

https://doi.org/10.1017/fms.2023.129 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.129


Forum of Mathematics, Sigma 9

with

𝜘 =
1
2
+ (#soft + 3#hard) −3 + 𝛽/2 + 2/𝛽

24
.

Besides, 𝐹 {𝑘 };𝑉𝛽;𝝐 extends to a smooth function of 𝝐 close enough to 𝝐★, and at the value 𝝐 = 𝝐★, the first
derivatives of 𝐹 {−2};𝑉

𝛽;𝝐 vanish and its Hessian is negative definite.
We can identify explicitly the following:

𝐹 {−2};𝑉
𝛽;𝝐 =

𝛽

2

(∬
A2

ln |𝑥 − 𝑦 | d𝜇𝑉eq;𝝐 (𝑥)d𝜇𝑉eq;𝝐 (𝑦) −
∫

A
𝑉 {0} (𝑥)d𝜇𝑉eq;𝝐 (𝑥)

)
= − 𝛽

2
inf

𝜈ℎ ∈P (Aℎ)
𝐸
[ 𝑔∑
ℎ=0

𝜖ℎ𝜈ℎ

]
,

𝐹 {−1};𝑉
𝛽;𝝐 = − 𝛽

2

∫
A
𝑉 {1} (𝑥)d𝜇𝑉eq;𝝐 (𝑥) +

(
1 − 𝛽

2

) (
Ent[𝜇𝑉eq;𝝐 ] − ln

( 𝛽
2
) )
+ 𝛽

2
ln
( 2𝜋
𝑒

)
− ln Γ

( 𝛽
2
)
, (1.15)

where

Ent[𝜇] = −
∫
R

ln
(d𝜇

d𝑥

)
d𝜇(𝑥)

is the entropy. The formula for 𝐹 {−2};𝑉
𝛽;𝝐 is obvious from potential theory, while the formula for 𝐹 {−1};𝑉

𝛽;𝝐
is established in Proposition 7.1 (the first term comes from the fact that we let the potential depend on
N). The appearance of the entropy in the term of order N in the free energy is well known in the one-cut
case, and here we prove that it appears in the same way for the multi-cut case with fixed filling fractions,
and we determine the additional constant. The term 𝛽

2 𝑁 ln 𝑁 is universal, while the term 𝜘 ln 𝑁 only
depends only on the nature of the endpoints of the support. These logarithmic corrections can already be
observed in the asymptotic expansion of Selberg integrals for large N computing the partition function
of the classical Jacobi, Laguerre or Gaussian 𝛽-ensembles, corresponding to a one-cut regime [BG11].
The fact that the coefficient of ln 𝑁 shadows in some way the geometry of the support was observed in
other contexts (see, for example, [CP88]) and is not specific to two-dimensional Coulomb gases living on
a line. Their identification in the multi-cut regime and fixed filling fractions results from an interpolation
with a product of one such model for each cut, which changes only the coefficients of powers of N. Up
to a given 𝑂 (𝑁−𝐾 ), all expansions are uniform with respect to the parameters of the potential and of
𝝐 chosen in a compact set so that the assumptions hold. Theorems 1.3–1.4 are the generalisations to
the fixed filling fractions model of our earlier results about existence of the 1

𝑁 expansion in the one-cut
regime [BG11] (see also [Joh98, APS01, EM03, BI05, GMS07, KS10] for earlier results concerning
the one-cut regime in 𝛽 = 2 or general 𝛽-ensembles).

1.5. Relation with Chekhov–Eynard–Orantin topological recursion

Once these asymptotic expansions are shown to exist, by consistency, their coefficients 𝑊 {𝑘 }
𝑛;𝝐 are

computed by the 𝛽 topological recursion of Chekhov and Eynard [CE06]. As a matter of fact, the
asymptotic expansion

𝑊𝑛;𝝐 (𝑥1, . . . , 𝑥𝑛) =
∑
𝑘≥−1

𝑁−𝑘𝑊 {𝑘 }
𝑛;𝝐 (𝑥1, . . . , 𝑥𝑛)

has a finer structure so that for 𝑛 ≥ 1 and 𝑘 ≥ −1, we can write

𝑊 {𝑘 }
𝑛;𝝐 (𝑥1, . . . , 𝑥𝑛) =

� 𝑘−𝑛2 �+1∑
𝐺=0

( 𝛽
2

)1−𝑛−𝐺 (
1 − 2

𝛽

) 𝑘+2−2𝐺−𝑛
W [𝐺,𝑘+2−2𝐺−𝑛]

𝑛;𝝐 (𝑥1, . . . , 𝑥𝑛), (1.16)

where W [𝐺,𝑙]
𝑛;𝝐 are the quantities computed by the topological recursion of [CE06]. The initial data

consists of the nondecaying terms in the correlators – namely,
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𝑊 {−1}
1;𝝐 (𝑥) = W [0,0]

1;𝝐 (𝑥),

𝑊 {0}
1;𝝐 (𝑥) =

(
1 − 2

𝛽

)
W [0,1]

1;𝝐 (𝑥),

𝑊 {0}
2;𝝐 (𝑥1, 𝑥2) =

2
𝛽
W [0,0]

2;𝝐 (𝑥1, 𝑥2).

All these quantities have an analytic continuation in the variables 𝑥𝑖 on the same Riemann surface C𝝐
called spectral curve. The curve C𝝐 can, in fact, be defined as the maximal Riemann surface on which
𝑊 {−1}

1;𝝐 (𝑥), initially defined for 𝑥 ∈ C\A, admits an analytic continuation (cf. Section 1.7 for a continued
discussion on geometry of spectral curves). The information carried by the decomposition (1.16) is that,
if V is chosen independent of 𝛽 and N, all the W [𝐺,𝐾 ]

𝑛;𝝐 are also independent of 𝛽 and N (except perhaps
through the implicit dependence in N of 𝝐), and thus, the coefficients of the expansions of the correlators
display a remarkable structure of Laurent polynomial in 𝛽

2 . This property comes from the structure of
the Dyson–Schwinger equations.

From the same initial data, Chekhov and Eynard also define numbers𝑊 [𝐺,𝐾 ]
0;𝝐 = F [𝐺,𝐾 ]

𝝐 , which give
the coefficients of the asymptotic expansion of the free energy ln 𝑍𝑉 ;A

𝑁 ,𝛽;𝑵/𝑁 up to an integration constant
independent of the potential, and which are independent of 𝛽 provided V is chosen independent of 𝛽.
More precisely, we mean that for any two potentials V and 𝑉̃ satisfying the assumptions of Theorem 1.4
and leading to a (𝑔 + 1)-cut regime, we must have for 𝑘 ≥ −2, by consistency with [CE06],

𝐹 {𝑘 };𝑉𝛽;𝝐 − 𝐹 {𝑘 };𝑉̃𝛽;𝝐 =
� 𝑘2 �+1∑
𝐺=0

( 𝛽
2

)1−𝐺 (
1 − 2

𝛽

) 𝑘+2−2𝐺 (
F [𝐺,𝑘+2−2𝐺 ];𝑉
𝝐 − F [𝐺,𝑘+2−2𝐺 ];𝑉̃

𝝐

)
.

In particular, the topological recursion defines F [0,0];𝑉
𝝐 = 𝐸 [𝜇𝑉eq;𝝐 ] and F [0,1];𝑉

𝝐 = −Ent[𝜇𝑉eq;𝝐 ]. By
comparison with (1.15), we arrive to an absolute comparison (here, assume the potential to be indepen-
dent of N – i.e., 𝑉 = 𝑉 {0}):

𝐹 {−2};𝑉
𝛽;𝝐 =

𝛽

2
F [0,0];𝑉
𝝐 ,

𝐹 {−1};𝑉
𝛽;𝝐 =

𝛽

2

(
1 − 2

𝛽

) (
F [0,1];𝑉
𝝐 + ln

( 𝛽
2
) )
+ 𝛽

2
ln
( 2𝜋
𝑒

)
− ln Γ

( 𝛽
2
)
. (1.17)

The constant in the second line was not computed in [CE06]. To our knowledge, the absolute – including
a 𝛽-dependent, possibly g-dependent but otherwise V-independent constant – comparison between the
coefficients 𝐹 {𝑘 };𝑉𝛽;𝝐 of the asymptotic expansion of the 𝛽-ensembles and the invariants F [𝐺,𝑚] for
(𝐺, 𝑚) ≠ (0, 0), (0, 1) produced by the topological recursion has not been performed in full generality.
It is only known for 𝛽 = 2 for all G in the one-cut regime; see [Mar17, Proposition 2.5].

When 𝛽 = 2, only W [𝐺 ]
𝑛;𝝐 = W [𝐺,0]

𝑛;𝝐 and F [𝐺 ]
𝝐 = F [𝐺,0]

𝝐 appear. These are the quantities defined
by the Chekhov–Eynard–Orantin topological recursion [EO07], and we retrieve the usual asymptotic
expansions

W𝑛;𝝐 (𝑥1, . . . , 𝑥𝑛) =
∑
𝐺≥0

𝑁2−2𝐺−𝑛 W [𝐺 ]
𝑛;𝝐 (𝑥1, . . . , 𝑥𝑛),

ln
( 𝑍𝑉 ;A

𝑁 ,𝛽;𝝐

𝑍 𝑉̃ ;A
𝑁 ,𝛽;𝝐

)
=
∑
𝐺≥0

𝑁2−2𝐺 (F [𝐺 ];𝑉
𝝐 − F [𝐺 ];𝑉̃

𝝐

)
,

involving only powers of 1
𝑁 with parity (−1)𝑛 in the n-point correlators and powers of 1

𝑁 2 in the free
energy.
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1.6. Main results in the multi-cut regime: partition function

Let us come back to the initial model (1.1). We can always take A =
⋃𝑔

ℎ=0 Aℎ ⊆ B to be a small
enlargement of the support S respecting the setup of §1.4. It is indeed well known that the partition
function 𝑍𝑉 ;B

𝑁 ,𝛽 can be replaced by 𝑍𝑉 ;A
𝑁 ,𝛽 up to exponentially small corrections when N is large (see [PS11,

BG11] for results in this direction, and we give a proof for completeness in §3.1 below). The latter can be
decomposed as a sum over all possible ways of distributing the 𝜆s between the segments Aℎ – namely,

𝑍𝑉 ;A
𝑁 ,𝛽 =

∑
𝑁0 ,...,𝑁𝑔≥0∑𝑔

ℎ=0 𝑁ℎ=𝑁

𝑁!∏𝑔
ℎ=0 𝑁ℎ!

𝑍𝑉 ;A
𝑁 ,𝛽;𝑵/𝑁 , (1.18)

where we have denoted 𝑁0 = 𝑁 −
∑𝑔

ℎ=1 𝑁ℎ the number of 𝜆s put in the segment A0. So we can use our
results for the model with fixed filling fractions to analyse the asymptotic behaviour of each term in
the sum and then find the asymptotic expansion of the sum taking into account the interference of all
contributions. This is carried out in Section 8.1.

Before stating the results, we need two ingredients. First, we let ℨ𝑉 ;A
𝑁 ,𝛽;𝝐 be the (truncated at an

arbitrary order K) asymptotic series depending on a g-dimensional vector with positive entries, at least
when its coefficients are defined:

ℨ𝑉 ;A
𝑁 ,𝛽;𝝐 = 𝑁

𝛽
2 𝑁+𝜘 exp

( 𝐾∑
𝑘=−2

𝑁−𝑘 𝐹 {𝑘 };𝑉𝛽;𝝐 +𝑂 (𝑁−(𝐾+1) )
)
. (1.19)

If we substitute 𝝐 = 𝑵/𝑁 as in Theorem 1.4, it gives the asymptotic expansion of the partition function
of the fixed filling fractions model with unordered eigenvalues, and we recall that 𝐹 {𝑘 };𝑉𝛽;𝝐 exists as
a smooth function of 𝝐 in some non-empty open set. We shall denote (𝐹 {𝑘 };𝑉𝛽;𝝐 ) ( 𝑗) the tensor of j-th
derivatives with respect to 𝝐 .

Second, we introduce the Siegel Theta function with characteristics 𝝁, 𝝂 ∈ C𝑔. If 𝝉 is a symmetric
𝑔 × 𝑔 matrix of complex numbers such that Im 𝝉 > 0, the Siegel Theta function is the entire function of
𝒗 ∈ C𝑔 defined by the exponentially fast converging series

𝜗

[
𝝁
𝝂

]
(𝒗 |𝝉) =

∑
𝒎∈Z𝑔

exp
(
i𝜋(𝒎 + 𝝁) · 𝝉 · (𝒎 + 𝝁) + 2i𝜋(𝒗 + 𝝂) · (𝒎 + 𝝁)

)
. (1.20)

Among its essential properties, we mention the following:

◦ for any characteristics 𝝁, 𝝂, it satisfies the diffusion-like equation 4i𝜋𝜕𝜏ℎ,ℎ′𝜗 = 𝜕𝑣ℎ𝜕𝑣ℎ′𝜗.
◦ it is a quasi-periodic function with lattice Z𝑔 ⊕ 𝝉(Z𝑔): for any 𝒎0, 𝒏0 ∈ Z𝑔,

𝜗

[
𝝁
𝝂

]
(𝒗 + 𝒎0 + 𝝉 · 𝒏0 |𝝉) = exp

(
2i𝜋𝒎0 · 𝝁 − 2i𝜋𝒏0 · (𝒗 + 𝝂) − i𝜋𝒏0 · 𝝉 · 𝒏0

)
𝜗

[
𝝁
𝝂

]
(𝒗 |𝝉).

◦ it has a nice transformation law under 𝝉 → (𝑨𝝉 + 𝑩) (𝑪𝝉 + 𝑫)−1, where 𝑨, 𝑩,𝑪, 𝑫 are the 𝑔 × 𝑔
blocks of a 2𝑔 × 2𝑔 symplectic matrix [Mum84].

◦ when 𝝉 is the matrix of periods of a genus g Riemann surface, it satisfies the Fay identity [Fay70].

We define the gradient operator ∇𝒗 acting on the variable 𝒗 of this function. For instance, the diffusion
equation takes the form 4i𝜋𝜕𝝉𝜗 = ∇⊗2

𝒗 𝜗.

Theorem 1.5. Assume Hypotheses 1.1 and 1.3. Let 𝝐★ = (𝜇𝑉eq [Sℎ])1≤ℎ≤𝑔 – we shall replace all indices
𝝐 by ★ in our notations to indicate a specialisation at 𝝐 = 𝝐★. Then, the partition function has an
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asymptotic expansion of the form, with C = B or A, for any 𝐾 ≥ −2,

𝑍𝑉 ;C
𝑁 ,𝛽 = ℨ𝑉 ;A

𝑁 ,𝛽;★

{( 𝐾∑
𝑘=0

𝑁−𝑘 𝑇 {𝑘 }𝛽;★
[ ∇𝒗

2i𝜋
] )
𝜗

[
−𝑁𝝐★

0

]
(𝒗𝛽;★ |𝝉𝛽;★) +𝑂 (𝑁−(𝐾+1) )

}
. (1.21)

In this expression, ℨ𝑉 ;A
𝑁 ,𝛽;★ is the asymptotic series defined in Equation (1.19) and evaluated at 𝝐 = 𝝐★.

If 𝑿 is a vector with g components, we set 𝑇 {0}𝛽;𝝐 [𝑿] = 1, and for 𝑘 ≥ 1,

𝑇 {𝑘 }𝛽;𝝐 [𝑿] =
𝑘∑

𝑟=1

1
𝑟!

∑
𝑘1 ,...,𝑘𝑟 ≥−2
𝑗1 ,..., 𝑗𝑟>0
𝑘𝑖+ 𝑗𝑖>0∑𝑟
𝑖=1 𝑘𝑖+ 𝑗𝑖=𝑘

( 𝑟⊗
𝑖=1

(𝐹 {𝑘𝑖 };𝑉𝛽;𝝐 ) ( 𝑗𝑖)

𝑗𝑖!

)
· 𝑿⊗(

∑𝑟
𝑖=1 𝑗𝑖 ) , (1.22)

where · denotes the standard scalar product on the tensor space. We have also introduced

𝒗𝛽;★ =
(𝐹 {−1};𝑉

𝛽;★ )′

2i𝜋
, 𝝉𝛽;★ =

(𝐹 {−2};𝑉
𝛽;★ )′′

2i𝜋
.

Being more explicit but less compact, we may rewrite

𝑇 {𝑘 }𝛽;★
[ ∇𝒗

2i𝜋
]
𝜗

[
−𝑁𝝐★

0

]
(𝒗𝛽;★ |𝝉𝛽;★) =

𝑘∑
𝑟=1

1
𝑟!

∑
𝑘1 ,...,𝑘𝑟 ≥−2
𝑗1 ,..., 𝑗𝑟>0
𝑘𝑖+ 𝑗𝑖>0∑𝑟
𝑖=1 𝑘𝑖+ 𝑗𝑖=𝑘

( 𝑟⊗
𝑖=1

(𝐹 {𝑘𝑖 };𝑉𝛽;★ ) ( 𝑗𝑖)

𝑗𝑖!

)

·
( ∑
𝒎∈Z𝑔

(𝒎 − 𝑁𝝐★)⊗(
∑𝑟

𝑖=1 𝑗𝑖 ) 𝑒i𝜋 ·𝝉𝜷;★ · (𝒎−𝑁 𝝐★)⊗2+2i𝜋𝒗𝛽;★ · (𝒎−𝑁 𝝐★)
)
.

(1.23)

For 𝛽 = 2, this result has been derived heuristically to leading order in [BDE00] and to all orders
in [Eyn09]. These heuristic arguments can be extended straightforwardly to all values of 𝛽; see, for
example, [Bor11]. Our work justifies their heuristic argument. To prove this result, we exploit the Dyson–
Schwinger equations for the 𝛽-ensemble with fixed filling fractions taking advantage of a rough control
on the large N behaviour of the correlators. The result of Theorem 1.5 has been derived up to 𝑜(1) by
Shcherbina [Shc12] for real-analytic potentials, with different techniques, based on the representation
of
∏

ℎ<ℎ′
∏

𝑖, 𝑗 |𝜆ℎ,𝑖 − 𝜆ℎ′, 𝑗 |𝛽 , which is the exponential of a quadratic statistic, as expectation value of
a linear statistics coupled to a Brownian motion. The rough a priori controls on the correlators do not
allow at present the description of the 𝑜(1) by such methods. The results in [Shc12] were also written
in a different form: 𝐹 {0};𝑉𝛽;𝝐 appearing in ℨ was identified with a combination of Fredholm determinants
(see also the physics paper [WZ06]), while this representation does not come naturally in our approach.
Also, the steps undertaken in Section 8 where we replace the sum over nonnegative integers such that
𝑁0 + · · · + 𝑁𝑔 = 𝑁 in Equation (1.18), by a sum over 𝑵 ∈ Z𝑔, thus reconstructing the Siegel Theta
function, was not performed in [Shc12].

The 2i𝜋 appears because we used the standard definition of the Siegel Theta function,and should not
hide the fact that all terms in Equation (1.23) are real-valued. Here, the matrix

𝝉𝛽;★ =
Hessian(𝐹 {−2};𝑉

𝛽;𝝐 )
��
𝝐=𝝐★

2i𝜋
(1.24)

involved in the Theta function has purely imaginary entries, and Im 𝝉𝛽;★ is definite positive according
to Theorem 1.4; hence, the Theta function in the right-hand side makes sense. Notice also that for it is
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Z
𝑔-periodic with respect to 𝝁; hence, we can replace −𝑁𝝐★ by −𝑁𝝐★ + �𝑁𝝐★�, and this is responsible

for modulations in the asymptotic expansion, and thus breakdown of the 1
𝑁 expansion. Still, the model

has ‘subsequential’ asymptotic expansions in 1
𝑁 . For instance, for an even potential with two cuts

(𝑔 = 1) model, we have 𝜖★ = 1
2 , so (−𝑁𝜖★ mod Z) appearing as characteristic in the Theta function

only depends on the parity of N, and for each fixed parity, we get an asymptotic expansion in 1
𝑁 . In fact,

having an even potential implies that the fixed-filling fraction model is invariant under 𝜖 → 1 − 𝜖 , so
only the terms with even numbers 𝑗𝑖 of derivatives with respect to filling fractions contribute in 𝑇 {𝑘 }𝛽;𝝐 .
If, furthermore, 𝛽 = 2, only the (𝐹 {𝑘 };𝑉𝛽=2;★ )

( 𝑗) with k even survive, and we deduce that the same is true for
𝑇 {𝑘 }𝛽=2;★, so that the logarithm of the partition function has an asymptotic expansion in 1

𝑁 2 for N odd and
different asymptotic expansion in 1

𝑁 2 for N even (of course, up to the universal logarithmic corrections
𝛽
2 𝑁 ln 𝑁 + 𝜘 ln 𝑁).

Let us give the two first orders of Equation (1.23):

𝑇 {1}𝛽;★ [𝑿] =
1
6
(𝐹 {−2};𝑉

𝛽;★ )′′′ · 𝑿⊗3 + 1
2
(𝐹 {−1};𝑉

𝛽;★ )′′ · 𝑿⊗2 + (𝐹 {0};𝑉𝛽;★ )′ · 𝑿,

and:

𝑇 {2}𝛽;★ [𝑿] =
1

72
[
(𝐹 {−2};𝑉

𝛽;★ )′′′
] ⊗2 · 𝑿⊗6 + 1

12
[
(𝐹 {−2};𝑉

𝛽;★ )′′′ ⊗ (𝐹 {−1};𝑉
𝛽;★ )′′

]
· 𝑿⊗5

+
(1
6
[
(𝐹 {−2};𝑉

𝛽;★ )′′′ ⊗ (𝐹 {0};𝑉𝛽;★ )′
]
+ 1

8
[
(𝐹 {−1};𝑉

𝛽;★ )′′
] ⊗2 + 1

24
(𝐹 {−2};𝑉

𝛽;★ ) (4)
)
· 𝑿⊗4

+
(1
2
[
(𝐹 {−1};𝑉

𝛽;★ )′′ ⊗ (𝐹 {0};𝑉𝛽;★ )′
]
+ 1

6
(𝐹 {−1};𝑉

𝛽;★ )′′′
)
· 𝑿⊗3

+
(1
2
[
(𝐹 {0};𝑉𝛽;★ )′

] ⊗2 + 1
2
(𝐹 {0};𝑉𝛽;★ )′′

)
· 𝑿⊗2 + (𝐹 {1};𝑉𝛽;★ )′ · 𝑿 .

For 𝛽 = 2, unlike the one-cut regime where the asymptotic expansion was in 1
𝑁 2 up to constants

independent of the potential, the multi-cut regime features an asymptotic expansion with nontrivial
terms in powers of 1

𝑁 . For instance, we have a contribution at order 1
𝑁 of

𝑇 {1}𝛽=2;★[𝑿] =
1
6
(𝐹 {−2};𝑉

𝛽=2;★ )′′′ · 𝑿⊗3 + (𝐹 {0};𝑉𝛽=2;★ )
′ · 𝑿 .

In a two-cuts regime (𝑔 = 1), a sufficient condition for all terms of order 𝑁−(2𝑘+1) to vanish (again, up
to integration constants already present in ℨ) is that 𝜖★ = 1

2 and 𝑍𝑉 ;A
𝑁 ,𝛽=2;𝜖 = 𝑍𝑉 ;A

𝑁 ,𝛽=2;1−𝜖 , for the same
reasons that we mentioned for the case of an even potential with two cuts. In such a case, we have an
expansion in powers of 1

𝑁 2 for the partition function, whose coefficients depend on the parity of N. In
general, we also observe that 𝒗𝛽=2;★ = 0 (i.e., Thetanullwerten appear in the expansion).

Using the fact that the n-th correlator is the n-derivative of the free energy of the partition function
for a perturbed potential or order 1/𝑁 , and our asymptotic results are uniform for small perturbations
of this kind, it is pure algebra to derive from (1.5) an asymptotic expansion for the correlators 𝑊𝑛 for
the initial model in the multi-cut regime. For 𝛽 = 2, the resulting expression can be found, for instance,
in [BE11, Section 6.2] up to 𝑂 ( 1

𝑁 ) and a systematic diagrammatic for all orders is given in [BE12,
Appendix A]. This can be straightforwardly extended to the 𝛽 ≠ 2 case simply by including half-integer
genera g (in our conventions, k not having fixed parity).

1.7. Comments relative to the geometry of the spectral curve

We now stress facts from the theory of the topological recursion [CE06, EO07] which are relevant in the
present case – for further details on the geometry compact Riemann surfaces, see, for instance, [Eyn18].
When V is a polynomial and 𝝐 is close enough to 𝝐★, the density of the equilibrium measure can be
analytically continued to a hyperelliptic curve of genus g, denoted C𝝐 (the spectral curve). Its equation is
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𝑦2 =
𝑔∏

ℎ=0
(𝑥 − 𝛼−𝝐 ,ℎ) (𝑥 − 𝛼

+
𝝐 ,ℎ), (1.25)

and C𝝐 is the compactification of the locus of such (𝑥, 𝑦) obtained by adding the two points at ∞,
where 𝑦 ∼ 𝑥𝑔+1 (first sheet) and 𝑦 ∼ −𝑥𝑔+1 (second sheet). Let Aℎ be the cycle in C𝝐 surrounding
A𝝐 ,ℎ = [𝛼−𝝐 ,ℎ , 𝛼

+
𝝐 ,ℎ]. The family A = (Aℎ)1≤ℎ≤𝑔 can be completed by a family of cycles B so that

(A,B) is a symplectic basis of homology of C𝝐 . More precisely, the cycle Bℎ travels from 𝛼−𝝐 ,ℎ to
𝛼+𝝐 ,ℎ−1 in the second sheet and 𝛼+𝝐 ,ℎ−1 to 𝛼−𝝐 ,ℎ in the first sheet. The correlators𝑊 [𝐺,𝐾 ]

𝑛;𝝐 are meromorphic
functions on C𝑛

𝝐 , computed recursively by a residue formula on C𝝐 .
In particular, the analytic continuation of(

𝛽

2
𝑊 {0}

2;𝝐 (𝑥1, 𝑥2) +
1

(𝑥1 − 𝑥2)2

)
d𝑥1d𝑥2 =

(
W [0,0]

2;𝝐 (𝑥1, 𝑥2) +
1

(𝑥1 − 𝑥2)2

)
d𝑥1d𝑥2 (1.26)

is the unique meromorphic bidifferential, denoted Ω, on C𝝐 , which has vanishing A-periods and has for
only singularity a double pole at coinciding point with leading coefficient 1 and without residue. This
Ω plays an important role for the geometry of the spectral curve and is called fundamental bidifferential
of the second kind. It sometimes appears under the name of ‘Bergman kernel’, although it does not
coincide with (but it is related to) the kernel introduced by Bergman in [BS53]. It can be explicitly
computed by the formula

Ω(𝑧1, 𝑧2) = d𝑧1 d𝑧2 ln 𝜃
( ∫ 𝑧2

𝑧1

𝝕d𝑥 + c
��� 𝝉C𝝐 ) , (1.27)

where
◦ 𝜃 = 𝜗

[ 0
0
]

is the Riemann Theta function.
◦ 𝝕(𝑧)d𝑥(𝑧) is the basis of holomorphic one-forms dual to the A-cycles – that is, characterised by

∀ℎ, ℎ′ ∈ �1, 𝑔�,
∮
Aℎ

𝜛ℎ′d𝑥 = 𝛿ℎ,ℎ′ . (1.28)

◦ 𝝉C𝝐 is the Riemann matrix of periods of the spectral curve C𝝐 :

∀ℎ, ℎ′ ∈ �1, 𝑔�,
∮
Bℎ

𝜛ℎ′d𝑥 = 𝜏C𝝐ℎ,ℎ′ .

◦ c = 1
2 (r + 𝝉C𝝐 (s)) with r, s ∈ Z𝑔 such that r · s is odd, is a nonsingular characteristic for the Theta

function (i.e., such that 𝜃
( ∫ 𝑧2

𝑧1
𝝕d𝑥 + c

�� 𝝉C𝝐 ) is not identically 0 when 𝑧1, 𝑧2 ∈ C𝝐 ). Such a c exists
and the result then does not depend on which such c is chosen.

It is a property of the topological recursion that the derivatives of 𝐹 {𝑘 };𝑉𝛽;𝝐 can be computed as B-cycle
integrals of the correlators:

(𝐹 {𝑘 };𝑉𝛽;𝝐 ) ( 𝑗) =
( 𝛽

2

) 𝑗 ∮
B

d𝜉1 · · ·
∮
B

d𝜉 𝑗𝑊 {𝑘+ 𝑗 }
𝑗;𝝐 (𝜉1, . . . , 𝜉 𝑗 ). (1.29)

This relation extends as well to derivatives of correlators:(
𝑊 {𝑘 }

𝑛;𝝐 (𝑥1, . . . , 𝑥𝑛)
) ( 𝑗) = ( 𝛽

2

) 𝑗 ∮
B

d𝜉1 · · ·
∮
B

d𝜉 𝑗𝑊 {𝑘+ 𝑗 }
𝑛+ 𝑗;𝝐 (𝑥1, . . . , 𝑥𝑘 , 𝜉1, . . . , 𝜉 𝑗 ),

where it is understood that we differentiate keeping x fixed. In particular,(
𝑊 {−1}

1;𝝐 (𝑥)
) ′d𝑥 = 2i𝜋𝝕(𝑥)d𝑥 =

∮
B
Ω(𝑥, •) = 𝛽

2

∮
B

d𝜉 𝑊 {0}
2;𝝐 (𝑥, 𝜉). (1.30)
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Besides, the matrix to use in the Theta function appearing in Theorem 1.5 is

𝜏𝛽;★ =
𝛽

2
𝝉C𝝐 .

This simple dependence in 𝛽 of 𝑊 {0}
2;𝝐 can be traced back to the fact that, as a consequence of the

Dyson–Schwinger equations, we have

∀ℎ ∈ �0, 𝑔� ∀𝑥 ∈ Aℎ ,
𝛽

2
(
𝑊 {0}

2;𝝐 (𝑥1 + i0, 𝑥2) +𝑊 {0}
2;𝝐 (𝑥1 − i0, 𝑥2)

)
= − 1

(𝑥1 − 𝑥2)2
,

and this equation (together with the properties of the analytic continuation of 𝑊 {0}
2;𝝐 on C𝝐 and the

constraint of vanishing A-periods) fully characterises𝑊 {0}
2;𝝐 .

This relation has a long history and follows from the identification of 𝐹 {−2};𝑉
𝛽;𝝐 = 𝛽

2 F
[0,0];𝑉
𝝐 (cf.

Equation (1.17)) with the prepotential of the Hurwitz space associated to the family of curves (1.25) –
considered as a Frobenius manifold – computed by Dubrovin [Dub91], as well as with the tau function
of the Whitham hierarchy as shown by Krichever [Kri92]. A derivation in the context of matrix model is,
for instance, given in [CM02]. Although a priori differentiability of 𝐹 {−2};𝑉

𝛽;𝝐 is not justified in [CM02],
it is guaranteed by our results of Section A.2.

Equation (1.29) at 𝝐 = 𝝐★ can be used to compute 𝑇 {𝑘 }𝛽;★ [𝑿] appearing in Equation (1.22). The
derivation with respect to 𝝐 is not a natural operation in the initial model when N is finite since 𝑁𝜖ℎ are
forced to be integers in Equation (1.10). Yet we show that the coefficients of expansion themselves are
smooth functions of 𝝐 , and thus, 𝜕𝝐 makes sense.

1.8. Central limit theorems for fluctuations and their breakdown

In Section 8.2, we describe the fluctuation of the number of particles 𝑁ℎ in each segment Aℎ: when
𝑁 →∞, its law is approximated by the law of a Gaussian conditioned to live in a shifted integer lattice.
The shift of the lattice oscillates with N by an amount �𝑁𝜖★,ℎ�. Note that since 𝑁𝜖★,ℎ is for general N
not an integer, strictly speaking, one cannot say that it converges in law to a discrete Gaussian random
variable. This is, however, true along subsequences of N in case 𝜖★,ℎ = 𝜇𝑉eq (Aℎ) is a rational number.

Theorem 1.6. Assume Hypotheses 1.1 and 1.3, and let 𝑵 = (𝑁1, . . . , 𝑁𝑔) be the vector of filling
fractions as above. If 𝑷 is a g-tuple of integers depending on N and such that 𝑷 − 𝑁𝝐★ = 𝑜(𝑁 1

3 ) when
𝑁 →∞, we have

𝜇𝑉 ;A
𝑁 ,𝛽

(
𝑵 = 𝑷

)
∼ 𝑒

1
2 (𝐹

{−2}
𝛽;★ )′′ · (𝑷−𝑁 𝝐★)⊗2+(𝐹 {−1}

𝛽;★ )′ ·(𝑷−𝑁 𝝐★)

𝜗
[ −𝑁 𝝐★

0
]
(𝒗𝛽;★ |𝝉𝛽;★)

. (1.31)

In Section 8.3, we describe the fluctuations of linear statistics in the multi-cut regime.

Theorem 1.7. Assume Hypotheses 1.1 and 1.3. Let 𝜑 be an analytic test function in a neighbourhood
of A, and 𝑠 ∈ R. We have when 𝑁 →∞,

𝜇𝑉 ;A
𝑁 ,𝛽

(
𝑒i𝑠

( ∑𝑁
𝑖=1 𝜑 (𝜆𝑖)−𝑁

∫
S 𝜑 ( 𝜉 )d𝜇𝑉

eq ( 𝜉 )
) )

∼
𝑁→∞

exp
(
i𝑠 𝑀𝛽;★[𝜑] −

𝑠2

2
𝑄𝛽;★[𝜑, 𝜑]

) 𝜗[ −𝑁 𝝐★
0

](
𝒗𝛽;★ + i𝑠 𝒖𝛽;★[𝜑]

��𝝉𝛽;★
)

𝜗
[ −𝑁 𝝐★

0
](
𝒗𝛽;★

��𝝉𝛽;★
) , (1.32)
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where

𝒖𝛽;★[𝜑] =
( ∮

Sℎ

d𝜉
2i𝜋

𝜑(𝜉)𝜛ℎ (𝜉)
)

1≤ℎ≤𝑔
,

𝑀𝛽;★[𝜑] =
∮

A

d𝜉
2i𝜋

𝜑(𝜉)𝑊 {0}
1;★ (𝜉),

𝑄𝛽;★[𝜑, 𝜑] =
∯

A

d𝜉1 d𝜉2

(2i𝜋)2
𝜑(𝜉1)𝜑(𝜉2)𝑊 {0}

2;★ (𝜉1, 𝜉2).

We recall that the 𝜛ℎ (𝑥)d𝑥 are the holomorphic one-forms from Equations (1.28)–(1.30), while 𝑊 {0}
1;𝝐

and𝑊 {0}
2;𝝐 appear in the asymptotic expansion of the correlators in the model with fixed filling fractions

(Theorem 1.3), and here they must be specialised at 𝝐 = 𝝐★.

Remark 1.4. In particular, 𝒖𝛽;★ is a linear map associating to a test function 𝜑 a g-dimensional vector.
When 𝜑 is such that 𝒖𝛽;★[𝜑] = 0, the Theta functions cancel out, and we deduce that the random
variable

Φ𝑁 [𝜑] :=
𝑁∑
𝑖=1

𝜑(𝜆𝑖) − 𝑁
∫

S
𝜑(𝜉)d𝜇𝑉eq(𝜉)

converges in law to a Gaussian random variable with mean 𝑀𝛽;★[𝜑] and covariance 𝑄𝛽;★[𝜑, 𝜑]. We
remark that we have the alternative formula from (8.10):

𝒖𝛽;★[𝜑] =
( 1
2i𝜋

𝜕𝜖ℎ

∫
S
𝜑(𝜉) d𝜇𝑉eq;𝝐 (𝜉)

)
1≤ℎ≤𝑔

���
𝝐=𝝐★

,

showing that 𝒖𝛽;★[𝜑] vanishes when 𝝐★ is a critical point of
∫

S 𝜑(𝜉) d𝜇𝑉eq;𝝐 (𝜉). Even though our results
are obtained for analytic potentials and test functions, this condition clearly makes sense with less
regularity. In fact, it is possible to generalise our results and techniques to consider sufficiently smooth
potential and test functions instead of analytic ones. We refer the interested reader to [G19, Sections 4
and 6] to such a generalisation in the one-cut case.

When 𝒖𝛽;★[𝜑] ≠ 0, the central limit theorem does not hold anymore. Instead, from the shape of
the right-hand side, Φ𝑁 [𝜑] is approximated when 𝑁 → ∞ by the sum of two independent random
variables: the first one is a Gaussian random variable with mean 𝑀𝛽;★[𝜑] and covariance 𝑄𝛽;★[𝜑, 𝜑],
and the second one is the scalar product with 2i𝜋𝒖𝛽;★[𝜑] (which is a vector in R𝑔 when 𝜑 is real-
valued) of a random Gaussian vector conditioned to live on the lattice −�𝑁𝝐★� + Z𝑔. This also displays
N-dependent oscillations. These oscillations can be interpreted in physical terms from tunnelling of
particles between different segments. One sees, indeed, than moving a single 𝜆𝑖 from Aℎ to Aℎ′ changes
Φ𝑁 [𝜑] by a quantity of order 1, which is already the typical order of fluctuation of linear statistics when
filling fractions are fixed.

The next term in the asymptotic expansion of the left-hand side of (1.32) is of relative order 𝑂 ( 1
𝑁 ),

which therefore gives the speed of convergence of the associated linear statistics of the empirical
measure.

1.9. Asymptotic expansion of kernels and correlators

Once the result on large N expansion of the partition function is obtained, we can easily infer the
asymptotic expansion of the correlators and the kernels by perturbing the potential by terms of order
1
𝑁 , maybe complex-valued, as allowed by Hypothesis 1.3.
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1.9.1. Leading behaviour of the correlators
Although we could write down the expansion for the correlators as a corollary of Theorem 1.5, we
bound ourselves to point out their leading behaviour. Whereas 𝑊𝑛 behaves as 𝑂 (𝑁2−𝑛) in the one-cut
regime or in the model with fixed filling fractions, 𝑊𝑛 for 𝑛 ≥ 3 does not decay when N is large in a
(𝑔 + 1)-cut regime with 𝑔 ≥ 1. More precisely, we have the following.

Theorem 1.8. Assume Hypothesis 1.1 and 1.3 and that the number of cuts (𝑔 + 1) is greater or equal
to 2. When 𝑁 →∞, we have, uniformly when 𝑥1, . . . , 𝑥𝑛 belongs to any compact of (C \ A)𝑛,

𝑊2 (𝑥1, 𝑥2) = 𝑊 {0}
2;★ (𝑥1, 𝑥2) +

(
𝝕(𝑥1) ⊗ 𝝕(𝑥2)

)
· ∇⊗2

𝒗 ln 𝜗
[
−𝑁𝝐★

0

](
𝒗𝛽;★

��𝝉𝛽;★
)
+ 𝑜(1) ,

and for any 𝑛 ≥ 3,

𝑊𝑛 (𝑥1, . . . , 𝑥𝑛) =
( 𝑛⊗

𝑖=1
𝝕(𝑥𝑖)

)
· ∇⊗𝑛

𝒗 ln 𝜗
[
−𝑁𝝐★

0

](
𝒗𝛽;★

��𝝉𝛽;★
)
+ 𝑜(1) .

Integrating this result over A-cycles provides the leading order behaviour of n-th order moments of
the filling fractions 𝑵, and the result agrees with Theorem 1.6.

1.9.2. Kernels
We explain in §6.3 that the following result concerning the kernel – defined in Equation (1.4) – is a
consequence of Theorem 1.3:

Corollary 1.9. Assume Hypothesis 1.1 and 1.3. There exists 𝑡 > 0 such that, for any sequence of
𝑵 = (𝑁1, . . . , 𝑁𝑔) such that |𝑵/𝑁 −𝝐★ |1 < 𝑡, the n-point kernels in the model with fixed filling fractions
have an asymptotic expansion when 𝑁 →∞ of the form, for any 𝐾 ≥ 0,

K𝑛,𝒄;𝝐 (𝑥1, . . . , 𝑥𝑛) = exp
[ 𝑛∑
𝑗=1

𝑁𝑐 𝑗
(
ln(𝑥 𝑗 ) + 2i𝜋𝜒 𝑗

)
+

𝐾∑
𝑘=−1

𝑁−𝑘
( 𝑘+2∑
𝑟=1

1
𝑟!
L⊗𝑟
𝒙,𝒄 [𝑊

{𝑘 }
𝑟 ;𝝐 ]

)
+𝑂 (𝑁−(𝐾+1) )

]
,

(1.33)

where L𝒙,𝒄 is the linear form

L𝒙,𝒄 [ 𝑓 ] =
𝑛∑
𝑗=1
𝑐 𝑗

∫ 𝑥 𝑗

∞
𝑓 (𝑥)d𝑥, where 𝑓 (𝑥) = 𝑓 (𝑥) + 1

𝑥
R𝑒𝑠
𝑥=∞

𝑓 (𝜉)d𝜉. (1.34)

The error terms in this expansion are uniform for 𝑥1, . . . , 𝑥𝑛 in any compact of C \ A.

The (𝑟, 𝑘) = 1 term in (1.33) depends on choices for the path of integration from ∞ to 𝑥 𝑗 (the other
terms do not and are also unaffected by the difference between f and 𝑓 in (1.34)), and 𝜒 𝑗 ∈ Z. These
two features are a manifestation of the fact that the definition of the kernel depends on a choice of
determination for the complex logarithm; resolving them by the choice of suitable determinations and
domain of definition leads to specific integer values for 𝜒 𝑗 . These subtleties are explained in details
in §6.3 and can be ignored if all 𝑐 𝑗 ∈ Z (in that case, the definition of the kernel does not depend on
choices).

Hereafter, if 𝛾 is a smooth path in C \ S𝝐 , we set L𝛾 =
∫
𝛾
, and L⊗𝑟

𝛾 is given by

L⊗𝑟
𝛾 [𝑊 {𝑘 }

𝑟 ;𝝐 ] =
∫
𝛾

d𝑥1 · · ·
∫
𝛾

d𝑥𝑟 𝑊 {𝑘 }
𝑟 ;𝝐 (𝑥1, . . . , 𝑥𝑟 ).
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A priori, the integrals in the right-hand side of Equation (1.33) depend on the relative homology class
in C \ A of paths between ∞ to 𝑥𝑖 . A basis of homology cycles in C \ A is given by A = (Aℎ)0≤ℎ≤𝑔,
and we deduce from Equation (1.11) that

∀ℎ ∈ �0, 𝑔�,
∮
Aℎ

d𝜉
2i𝜋

𝑊 {𝑘 }
𝑛;𝑵/𝑁 (𝜉, 𝑥2, . . . , 𝑥𝑛) = 𝛿𝑛,1𝛿𝑘,−1

𝑁ℎ

𝑁
. (1.35)

Therefore, the only multivaluedness of the right-hand side comes from the first term 𝑁L𝒙,c [𝑊 {−1}
1;𝝐 ],

and given Equation (1.35) and observing that 𝑁ℎ = 𝑁𝜖ℎ are integers, we see that it exactly reproduces
the monodromies of the kernels depending on 𝑐 𝑗 .

We now come to the multi-cut regime of the initial model. If 𝑿 is a vector with g components, and
L is a linear form on the space of holomorphic functions on C \ S𝝐 , let us define

𝑇 {𝑘 }𝛽;𝝐 [L; 𝑿] =
𝑘∑

𝑟=1

1
𝑟!

∑
𝑗1 ,..., 𝑗𝑟 ≥1

𝑘1 ,...,𝑘𝑟 ≥−2
𝑛1 ,...,𝑛𝑟 ≥0
𝑘𝑖+ 𝑗𝑖+𝑛𝑖>0∑𝑟
𝑖=1 𝑘𝑖+ 𝑗𝑖+𝑛𝑖=𝑘

( 𝑟⊗
𝑖=1

L⊗𝑛𝑖 [(𝑊 {𝑘𝑖 }
𝑛𝑖 ;𝝐 ) ( 𝑗𝑖) ]

𝑛𝑖! 𝑗𝑖!

)
· 𝑿⊗(

∑𝑟
𝑖=1 𝑗𝑖) ,

where we took as convention 𝑊 {𝑘 }
𝑛=0;𝝐 = 𝐹 {𝑘 }𝛽;𝝐 and the derivatives are computed for fixed xs. Then, as a

consequence of Theorem 1.5, we have the following.

Corollary 1.10. Assume Hypothesis 1.1 and 1.3. With the notations of Corollary 1.9, the n-point kernels
have an asymptotic expansion, for any 𝐾 ≥ 0,

K𝑛,c (𝒙) = K𝑛,c;★(𝒙)

( ∑𝐾
𝑘=0 𝑁

−𝑘 𝑇 {𝑘 }𝛽;★
[
L𝒙,𝒄 ,

∇𝒗
2i𝜋

] )
𝜗
[ −𝑁 𝝐★

0
](
𝒗𝛽;★ + L𝒙,𝒄 [𝝕]

��𝝉𝛽;★
)( ∑𝐾

𝑘=0 𝑁
−𝑘 𝑇 {𝑘 }𝛽;★

[ ∇𝒗
2i𝜋

] )
𝜗
[ −𝑁 𝝐★

0
](
𝒗𝛽;★

��𝝉𝛽;★
) (

1 +𝑂 (𝑁−(𝐾+1) )
)
.

The first factor comes from evaluation of the right-hand side of Equation (1.33) at 𝝐 = 𝝐★, L𝒙,𝒄 =∑𝑛
𝑗=1 𝑐 𝑗

∫ 𝑥 𝑗

∞ and 𝝕d𝑥 is the basis of holomorphic one-forms.

A diagrammatic representation for the terms of such expansion was proposed in [BE12,
Appendix A].

1.10. Strategy of the proof

The key idea of this article is to establish an asymptotic expansion for the partition functions of our
models for fixed filling fractions:

𝑁! 𝑍𝑉 ;A
𝑁 ,𝛽;𝑵/𝑁∏𝑔
ℎ=0 𝑁ℎ!

= 𝑁
𝛽
2 𝑁+𝜘 exp

( 𝐾∑
𝑘=−2

𝑁−𝑘 𝐹 {𝑘 };𝑉
𝛽;𝑵/𝑁 +𝑂 (𝑁−(𝐾+1) )

)
, (1.36)

for any 𝐾 ≥ 0. Indeed, such an expansion allows to estimate the free energy of the original model
ln 𝑍𝑉 ;A

𝑁 ,𝛽 up to errors of order 𝑂 (𝑁−𝐾−1+𝛿); see (1.18) and Theorem 1.5. It also allows to analyse the
asymptotic distribution of the filling fractions 𝝐 = 𝑵/𝑁 (see Theorem 1.6) since this distribution is
given as the following ratio of partition functions:
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𝜇𝑉 ;A
𝑁 ,𝛽

(
𝑵
)
=

𝑁!∏𝑔
ℎ=0 𝑁ℎ!

𝑍𝑉 ;A
𝑁 ,𝛽;𝑵/𝑁

𝑍𝑉 ;A
𝑁 ,𝛽

. (1.37)

In particular, if (1.36) is known up to 𝑜(1), the leading behaviour of (1.37) when 𝑁 → ∞ can be
computed. This analysis is detailed in Section 8.2.

To handle fluctuations of linear statistics, we use the well-known approach of considering the free
energy for perturbations of order 1

𝑁 of the potential. In fact, if we denote by Φ𝑁 [𝜑] :=
∑𝑁

𝑖=1 𝜑(𝜆𝑖) −
𝑁
∫

S 𝜑(𝜉)d𝜇
𝑉
eq (𝜉), as in Remark 1.4, we see that for any real number s,

𝜇𝑉 ;A
𝑁 ,𝛽

[
𝑒𝑠Φ𝑁 [𝜑 ] ] = 𝑒−𝑠𝑁 ∫

S 𝜑 ( 𝜉 )d𝜇𝑉
eq ( 𝜉 )

𝑍
𝑉− 2𝑠

𝑁𝛽 𝜑;A
𝑁 ,𝛽

𝑍𝑉 ;A
𝑁 ,𝛽

.

Again, the expansion of the free energies up to 𝑜(1) allows to derive the asymptotics of the Laplace
transform of Φ𝑁 [𝜑] and hence the central limit theorem; see Section 8.3. Note in passing that another
way to study these fluctuations is to first condition the law 𝜇𝑉 ;A

𝑁 ,𝛽 by fixing its filling fractions to be
equal to some 𝑵. Indeed, we can also recover the fluctuations of the linear statistics from those under
the conditioned law (that can be deduced from the ratio of the partition functions of Theorem 1.4 and
lead to classical central limit theorems with Gaussian limits), together with the fluctuations of the filling
fractions. Then, one easily sees that the term 𝒖𝛽;★ comes from the fluctuations of the filling fractions and
more precisely from the difference of centerings 𝑁 (

∫
S 𝜑(𝜉)d𝜇

𝑉
eq(𝜉) −

∫
S 𝜑(𝜉)d𝜇

𝑉
eq;𝑵/𝑁 (𝜉)) for varying

𝑵/𝑁 .
Therefore, the central result of this article is Theorem 1.5. To prove this theorem, we shall as in [BG11]

interpolate between the partition functions we are interested in and explicitly computable reference
partition functions. For the latter, we take a product of partition functions of one-cut models with
Gaussian, Laguerre or Jacobi weight (depending on the nature of edges, soft or hard, of the equilibrium
measure one wishes to match) that are evaluated as Selberg integrals. Such reference partition functions
were already used in [BG11]. One important new element of the present analysis is the interpolation
from a model with several cuts to independent one-cut models. This is realised by considering the
s-dependent model

𝑍𝑉 ;A
𝑁 ,𝛽;𝝐 (𝑠)

=
∫∏𝑔

ℎ=0 A𝑁ℎ
ℎ

[ 𝑔∏
ℎ=0

𝑁ℎ∏
𝑖=1

d𝜆ℎ,𝑖 𝑒−𝑁
𝛽
2 𝑉ℎ (𝜆ℎ,𝑖 )

] [ ∏
0≤ℎ<ℎ′ ≤𝑔

∏
1≤𝑖≤𝑁ℎ

1≤𝑖′≤𝑁ℎ′

|𝜆ℎ,𝑖 − 𝜆ℎ′,𝑖′ |𝑠𝛽
] [ 𝑔∏

ℎ=0

∏
1≤𝑖< 𝑗≤𝑁ℎ

|𝜆ℎ,𝑖 − 𝜆ℎ, 𝑗 |𝛽
]

for 𝑠 ∈ [0, 1]. We choose to take the s-dependent potential 𝑉ℎ (𝑥) = 𝑇 𝑠
ℎ (𝑥) on the h-segment

𝑇 𝑠
ℎ (𝑥) = 𝑉 (𝑥) − 2(1 − 𝑠)

∑
ℎ′≠ℎ

∫
Aℎ′

d𝜇𝑉eq;𝝐 (𝜉) ln |𝑥 − 𝜉 |, for 𝑥 ∈ Aℎ ,

where V is the potential of the original model. This choice is such that the equilibrium measure
associated with the model 𝑍𝑇𝑠 ;A

𝑁 ,𝛽;𝝐 (𝑠) is the equilibrium measure of the original model; see Section 7.4.
Moreover, 𝑍𝑉 ;A

𝑁 ,𝛽;𝝐 = 𝑍𝑇1;A
𝑁 ,𝛽;𝝐 (1), whereas 𝑍𝑇0;A

𝑁 ,𝛽;𝝐 (0) is a product of models whose equilibrium measure
has only one-cut (they are the restriction of the equilibrium measure of the original model to each of
the connected pieces of its support), which we can compute by [BG11] (see Section 7.1). Interpolating
along this family yields
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ln
( 𝑍𝑉 ;A

𝑁 ,𝛽;𝝐

𝑍𝑇0;A
𝑁 ,𝛽;𝝐 (𝑠 = 0)

)
=
∫ 1

0
𝜕𝑠 ln 𝑍𝑇𝑠 ;A

𝑁 ,𝛽;𝝐 (𝑠)d𝑠

= 𝛽
∫ 1

0
d𝑠𝜇𝑇𝑠 ;A

𝑁 ,𝛽;𝝐 (𝑠)
[ ∑

0≤ℎ<ℎ′ ≤𝑔

∑
1≤𝑖≤𝑁ℎ

1≤𝑖′ ≤𝑁ℎ′

ln |𝜆ℎ,𝑖 − 𝜆ℎ′,𝑖′ | − 𝑁
∑

0≤ℎ′≠ℎ≤𝑔

𝑁ℎ∑
𝑖=1

∫
Sℎ′

ln |𝜆ℎ,𝑖 − 𝑥 |d𝜇𝑉eq;𝝐 (𝑥)
]

= −𝑁𝛽
∑

0≤ℎ≠ℎ′ ≤𝑔

∮
Aℎ

∮
Aℎ′

d𝑥 d𝑥 ′

(2i𝜋)2
ln[(𝑥 − 𝑥 ′)sgn(ℎ − ℎ′)]𝑊 {−1}

1;𝝐 (𝑥)
( ∫ 1

0
d𝑠𝑊 𝑠

1;𝝐 (𝑥
′)
)

+
∑

0≤ℎ′≠ℎ≤𝑔

𝛽

2

∮
Aℎ

∮
Aℎ′

d𝑥 d𝑥 ′

(2i𝜋)2
ln[(𝑥 − 𝑥 ′)sgn(ℎ − ℎ′)]

( ∫ 1

0
d𝑠
[
𝑊 𝑠

2;𝝐 (𝑥, 𝑥
′) +𝑊 𝑠

1;𝝐 (𝑥)𝑊
𝑠
1;𝝐 (𝑥

′)
] )
.

(1.38)

It is important to note that in the first equality, the singularity of the logarithm is away from the range of
integration as it involves variables in distinct segments, so we could express (1.38) in terms of analytic
linear and quadratic statistics, which, in turn, can be expressed in terms of the correlators 𝑊 𝑠

𝑛;𝝐 of the
model associated with 𝑍𝑇𝑠 ;A

𝑁 ,𝛽;𝝐 (𝑠). Lemma 7.5 gives the large N expansion of these correlators.
These expansions are based on the so-called Dyson–Schwinger equations (4.1); see also (7.36) for the

correlators of the interpolating models. These equations are exact equations satisfied by the correlators
for any fixed N and obtained simply by integration by parts. They are a priori not closed, but the idea
is to show that they are asymptotically closed so that if we can show that the correlators have a large N
expansion of topological type, their coefficients will satisfy a closed system of equations. The latter is
based on the fact that coefficients beyond the leading order satisfy an inhomogeneous linear equation,
with inhomogeneous term involving coefficients of lower order only. Hence, solving the linear equation
allows to define uniquely and recursively all the coefficients in the expansion of the correlators. The
linear equation is described by a linear operator, called the master-operator, that we denote K (see (5.6))
and which is the same for all orders. An inversion of this operator (continuously on some function space)
precisely allows to solve the linear equation.

The central point of our approach is therefore to invert the operator K. In fact, the operator is not
invertible but rather has a kernel of dimension at least g, where (𝑔 + 1) is the number of cuts (i.e.,
connected components of the support of the equilibrium measure). However, its extension K̂, where we
also record the periods around the cuts, is invertible in an off-critical situation; see Section 5.2.3. Fixing
the filling fractions exactly amounts to use the extended operator K̂ instead of K, and this is why we first
consider the model with fixed filling fractions. The invertibility of the extended operator indeed allows
us not only to formally solve the Dyson–Schwinger equations but also to show the existence of this
asymptotic expansion to all orders in 1

𝑁 . To this end, it is necessary to use a priori rough estimates on
the correlators, which we obtain by classical methods of concentration of measure and large deviations;
see Section 3. These estimates can be improved iteratively with the Dyson–Schwinger equations (see,
for example, Section 5.3) to obtain optimal estimates and eventually reach the all-order asymptotic
expansion. This bootstrap strategy was first introduced in [BG11] for the one-cut model. We detail these
computations in the case where 𝑠 = 1 in Section 5. We also need to carry this out for the interpolating
s-dependent model in order to have asymptotic expansions to insert in (1.38). In that case, the extended
operator does not have an explicit inverse, but we can nevertheless show by Fredholm arguments that it
is invertible. Then we indicate in Section 7 the modifications to take into account the previous bootstrap
argument for 𝑠 ∈ [0, 1].

We stress again that we cannot use the inversion and bootstrap strategy in the Dyson–Schwinger
equations for the correlators of the original model in the multi-cut regime because the relevant master
operator is not invertible. This is the reason why we need the detour through the partition function with
fixed filling fractions (via (1.36)), from which any desired expansion of the correlators of the original
model can be obtained by looking at 1

𝑁 -perturbations of the potential.
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2. Application to (skew) orthogonal polynomials and integrable systems

The one-hermitian matrix model (i.e., 𝛽 = 2) is related to the Toda chain and orthogonal polynomials
(see, for example, [Dei99]). Similarly, the one-symmetric (resp. quaternionic self-dual) matrix model
corresponds to 𝛽 = 1 (resp. 𝛽 = 4) and is related to the Pfaff lattice and skew-orthogonal polynomials
[Eyn01, AvM02, AHvM02]. Therefore, our results establish the all-order asymptotics of certain solutions
(those related to matrix integrals) of the Toda chain and the Pfaff lattice in the continuum limit, and
the all-order asymptotics of (skew) orthogonal polynomials away from the bulk. We illustrate it for
orthogonal polynomials with respect to an analytic weight defined on the whole real line. It could be
applied equally well to orthogonal polynomials with respect to an analytic weight on a finite union
of segments of the real axis. We review with fewer details in §2.4 the definition of skew-orthogonal
polynomials and the way to obtain them from Corollary 1.10.

The leading order asymptotic of orthogonal polynomials is well known since the work of Deift et al.
[DKM+97, DKM+99b, DKM+99a], using the asymptotic analysis of Riemann–Hilbert problems which
was pioneered in [DZ95]. In principle, it is possible to push the Riemann–Hilbert analysis beyond
leading order, but because this approach is very cumbersome, it has not been performed yet to our
knowledge. Notwithstanding, the all-order expansion has a nice structure and was heuristically derived
by Eynard [Eyn06] based on the general works [BDE00, Eyn09]. In this article, we provide a proof of
those heuristics.

Unlike the Riemann–Hilbert technique, which becomes cumbersome to study the asymptotics of
skew-orthogonal polynomials (i.e., 𝛽 = 1 and 4) and thus has not been performed up to now, our method
could be applied without difficulty to those values of 𝛽 and would allow to justify the heuristics of
Eynard [Eyn01] formulated for the leading order and describe all subleading orders. In other words, it
provides a purely probabilistic approach to address asymptotic problems in integrable systems. It also
suggests that the appearance of Theta functions is not intrinsically related to integrability. In particular,
we see in Theorem 2.2 that for 𝛽 = 2, the Theta function appearing in the leading order is associated
to the matrix of periods of the hyperelliptic curve C𝝐★ defined by the equilibrium measure. Actually,
the Theta function is just the basic block to construct analytic functions on this curve, and this is the
reason why it pops up in the Riemann–Hilbert analysis. However, for 𝛽 ≠ 2, the Theta function is
associated to 𝛽

2 times the matrix of periods of C𝝐★ , which might or might not be the matrix of period of
a curve, and anyway is not that of C𝝐★ . So the monodromy problem solved by this Theta function is not
directly related to the equilibrium measure, which makes, for instance, for 𝛽 = 1 or 4, its construction
via Riemann–Hilbert techniques a priori more involved.

Contrary to Riemann–Hilbert techniques, however, we are not yet in position within our method to
consider the asymptotic in the bulk or at the edges, or the double-scaling limit for varying weights close
to a critical point, or the case of complex-values weights which has been studied in [BM09]. It would
be very interesting to find a way out of these technical restrictions within our method.

2.1. Setting

We first review the standard relations between orthogonal polynomials on the real line, random matrices
and integrable systems see, for example, [CG12, Section 5]. In this section, 𝛽 = 2, and we omit to precise
it in the notations. Let𝑉t(𝜆) = 𝑉 (𝜆)+

∑𝑑
𝑘=1 𝑡𝑘𝜆

𝑘 . Let (𝑃𝑛,𝑁 (𝑥))𝑛≥0 be the monic orthogonal polynomials
associated to the weight d𝑤(𝑥) = d𝑥 𝑒−𝑁𝑉t (𝑥) on B = R. We choose V and restrict in consequence 𝑡𝑘 so
that the weight increases quickly at ±∞. If we denote ℎ𝑛,𝑁 the 𝐿2 (d𝑤) norm of 𝑃𝑛,𝑁 , the polynomials
𝑃̂𝑛,𝑁 = 𝑃𝑛,𝑁 /

√
ℎ𝑛,𝑁 are orthonormal. They satisfy a three-term recurrence relation:

𝑥𝑃̂𝑛,𝑁 (𝑥) =
√
ℎ𝑛,𝑁 𝑃̂𝑛+1,𝑁 (𝑥) + 𝛽𝑛,𝑁 𝑃̂𝑛,𝑁 (𝑥) +

√
ℎ𝑛−1,𝑁 𝑃̂𝑛−1,𝑁 (𝑥).

The recurrence coefficients are solutions of a Toda chain: if we set

𝑢𝑛,𝑁 = ln ℎ𝑛,𝑁 , 𝑣𝑛,𝑁 = −𝛽𝑛,𝑁 ,
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we have

𝜕𝑡1𝑢𝑛,𝑁 = 𝑣𝑛,𝑁 − 𝑣𝑛−1,𝑁 , 𝜕𝑡1𝑣𝑛,𝑁 = 𝑒𝑢𝑛+1,𝑁 − 𝑒𝑢𝑛,𝑁 , (2.1)

and the coefficients 𝑡𝑘 generate higher Toda flows. The recurrence coefficients also satisfy the string
equations √

ℎ𝑛,𝑁 [𝑉 ′(Q𝑁 )]𝑛,𝑛−1 =
𝑛

𝑁
, [𝑉 ′(Q𝑁 )]𝑛,𝑛 = 0, (2.2)

where Q𝑁 is the semi-infinite matrix:

Q𝑁 =

*++++++,

√
ℎ1,𝑁 𝛽1,𝑁
𝛽1,𝑁

√
ℎ2,𝑁 𝛽2,𝑁
𝛽2,𝑁

√
ℎ3,𝑁 𝛽3,𝑁

. . .
. . .

. . .

-....../
.

The equations 2.2 determine in terms of V the initial condition for the system (2.1). The partition
function T (t) = 𝑍𝑉t;R

𝑁 is the Tau function associated to the solution (𝑢𝑛,𝑁 (t), 𝑣𝑛,𝑁 (t))𝑛≥1 of Equation
(2.1). The partition function itself can be computed as [Meh04, PS11]:

𝑍𝑉 ;R
𝑁 = 𝑁!

𝑁−1∏
𝑗=0

ℎ 𝑗 ,𝑁 .

We insist on the dependence on N and V by writing ℎ 𝑗 ,𝑁 = ℎ 𝑗 (𝑁𝑉). Therefore, the norms can be
retrieved as

ℎ𝑛 (𝑁𝑉) =
∏𝑛

𝑗=1 ℎ 𝑗 (𝑁𝑉)∏𝑛−1
𝑗=1 ℎ 𝑗 (𝑁𝑉)

=
1

𝑛 + 1
𝑍𝑁𝑉 /(𝑛+1);R
𝑛+1

𝑍𝑁𝑉 /𝑛;R
𝑛

=
1

𝑛 + 1
𝑍

𝑉
𝑠 (1+1/𝑛) ;R
𝑛+1

𝑍𝑉 /𝑠;R
𝑛

, 𝑠 =
𝑛

𝑁
. (2.3)

The regime where 𝑛, 𝑁 →∞ but 𝑠 = 𝑛
𝑁 remains fixed and positive corresponds to the small dispersion

regime in the Toda chain, where 1
𝑛 plays the role of the dispersion parameter.

2.2. Small dispersion asymptotics of ℎ𝑛,𝑁
When 𝑉t0/𝑠0 satisfies Hypotheses 1.1 and 1.2 for a given set of times (𝑠0, t0), 𝑉t/𝑠 satisfies the same
assumptions at least for (𝑠, t) in some neighbourhood U of (𝑠0, t0), and Theorem 1.5 determines the
asymptotic expansion of T𝑁 (t) = 𝑍𝑉t;R

𝑁 up to𝑂 (𝑁−∞). Besides, we can apply Theorem 1.5 to study the
ratio in the right-hand side of Equation (2.3) when 𝑛→∞ up to 𝑜(𝑛−∞). For instance, we record below
the expansion up to order 𝑂 (𝑛−2).
Theorem 2.1. In the regime 𝑛, 𝑁 →∞, 𝑠 = 𝑛

𝑁 > 0 fixed, and Hypotheses 1.1 and 1.2 are satisfied with
soft edges, we have the following asymptotic expansion:

𝑢𝑛,𝑁 = 𝑛
(
2F [0]

★ − L𝑉t
𝑠
[W [0]

1;★]
)
+ 1 + F [0]

★ − L𝑉t
𝑠

[
W [0]

1;★
]
+ 1

2
L⊗2

𝑉t
𝑠

[
W [0]

2;★
]
+ ln

( Θ̃𝑛

Θ𝑛

)
+ 1
𝑛

{
𝜘 − 1

2
+ L B

2i𝜋

[
W [1]

1;★
]
· ∇ ln

( Θ̃𝑛

Θ𝑛

)
− L𝑉t

𝑠

[
W [1]

1;★
]

+ 1
6
L⊗3

B
2i𝜋

[
W [0]

3;★
]
·
(∇⊗3Θ̃𝑛

Θ̃𝑛

− ∇⊗3Θ𝑛

Θ𝑛

)
− 1

2
L⊗2

B
2i𝜋

⊗ L𝑉t
𝑠

[
𝑊 [0]

3;★
]
· ∇

⊗2Θ̃𝑛

Θ̃𝑛

+ 1
2
L B

2i𝜋
⊗ L⊗2

𝑉t
𝑠

[
W [0]

3;★
]
· ∇ ln Θ̃𝑛 −

1
6
L⊗3

𝑉t
𝑠

[
W [0]

3;★
]}
+𝑂 (𝑛−2). (2.4)
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We used the shortcut notations

Θ̃𝑛 = 𝜗

[
−(𝑛 + 1) 𝝐★

0

](
𝒗 − L𝑉t/𝑠 [𝝕]

��𝝉★) , Θ𝑛 = 𝜗

[
−𝑛 𝝐★

0

](
𝒗
��𝝉★) ,

and in Equation (2.4), it is understood that the argument 𝒗 is specialised to 0 after application of the
∇ = ∇𝒗 . Besides,

L𝑉t
𝑠
[ 𝑓 ] =

∮
S

d𝜉
2i𝜋

𝑉t(𝜉)
𝑠

𝑓 (𝜉), L B
2i𝜋
[ 𝑓 ] =

∮
B

d𝜉
2i𝜋

𝑓 (𝜉).

When 𝑉t/𝑠 leads to a multi-cut regime, this asymptotic expansion features oscillations. Numerical
evidence for such oscillations first appeared in [Jur91], where plots of ℎ𝑛−1,𝑁 /ℎ𝑛,𝑁 displaying the phase
transitions from a one-cut to a multi-cut regime can be found for a sextic potential.

We recall that all the quantities W [𝐺 ]
𝑚;★ can be computed from the equilibrium measure associated to

the potential 𝑉t, so making those asymptotic explicit just requires to solve the scalar Riemann–Hilbert
problem for 𝜇𝑠𝑉t

eq . Notice that the number (𝑔 + 1) of cuts a priori depends on (𝑠0, t0), and we do not
address the issue of transitions between regimes with different number of cuts (because we cannot relax
at present our off-criticality assumption), which are expected to be universal [Dub08].

2.3. Asymptotic expansion of orthogonal polynomials away from the bulk

The orthogonal polynomials can be computed thanks to Heine formula [Sze39]:

𝑃𝑛 (𝑥) = 𝜇𝑉t/𝑠;R
𝑛

[ 𝑛∏
𝑖=1
(𝑥 − 𝜆𝑖)

]
= K1,1(𝑥).

Hence, as a consequence of Corollary 1.10, we obtain their asymptotic expansion away from the bulk.
We first collect some notations that appeared throughout the introduction, specialised to the case 𝛽 = 2
relevant here:

W [𝐺 ]
0;★ = F [𝐺 ]

★ = 𝐹 {2𝐺−2}
𝛽=2;𝝐★ , W [𝐺 ]

𝑛;★ = 𝑊 {2𝐺−2+𝑛}
𝑛;𝝐★ , 𝝉★ =

(F [0]
𝛽=2;★)

′′

2i𝜋
,

and

𝑇 {𝑘 }★ [𝑿] =
𝑘∑

𝑟=1

1
𝑟!

∑
𝑗1 ,..., 𝑗𝑟 ≥1

𝐺1 ,...,𝐺𝑟 ≥0
2𝐺𝑖−2+ 𝑗𝑖>0∑𝑟

𝑖=1 (2𝐺𝑖−2+ 𝑗𝑖)=𝑘

( 𝑟⊗
𝑖=1

(F [𝐺𝑖 ]
★ ) ( 𝑗𝑖)

𝑗𝑖!

)
· 𝑿⊗(

∑𝑟
𝑖=1 𝑗𝑖) ,

𝑇 {𝑘 }★ [L; 𝑿] =
𝑘∑

𝑟=1

1
𝑟!

∑
𝑗1 ,..., 𝑗𝑟 ≥1

𝐺1 ,...,𝐺𝑟 ≥0
𝑛1 ,...,𝑛𝑟 ≥0

2𝐺𝑖−2+𝑛𝑖+ 𝑗𝑖>0∑𝑟
𝑖=1 (2𝐺𝑖−2+𝑛𝑖+ 𝑗𝑖)=𝑘

( 𝑟⊗
𝑖=1

L⊗𝑛𝑖 [(W [𝐺𝑖 ]
𝑛𝑖 ;★ )

( 𝑗𝑖) ]
𝑛𝑖! 𝑗𝑖!

)
· 𝑿⊗(

∑𝑟
𝑖=1 𝑗𝑖) ,

where

(W [𝐺 ]
𝑛;★ ) ( 𝑗) (𝑥1, . . . , 𝑥𝑛) =

∮
B
· · ·

∮
B
W [𝐺 ]

𝑛+ 𝑗;★(𝑥1, . . . , 𝑥𝑛, 𝜉1, . . . , 𝜉 𝑗 )d𝜉1 · · · d𝜉 𝑗 .
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Theorem 2.2. In the regime 𝑛, 𝑁 →∞, 𝑠 = 𝑛
𝑁 > 0 fixed, and Hypotheses 1.1 and 1.2 are satisfied, for

𝑥 ∈ C \ S, we have the asymptotic expansion, for any 𝐾 ≥ 0,

𝑃𝑛 (𝑥) = exp
( ∑
𝑚≥1, 𝐺≥0

2𝐺−2+𝑚≤𝐾

𝑛2−2𝐺−𝑚L⊗𝑚
𝑥 [W [𝐺 ]

𝑚;★ ]
𝑚!

) (
1 +𝑂 (𝑛−(𝐾+1) )

)

×

( ∑𝐾
𝑘=0 𝑛

−𝑘 𝑇 {𝑘 }
[
L𝑥 ; ∇𝒗

2i𝜋
] )
𝜗

[
−𝑛 𝝐★

0

](
L𝑥 [𝝕]

��𝝉★)( ∑𝐾
𝑘=0 𝑛

−𝑘 𝑇 {𝑘 }
[ ∇𝒗

2i𝜋
] )
𝜗

[
−𝑛 𝝐★

0

](
0
��𝝉★) ,

where L𝑥 =
∫ 𝑥

∞ . For a given K, this expansion is uniform for x in any compact of C \ S.

We remark that L𝑥 [𝝕] =
∫ 𝑥

∞ 𝝕 is the Abel map evaluated between the points x and ∞. The variable
𝑠 = 𝑛

𝑁 rescales the potential, and therefore, the equilibrium measure and all the coefficient of expansions
depend on s.

As such, the results presented in this article do not allow the study of the asymptotic expansion of
orthogonal polynomials in the bulk (i.e., for 𝑥 ∈ S). Indeed, this requires perturbing the potential 𝑉 (𝜆)
by a term − 1

𝑛 ln(𝜆− 𝑥) having a singularity at 𝑥 ∈ S, a case going beyond our Hypothesis 1.3. Similarly,
we cannot address at present the regime of transitions between a g-cut regime and a 𝑔′-cut regime with
𝑔 ≠ 𝑔′ because off-criticality was a key assumption in our derivation. Although it is the most interesting
in regard of universality, the question of deriving uniform asymptotics, even at the leading order, valid
for the crossover around a critical point is still open from the point of view of our methods.

2.4. Asymptotic expansion of skew-orthogonal polynomials

The expectation values of
∏𝑁

𝑖=1(𝑥 − 𝜆𝑖) in the 𝛽-ensembles for 𝛽 = 1 and 4 are skew-orthogonal
polynomials. Let us review this point and just mention that the application of Corollary 1.10 implies
all-order asymptotic for skew-orthogonal polynomials away from the bulk. Here, the relevant skew-
symmetric bilinear products are

〈 𝑓 , 𝑔〉𝑛,𝛽=1 =
∫
R2

d𝑥d𝑦 𝑒−𝑛(𝑉 (𝑥)+𝑉 (𝑦)) sgn(𝑦 − 𝑥) 𝑓 (𝑥)𝑔(𝑦),

〈 𝑓 , 𝑔〉𝑛,𝛽=4 =
∫
R

d𝑥 𝑒−𝑛𝑉 (𝑥) ( 𝑓 (𝑥)𝑔′(𝑥) − 𝑓 ′(𝑥)𝑔(𝑥)
)
. (2.5)

A family of polynomials (𝑃𝑁 (𝑥))𝑁 ≥0 is skew-orthogonal if

∀ 𝑗 , 𝑘 ≥ 0,
〈
𝑃 𝑗 , 𝑃𝑘〉𝑛,𝛽 =

(
𝛿 𝑗 ,𝑘−1 − 𝛿 𝑗−1,𝑘

)
ℎ 𝑗;𝑛,𝛽 .

For a given skew-symmetric product, the family of skew-orthogonal polynomials is not unique since
one can add to 𝑃2𝑁+1 any multiple of 𝑃2𝑁 , and this does not change the skew-norms ℎ𝑁 . If we add
the requirement that the degree 2𝑁 term in 𝑃2𝑁+1 vanishes, the skew-orthogonal polynomials are then
unique. The generalisation of Heine formula was proved in [Eyn01]:

Theorem 2.3. Let 𝑃𝑁 ;𝑛,𝛽 be a set of monic skew-orthogonal polynomials associated to (2.5). We can
take
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𝑃2𝑁 ;𝑛,𝛽=1 (𝑥) = 𝜇𝑛𝑉 /𝑁 ;R
2𝑁 ,𝛽=1

[ 2𝑁∏
𝑖=1
(𝑥 − 𝜆𝑖)

]
,

𝑃2𝑁+1;𝑛,𝛽=1(𝑥) = 𝜇𝑛𝑉 /𝑁 ;R
2𝑁 ,𝛽=1

[(
𝑥 +

2𝑁∑
𝑖=1

𝜆𝑖

) 2𝑁∏
𝑖=1
(𝑥 − 𝜆𝑖)

]
,

𝑃2𝑁 ;𝑛,𝛽=4 (𝑥) = 𝜇𝑛𝑉 /2𝑁 ;R
𝑁 ,𝛽=4

[ 𝑁∏
𝑖=1
(𝑥 − 𝜆𝑖)2

]
,

𝑃2𝑁 ;𝑛,𝛽=4 (𝑥) = 𝜇𝑛𝑉 /2𝑁 ;R
𝑁 ,𝛽=4

[(
𝑥 +

𝑁∑
𝑖=1

2𝜆𝑖
) 𝑁∏

𝑖=1
(𝑥 − 𝜆𝑖)2

]
.

Corollary 1.10 then determines the asymptotics of the right-hand side. The partition function itself
can be deduced from the skew-norms [Meh04]

𝑍𝑛𝑉 /2𝑁 ;R
2𝑁 ,𝛽=1 = (2𝑁)!

𝑁−1∏
𝑗=0

ℎ 𝑗;𝑛,𝛽=1

𝑍𝑛𝑉 /(2𝑁+1);R
2𝑁+1,𝛽=1 = (2𝑁 + 1)!

𝑁−1∏
𝑗=0

ℎ 𝑗;𝑛,𝛽=1 ·
∫
R

𝑒−𝑛𝑉 (𝑥)𝑃𝑁−1;𝑛,𝛽 (𝑥)d𝑥

𝑍𝑛𝑉 /2𝑁 ;R
𝑁 ,𝛽=4 = 𝑁!

𝑁−1∏
𝑗=0

ℎ 𝑗;𝑛, 𝛽=4,

and conversely,

ℎ𝑁 ;𝑛,𝛽=1 =
1

(2𝑁 + 2) (2𝑁 + 1)
𝑍𝑛𝑉 /(2𝑁+2);R

2𝑁+2,𝛽=1

𝑍𝑛𝑉 /2𝑁 ;R
2𝑁 ,𝛽

, ℎ𝑁 ;𝑛,𝛽=4 =
1

𝑁 + 1
𝑍𝑛𝑉 /(2𝑁+2);R
𝑁+1,𝛽=4

𝑍𝑛𝑉 /2𝑁 ;R
𝑁 ,𝛽=4

.

It has been shown that this partition function for 𝛽 = 1 is a tau-function of the Pfaff lattice [AHvM02,
AvM02]. Here, we obtain its asymptotic expansion from Theorem 1.5.

3. Large deviations and concentration of measure

3.1. Restriction to a vicinity of the support

Our first step is to show that the interval of integration in Equation (1.1) can be restricted to a vicinity
of the support of the equilibrium measure up to exponentially small corrections when N is large. The
proofs are very similar to the one-cut case [BG11], and we recall briefly their idea in §3.2. Let V be
a regular and confining potential, and 𝜇𝑉 ;B

eq the equilibrium measure determined by Theorem 1.1. We
denote by S its (compact) support. We define the effective potential by

𝑈𝑉 ;B
eq (𝑥) = 𝑉 {0} (𝑥) − 2

∫
B

d𝜇𝑉eq (𝜉) ln |𝑥 − 𝜉 |, 𝑈̃𝑉 ;B
eq (𝑥) = 𝑈𝑉 ;B

eq (𝑥) − inf
𝜉 ∈B

𝑈𝑉 ;B
eq (𝜉), (3.1)

when 𝑥 ∈ B, and +∞ otherwise.

Lemma 3.1. If V is regular, is confining, and converges uniformly to 𝑉 {0} on B, then we have large
deviation estimates: for any F ⊆ B\S closed in B and O ⊆ B\S open in B,
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lim sup
𝑁→∞

1
𝑁

ln 𝜇𝑉 ;B
𝑁 ,𝛽 [∃𝑖 ∈ �1, 𝑁� : 𝜆𝑖 ∈ F] ≤ − 𝛽

2
inf
𝑥∈F

𝑈̃𝑉 ;B
eq (𝑥),

lim inf
𝑁→∞

1
𝑁

ln 𝜇𝑉 ;B
𝑁 ,𝛽 [∃𝑖 ∈ �1, 𝑁� : 𝜆𝑖 ∈ O] ≥ − 𝛽

2
inf
𝑥∈O

𝑈̃𝑉 ;B
eq (𝑥).

Definition 3.1. We say that V satisfies a control of large deviations on B if 𝑈̃𝑉 ;B
eq is positive on B \ S.

Note that 𝑈̃𝑉 ;B
eq vanishes at the boundary of S. According to Lemma 3.1, such a property implies that

large deviations outside S are exponentially small when N is large.

Corollary 3.2. Let V be regular, confining and satisfying a control of large deviations on B. Let A ⊆ B
be a finite union of segments which contains {𝑥 ∈ B : 𝑑 (𝑥,S) ≤ 𝛿} for some positive 𝛿. There exists
𝜂(A) > 0 so that

𝑍𝑉 ;B
𝑁 ,𝛽 = 𝑍𝑉 ;A

𝑁 ,𝛽

(
1 +𝑂 (𝑒−𝑁 𝜂 (A) )

)
, (3.2)

and for any 𝑛 ≥ 1, there exists a universal constant 𝛾𝑛 > 0 so that, for any 𝑥1, . . . , 𝑥𝑛 ∈ (C \ B)𝑛,

��𝑊𝑉 ;B
𝑛 (𝑥1, . . . , 𝑥𝑛) −𝑊𝑉 ;A

𝑛 (𝑥1, . . . , 𝑥𝑛)
�� ≤ 𝛾𝑛 𝑒

−𝑁 𝜂 (A)∏𝑛
𝑖=1 𝑑 (𝑥𝑖 ,B)

. (3.3)

Note that if all edges are hard, we have B = S, and Lemma 3.1 and Corollary 3.2 are useless.
It is useful to have a local version of this result, saying that we can vary endpoints of the segments

which are not hard edges for the equilibrium measure, up to exponentially small corrections.

Corollary 3.3. Let V be regular, confining and satisfying a control of large deviations on B. Let A ⊆ B be
a finite union of segments which contains {𝑥 ∈ B : 𝑑 (𝑥,S) ≤ 𝛿} for some positive 𝛿. If 𝑎0 is the left edge
of a connected component of A and 𝑎 < 𝑎0 and is not in S, let us define A𝑎 = A∪ [𝑎, 𝑎0]. For any 𝜀 > 0
small enough, there exists 𝜂𝜀 > 0 so that, for N large enough and any 𝑎 ∈ (𝑎0 − 𝜀, 𝑎0) ⊆ B, we have��𝜕𝑎 ln 𝑍𝑉 ;A𝑎

𝑁 ,𝛽

�� ≤ 𝑒−𝑁 𝜂𝜀 , (3.4)

and for N large enough and any 𝑛 ≥ 1 and 𝑥1, . . . , 𝑥𝑛 ∈ (C \ A𝑎),��𝜕𝑎𝑊𝑉 ;A𝑎
𝑛 (𝑥1, . . . , 𝑥𝑛)

�� ≤ 𝛾𝑛 𝑒
−𝑁 𝜂𝜀∏𝑛

𝑖=1 𝑑 (𝑥𝑖 ,A𝑎)
. (3.5)

A similar result holds at the right endpoint of a connected component of A.

From now on, even though we initially want to study the model on B𝑁 , we are first going to study the
model on A𝑁, where A is a small (but fixed) enlargement of S within B, as allowed above. In particular,
when S is a disjoint union of finite segments (Sℎ)𝑔ℎ=0, we can take A to be a disjoint union of finite
segments (Aℎ)𝑔ℎ=0 such that Aℎ is a neighbourhood of Sℎ in B. More precisely, we can take as endpoints
of A points close enough to the soft edges of the equilibrium measure but outside of its support, while
the hard edges must remain endpoints common to S,A and B. We next state similar results for the fixed
filling fractions model of Section 1.4. Recall that part of the data defining this model is a sequence
(indexed by N) of g-uple of positive integers 𝑵 = (𝑁1, . . . , 𝑁𝑔) such that 𝑁0 = 𝑁 −

∑𝑔
ℎ=1 𝑁ℎ ≥ 0 and

such that 𝝐 = 𝑵/𝑁 converges to a point in

E𝑔 =
{
𝝐 ∈ (0, 1)𝑔

��� 𝑔∑
ℎ=1

𝜖ℎ < 1
}
.
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In this context, the effective potential is defined for 𝑥 ∈ Aℎ by the formula

𝑈𝑉 ;A
eq;𝝐 (𝑥) = 𝑉 {0} (𝑥) − 2

∫
A

d𝜇𝑉eq;𝝐 (𝜉) ln |𝑥 − 𝜉 |, 𝑈̃𝑉 ;A
eq;𝝐 (𝑥) = 𝑈𝑉 ;A

eq;𝝐 (𝑥) − inf
𝜉 ∈Aℎ

𝑈𝑉 ;A
eq;𝝐 (𝜉),

and for 𝑥 ∉ A, we declare𝑈𝑉 ;A
eq;𝝐 = 𝑈̃𝑉 ;A

eq;𝝐 = +∞.

Proposition 3.4. If V is regular, confining and uniformly to 𝑉 {0} on A, then for any closed set F and
open set O of R,

lim sup
𝑁→∞

1
𝑁

ln 𝜇𝑉 ;A
𝑁 ,𝛽;𝑵/𝑁

({
∃𝑖 ∈ �1, 𝑁� : 𝜆𝑖 ∈ F

})
≤ − 𝛽

2
inf
𝑥∈F

𝑈̃𝑉 ;A
eq;𝝐 (𝑥),

lim inf
𝑁→∞

1
𝑁

ln 𝜇𝑉 ;A
𝑁 ,𝛽;𝑵/𝑁

({
∃𝑖 ∈ �1, 𝑁� : 𝜆𝑖 ∈ O

})
≥ − 𝛽

2
inf
𝑥∈O

𝑈̃𝑉 ;A
eq;𝝐 (𝑥).

Moreover, Corollaries 3.2 and 3.3 also extend to this setting.

We may omit the superscript A in the equilibrium measure, the effective potential, etc. when it is
clear that we work with the compact set A.

3.2. Sketch of the proof of Lemma 3.1

We only sketch the proof since it is similar to [BG11] as well as [AGZ10, section 2.6.2]. The only
technical difference is that the lower bound is achieved here by introducing the functions 𝐻𝑥,𝜀 and 𝜙𝑥,𝐾
below rather than localising 𝐿𝑁−1 to probability measures on some smaller sets than B in [BG11]. We
first give the proof for the initial model and at the end of the proof precise the necessary changes to deal
with the model with fixed filling fractions.

Recall that 𝐿𝑁 = 𝑁−1 ∑𝑁
𝑖=1 𝛿𝜆𝑖 denotes the normalised empirical measure. We observe that

Υ𝑉 ;B
𝑁 ,𝛽 (F)

Υ𝑉 ;B
𝑁 ,𝛽 (B)

≤ 𝜇𝑉 ;B
𝑁 ,𝛽

({
∃𝑖 ∈ �1, 𝑁� : 𝜆𝑖 ∈ F

})
≤ 𝑁

Υ𝑉 ;B
𝑁 ,𝛽 (F)

Υ𝑉 ;B
𝑁 ,𝛽 (B)

, (3.6)

where, for any measurable set X,

Υ𝑉 ;B
𝑁 ,𝛽 (X) = 𝜇

𝑁𝑉
𝑁−1 ;B
𝑁−1,𝛽

[∫
X

d𝜉 exp
{
− 𝑁𝛽

2
𝑉 (𝜉) + (𝑁 − 1)𝛽

∫
B

d𝐿𝑁−1 (𝜆) ln |𝜉 − 𝜆 |
}]
.

We shall hereafter estimate 1
𝑁 lnΥ𝑉 ;B

𝑁 ,𝛽 (X).
We first prove a lower bound for Υ𝑉 ;B

𝑁 ,𝛽 (X) with X open in B. For any 𝑥 ∈ X, we can find 𝜀 > 0 such
that (𝑥 − 𝜀, 𝑥 + 𝜀) ∩ B ⊂ X. Let

𝛿𝑉𝜀 = max
|𝑥−𝑦 | ≤𝜀
𝑥,𝑦∈B

|𝑉 (𝑥) −𝑉 (𝑦) |.
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Using twice Jensen inequality and the convention 𝑉 (𝜉) = +∞ for 𝜉 ∉ B, we get

Υ𝑉 ;B
𝑁 ,𝛽 (X) ≥ 𝜇

𝑁𝑉
𝑁−1 ;B
𝑁−1,𝛽

[∫ 𝑥+𝜀

𝑥−𝜀
d𝜉 exp

{
− 𝑁𝛽

2
𝑉 (𝜉) + (𝑁 − 1)𝛽

∫
B

d𝐿𝑁−1 (𝜆) ln |𝜉 − 𝜆 |
)}]

≥ 𝑒−
𝑁𝛽

2 (𝑉 (𝑥)+𝛿𝑉𝜀 ) 𝜇
𝑁𝑉
𝑁−1 ;B
𝑁−1,𝛽

[∫ 𝑥+𝜀

𝑥−𝜀
d𝜉 exp

{
(𝑁 − 1)𝛽

∫
B

d𝐿𝑁−1 (𝜆) ln |𝜉 − 𝜆 |
}]

≥ 2𝜀 𝑒−
𝑁𝛽

2 (𝑉 (𝑥)+𝛿𝑉𝜀 ) exp
{
(𝑁 − 1)𝛽 𝜇

𝑁𝑉
𝑁−1 ;B
𝑁−1,𝛽

[ ∫
B

d𝐿𝑁−1 (𝜆) 𝐻𝑥,𝜀 (𝜆)
]}

≥ 2𝜀 𝑒−
𝑁𝛽

2 (𝑉 (𝑥)+𝛿𝑉𝜀 ) exp
{
(𝑁 − 1)𝛽 𝜇

𝑁𝑉
𝑁−1 ;B
𝑁−1,𝛽

[ ∫
B

d𝐿𝑁−1 (𝜆) 𝜙𝑥,𝐾 (𝜆)𝐻𝑥,𝜀 (𝜆)
]}
,

where we have set

𝐻𝑥,𝜀 (𝜆) =
∫ 𝑥+𝜀

𝑥−𝜀

d𝜉
2𝜀

ln |𝜉 − 𝜆 |,

and 𝜙𝑥,𝐾 is a continuous function vanishing outside of a large compact K that includes the support of
𝜇𝑉eq, is equal to 1 on a ball around x with radius 1 + 𝜀 and on the support of 𝜇𝑉eq, and takes values in
[0, 1]. For any fixed 𝜀 > 0, 𝜙𝑥,𝐾 · 𝐻𝑥,𝜀 is bounded continuous, so we have by Theorem 1.1

Υ𝑉 ;B
𝑁 ,𝛽 (X) ≥ 2𝜀 𝑒−

𝑁𝛽
2 (𝑉 (𝑥)+𝛿𝑉𝜀 ) exp

{
(𝑁 − 1)𝛽

∫
B

d𝜇𝑉eq (𝜆) 𝜙𝑥,𝐾 (𝜆) 𝐻𝑥,𝜀 (𝜆) + 𝑁𝑅(𝜀, 𝑁)
}

with lim𝑁→∞ 𝑅(𝜀, 𝑁) = 0 for all 𝜀 > 0. Letting 𝑁 →∞, we deduce since∫
B

d𝜇𝑉eq (𝜆) 𝜙𝑥,𝐾 (𝜆) 𝐻𝑥,𝜀 (𝜆) =
∫

B
d𝜇𝑉eq (𝜆) 𝐻𝑥,𝜀 (𝜆),

and since V converges uniformly towards 𝑉 {0}, that

lim inf
𝑁→∞

1
𝑁

lnΥ𝑉 ;B
𝑁 ,𝛽 (X) ≥ −

𝛽

2
𝛿𝑉

{0}
𝜀 − 𝛽

2

(
𝑉 {0} (𝑥) − 2

∫
B

d𝜇𝑉eq (𝜆) 𝐻𝑥,𝜀 (𝜆)
)
.

Exchanging the integration over 𝜉 and 𝜆, observing that 𝜉 →
∫

B d𝜇𝑉eq (𝜆) ln |𝜉 − 𝜆 | is continuous and
then letting 𝜀 → 0, we conclude that for all 𝑥 ∈ X,

lim inf
𝑁→∞

1
𝑁

lnΥ𝑉 ;B
𝑁 ,𝛽 (X) ≥ −

𝛽

2
𝑈̃𝑉 ;B

eq (𝑥), (3.7)

where we have recognised the effective potential of Equation (3.1). We finally optimise over 𝑥 ∈ X to
get the desired lower bound. To prove the upper bound, we note that for any 𝑀 > 0,

Υ𝑉 ;B
𝑁 ,𝛽 (X) ≤ 𝜇

𝑁𝑉
𝑁−1 ;B
𝑁−1,𝛽

[∫
X

d𝜉 exp
{
− 𝑁𝛽

2
𝑉 (𝜉) + (𝑁 − 1)𝛽

∫
B

d𝐿𝑁−1 (𝜆) ln max
(
|𝜉 − 𝜆 |, 𝑀−1)}] .

Observe that there exists𝐶0 and 𝑐 > 0 and d finite such that for |𝜉 | ≥ 𝐶0 and all probability measures
𝜇 on B,

𝑊𝜇 (𝜉) = 𝑉 (𝜉) − 2
∫

B
d𝜇(𝜆) ln max

(
|𝜉 − 𝜆 |, 𝑀−1) ≥ 𝑐 ln |𝜉 | + 𝑑

by the confinement Hypothesis 1.1. As a consequence, if X ⊂ B \ [−𝐶,𝐶] for some C large enough, we
deduce that

https://doi.org/10.1017/fms.2023.129 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.129


Forum of Mathematics, Sigma 29

Υ𝑉 ;B
𝑁 ,𝛽 (X) ≤

∫
X

d𝜉 𝑒−
𝛽
2 𝑉 ( 𝜉 ) 𝑒−(𝑁−1) 𝛽2 (𝑐 ln |𝜉 |+𝑑) ≤ 𝑒−𝑁

𝛽
4 𝑐 ln𝐶 , (3.8)

where the last bound holds for N large enough. Combining Equations (3.7), (3.8) and (3.6) shows that

lim sup
𝐶→∞

lim sup
𝑁→∞

1
𝑁

ln 𝜇𝑉 ;B
𝑁 ,𝛽

({
∃𝑖 ∈ �1, 𝑁� : |𝜆𝑖 | ≥ 𝐶

})
= −∞ .

Hence, we may restrict ourselves to X bounded. Moreover, the same bound extends to 𝜇
𝑁𝑉
𝑁−1 ;B
𝑁−1,𝛽 so that we

can restrict the expectation over 𝐿𝑁−1 to probability measures supported on [−𝐶,𝐶] up to an arbitrary
small error 𝑒−𝑁𝑒 (𝐶) , provided C is large enough and where lim𝐶→+∞ 𝑒(𝐶) = +∞. The confinement
hypothesis also guarantees that 𝑉 (𝜉) − 2

∫
B d𝐿𝑁−1 (𝜆) ln max

(
|𝜉 − 𝜆 |, 𝑀−1) is uniformly bounded from

below by a constant D. As 𝜆 ↦→ ln max
(
|𝜉 − 𝜆 |, 𝑀−1) is bounded continuous on compacts and M-

Lipschitz on R, we can then use the large deviation principles of Theorem 1.1 to deduce that for any
𝜀 > 0, any 𝐶 ≥ 𝐶0,

Υ𝑉 ;B
𝑁 ,𝛽 (X) ≤ 𝑒

𝑁 2 𝑅̃ (𝜀,𝑁 ,𝐶) + 𝑒−𝑁 (𝑒 (𝐶)− 𝛽
2 𝐷)

+
∫

X
d𝜉 exp

(
− 𝑁𝛽

2
𝑉 (𝜉) + (𝑁 − 1)𝛽

∫
B

d𝜇𝑉eq (𝜆) ln max
(
|𝜉 − 𝜆 |, 𝑀−1) + 𝑁𝑀𝜀)

with

lim sup
𝑁→∞

𝑅̃(𝜀, 𝑁, 𝐶) = lim sup
𝑁→∞

1
𝑁2 ln 𝜇

𝑁𝑉
𝑁−1 ;B
𝑁−1,𝛽

(
{𝐿𝑁−1([−𝐶,𝐶]) = 1} ∩ {𝔡(𝐿𝑁−1, 𝜇

𝑉
eq) > 𝜀}

)
< 0.

In terms of the Vaserstein distance between two probability measures,

𝔡(𝜇, 𝜈) = sup
{��� ∫
R

𝑓 (𝜉)d[𝜇 − 𝜈] (𝜉)
��� : 𝑓 : R→ R 1-Lipschitz

}
.

Moreover, 𝜉 ↦→ 𝑉 (𝜉) − 2
∫

B d𝜇𝑉eq (𝜆) ln max
(
|𝜉 − 𝜆 |, 𝑀−1) is bounded continuous so that a standard

Laplace method yields, as V goes to 𝑉 {0},

lim sup
𝑁→∞

1
𝑁

lnΥ𝑉 ;B
𝑁 ,𝛽 (X) ≤ max

{
− inf

𝜉 ∈X

[ 𝛽
2

(
𝑉 {0} (𝜉) − 2

∫
B

d𝜇𝑉eq (𝜆) ln max
(
|𝜉 − 𝜆 |, 𝑀−1) )] , 𝛽𝐷

2
− 𝑒(𝐶)

}
.

We finally choose C large enough so that the first term is larger than the second. Then, by the monotone
convergence theorem, we deduce that

∫
B d𝜇𝑉eq (𝜆) ln max

(
|𝜉 − 𝜆 |, 𝑀−1) increases as M goes to infinity

towards
∫

B d𝜇𝑉eq (𝜆) ln |𝜉 − 𝜆 |. This completes the proof of the large deviation in the initial model.
For the fixed filling fractions model, we make the decomposition

𝜇𝑉 ;A
𝑁 ,𝛽;𝝐

[{
∃𝑖 ∈ �1, 𝑁� : 𝜆𝑖 ∈ X

}]
=

𝑔∑
ℎ=0

𝜇𝑉 ;A
𝑁 ,𝛽;𝝐

[{
∃𝑖 ∈ �1, 𝑁ℎ� 𝜆ℎ,𝑖 ∈ X ∩ Aℎ

}]
,

with

Υ𝑉 ;B
𝑁 ,𝛽,ℎ (X ∩ Aℎ)

Υ𝑉 ;B
𝑁 ,𝛽,ℎ (Aℎ)

≤ 𝜇𝑉 ;B
𝑁 ,𝛽;𝝐

[{
∃𝑖 ∈ �1, 𝑁ℎ� : 𝜆ℎ,𝑖 ∈ X ∩ Aℎ

}]
≤ 𝑁ℎ

Υ𝑉 ;B
𝑁 ,𝛽,ℎ (X ∩ Aℎ)

Υ𝑉 ;B
𝑁 ,𝛽,ℎ (Aℎ)

,
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and

Υ𝑉 ;B
𝑁 ,𝛽,ℎ (X ∩ Aℎ) = 𝜇

𝑁𝑉
𝑁−1 ;A
𝑁 ,𝛽;𝝐−1ℎ/𝑁

(∫
X∩Aℎ

d𝜉 exp
{
− 𝑁𝛽

2
𝑉 (𝜉) + (𝑁 − 1)𝛽

∫
B

d𝐿𝑁−1 (𝜆) ln |𝜉 − 𝜆 |
)})

,

where 𝝐 − 1ℎ/𝑁 corresponds to the filling fraction where one eigenvalue has been suppressed from Aℎ .
The estimates for Υ𝑉 ;B

𝑁 ,𝛽,ℎ (X∩Aℎ) are done exactly as above and the result follows since the logarithm of
a finite sum of exponentially small terms is asymptotically equivalent to the logarithm of the maximal
term.

3.3. Concentration of measure and consequences

We will need rough a priori bounds on the correlators, which can be derived by purely probabilistic
methods. This type of result first appeared in the work of [dMPS95, Joh98] and more recently [KS10,
MMS12]. Given their importance, we find useful to prove independently the bound we need by elemen-
tary means.

Hereafter, we will say that a function 𝑓 : R→ C is b-Hölder if

𝜅𝑏 [ 𝑓 ] = sup
𝑥≠𝑦

| 𝑓 (𝑥) − 𝑓 (𝑦) |
|𝑥 − 𝑦 |𝑏

< ∞.

Our final goal is to control
∫

A 𝜑(𝑥)d[𝐿𝑁 − 𝜇𝑉eq] (𝑥) for a class of functions 𝜑 which is large enough
and, in particular, contains analytic functions on a neighbourhood of the interval of integration A. This
problem can be settled by controlling the ‘distance’ between 𝐿𝑁 and 𝜇𝑉eq for an appropriate notion of
‘distance’. We introduce the pseudo-distance 𝔇 between probability measures 𝜇, 𝜈 given by

𝔇[𝜇, 𝜈] =
(
−
∬
R2

d[𝜇 − 𝜈] (𝑥)d[𝜇 − 𝜈] (𝑦) ln |𝑥 − 𝑦 |
) 1

2

. (3.9)

It can be represented in terms of Fourier transform of the measures:

𝔇[𝜇, 𝜈] =
(∫ ∞

0

d𝑝
|𝑝 |

��(𝜇 − 𝜈̂) (𝑝)��2) 1
2

. (3.10)

Since 𝐿𝑁 has atoms, its pseudo-distance to another measure is, in general, infinite. There are several
methods to circumvent this issue, and one of them, that we borrow from [MMS12], is to define a
regularised measure 𝐿̃u

𝑁 (see the beginning of §3.4.1 below) from 𝐿𝑁 . Then, the result of concentration
takes the following form:

Lemma 3.5. Let V be regular, C3, confining, satisfying a control of large deviations on A and satisfying
(1.8) for 𝐾 = 0 (namely, 𝑁 (𝑉 −𝑉 {0}) is uniformly bounded by a constant 𝑣 {1} on A). There exists𝐶 > 0
so that, for t small enough and N large enough,

𝜇𝑉 ;A
𝑁 ,𝛽

(
𝔇[𝐿̃u

𝑁 , 𝜇
𝑉
eq] ≥ 𝑡

)
≤ 𝑒𝐶𝑁 ln 𝑁−𝑁 2𝑡2

.

Moreover, for any 𝑵 = (𝑁1, . . . , 𝑁𝑔) so that 𝝐 = 𝑵/𝑁 ∈ E ,

𝜇𝑉 ;A
𝑁 ,𝛽;𝝐

(
𝔇[𝐿̃u

𝑁 , 𝜇
𝑉
eq;𝝐 ] ≥ 𝑡

)
≤ 𝑒𝐶𝑁 ln 𝑁−𝑁 2𝑡2

. (3.11)

We prove it in §3.4.1 below. The assumption V of class C3 ensures that the effective potential (3.1)
defined from the equilibrium measure is a 1

2 -Hölder function (and even Lipschitz if all edges are soft)
on the compact set A, as one can observe on Equation (A.9) given in Appendix A. This lemma allows
an a priori control of expectation values of test functions.
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Corollary 3.6. Let V be regular, C3, confining, satisfying a control of large deviations on A and satisfying
(1.8) for 𝐾 = 0 (namely, 𝑁 (𝑉 − 𝑉 {0}) is uniformly bounded by a constant 𝑣 {1} on A). Let 𝑏 > 0 and
assume 𝜑 : R→ C is a b-Hölder function with constant 𝜅𝑏 [𝜑] such that

|𝜑|1/2 :=
( ∫
R

d𝑝 |𝑝 | |𝜑(𝑝) |2
) 1

2
< ∞.

Then, there exists 𝐶3 > 0 such that, for t small enough and N large enough,

𝜇𝑉 ;A
𝑁 ,𝛽

[��� ∫
A

d[𝐿𝑁 − 𝜇𝑉eq] (𝑥) 𝜑(𝑥)
��� ≥ 2𝜅𝑏 [𝜑]

(𝑏 + 1)𝑁2𝑏 + 𝑡 |𝜑|1/2
]
≤ 𝑒𝐶3𝑁 ln 𝑁− 𝛽

2 𝑁 2𝑡2
,

and for any 𝑵 = (𝑁1, . . . , 𝑁𝑔) so that 𝝐 = 𝑵/𝑁 ∈ E ,

𝜇𝑉 ;A
𝑁 ,𝛽;𝝐

[��� ∫
A

d[𝐿𝑁 − 𝜇𝑉eq;𝝐 ] (𝑥) 𝜑(𝑥)
��� ≥ 2𝜅𝑏 [𝜑]

(𝑏 + 1)𝑁2𝑏 + 𝑡 |𝜑|1/2
]
≤ 𝑒𝐶3𝑁 ln 𝑁− 𝛽

2 𝑁 2𝑡2
.

As a special case, we can obtain a rough a priori control on the correlators. Recall the notation, for
𝝐 ∈ E ,

𝑊 {−1}
1;𝝐 (𝑥) =

∫
A

d𝜇𝑉 ;A
eq;𝝐 (𝜉)
𝑥 − 𝜉 .

Corollary 3.7. Let V be regular, C3, confining and satisfying a control of large deviations on A. Let
𝐷 ′ > 0 and

𝑤𝑁 =
√
𝑁 ln 𝑁, 𝑓 (𝛿) =

√
| ln 𝛿 |
𝛿

, 𝑑 (𝑥,A) = inf
𝜉 ∈A

|𝑥 − 𝜉 | ≥ 𝐷 ′
√
𝑁2 ln 𝑁

.

There exists a constant 𝛾1 (A, 𝐷 ′) > 0 so that, for N large enough, for any 𝑵 = (𝑁1, . . . , 𝑁𝑔) so that
𝝐 = 𝑵/𝑁 ∈ E ��𝑊1;𝝐 (𝑥) − 𝑁𝑊 {−1}

1;𝝐 (𝑥)
�� ≤ 𝛾1 (A, 𝐷 ′) 𝑤𝑁 𝑓

(
𝑑 (𝑥,A)

)
. (3.12)

Similarly, for any 𝑛 ≥ 2, there exist constants 𝛾𝑛 (A, 𝐷 ′) > 0 so that, for N large enough,

��𝑊𝑛;𝝐 (𝑥1, . . . , 𝑥𝑛)
�� ≤ 𝛾𝑛 (A, 𝐷 ′) 𝑤𝑛

𝑁

𝑛∏
𝑖=1

𝑓
(
𝑑 (𝑥𝑖 ,A)

)
. (3.13)

In the (𝑔 + 1)-cut regime with 𝑔 ≥ 1, we denote (Sℎ)0≤ℎ≤𝑔 the connected components of the support of
𝜇𝑉eq, and we take A =

⋃𝑔
ℎ=0 Aℎ , where Aℎ = [𝑎−ℎ , 𝑎

+
ℎ] ⊆ B are pairwise disjoint bounded segments such

that Sℎ ⊂ Åℎ . For any configuration 𝜆 ∈ A𝑁 , we denote 𝑁ℎ the number of 𝜆𝑖s in Aℎ , and 𝑵 = (𝑁ℎ)1≤ℎ≤𝑔.
The following result gives an estimate for large deviations of 𝑵 away from 𝑁𝝐★ in the large N limit.

Corollary 3.8. Let A be as above, and V be C3, confining, satisfying a control of large deviations on A
and leading to a (𝑔 + 1)-cut regime. There exists positive constants 𝐶,𝐶 ′ such that, for N large enough
and uniformly in t,

𝜇𝑉 ;A
𝑁 ,𝛽

(
|𝑵 − 𝑁𝝐★ |1 > 𝑡

√
𝑁 ln 𝑁

)
≤ 𝑒𝑁 ln 𝑁 (𝐶−𝐶′𝑡2) . (3.14)

As an outcome of this article, we will obtain in Section 8.2 a stronger large deviation statement for
filling fractions when the potential satisfies the stronger Hypotheses 1.1–1.3.
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3.4. Concentration of 𝐿𝑁 : proof of Lemma 3.5

Throughout this section, proofs will be given for the initial model. They are exactly the same for the
fixed filling fractions model.

3.4.1. Regularisation of 𝐿𝑁

We start by following an idea introduced by Maïda and Maurel-Segala [MMS12, Proposition 3.2]. Let
𝜎𝑁 , 𝜂𝑁 → 0 be two sequences of positive numbers. To any configuration of points 𝜆1 ≤ . . . ≤ 𝜆𝑁 in A,
we associate another configuration 𝜆1, . . . , 𝜆𝑁 by the formula

𝜆1 = 𝜆1, 𝜆𝑖+1 = 𝜆𝑖 + max(𝜆𝑖+1 − 𝜆𝑖 , 𝜎𝑁 ) . (3.15)

It has the properties

∀𝑖 ≠ 𝑗 , |𝜆𝑖 − 𝜆 𝑗 | ≥ 𝜎𝑁 , |𝜆𝑖 − 𝜆 𝑗 | ≤ |𝜆𝑖 − 𝜆 𝑗 |, |𝜆𝑖 − 𝜆𝑖 | ≤ (𝑖 − 1)𝜎𝑁 . (3.16)

Let us denote by 𝐿̃𝑁 = 1
𝑁

∑𝑁
𝑖=1 𝛿𝜆𝑖 the new counting measure. Then, we define 𝐿̃u

𝑁 be the convolution
of 𝐿̃𝑁 with the uniform measure on [0, 𝜂𝑁𝜎𝑁 ].

We are going to compare the (opposite of the) logarithmic energy of 𝐿𝑁 to that of 𝐿̃u
𝑁 , which has

the advantage of having no atom. We first have∑
𝑖≠ 𝑗

ln |𝜆𝑖 − 𝜆 𝑗 | ≤
∑
𝑖≠ 𝑗

ln
��𝜆𝑖 − 𝜆 𝑗

�� (3.17)

because the logarithm is increasing and the spacings of 𝜆̃s are larger than the spacings of 𝜆s. Let

Σ[𝜇] =
∬
R2

ln |𝑥 − 𝑦 |d𝜇(𝑥)d𝜇(𝑦)

denote the (opposite of the) logarithmic energy of a probability measure 𝜇. Then,

𝑁2Σ[𝐿̃u
𝑁 ] −

∑
𝑖≠ 𝑗

ln |𝜆𝑖 − 𝜆 𝑗 | =
∑
𝑖≠ 𝑗

∬
[0,1]2

d𝑢 d𝑣 ln
���1 + 𝜂𝑁𝜎𝑁

(𝑢 − 𝑣)
𝜆̃𝑖 − 𝜆̃ 𝑗

��� + 𝑁∑
𝑖=1

∬
[0,1]2

d𝑢 d𝑣 ln
��𝜂𝑁𝜎𝑁 (𝑢 − 𝑣)

��.
Thanks to the minimal distance 𝜎𝑁 enforced between the 𝜆𝑖s in Equation (3.16), 𝜎𝑁

��(𝑢 − 𝑣)/(𝜆̃𝑖 − 𝜆̃ 𝑗 )
��

is bounded by 1, so that for 𝜂𝑁 ≤ 1
2 (thus for N large enough),����∑

𝑖≠ 𝑗

∬
[0,1]2

d𝑢 d𝑣 ln
���1 + 𝜂𝑁𝜎𝑁

(𝑢 − 𝑣)
𝜆𝑖 − 𝜆 𝑗

������� ≤ 2𝑁 (𝑁 − 1)𝜂𝑁 .

Since (𝑢, 𝑣) ↦→ ln |𝑢 − 𝑣 | is integrable in [0, 1]2, we find for some constants 𝑐1, 𝑐2 > 0,���∑
𝑖≠ 𝑗

ln |𝜆𝑖 − 𝜆 𝑗 | − 𝑁2Σ[𝐿̃𝑢𝑁 ]
��� ≤ 𝑐1𝑁

�� ln(𝜂𝑁𝜎𝑁 )
�� + 𝑐2𝑁

2𝜂𝑁 ,

so that finally, with Equation (3.17), we have proved that for any (𝜆𝑖)1≤𝑖≤𝑁 ∈ R𝑁 ,∑
𝑖≠ 𝑗

ln |𝜆𝑖 − 𝜆 𝑗 | ≤ 𝑁2Σ[𝐿̃𝑢𝑁 ] + 𝑐1𝑁
�� ln(𝜂𝑁𝜎𝑁 )

�� + 𝑐2𝑁
2𝜂𝑁 . (3.18)
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Besides, if 𝑏 > 0 and 𝜑 : A → C is a b-Hölder function with constant 𝜅𝑏 [𝜑], we have by Equation(3.16),

��� ∫
A

d[𝐿𝑁 − 𝐿̃u
𝑁 ] (𝑥) 𝜑(𝑥)

��� ≤ 𝜅𝑏 [𝜑]
𝑁

𝑁∑
𝑖=1

(
(𝑖 − 1)𝜎𝑁 + 𝜂𝑁𝜎𝑁

)𝑏
≤ 𝜅𝑏 [𝜑]

𝑁

(
𝜎𝑏
𝑁 𝜂

𝑏
𝑁 +

𝑁∑
𝑖=2
(𝑖 − 1)𝑏𝜎𝑏

𝑁 (1 + 𝜂𝑁 )
𝑏
)
≤ 2𝜅𝑏 [𝜑]
(1 + 𝑏) (𝑁𝜎𝑁 )𝑏 . (3.19)

3.4.2. Deviations of 𝐿̃u
𝑁

We would like to estimate the probability of deviations of 𝐿̃u
𝑁 from the equilibrium measure 𝜇𝑉eq.

We need first a lower bound on 𝑍𝑉 ;A
𝑁 ,𝛽 similar to that of [BAG97] obtained by localising the ordered

eigenvalues at a distance 𝑁−3 of the quantiles 𝜆cl
𝑖 of the equilibrium measure 𝜇𝑉eq, which are defined as

𝜆cl
𝑖 = inf

{
𝑥 ∈ A : 𝜇𝑉eq

(
[−∞, 𝑥]

)
≥ 𝑖

𝑁

}
, 𝑖 ∈ �1, 𝑁�.

Since V is C2, d𝜇𝑉eq has a continuous density on the interior of its support, which diverges only at hard
edges, where it blows at most like the inverse of a squareroot and vanishes only at soft edges. Therefore,
there exists a constant 𝐶 > 0 such that, for N large enough,

∀𝑖 ∈ �2, 𝑁�, 𝑐

𝑁2 ≤ |𝜆cl
𝑖 − 𝜆

cl
𝑖−1 |. (3.20)

Then, since V is a fortiori C1 on A compact,

𝑍𝑉 ;A
𝑁 ,𝛽 ≥ 𝑁!

∫
|𝛿𝑖 | ≤𝑁 −3

∏
1≤𝑖< 𝑗≤𝑁

|𝜆cl
𝑖 − 𝜆

cl
𝑗 + 𝛿𝑖 − 𝛿 𝑗 |

𝛽
𝑁∏
𝑖=1

𝑒−
𝛽𝑁

2 𝑉 (𝜆cl
𝑖 +𝛿𝑖)d𝛿𝑖

≥ 𝑁! 𝑁−3𝑁 𝑒−𝐶1 𝑁
∏

1≤𝑖< 𝑗≤𝑁
|𝜆cl

𝑖 − 𝜆
cl
𝑗 |

𝛽
𝑁∏
𝑖=1

𝑒−
𝑁𝛽

2
∑𝑁

𝑖=1 𝑉 (𝜆cl
𝑖 ) ,

for some constant 𝐶1 > 0. Then,

∑
1≤𝑖< 𝑗≤𝑁

ln |𝜆cl
𝑖 − 𝜆

cl
𝑗 | =

∑
1≤𝑖, 𝑗≤𝑁
𝑖+1< 𝑗

ln |𝜆cl
𝑖 − 𝜆

cl
𝑗 | +

𝑁−1∑
𝑖=1

ln |𝜆cl
𝑖 − 𝜆

cl
𝑖+1 |

≥
∑

1≤𝑖< 𝑗≤𝑁−1
ln |𝜆cl

𝑖 − 𝜆
cl
𝑗+1 | + (𝑁 − 1) ln

(
𝐶
𝑁 2

)
≥ 𝑁2

∬
𝜆cl

1 ≤𝑥<𝑦≤𝜆
cl
𝑁

ln |𝑥 − 𝑦 |d𝜇𝑉eq (𝑥)d𝜇𝑉eq (𝑦) + (𝑁 − 1) ln
(

𝑐
𝑁 2

)
≥ 𝑁2

2

∬
[𝜆cl

1 ,𝜆
cl
𝑁 ]2

ln |𝑥 − 𝑦 |d𝜇𝑉eq (𝑥)d𝜇𝑉eq (𝑦) + (𝑁 − 1) ln
(

𝑐
𝑁 2

)
≥ 𝑁2

2

∬
A2

ln |𝑥 − 𝑦 |d𝜇𝑉eq (𝑥)d𝜇𝑉eq (𝑦) −
𝑁2

2

∬
𝑥∈A
𝑦<𝜆cl

1

ln |𝑥 − 𝑦 |d𝜇𝑉eq (𝑥)d𝜇𝑉eq (𝑦)

− 𝑁2

2

∬
𝑥>𝜆cl

1
𝑦<𝜆cl

1

ln |𝑥 − 𝑦 |d𝜇𝑉eq (𝑥)d𝜇𝑉eq (𝑦) + (𝑁 − 1) ln
(

𝑐
𝑁 2

)
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≥ 𝑁2

2

∬
A2

ln |𝑥 − 𝑦 |d𝜇𝑉eq (𝑥)d𝜇𝑉eq (𝑦) −
𝑁2

4

∫
𝑦<𝜆cl

1

(
𝐶 +𝑉 {0} (𝑦)

)
d𝜇𝑉eq (𝑦)

− 𝑁2

2

∬
𝑥>𝜆cl

1
𝑦<𝜆cl

1

ln |𝑥 − 𝑦 |d𝜇𝑉eq (𝑥)d𝜇𝑉eq (𝑦) + (𝑁 − 1) ln
(

𝑐
𝑁 2

)
. (3.21)

Between the first two lines, we used Equation (3.20) to get a lower bound for the second term. In the
third line, we have used the fact that the logarithm is an increasing function. In the fourth line, we
have symmetrised the integral. In the fifth line, we observed that the definition of 𝜆cl

𝑁 implies that 𝜇𝑉eq
has support included in A− := A ∩ (−∞, 𝜆cl

𝑁 ] and completed the square domain [𝜆cl
1 , 𝜆

cl
𝑁 ] to A2 while

subtracting the extra contributions coming from this procedure. In the last line, we used the equality
case of the characterisation of the equilibrium measure. Since d𝜇𝑉eq has a continuous density possibly
blowing up like 𝛼 an inverse squareroot at the endpoints of its support, 𝑦 ↦→

∫
𝑥>𝜆cl

1
ln |𝑥 − 𝑦 |d𝜇𝑉eq (𝑥)

is uniformly 𝑂 (ln 𝑁) for 𝑦 ∈ A− (recall that A− is compact since A is). Since 𝜇𝑉eq
(
(−∞, 𝜆cl

1 ]
)
≤ 1

𝑁 by
definition of 𝜆cl

1 , we deduce that the first term in the last line of Equation (3.21) is 𝑂 (𝑁 ln 𝑁). Besides,
𝑉 {0} +𝐶 is continuous and hence bounded on A compact, showing for a similar reason that the last term
in the penultimate line of Equation (3.21) is 𝑂 (𝑁). All in all, this shows the existence of a constant 𝐶2
such that for N large enough,∑

1≤𝑖< 𝑗≤𝑁
ln |𝜆cl

𝑖 − 𝜆
cl
𝑗 | ≥

∑
1≤𝑖< 𝑗≤𝑁

ln |𝜆cl
𝑖 − 𝜆

cl
𝑗 | − 𝐶2𝑁 ln 𝑁.

Next, we have����� 1
𝑁

𝑁∑
𝑖=1
𝑉 (𝜆cl

𝑖 ) −
∫

A
𝑉 (𝑥)d𝜇𝑉eq (𝑥)

�����
=
𝑉 (𝜆cl

𝑁 )
𝑁

−
∫
𝑥<𝜆cl

1

𝑉 (𝑥)d𝜇𝑉eq (𝑥) +
𝑁−1∑
𝑖=1

∫ 𝜆cl
𝑖+1

𝜆cl
𝑖

(
𝑉 (𝜆cl

𝑖 ) −𝑉 (𝑥)
)
d𝜇𝑉eq (𝑥)

≤
2‖𝑉 ‖A

∞
𝑁

+ ‖𝑉 ′‖A
∞

( 𝑁−1∑
𝑖=1

∫ 𝜆cl
𝑖+1

𝜆cl
𝑖

|𝑥 − 𝜆cl
𝑖 |d𝜇

𝑉
eq (𝑥)

)
≤

2‖𝑉 ‖A
∞

𝑁
+
‖𝑉 ′‖A

∞
𝑁

𝑁−1∑
𝑖=1

(𝜆cl
𝑖+1 − 𝜆

cl
𝑖 ) ≤

2‖𝑉 ‖A
∞ + 𝐶3‖𝑉 ′‖A

∞
𝑁

for some constant𝐶3 > 0. Then, as 𝑁−1 ∑𝑁
𝑖=1 𝛿𝜆cl

𝑖
is a sequence of measures converging to the minimiser

𝜇𝑉eq of the energy functional E introduced in Equation (1.5), we find

𝑍𝑉 ;A
𝑁 ,𝛽 ≥ exp

{
− 𝛽

2
𝐶4 𝑁 ln 𝑁 − 𝑁2 𝐸 [𝜇𝑉eq]

}
(3.22)

for some positive constant 𝐶4.
Now, consider the event S𝑁 (𝑡) =

{
𝔇[𝐿̃u

𝑁 , 𝜇
𝑉
eq] ≥ 𝑡

}
. Observing that

𝜇𝑉 ;A
𝑁 ,𝛽

(
S𝑁 (𝑡)

)
=

1
𝑍𝑉 ;A
𝑁 ,𝛽

∫
S𝑁 (𝑡)

𝑒
𝛽
2 (
∑

𝑖≠ 𝑗 ln |𝜆𝑖−𝜆 𝑗 |−𝑁 2
∫

A d𝐿𝑁 (𝑥) 𝑉 (𝑥))
𝑁∏
𝑖=1

d𝜆𝑖

and using the comparison (3.18) of §3.4.1, we find, with the notations of Theorem 1.2,

𝜇𝑉 ;A
𝑁 ,𝛽

(
S𝑁 (𝑡)

)
≤ 𝑒

𝛽
2 𝑅𝑁

𝑍𝑉 ;A
𝑁 ,𝛽

∫
S𝑁 (𝑡)

𝑒
𝛽𝑁2

2 (Σ [𝐿u
𝑁 ]−

∫
A d𝐿u

𝑁 (𝑥) 𝑉 {0} (𝑥))
𝑁∏
𝑖=1

d𝜆𝑖 ,

https://doi.org/10.1017/fms.2023.129 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.129


Forum of Mathematics, Sigma 35

with

𝑅𝑁 = 𝑁3𝜎𝑁 𝜅1 [𝑉] + 𝑐2𝑁
2𝜂𝑁 + 𝑐1𝑁 | ln(𝜎𝑁 𝜂𝑁 ) | + 𝑁𝑣 {1} .

We then decompose

𝐸 [𝐿̃u
𝑁 ] =

𝛽

2

(
− Σ[𝐿̃u

𝑁 ] +
∫

A
d𝐿̃u

𝑁 (𝑥)𝑉
{0} (𝑥)

)
= 𝐸 [𝜇𝑉eq] +

𝛽

2

( ∫
A
𝑈𝑉

eq (𝑥)d[𝐿̃u
𝑁 − d𝜇𝑉eq] (𝑥) +𝔇2 [𝐿̃u

𝑁 , 𝜇
𝑉
eq]

)
.

The effective potential𝑈𝑉
eq is defined in Equation (3.1), and since it is integrated against a signed measure

of zero mass, we can add to it a constant and thus replace it with 𝑈̃𝑉
eq. According to the characterisation

of the equilibrium measure, 𝑈𝑉
eq vanishes 𝜇𝑉eq-everywhere. Hence,

𝐸 [𝐿̃u
𝑁 ] = 𝐸 [𝜇

𝑉
eq] +

𝛽

2

(
𝔇2 [𝐿̃u

𝑁 , 𝜇
𝑉
eq] +

∫
A
𝑈𝑉

eq (𝑥) d𝐿̃u
𝑁 (𝑥)

)
,

and we obtain

𝜇𝑉 ;A
𝑁 ,𝛽

(
S𝑁 (𝑡)

)
≤ 𝑒

𝛽
2 𝑅𝑁−𝑁 2 𝐸 [𝜇𝑉

eq ]

𝑍𝑉 ;A
𝑁 ,𝛽

∫
S𝑁 (𝑡)

𝑒−
𝛽𝑁2

2

(
𝔇2 [𝐿u

𝑁 ,𝜇𝑉
eq ]+

∫
A d𝐿u

𝑁 (𝑥)𝑈𝑉
eq (𝑥)

) 𝑁∏
𝑖=1

d𝜆𝑖 .

Since𝑈𝑉 ;A is at least 1
2 -Hölder on A (and even Lipschitz if all edges are soft), we find by Equation (3.19),

𝜇𝑉 ;A
𝑁 ,𝛽

(
S𝑁 (𝑡)

)
≤ 𝑒

𝛽
2 (𝑅𝑁 +𝜅1/2 [𝑈𝑉

eq ] 𝑁
5
2 𝜎

1
2
𝑁 )−𝑁

2 𝐸 [𝜇𝑉
eq ]

𝑍𝑉 ;A
𝑁 ,𝛽

∫
S𝑁 (𝑡)

𝑒−
𝛽𝑁2

2 𝔇2 [𝐿u
𝑁 ,𝜇𝑉

eq ]
𝑁∏
𝑖=1

𝑒−
𝛽𝑁

2 𝑈𝑉
eq (𝜆𝑖 ) d𝜆𝑖 .

We now use the lower bound (3.22) for the partition function and the definition of the event S𝑁 (𝑡) in
order to obtain

𝜇𝑉 ;A
𝑁 ,𝛽

(
S𝑁 (𝑡)

)
≤ 𝑒

𝛽
2 (𝑅𝑁 +𝜅1/2 [𝑈𝑉

eq ] 𝑁
5
2 𝜎

1
2
𝑁 +𝐶2 𝑁 ln 𝑁−𝑁 2𝑡2)

( ∫
A

d𝜆 𝑒−
𝛽𝑁

2 𝑈𝑉
eq (𝜆)

)𝑁
≤ 𝑒

𝛽
2 (𝑅̃𝑁 +𝐶2 𝑁 ln 𝑁−𝑁 2𝑡2) ,

with

𝑅̃𝑁 = 𝑅𝑁 + 𝜅1/2 [𝑈𝑉
eq] 𝑁

5
2𝜎

1
2
𝑁 + 2𝑁

𝛽
ln ℓ(A). (3.23)

Indeed, since𝑈𝑉 ;A is nonnegative on A, we observed that the integral in bracket is bounded by the total
length ℓ(A) of the range of integration, which is here finite. We now choose

𝜎𝑁 =
1
𝑁3 , 𝜂𝑁 =

1
𝑁
, (3.24)

which guarantees that 𝑅̃𝑁 = 𝑂 (𝑁 ln 𝑁). Thus, there exists a positive constant 𝐶3 such that, for N large
enough,

𝜇𝑉 ;A
𝑁 ,𝛽

(
S𝑁 (𝑡)

)
≤ 𝑒

𝛽
2 (𝐶3 𝑁 ln 𝑁−𝑁 2𝑡2) ,
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which concludes the proof of Proposition 3.5. We may rephrase this result by saying that the probability
of S𝑁 (𝑡) becomes small for t larger than

√
2𝐶3 ln 𝑁

𝑁 .
The proof of (3.11) for fixed filling faction is similar since the same algebra holds, cf. Equation (A.4)

(with measures with same mass on the Aℎ).

3.5. Large deviations for test functions

3.5.1. Proof of Corollary 3.6
Since 𝜑 is b-Hölder, we can use the comparison (3.19) with 𝜎𝑁 = 𝑁−3 chosen in Equation (3.24):��� ∫

A
d[𝐿𝑁 − 𝐿̃u

𝑁 ] (𝑥) 𝜑(𝑥)
��� ≤ 2𝜅𝑏 [𝜑]

(𝑏 + 1)𝑁2𝑏 . (3.25)

Then, we compute in Fourier space and using Cauchy–Schwarz inequality��� ∫
A

d[𝐿̃u
𝑁 − 𝜇𝑉eq] (𝑥) 𝜑(𝑥)

��� = ��� ∫
R

d𝑝
(̂̃𝐿u

𝑁 − 𝜇𝑉eq
)
(𝑝) 𝜑(𝑝)

��� ≤ |𝜑|1/2
( ∫
R

d𝑝
|𝑝 |

��(̂̃𝐿u
𝑁 − 𝜇𝑉eq) (𝑝) |2

) 1
2
,

we recognise in the last factor the definition (3.10) of the pseudo-distance:��� ∫
A

d[𝐿̃u
𝑁 − 𝜇𝑉eq] (𝑥) 𝜑(𝑥)

��� ≤ √2 |𝜑|1/2 𝔇[𝐿̃u
𝑁 , 𝜇

𝑉
eq] . (3.26)

Corollary 3.6 then follows from this inequality combined with Lemma 3.5.

3.5.2. Bounds on correlators and filling fractions (Proof of Corollary 3.7 and 3.8)
Let A𝜂 = {𝑥 ∈ R, : 𝑑 (𝑥,A) ≤ 𝜂}. As we have chosen 𝜎𝑁 = 𝑁−3 and 𝜂𝑁 = 𝑁−1, the support of 𝐿̃u

𝑁 is
included in A2/𝑁 3 . If 𝜇 is a probability measure, let W𝜇 denote its Stieltjes transform. We have

(
W𝐿𝑁 −W𝜇𝑉

eq

)
(𝑥) =

∫
A

d[𝐿𝑁 − 𝜇𝑉eq] (𝜉) 𝜓𝑥 (𝜉), 𝜓𝑥 (𝜉) = 𝜓𝑅
𝑥 (𝜉) + i𝜓𝐼

𝑥 (𝜉) =
1

𝑥 − 𝜉 . (3.27)

Since 𝜓𝑥 is Lipschitz on A2/𝑁 3 with constant 𝜅1 [𝜓𝑥] = 𝑑−2(𝑥,A2/𝑁 3), we have for 𝑑 (𝑥,A) ≥ 3
𝑁 3 ,

��W𝐿𝑁 (𝑥) −W𝐿u
𝑁
(𝑥)

�� ≤ 3
𝑁2𝑑2(𝑥,A)

. (3.28)

We focus on estimating W𝐿u
𝑁
−W𝜇𝑉

eq
. We have the freedom to replace 𝜓•𝑥 by any function 𝜙•𝑥 which

coincides with 𝜓•𝑥 on A2/𝑁 3 since the support of 𝐿̃u
𝑁 and 𝜇𝑉eq are included in A2/𝑁 3 . Then,��W𝐿u

𝑁
(𝑥) −W𝜇𝑉

eq
(𝑥)

�� ≤ √2
(
|𝜙𝑅𝑥 |1/2 + |𝜙𝐼𝑥 |1/2

)
𝔇[𝐿̃u

𝑁 , 𝜇
𝑉
eq] . (3.29)

We wish to choose 𝜙•𝑥 so that our estimates depend on the distance to A2/𝑁 3 (whereas the choice of the
function 𝜓•𝑥 would only gives bounds in terms of the distance to the real line and therefore would not
allow bounds for 𝑥 ∈ R\A2/𝑁 3 ). We now explain a suitable choice of 𝜙•𝑥 . Let 𝑎𝑥,ℎ,2/𝑁 3 ∈ Aℎ,2/𝑁 3 the
point such that 𝑑 (𝑥,Aℎ,2/𝑁 3) = |𝑥 − 𝑎𝑥,ℎ,2/𝑁 3 |. Then, for 𝜉 ∈ Aℎ,2/𝑁 3 , we have

��(𝜓•𝑥)′(𝜉)�� ≤ 1
𝑑 (𝑥,Aℎ,2/𝑁 3)2 + (𝜉 − 𝑎𝑥,ℎ,2/𝑁 3 )2

,
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and therefore,

∀𝜉 ∈ A2/𝑁 3 ,
��(𝜓•𝑥)′(𝜉)�� ≤ 𝑔∑

ℎ=0

1
𝑑 (𝑥,Aℎ,1/𝑁 2)2 + (𝜉 − 𝑎𝑥,ℎ,2/𝑁 3 )2

. (3.30)

Then, we take a function (𝜙•𝑥)′ which coincides with (𝜓•𝑥)′ on A1/𝑁 2 and extends it continuously on R,
with compact support included in

[
− 𝑀

2 ,
𝑀
2
]

for some M large enough, independent of N, and such that

∀𝜉 ∈ R,
��(𝜙•𝑥)′(𝜉)�� ≤ 𝑔∑

ℎ=0

1
𝑑 (𝑥,Aℎ,1/𝑁 2)2 + (𝜉 − 𝑎𝑥,ℎ,1/𝑁 2 )2

. (3.31)

We denote 𝜙•𝑥 an antiderivative of this function and use it in Equation (3.29). We compute

|𝜙•𝑥 |21/2 =
∫
R

|𝑝 | |𝜙•𝑥 (𝑝) |2d𝑝 =
∫
R

1
|𝑝 | |

8(𝜙•𝑥)′(𝑝) |2d𝑝

= −2
∫
R2

ln |𝜉1 − 𝜉2 | (𝜙•𝑥)′(𝜉1) (𝜙•𝑥)′(𝜉2)d𝜉1d𝜉2

≤ 2
∫
R2

�� ln |𝜉1 − 𝜉2 |
�� | (𝜙•𝑥)′(𝜉1) | | (𝜙•𝑥)′(𝜉2) |d𝜉1d𝜉2. (3.32)

We note that, for any 𝑎1, 𝑎2 ∈ [−𝑀, 𝑀], 𝑏1, 𝑏2 ∈ R, we can find a finite constant C (depending only
on M) such that∫

R2

�� ln |𝜉1 − 𝜉2 |
�� d𝜉1

(𝜉1 − 𝑎1)2 + 𝑏2
1

d𝜉2

(𝜉2 − 𝑎2)2 + 𝑏2
2
≤ 𝐶

𝑏1𝑏2
(1 + | ln |𝑏1 | | + | ln |𝑏2 | |) .

So after we insert the bounds of (3.31) in (3.32), we obtain��𝜙•𝑥 ��21/2 ≤ 𝐷 ln 𝑑 (𝑥,A2/𝑁 3)
𝑑2(𝑥,A2/𝑁 3)

for some constant 𝐷 > 0 depending only on A2/𝑁 3 . If 𝑑 (𝑥,A) ≥ 3
𝑁 3 and for N large enough, we can

also write with a larger constant D, ��𝜙•𝑥 ��21/2 ≤ 𝐷 ln 𝑑 (𝑥,A)
𝑑2(𝑥,A)

.

Then, with Equations (3.25), (3.27) and (3.26),��� 1
𝑁
𝑊1 (𝑥) −W𝜇𝑉

eq
(𝑥)

��� = ���𝜇𝑉 ;A
𝑁 ,𝛽

(
W𝐿𝑁 (𝑥) −W𝜇𝑉

eq
(𝑥)

) ���
≤ 3
𝑁2𝑑2(𝑥,A)

+ 2𝐷
√

ln 𝑁
𝑁

√
| ln 𝑑 (𝑥,A) |
𝑑 (𝑥,A) .

If we restrict ourselves to 𝑥 ∈ C \ A such that

𝑑 (𝑥,A) ≥ 𝐷 ′
√
𝑁2 ln 𝑁

for some constant 𝐷 ′ > 0, then��� 1
𝑁
𝑊1(𝑥) −W𝜇𝑉

eq
(𝑥)

��� ≤ (2𝐷 + 𝐷 ′′)
√

ln 𝑁
𝑁

√
| ln 𝑑 (𝑥,A) |
𝑑 (𝑥,A)

for some constant 𝐷 ′′ > 0.
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Now let us consider the higher correlators. For any 𝑛 ≥ 2, the same arguments show that there exists
a finite constant 𝑐𝑛 so that for any 𝑥𝑖 such that 𝑑 (𝑥𝑖 ,A) ≥ 𝐷′

√
𝑁 2 ln 𝑁

,

𝑚𝑛 (𝑥1, . . . , 𝑥𝑛) = 𝜇𝑉 ;A
𝑁 ,𝛽

[ 𝑛∏
𝑖=1
(W𝐿𝑁 −W𝜇𝑉

eq
) (𝑥𝑖)

]
satisfies

|𝑚𝑛 (𝑥1, . . . , 𝑥𝑛) | ≤ 𝑐𝑛 (𝑁 ln 𝑁)
𝑛
2

𝑛∏
𝑖=1

√
| ln 𝑑 (𝑥𝑖 ,A) |
𝑑 (𝑥𝑖 ,A)

.

As𝑊𝑉 ;A
𝑛 is a homogeneous polynomial of degree n in the moments (𝑚𝑘 )1≤𝑘≤𝑛, we conclude that

|𝑊𝑛 (𝑥1, . . . , 𝑥𝑛) | ≤ 𝛾𝑛 (𝑁 ln 𝑁)
𝑛
2

𝑛∏
𝑖=1

√
| ln 𝑑 (𝑥𝑖 ,A) |
𝑑 (𝑥𝑖 ,A)

.

for some constant 𝛾𝑛 > 0, which depends only on A. This concludes the proof of Corollary 3.7.
Similarly, to have a control on filling fractions, we write

𝑁ℎ − 𝑁𝜖★,ℎ = 𝑁
∫

A
d[𝐿𝑁 − 𝜇𝑉eq] (𝜉) 1Aℎ (𝜉).

Following the same steps to extend the function 𝑥 ↦→ 1Aℎ (𝑥) initially defined on A by a function defined
on R and with finite | · |1/2 norm, we can apply Corollary 3.6 to deduce Corollary 3.8.

4. Dyson–Schwinger equations for 𝛽 ensembles

Let A =
⋃𝑔

ℎ=0 Aℎ be a finite union of pairwise disjoint bounded segments, and let V be a C1 function of
A. Dyson–Schwinger equations for the initial model 𝜇𝑉 ;A

𝑁 ,𝛽 can be derived by integration by parts. Since
the derivation does not use any information on the location of the 𝜆s, it is equally valid for the model
with fixed filling fractions 𝜇𝑉 ;A

𝑁 ,𝛽;𝝐 , in which 𝑁𝜖ℎ = 𝑁ℎ are integers.
Since these equations are well known (and have been reproved in [BG11]), we state them without

proof. They can be written in several equivalent forms, and here we recast them in a way which is
convenient for our analysis. We assume that V extends to a holomorphic function in a neighbourhood of
A, so that they can be written in terms of contour integrals of correlators – an extension to V harmonic
will be mentioned in §6.1. We introduce (arbitrarily for the moment) a partition 𝜕A = (𝜕A)+ ∪ (𝜕A)− of
the set of edges of the range of integration, and let

𝐿(𝑥) =
∏

𝑎∈(𝜕A)−

(𝑥 − 𝑎), 𝐿1 (𝑥, 𝜉) =
𝐿(𝑥) − 𝐿(𝜉)

𝑥 − 𝜉 , 𝐿2 (𝑥; 𝜉1, 𝜉2) =
𝐿1 (𝑥, 𝜉1) − 𝐿1 (𝑥, 𝜉2)

𝜉1 − 𝜉2
.

(4.1)

Theorem 4.1. Dyson–Schwinger equation in one variable. For any 𝑥 ∈ C \ A, we have

0 = 𝑊2 (𝑥, 𝑥) +
(
𝑊1(𝑥)

)2 +
(
1 − 2

𝛽

)
𝜕𝑥𝑊1 (𝑥)

− 𝑁
∮

A

d𝜉
2i𝜋

𝐿(𝜉)
𝐿(𝑥)

𝑉 ′(𝜉)𝑊1 (𝜉)
𝑥 − 𝜉 − 2

𝛽

∑
𝑎∈(𝜕A)+

𝐿(𝑎)
𝑥 − 𝑎 𝜕𝑎 ln 𝑍𝑉 ;A

𝑁 ,𝛽
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+
(
1 − 2

𝛽

) ∮
A

d𝜉
2i𝜋

𝐿2 (𝑥; 𝜉, 𝜉)
𝐿(𝑥) 𝑊1 (𝜉)

−
∯

A2

d𝜉1d𝜉2

(2i𝜋)2
𝐿2 (𝑥; 𝜉1, 𝜉2)

𝐿(𝑥)
(
𝑊2 (𝜉1, 𝜉2) +𝑊1 (𝜉1)𝑊1(𝜉2)

)
. (4.2)

And similarly, for higher correlators, we have the following:

Theorem 4.2. Dyson–Schwinger equation in 𝑛 ≥ 2 variables. For any 𝑥, 𝑥2, . . . , 𝑥𝑛 ∈ C\A, if we denote
𝐼 = �2, 𝑛�, we have

0 = 𝑊𝑛+1 (𝑥, 𝑥, 𝑥𝐼 ) +
∑
𝐽 ⊆𝐼

𝑊#𝐽+1 (𝑥, 𝑥𝐽 )𝑊𝑛−#𝐽 (𝑥, 𝑥𝐼\𝐽 ) +
(
1 − 2

𝛽

)
𝜕𝑥𝑊𝑛 (𝑥, 𝑥𝐼 )

− 𝑁
∮

A

d𝜉
2i𝜋

𝐿(𝜉)
𝐿(𝑥)

𝑉 ′(𝜉)𝑊𝑛 (𝜉, 𝑥𝐼 )
𝑥 − 𝜉 − 2

𝛽

∑
𝑎∈(𝜕A)+

𝐿(𝑎)
𝑥 − 𝑎 𝜕𝑎𝑊𝑛−1 (𝑥𝐼 )

+ 2
𝛽

∑
𝑖∈𝐼

∮
A

d𝜉
2i𝜋

𝐿(𝜉)
𝐿(𝑥)

𝑊𝑛−1 (𝜉, 𝑥𝐼\{𝑖 })
(𝑥 − 𝜉) (𝑥𝑖 − 𝜉)2

+
(
1 − 2

𝛽

) ∮
A

d𝜉
2i𝜋

𝐿2 (𝑥; 𝜉, 𝜉)
𝐿(𝑥) 𝑊𝑛 (𝜉, 𝑥𝐼 )

−
∯

A2

d𝜉1d𝜉2

(2i𝜋)2
𝐿2(𝑥; 𝜉1, 𝜉2)

𝐿(𝑥)

(
𝑊𝑛+1 (𝜉1, 𝜉2, 𝑥𝐼 ) +

∑
𝐽 ⊆𝐼

𝑊#𝐽+1 (𝜉1, 𝑥𝐽 )𝑊𝑛−#𝐽 (𝜉2, 𝑥𝐼\𝐽 )
)
. (4.3)

The last line in Equation (4.2) or (4.3) is a rational fraction in x, with poles at 𝑎 ∈ 𝜕A, whose
coefficients are linear combination of moments of 𝜆𝑖 .

We stress that the Dyson–Schwinger equations are exact for any finite N and hold for any choice of
splitting 𝜕A = (𝜕A)+ ∪ (𝜕A)−. Note here that 𝐿, 𝐿1, 𝐿2 depend on 𝐴− so that, in fact, all the terms except
those in the first line of Dyson–Schwinger equations depend a priori on this splitting. Later, when we
perform a large 𝑁 →∞ asymptotic analysis, we are led to distinguish soft edges and hard edges (this is
a property of the equilibrium measure). It will then be convenient to declare 𝜕A− to be the set of hard
edges and 𝜕A+ the set of soft edges. This will have for consequence that the simple poles in (4.2)–(4.3)
at 𝑥 = 𝑎 ∈ 𝜕A+ have exponentially small residues and therefore can be neglected to any order 𝑂 (𝑁−𝐾 )
in the asymptotic analysis.

5. Fixed filling fractions: expansion of correlators

5.1. Notations, assumptions and operator norms

The model with fixed filling fractions corresponds to the case where we condition the number of
eigenvalues in each segment Aℎ to be a given integer 𝑁ℎ . We set 𝜖ℎ = 𝑁ℎ/𝑁 for ℎ ∈ �0, 𝑔� and
𝝐 = (𝜖1, . . . , 𝜖𝑔). Throughout this section, the equilibrium measure, the correlators 𝑊𝑛 = 𝑊𝑛;𝝐 , etc.
all depend on 𝝐 . The vector 𝝐 itself could also depend on N, but this dependence will remain implicit.
Accordingly, all coefficients we will find in the asymptotic expansion of the correlators will implicitly
be functions of 𝝐 .

As explained in Section 4, the correlators in the fixed filling fractions model satisfy the same Dyson–
Schwinger equation as in the initial model. We analyse them under the following assumptions:

Hypothesis 5.1.

◦ A is a disjoint finite union of bounded segments Aℎ = [𝑎−ℎ , 𝑎
+
ℎ].

◦ (Real-analyticity) 𝑉 : A → R extends to a holomorphic function in a neighbourhood U ⊆ C of A.
◦ (Expansion for the potential) There exists a sequence (𝑉 {𝑘 })𝑘≥0 of holomorphic functions in U and

constants (𝑣 {𝑘 })𝑘≥1, so that, for any 𝐾 ≥ 0,
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sup
𝜉 ∈U

���𝑉 (𝜉) − 𝐾∑
𝑘=0

𝑁−𝑘 𝑉 {𝑘 } (𝜉)
��� ≤ 𝑣 {𝐾+1} 𝑁−(𝐾+1) .

◦ ((𝑔 + 1)-cut regime) The probability measure 𝜇𝑉eq;𝝐 is supported on S which is a disjoint union of
(𝑔 + 1) segments Sℎ = [𝛼−ℎ , 𝛼

+
ℎ] ⊆ Aℎ . We set𝑊 {−1}

1 to be its Stieltjes transform and recall that

lim
𝑁→∞

(𝑁−1𝑊1(𝑥) −𝑊 {−1}
1 (𝑥)) = 0,

uniformly for x in any compact of C \ A.
◦ (Off-criticality) 𝑦(𝑥) = (𝑉 {0})′ (𝑥)

2 −𝑊 {−1}
1 (𝑥) takes the form

𝑦(𝑥) = 𝑆(𝑥)
𝑔∏

ℎ=0

√
(𝑥 − 𝛼+ℎ)

𝜌+
ℎ (𝑥 − 𝛼−ℎ )

𝜌−
ℎ , (5.1)

where S does not vanish on A, 𝛼•ℎ are all pairwise distinct, and 𝜌•ℎ = −1 if 𝛼•ℎ ∈ 𝜕A, and 𝜌•ℎ = 1
otherwise.

Later in Section 8, we will come back to the analysis of the initial model, which has 𝜇𝑉eq = 𝜇𝑉eq;𝝐★ as
equilibrium measure. We will show in Lemma A.2 that the initial Hypotheses 1.1–1.3 imply the present
Hypotheses 5.1 for 𝝐 in some neighbourhood of 𝝐★; in particular, the off-criticality assumption (5.1) is
verified, making the results of the present section applicable.

Definition 5.2. If 𝛿 > 0, we introduce the norm ‖ · ‖ 𝛿 on the space H(𝑛)
𝑚1 ,...,𝑚𝑛

(A) of holomorphic
functions on (C \ A)𝑛 which behave like 𝑂 ( 1

𝑥
𝑚𝑖
𝑖

) when 𝑥𝑖 →∞:

‖ 𝑓 ‖ 𝛿 = sup
min𝑖 𝑑 (𝑥𝑖 ,A) ≥𝛿

| 𝑓 (𝑥1, . . . , 𝑥𝑛) | = max
min𝑖 𝑑 (𝑥𝑖 ,A)=𝛿

| 𝑓 (𝑥1, . . . , 𝑥𝑛) |,

the last equality following from the maximum principle. If 𝑛 ≥ 2, we denote H(𝑛)
𝑚 = H(𝑛)

𝑚,...,𝑚.

From Cauchy residue formula, we have a naive bound on the derivatives of a function 𝑓 ∈ H(1)
1 in

terms of f itself:

‖𝜕𝑚𝑥 𝑓 (𝑥)‖ 𝛿 ≤
2𝑚+1𝐶

𝛿𝑚+1 ‖ 𝑓 ‖ 𝛿/2.

In practice, we will take 𝛿 independent of N, and therefore, the constants depending on 𝛿 will not matter.
Our goal in the next section is to establish under Hypothesis 5.1 below an asymptotic expansion for

the correlators when 𝑁 → ∞, exploiting the Dyson–Schwinger equations. We already notice that it is
convenient to choose

(𝜕A)± = {𝑎•ℎ ∈ (𝜕A) : 𝜌•ℎ = ±1}

as bipartition of 𝜕A to write down the Dyson–Schwinger equation, since the terms involving 𝜕𝑎 ln 𝑍
and 𝜕𝑎𝑊𝑛−1 for 𝑎 ∈ (𝜕A)+ will be exponentially small according to Corollary 3.3. If 𝑎 = 𝑎•ℎ , we denote
𝛼(𝑎) = 𝛼•ℎ .

To perform the asymptotic analysis to all order, we need a rough a priori estimate on the correlators.
We have established in §3.3 (actually under weaker assumptions than Hypothesis 5.1) that for any 𝛿 > 0,

‖𝑊1 − 𝑁𝑊 {−1}
1 ‖𝛿 ≤ 𝐶1 (𝛿)

√
𝑁 ln 𝑁, (5.2)

and for any 𝑛 ≥ 2,

‖𝑊𝑛‖𝛿 ≤ 𝐶𝑛 (𝛿) (𝑁 ln 𝑁)
𝑛
2 . (5.3)
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5.2. Some relevant linear operators

In this subsection, we give the list of linear operators that are used in §5.3.1 to recast the Dyson–
Schwinger equations in a form suitable for the asymptotic analysis. The precise expression of these
operators is not essential, but we establish bounds on suitable operator norms that are needed later in
the analysis.

5.2.1. Periods
We fix once for all a neighbourhood U of A so that S has no zeroes in U, and pairwise nonintersecting
contours A = (Aℎ)1≤ℎ≤𝑔 surrounding Aℎ in U. It is not necessary to introduce a contour surrounding
A0 since it is homologically equivalent to −

∑𝑔
ℎ=1 Aℎ in Ĉ \ A. We define the period operator LA :

H(1)
1 → C𝑔 by the formula

LA [ 𝑓 ] =
( ∮

A1

d𝜉
2i𝜋

𝑓 (𝜉) , . . . ,
∮
A𝑔

d𝜉
2i𝜋

𝑓 (𝜉)
)
. (5.4)

By Cauchy residue formula, the periods of the Stieltjes transform of the empirical measure are the filling
fractions:

LA
[
𝑥 ↦→

∫
A

d𝐿𝑁 (𝜉)
𝑥 − 𝜉

]
= 𝝐 .

Since the (𝑊𝑛)𝑛≥1 are cumulants and the 𝝐 are fixed (see the remark in Section 1.4), we have

LA [𝑊𝑛 (•, 𝑥2, . . . , 𝑥𝑛)] = 𝛿𝑛,1 𝑁𝝐 . (5.5)

In other words, we know that in the model with fixed filling fractions, the correlators (as functions of
one of their variables) have to satisfy the g constraints (5.5).

Definition 5.3. If 𝑿 is an element of (C𝑔)⊗𝑛, we define its 𝐿1-norm:

|𝑿 |1 =
∑

1≤ℎ1 ,...,ℎ𝑛≤𝑔
|𝑋ℎ1 ,...,ℎ𝑛 |.

5.2.2. The operator K
We introduce an operator K which is the linearisation around the equilibrium measure of the generator
of Dyson–Schwinger equations. It is defined on functions 𝑓 ∈ H(1)

2 (A) by the formula

K[ 𝑓 ] (𝑥) = 2𝑊 {−1}
1 (𝑥) 𝑓 (𝑥) − 1

𝐿(𝑥)

∮
A

d𝜉
2i𝜋

[ 𝐿(𝜉) (𝑉 {0})′(𝜉)
𝑥 − 𝜉 + 𝑃{−1} (𝑥; 𝜉)

]
𝑓 (𝜉), (5.6)

where x is outside the contour of integration and

𝑃{−1} (𝑥; 𝜉) =
∮

A

d𝜂
2i𝜋

2𝐿2 (𝑥; 𝜉, 𝜂)𝑊 {−1}
1 (𝜂).

We remind that 𝐿(𝑥) =
∏

𝑎∈(𝜕A)− (𝑥−𝛼(𝑎)) and 𝐿2 was defined in Equation (4.1). Notice that𝑊 {−1}
1 (𝑥) ∼

1
𝑥 when 𝑥 → ∞, and 𝑃{−1} (𝑥, 𝜉) is a polynomial in two variables, of maximal total degree |#𝜕A−| − 2
(and it is zero if |#𝜕A−| < 2). Hence, we have at least K[ 𝑓 ] (𝑥) = 𝑂 ( 1

𝑥 ) when 𝑥 → ∞. This gives us a
linear operator:

K : H(1)
2 (A) → H(1)

1 (A).
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Notice also that

𝑦(𝑥) =
(
𝑉 {0}) ′(𝑥)

2
−𝑊 {−1}

1 (𝑥) = 𝑆(𝑥)

√
𝐿̃(𝑥)
𝐿(𝑥) , (5.7)

where 𝐿̃(𝑥) =
∏

𝑎∈(𝜕A)+ (𝑥−𝛼(𝑎)), and by the off-criticality assumption the zeroes of S are away from A.
If we define

𝜎(𝑥) =
√ ∏

𝑎∈(𝜕A)
(𝑥 − 𝛼(𝑎)) =

√
𝐿̃(𝑥)𝐿(𝑥),

we can rewrite

𝜎(𝑥)
𝑦(𝑥) =

𝐿(𝑥)
𝑆(𝑥) . (5.8)

Then,

K[ 𝑓 ] (𝑥) = −2𝑦(𝑥) 𝑓 (𝑥) + Q[ 𝑓 ] (𝑥)
𝐿(𝑥) , (5.9)

where

Q[ 𝑓 ] (𝑥) = −
∮

A

d𝜉
2i𝜋

[ 𝐿(𝜉) (𝑉 {0})′(𝜉) − 𝐿(𝑥) (𝑉 {0})′(𝑥)
𝑥 − 𝜉 + 𝑃{−1} (𝑥; 𝜉)

]
𝑓 (𝜉).

For any 𝑓 ∈ H(1)
2 (A), 𝑥 ↦→ Q[ 𝑓 ] (𝑥) is holomorphic in a neighbourhood of A. It is clear from

Equation (5.6) that ImK ⊆ H(1)
1 (A). Let 𝜑 ∈ ImK and 𝑓 ∈ H(1)

2 (A) such that 𝜑 = K[ 𝑓 ]. We can write

𝜎(𝑥) 𝑓 (𝑥) = Res
𝜉=𝑥

d𝜉
𝜉 − 𝑥 𝜎(𝜉) 𝑓 (𝜉) = 𝜓(𝑥) −

∮
A

d𝜉
2i𝜋

𝜎(𝜉) 𝑓 (𝜉)
𝜉 − 𝑥 ,

where

𝜓(𝑥) = − Res
𝜉=∞

d𝜉
𝜉 − 𝑥 𝜎(𝜉) 𝑓 (𝜉). (5.10)

Since 𝑓 (𝑥) = 𝑂 ( 1
𝑥2 ), 𝜓(𝑥) is a polynomial in x of degree at most 𝑔 − 1. Recall that K[ 𝑓 ] = 𝜑. We then

compute

𝜎(𝑥) 𝑓 (𝑥) = 𝜓(𝑥) −
∮

A

d𝜉
2i𝜋

1
𝜉 − 𝑥

𝜎(𝜉)
2𝑦(𝜉)

(
− 𝜑(𝜉) + Q[ 𝑓 ] (𝜉)

𝐿(𝜉)

)
= 𝜓(𝑥) +

∮
A

d𝜉
2i𝜋

1
𝜉 − 𝑥

1
2𝑆(𝜉)

[
𝐿(𝜉) 𝜑(𝜉) −Q[ 𝑓 ] (𝜉)

]
= 𝜓(𝑥) +

∮
A

d𝜉
2i𝜋

1
𝜉 − 𝑥

𝐿(𝜉)
2𝑆(𝜉) 𝜑(𝜉), (5.11)

using the fact that S has no zeroes on A and Q[ 𝑓 ] is analytic in a neighbourhood of A. Let us denote
G : ImK → H(1)

2 (A), the linear operator defined by

G [𝜑] (𝑥) = 1
𝜎(𝑥)

∮
A

d𝜉
2i𝜋

1
𝜉 − 𝑥

𝐿(𝜉)
2𝑆(𝜉) 𝜑(𝜉). (5.12)
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One deduces

𝑓 (𝑥) = 𝜓(𝑥)
𝜎(𝑥) + (G ◦K) [ 𝑓 ] (𝑥). (5.13)

5.2.3. The extended operator K̂ and its inverse
It was observed in [Ake96] that 𝜓(𝑥)d𝑥/𝜎(𝑥) defines a holomorphic one-form on the compactification
Σ of the Riemann surface of equation 𝜎2 =

∏
𝑎∈(𝜕A) (𝑥 − 𝛼(𝑎)). The space 𝐻1 (Σ) of holomorphic one-

forms on Σ has dimension g if all 𝛼(𝑎) are pairwise distinct (which is the case by off-criticality) and the
number of cuts is (𝑔 + 1). So if 𝑔 ≥ 1, K is not invertible. But we can define an extended operator:

K̂ : H(1)
2 (A) −→ ImK × C𝑔

𝑓 ↦−→
(
K[ 𝑓 ],LA [ 𝑓 ]

)
. (5.14)

Since
(
𝑥 𝑗−1d𝑥/C (𝑥)

)
0≤ 𝑗≤𝑔−1 is linearly independent over C and holomorphic one-forms on Σ, it forms

a basis of 𝐻1 (Σ) which can be thus identified with C (𝑥)−1 · C𝑔−1 [𝑥], where C𝑔−1 [𝑥] is the set of
polynomials in x of degree ≤ (𝑔 − 1). However, the family of linear forms LA defined in Equation (5.4)
is linearly independent (see, for example, [FK07]), so it determines a unique basis

𝜛ℎ (𝑥) =
𝜓ℎ (𝑥)
𝜎(𝑥) ∈ 𝜎(𝑥)−1 · C𝑔−1 [𝑥] (5.15)

such that

∀ℎ, ℎ′ ∈ �1, 𝑔�,
∮
Aℎ

𝜛ℎ′ (𝑥) d𝑥 = 𝛿ℎ,ℎ′ . (5.16)

Therefore, we can define an operator L−1
A : C𝑔 → 𝜎(𝑥)−1 · C𝑔−1 [𝑥] ⊆ H(1)

2 by the formula

L−1
A [𝒘] =

𝑔∑
ℎ=1

𝑤ℎ 𝜛ℎ (𝑥). (5.17)

We deduce that K̂ is an isomorphism. Indeed, K̂[ 𝑓 ] = (𝜑,𝒘) if and only if we have, according to
Equation (5.12),

𝑓 (𝑥) = 𝜓(𝑥)
𝜎(𝑥) + (G ◦K) [ 𝑓 ] (𝑥), and LA [ 𝑓 ] = 𝒘 . (5.18)

Plugging the first equality into the second, we deduce

LA
[𝜓
𝜎
+ (G ◦K) [ 𝑓 ]

]
= 𝒘,

which is equivalent to

𝜓(𝑥)
𝜎(𝑥) = L−1

A
[
𝒘 − LA

[
(G ◦K) [ 𝑓 ]

] ]
= L−1

A
[
𝒘 − LA

[
G [𝜑]

] ]
.

Plugging this back into Equation (5.18), we deduce that K̂ is invertible, with inverse given by

K̂−1 [𝜑, 𝒘] (𝑥) = L−1
A
[
𝒘 − LA

[
G [𝜑]

] ]
(𝑥) + G [𝜑] (𝑥), (5.19)
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where G is defined in Equation (5.12). We will use the notation K̂−1
𝒘 [𝜑] = K̂−1 [𝜑, 𝒘]. In other words,

K̂−1
𝒘 [𝜑] = 𝑓 is the unique solution of K[ 𝑓 ] = 𝜑 with A-periods equal to 𝒘. It is equal to 𝜓(𝑥)𝜎(𝑥)−1 +

G [𝜑] (𝑥) for some polynomial 𝜓(𝑥) of degree smaller than 𝑔 − 1 so that the A-periods equal to 𝒘. The
continuity of this inverse operator is the key ingredient of our method.

Lemma 5.1. ImK is closed in H(1)
2 (A), and for 𝛿 > 0 small enough, there exist constants𝐶,𝐶 ′, 𝐶 ′′ > 0

such that

∀(𝜑,𝒘) ∈ ImK × C𝑔, ‖K̂−1
𝒘 [𝜑]‖ 𝛿 ≤ 𝛿−𝜅

{(
𝐶𝐷𝑐 (𝛿) + 𝐶 ′) ‖𝜑‖ 𝛿 + 𝐶 ′′ |𝒘 |1

}
, (5.20)

with exponent 𝜅 = 1
2 and 𝐷𝑐 (𝛿) defined in Equation (5.22). When the potential is off-critical, 𝐷𝑐 (𝛿)

remains bounded.

Remark 5.4. In the analysis of the model with fixed filling fractions, we will only make use of K̂−1
0 .

Proof. If one is interested in controlling the large N expansion of the correlators explicitly in terms of
the distance of 𝑥𝑖s to A, it is useful to give an explicit bound on the norm of K̂−1

𝒘 . Let 𝛿0 > 0 be small
enough but fixed once for all, and let us move the contour in Equation (5.12) to a contour staying at
distance larger than 𝛿0 from A. If we choose now a point x so that 𝑑 (𝑥,A) < 𝛿0, we can write

G [𝜑] (𝑥) = 𝜑(𝑥)𝐿(𝑥)
2𝑆(𝑥)𝜎(𝑥) −

𝜑(𝑥)
𝜎(𝑥)

∮
𝑑 ( 𝜉 ,A)=𝛿0

d𝜉
2i𝜋

𝐿(𝜉)
2𝑆(𝜉)

1
𝑥 − 𝜉 +

1
𝜎(𝑥)

∮
𝑑 ( 𝜉 ,A)=𝛿0

d𝜉
2i𝜋

𝐿(𝜉)
2𝑆(𝜉)

𝜑(𝜉)
𝑥 − 𝜉 .

Hence, there exist constants 𝐶̃, 𝐶̃ ′ > 0 depending only on the position of the pairwise disjoint segments
Aℎ such that, for any 𝛿 > 0 smaller than 𝛿0

2 ,

‖G [𝜑]‖ 𝛿 ≤ (𝐶̃𝐷𝑐 (𝛿) + 𝐶̃ ′) 𝛿−
1
2 ‖𝜑‖ 𝛿 , (5.21)

where

𝐷𝑐 (𝛿) = sup
𝑑 ( 𝜉 ,A)=𝛿

���𝐿(𝜉)
𝑆(𝜉)

��� . (5.22)

For 𝛿 small enough but fixed, 𝐷𝑐 (𝛿) blows up when the parameters of the model are tuned to achieve a
critical point (i.e., it measures a distance to criticality). Besides, we have for the operator LA,��LA [ 𝑓 ]

��
1 ≤ 𝐶̃ ‖ 𝑓 ‖ 𝛿 , (5.23)

and for L−1
A written in Equation (5.17), we find

‖L−1
A [𝒘]‖ 𝛿 ≤

max1≤ℎ≤𝑔 ‖𝜓ℎ ‖∞U
inf𝑑 ( 𝜉 ,A)=𝛿 |𝜎(𝑥) |

|𝒘 |1, (5.24)

and the denominator behaves like 𝛿− 1
2 when 𝛿→ 0. We then deduce from Equation (5.19) the existence

of constants 𝐶,𝐶 ′, 𝐶 ′′ > 0 so that

‖K̂−1
𝒘 [𝜑]‖ 𝛿 ≤ (𝐶̃𝐷𝑐 (𝛿) + 𝐶̃ ′)𝛿−

1
2 ‖𝜑‖ 𝛿 + 𝛿−

1
2 |𝒘 − LA

[
G [𝜑]

]
|1

≤ (𝐶𝐷𝑐 (𝛿) + 𝐶 ′)𝛿−
1
2 ‖𝜑‖ 𝛿 + 𝐶 ′′𝛿−

1
2 |𝒘 |1. (5.25)

�

Remark. From the expression (5.19) for the inverse, we observe that, if 𝜑 is holomorphic in C \ S, so
is K̂−1

𝒘 [𝜑] for any 𝒘 ∈ C𝑔. In other words, K̂−1
𝒘 (ImK ∩H(1)

1 (S)) ⊆ H(1)
2 (S).
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5.2.4. Other linear operators
Some other linear operators appear naturally in the Dyson–Schwinger equation. We collect them below.
Let us first define, with the notations of Equation (4.1),

Δ−1𝑊1 (𝑥) = 𝑁−1𝑊1 (𝑥) −𝑊 {−1}
1 (𝑥),

Δ−1𝑃(𝑥; 𝜉) =
∮

A

d𝜂
2i𝜋

2𝐿2 (𝑥; 𝜉, 𝜂)Δ−1𝑊1 (𝜂),

Δ0𝑉 (𝑥) = 𝑉 (𝑥) −𝑉 {0} (𝑥). (5.26)

Let also ℎ1, ℎ2 be two holomorphic functions in U. We define

L1 : H(1)
1 (A) → H(1)

2 (A) L1 [ 𝑓 ] (𝑥) =
∮

A

d𝜉
2i𝜋

𝐿2 (𝑥; 𝜉, 𝜉)
𝐿(𝑥) 𝑓 (𝜉) ,

L2 : H(2)
1 (A) → H(1)

1 (A) L2 [ 𝑓 ] (𝑥) =
∮

A

d𝜉1d𝜉2

(2i𝜋)2
𝐿2 (𝑥; 𝜉1, 𝜉2)

𝐿(𝑥) 𝑓 (𝜉1, 𝜉2) ,

M𝑥′ : H(1)
1 (A) → H(2)

1 (A) M𝑥′ [ 𝑓 ] (𝑥) =
∮

A

d𝜉
2i𝜋

𝐿(𝜉)
𝐿(𝑥)

𝑓 (𝜉)
(𝑥 − 𝜉) (𝑥 ′ − 𝜉)2

,

Nℎ1 ,ℎ2 : H(1)
1 (A) → H(1)

1 (A) Nℎ1 ,ℎ2 [ 𝑓 ] (𝑥) =
1

𝐿(𝑥)

∮
A

d𝜉
2i𝜋

( 𝐿(𝜉)ℎ1 (𝜉)
𝑥 − 𝜉 + ℎ2 (𝜉)

)
𝑓 (𝜉) ,

ΔK : H(1)
1 (A) → H(1)

1 (A) ΔK[ 𝑓 ] (𝑥) = −N(Δ0𝑉 )′,Δ−1𝑃 (𝑥;•) [ 𝑓 ] (𝑥) + 2Δ−1𝑊1 (𝑥) 𝑓 (𝑥)

+ 1
𝑁

(
1 − 2

𝛽

)
(𝜕𝑥 + L1) [ 𝑓 ] (𝑥).

ΔJ : H(1)
1 (A) → H(1)

1 (A) ΔJ [ 𝑓 ] (𝑥) = −N(Δ0𝑉 )′,Δ−1𝑃 (𝑥;•)/2 [ 𝑓 ] (𝑥) + Δ−1𝑊1(𝑥) 𝑓 (𝑥)

+ 1
𝑁

(
1 − 2

𝛽

)
(𝜕𝑥 + L1) [ 𝑓 ] (𝑥). (5.27)

We shall encounter ΔK as a correction to the operator K of §5.2.2, which appears in the Dyson–
Schwinger equations with 𝑛 ≥ 2 variables. For 𝑛 = 1 variable equation, we shall need the modified
version denoted ΔJ , which only differs from ΔK by some symmetry factors 1

2 .
All those operators are continuous for appropriate norms since we have the bounds, for 𝛿0 small

enough but fixed, and 𝛿 < 𝛿0 small enough,

‖L1 [ 𝑓 ]‖ 𝛿 ≤
𝐶 ‖𝐿 ′′‖U

∞
𝐷𝐿 (𝛿)

‖ 𝑓 ‖ 𝛿0 ,

‖L2 [ 𝑓 ]‖ 𝛿 ≤
𝐶2 ‖𝐿 ′′‖U

∞
𝐷𝐿 (𝛿)

‖ 𝑓 ‖ 𝛿0 ,

sup
𝑑 (𝑥′,A) ≥𝛿

‖M𝑥′ 𝑓 ‖ 𝛿 ≤
𝐶‖𝐿‖U

∞
𝐷𝐿 (𝛿) 𝛿3 ‖ 𝑓 ‖ 𝛿/2 ,

‖Nℎ1 ,ℎ2 [ 𝑓 ]‖ 𝛿 ≤ ‖ℎ1‖U
∞ ‖ 𝑓 ‖ 𝛿 + 𝐶

‖𝐿ℎ1‖U
∞ + ‖ℎ2‖U

∞
𝛿0 𝐷𝐿 (𝛿)

‖ 𝑓 ‖ 𝛿0 ,

max
{
‖ΔK[ 𝑓 ]‖ 𝛿 , ‖ΔJ [ 𝑓 ]‖ 𝛿

}
≤
(
‖(Δ0𝑉)′‖U

∞ + 2 ‖Δ−1𝑊1‖ 𝛿
)
‖ 𝑓 ‖ 𝛿 +

���1 − 2
𝛽

��� 2𝐶
𝑁𝛿2 ‖ 𝑓 ‖ 𝛿/2

+ 𝐶
‖𝐿 (Δ0𝑉)′‖U

∞ + ‖Δ−1𝑃‖U2

∞
𝐷𝐿 (𝛿) 𝛿0

‖ 𝑓 ‖ 𝛿0 (5.28)
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for any f in the domain of definition of the corresponding operator, and

𝐶 = ℓ(A)/𝜋 + (𝑔 + 1), 𝐷𝐿 (𝛿) = inf
𝑑 (𝑥,A) ≥𝛿

|𝐿(𝑥) |. (5.29)

If all edges are soft, 𝐷𝐿 (𝛿) ≡ 1, whereas if there exists at least one hard edge, 𝐷𝐿 (𝛿) scales like 𝛿 as
𝛿→ 0.

5.3. Recursive expansion of the correlators

5.3.1. Rewriting Dyson–Schwinger equations
For 𝑛 ≥ 2 variables, we can organise the Dyson–Schwinger equation of Theorem 4.2 as follows:

(K + ΔK) [𝑊𝑛 (•, 𝑥𝐼 )] (𝑥) = 𝐴𝑛+1(𝑥; 𝑥𝐼 ) + 𝐵𝑛 (𝑥; 𝑥𝐼 ) + 𝐶𝑛−1 (𝑥; 𝑥𝐼 ) + 𝐷𝑛−1 (𝑥; 𝑥𝐼 ), (5.30)

where

𝐴𝑛+1 (𝑥; 𝑥𝐼 ) = 𝑁−1(L2 − id) [𝑊𝑛+1(•1, •2, 𝑥𝐼 )] (𝑥),

𝐵𝑛 (𝑥; 𝑥𝐼 ) = 𝑁−1(L2 − id)
[ ∑

𝐽 ⊆𝐼
𝐽≠∅,𝐼

𝑊#𝐽+1 (•1, 𝑥𝐽 )𝑊𝑛−#𝐽 (•2, 𝑥𝐼\𝐽 )
]
(𝑥),

𝐶𝑛−1 (𝑥; 𝑥𝐼 ) = −
2
𝛽𝑁

∑
𝑖∈𝐼

M𝑥𝑖 [𝑊𝑛−1 (•, 𝑥𝐼\{𝑖 })] (𝑥),

𝐷𝑛−1 (𝑥; 𝑥𝐼 ) =
2
𝛽𝑁

∑
𝑎∈(𝜕A)+

𝐿(𝑎)
𝑥 − 𝑎 𝜕𝑎𝑊𝑛−1 (𝑥𝐼 ). (5.31)

For 𝑛 = 1, the equation has the same structure, but some terms come with an extra symmetry factor.
With the notation of (5.26), and in view of Equation (4.2), we can write

(K + ΔJ ) [Δ−1𝑊1] (𝑥) =
𝐴2(𝑥) + 𝐷0

𝑁
− 1 − 2/𝛽

𝑁
(𝜕𝑥 + L1) [𝑊 {−1}

1 ] (𝑥) +N(Δ0𝑉 )′,0 [𝑊
{−1}
1 ] (𝑥),

(5.32)

where the operator ΔJ was introduced in §5.2.4 and 𝐷0 is given by formula (5.31) with the convention
𝑊0 = ln 𝑍𝑉 ;A

𝑁 ,𝛽;𝝐 .
Since we are in the model with fixed filling fractions, the A-periods of 𝑊𝑛 (•, 𝑥𝐼 ) for 𝑛 ≥ 2, and of

Δ−1𝑊1, vanish – cf. (5.5). So we are left with equations of the form

(K + ΔX ) [𝜑] = 𝑓 , X = K or J ,

and the function 𝜑 to determine satisfies LA [𝜑] = 0 by (5.5). We can then invert K on the subspace of
functions with zero periods and write

𝜑 = K̂−1
0
[
𝑓 − ΔX [𝜑]

]
.

We will need to check under which conditions the contribution of ΔX is negligible compared to the
contribution of K in Equation (5.30). This is achieved with the following lemma.
Lemma 5.2. There exists a finite constant 𝐶3 such that for any 𝛿 > 0, for N large enough, if ΔX is any
of the operator ΔK or ΔJ , for any function 𝜑 ∈ H(1)

1 (A), we have

‖K̂−1
0
[
ΔX [𝜑]

]
‖2𝛿

‖𝜑‖ 𝛿
≤ 𝐶3

(√ ln 𝑁
𝑁

√
ln 𝛿
𝛿𝜅+𝜃

𝐷𝑐 (2𝛿)
𝐷𝐿 (2𝛿)

)
, (5.33)

with 𝜅 = 1
2 coming from the inversion of K̂ and 𝜃 = 1 coming from the a priori bound (3.12).
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Proof. We have from Equation (5.20),

‖K̂−1
0
[
ΔX [ 𝑓 ]

]
‖2𝛿 ≤ (2𝛿)−𝜅

(
𝐶𝐷𝑐 (2𝛿) + 𝐶 ′) ‖ΔX [ 𝑓 ]‖2𝛿 , 𝜅 = 1

2 . (5.34)

Since we have the same bound (5.28) for the operator norm of ΔX = ΔK or ΔJ , we can keep the
generic letter X in the proof. We have the a priori bound from Corollary 3.7:

‖Δ−1𝑊1‖ 𝛿 ≤ 𝐶1

√
ln 𝑁
𝑁

√
ln 𝛿
𝛿𝜃

, 𝜃 = 1 ,

which also implies

‖Δ−1𝑃‖U2

∞ ≤ 𝐶 ′
1

√
ln 𝑁
𝑁

with the notations of §5.2.4. We also remind that by Hypothesis 5.1, ‖Δ0𝑉 ‖∞U = 𝑂 ( 1
𝑁 ). We insert these

bounds in Equation (5.28) and use ‖𝜑‖2𝛿 ≤ ‖𝜑‖ 𝛿 to find

‖ΔX [𝜑]‖2𝛿 ≤ 𝐶2

(√ ln 𝑁
𝑁

√
ln 𝛿

𝛿𝜃 𝐷𝐿 (2𝛿)
+
���1 − 2

𝛽

��� 1
𝑁𝛿𝜃+1

)
‖𝜑‖ 𝛿 .

Together with Equation (5.34), this yields

‖K̂−1
0
[
ΔX [𝜑]

]
‖2𝛿

‖𝜑‖ 𝛿
≤ 𝐶 ′

2

(√ ln 𝑁
𝑁

√
ln 𝛿
𝛿𝜅+𝜃

𝐶𝐷𝑐 (2𝛿) + 𝐶 ′

𝐷𝐿 (2𝛿)
+
���1 − 2

𝛽

��� 𝐶𝐷𝑐 (2𝛿) + 𝐶 ′

𝑁𝛿𝜅+𝜃+1

)
. (5.35)

As we pointed out at the end of §5.2.4, the fact that the potential is off-critical ensures that 𝐷𝑐 (𝛿)
remains bounded when 𝛿→ 0, while we have in the worst case, 1

𝐷𝐿 (𝛿) = 𝑜(
1
𝛿 ); see Equation (5.29). In

any case, the second term in the above right-hand side is negligible with respect to the first one, and we
can replace 𝐶𝐷𝑐 (2𝛿) + 𝐶 ′ by 𝐷𝑐 (𝛿) up to a change in the constant. �

Hereafter, we shall not use the precise dependency of the constants on 𝛿; we simply use the fact that
they are finite when 𝛿 is positive independent of N. We will denote 𝑐(𝛿) for a generic finite constant
depending only on 𝛿, which may change from line to line.

5.3.2. Initialisation and order of magnitude of𝑊𝑛

The goal of this section is to prove the following bounds for 𝛿 independent of N and N large enough.
We know from Corollary 3.3 that the D-terms in Equations (5.30)–(5.32) are exponentially small and
remain so after application of K−1

0 , so they will never contribute to the order we are looking at, and we
will not bother mentioning them again.

Proposition 5.3. There exists a function𝑊 {0}
1 ∈ H(1)

2 (S) depending only on𝑊 {−1}
1 , 𝑉 {0}, 𝑉 {1} so that

𝑊1 = 𝑁𝑊 {−1}
1 +𝑊 {0}

1 + Δ0𝑊1, (5.36)

so that for all 𝛿 > 0, there exists a finite constant 𝐶 (𝛿) such that for N large enough,

‖Δ0𝑊1‖𝛿 ≤ 𝐶 (𝛿)
(ln 𝑁) 3

2

𝑁
1
2

.

It is given by

𝑊 {0}
1 (𝑥) = K̂−1

0

[(
−
(
1 − 2

𝛽

)
(𝜕𝑥 + L1) +N(𝑉 {1})′,0

)
[𝑊 {−1}

1 ]
]
(𝑥). (5.37)
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Proposition 5.4. For any 𝑛 ≥ 1, we have

𝑊𝑛 = 𝑁2−𝑛 (𝑊 {𝑛−2}
𝑛 + Δ𝑛−2𝑊𝑛), (5.38)

where for 𝑛 ≥ 2, we have defined

𝑊 {𝑛−2}
𝑛 (𝑥, 𝑥𝐼 ) = K̂−1

0

[
− 2
𝛽

∑
𝑖∈𝐼

M𝑥𝑖 [𝑊
{𝑛−3}
𝑛−1 (•, 𝑥𝐼 )] (𝑥)

+ (L2 − id)
[ ∑

𝐽 ⊆𝐼
𝐽≠∅,𝐼

𝑊 {#𝐽−1}
#𝐽+1 (•1, 𝑥𝐽 )𝑊 {𝑛−#𝐽−2}

𝑛−#𝐽 (•2, 𝑥𝐼 \𝐽 )
]
(𝑥), (5.39)

and for any 𝛿 > 0, there exists a finite constant 𝐶𝑛 (𝛿) such that for N large enough,

‖Δ𝑛−2𝑊𝑛‖𝛿 ≤ 𝐶𝑛 (𝛿)
(ln 𝑁)2𝑛− 1

2

𝑁
1
2

.

In this result, the main information about the error is its order of magnitude. Prior to those results, we
are going to prove the following.

Lemma 5.5. Denote 𝑟∗𝑛 = 3𝑛 − 4. For any integers 𝑛 ≥ 2 and 𝛿 > 0, there exists a finite constant 𝐶𝑛 (𝛿)
such that for N large enough,

‖𝑊𝑛‖𝛿 ≤ 𝐶𝑛 (𝛿)𝑁
𝑛−𝑟∗𝑛

2 (ln 𝑁)
𝑛+𝑟∗𝑛

2 . (5.40)

Proof. We shall prove by induction that for any integers 𝑛 ≥ 2 and 𝑟 ≥ 0 such that 𝑟 ≤ 𝑟∗𝑛, for any
𝛿 > 0, there exists a finite constant 𝐶𝑛,𝑟 (𝛿) such that for N large enough,

‖𝑊𝑛‖𝛿 ≤ 𝐶𝑛,𝑟 (𝛿)𝑁
𝑛−𝑟

2 (ln 𝑁)
𝑛+𝑟

2 . (5.41)

The a priori control of correlators (3.13) provides the result for 𝑟 = 0. Let s be an integer and assume
the result is true for any 𝑟 ∈ �0, 𝑠�. Let n be such that 𝑠 + 1 ≤ 𝑟∗𝑛 = 3𝑛 − 4. We consider Equation (5.30)
which gives after application of K̂−1

0 that if 𝑥𝐼 = (𝑥2, . . . , 𝑥𝑛),

𝑊𝑛 (𝑥, 𝑥𝐼 ) = K̂−1
0
[
𝐴𝑛+1 (•, 𝑥𝐼 ) + 𝐵𝑛 (·, 𝑥𝐼 ) + 𝐶𝑛−1 (•, 𝑥𝐼 ) + 𝐷𝑛−1 (•, 𝑥𝐼 ) − ΔK[𝑊𝑛 (•, 𝑥𝐼 )]

]
(𝑥) . (5.42)

It is understood that all linear operators appearing here (and defined in §5.2) act on the variables which
at the end are assigned the value x. This formula gives the correlator 𝑊𝑛 in terms of 𝑊𝑛+1 and 𝑊𝑛′ for
𝑛′ < 𝑛. We systematically use the control (5.25) on the operator norm of K̂−1

0 and the fact that ΔK
only gives negligible contributions compared to the latter (Lemma 5.2). At each step of application of
Lemma 5.2, we have to use the operator norm with smaller 𝛿 – namely, 𝛿 → 𝛿

2 . This is fine since our
induction hypothesis holds for all 𝛿 > 0 and we use these bounds only a finite number of times (in
fact, at most r times to get the bound at step r). Note here that this reduction a priori holds only on the
variable x as 𝑥𝐼 is kept fixed, but this is bounded above by the norm where all are greater or equal to 𝛿

2 .
We obtain the following bound on the A-term by using the induction at (𝑛+1, 𝑠) and Equation (5.28),

‖K̂−1
0 [𝐴𝑛+1]‖𝛿 ≤ 𝑐(𝛿)‖𝐴𝑛+1‖𝛿/2

≤ 𝑐(𝛿)
𝑁

‖𝑊𝑛+1‖𝛿/2 ≤
𝑐(𝛿)
𝑁

𝐶𝑛+1,𝑠 (𝛿/2)𝑁
𝑛+1−𝑠

2 (ln 𝑁)
𝑛+1+𝑠

2 ,
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so that rearranging terms yields a finite constant 𝑐𝐴𝑛,𝑠+1 (𝛿) such that

‖K̂−1
0 [𝐴𝑛+1]‖𝛿 ≤ 𝑐𝐴𝑛,𝑠+1 (𝛿)𝑁

𝑛−(𝑠+1)
2 (ln 𝑁)

𝑛+𝑠+1
2 . (5.43)

Let us consider the B term. It involves linear combinations of𝑊 𝑗+1𝑊𝑛− 𝑗 . Notice that

𝑠 ≤ 𝑟∗𝑛 − 1 = 𝑟∗𝑗+1 + 𝑟
∗
𝑛− 𝑗 .

Thus, it is always possible to decompose (arbitrarily) 𝑠 = 𝑠′ + 𝑠′′ such that 𝑠′ ≤ 𝑟∗𝑗+1 and 𝑠′′ ≤ 𝑟∗𝑛− 𝑗 , and
we can use the induction hypothesis with 𝑟 = 𝑠′ for 𝑊 𝑗+1 and with 𝑟 = 𝑠′′ for 𝑊𝑛− 𝑗 . Multiplying the
bounds and using the control (5.25) on K̂−1

0 and Equation (5.28), we obtain

‖K̂−1
0 [𝐵𝑛]‖𝛿 ≤

𝑐(𝛿)
𝑁

∑
𝐽

‖𝑊#𝐽+1‖𝛿/2‖𝑊𝑛−#𝐽 ‖𝛿/2 ≤ 𝑐𝐵𝑛,𝑠+1 (𝛿)𝑁
𝑛−(𝑠+1)

2 (ln 𝑁)
𝑛+𝑠+1

2 .

The C-term involves 𝑊𝑛−1. If 𝑠 ≤ 𝑟∗𝑛−1, we can use the induction hypothesis with 𝑟 = 𝑠 to find by
Equation (5.28) that

‖K̂−1
0 [𝐶𝑛−1]‖𝛿 ≤

𝑐(𝛿)
𝑁

sup
𝑑 (𝑥,A) ≥𝛿

‖M𝑥 [𝑊𝑛−1]‖𝛿/2 ≤
𝑐(𝛿)
𝑁

‖𝑊𝑛−1‖𝛿/4 ≤
𝑐𝐶𝑛,𝑠+1 (𝛿)
𝑁 ln 𝑁

𝑁
𝑛−(𝑠+1)

2 (ln 𝑁)
𝑛+𝑠+1

2 .

If 𝑠 > 𝑟∗𝑛−1, we can only use the induction hypothesis for 𝑟 = 𝑟∗𝑛−1 and find the bound

‖K̂−1
0 [𝐶𝑛−1]‖𝛿 ≤ 𝑐𝐶𝑛,𝑠+1 (𝛿)𝑁

𝑛−3−𝑟∗
𝑛−1

2 (ln 𝑁)
𝑛−1+𝑟∗

𝑛−1
2 .

Using that 𝑟∗𝑛 = 𝑟∗𝑛−1 + 3 and 𝑠 ∈ �𝑟∗𝑛−1 + 1, 𝑟∗𝑛�, we see that the above right-hand side is of the same
order than the A-term. Finally, by Equation (5.33) and the induction hypothesis at s, we find the bound

‖K̂−1
0
[
ΔK[𝑊𝑛]

]
‖𝛿 ≤ 𝑐(𝛿)

√
ln 𝑁
𝑁

‖𝑊𝑛‖𝛿/2 ≤ 𝑐ΔK𝑛,𝑠+1 (𝛿)
√

ln 𝑁
𝑁

𝑁
𝑛−𝑠

2 (ln 𝑁)
𝑛+𝑠

2 ,

which is of the same order as the bound on the A-term. Using Equation (5.42) and summing all our
bounds on the error terms proves the bound (5.41) for 𝑟 = 𝑠 + 1 and, we can conclude by induction. �

Proof of Proposition 5.3. It appears in Equation (5.32) that 𝑁Δ−1𝑊1 = 𝑊1 − 𝑁𝑊 {−1}
1 is given by

𝑁Δ−1𝑊1 = 𝑊 {0}
1 + Δ0𝑊1, (5.44)

where

𝑊 {0}
1 (𝑥) = K̂−1

0

[
−
(
1 − 2

𝛽

)
(𝜕𝑥 + L1) [𝑊 {−1}

1 ] +N(𝑉 {1})′,0 [𝑊
{−1}
1 ]

]
(𝑥),

Δ0𝑊1 (𝑥) = K̂−1
0

[
N(𝑁 (Δ0𝑉 )′−(𝑉 {1})′) ,0 [𝑊

{−1}
1 ] + 𝐴2 + 𝐷0 − ΔJ [𝑁Δ−1𝑊1]

]
(𝑥). (5.45)

Recalling Remark page 44, 𝑊 {0}
1 belongs to H(1)

2 (S). To bound the norm of the first term in Δ0𝑊1,
observe that by Hypothesis 5.1,

𝑁Δ0𝑉 = 𝑉 {1} + Δ1𝑉, ‖Δ1𝑉 ‖U
∞ = 𝑂

(
1
𝑁

)
,
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so that Equation (5.28) yields

‖K̂−1
0
[
N(Δ1𝑉 )′,0 [𝑊

{−1}
1 ]

]
‖𝛿 ≤

𝑐(𝛿)
𝑁

‖𝑊 {−1}
1 ‖𝛿 ≤

𝑐(𝛿)
𝑁

.

For the second term, note that Lemma 5.5 for 𝑛 = 2 gives the bound

‖𝑊2‖𝛿 ≤ 𝐶2 (𝛿) (ln 𝑁)4 .

Equations (5.20) and (5.28) imply

‖𝐴2‖𝛿 ≤
𝑐(𝛿)
𝑁

‖𝑊2‖𝛿 ≤
𝑐(𝛿)
𝑁

(ln 𝑁)4 .

Moreover, 𝐷0 is exponentially small by Proposition 3.4. By Lemma 5.2 and the a priori bound (3.12)
on Δ−1𝑊1,

‖K̂−1
0
[
ΔJ [𝑁Δ−1𝑊1]

]
‖𝛿 ≤ 𝑐(𝛿) ln 𝑁 .

This already shows that ‖Δ0𝑊1‖𝛿 is at most of order ln 𝑁 . To improve this bound, observe that

K̂−1
0
[
ΔJ [𝑁Δ−1𝑊1]

]
= K̂−1

0
[
ΔJ [𝑊 {0}

1 ]
]
+ K̂−1

0
[
ΔJ [Δ0𝑊1]

]
.

From Lemma 5.2 we deduce that

‖K̂−1
0
[
ΔJ [𝑊 {0}

1 ]
]
‖𝛿 ≤ 𝑐(𝛿)

√
ln 𝑁
𝑁

, ‖K̂−1
0
[
ΔJ [Δ0𝑊1]

]
‖𝛿 ≤ 𝑐(𝛿)

(ln 𝑁) 3
2

𝑁
1
2

. (5.46)

We finally deduce, from Equation (5.46) and the fact that the other error terms are smaller, the error
bound

‖Δ0𝑊1‖𝛿 ≤ 𝑐(𝛿)
(ln 𝑁) 3

2

𝑁
1
2

. �

Proof of Proposition 5.4. We already know the result for 𝑛 = 1 by Proposition 5.3. Let 𝑛 ≥ 2 and
assume the result holds for all 𝑛′ ∈ �1, 𝑛 − 1�. We want to use Equation (5.30) once more to compute
𝑊𝑛. We have𝑊𝑛 = 𝑁2−𝑛 (𝑊 {𝑛−2}

𝑛 +Δ𝑛−2𝑊𝑛) with𝑊 {𝑛−2}
𝑛 as in Equation (5.39). The error term Δ𝑛−2𝑊𝑛

receives contributions from

◦ The term in ΔK. It can be estimated by applying Lemma 5.5 which yields the bound 𝑊𝑛 =
𝑂
(
𝑁2−𝑛 (ln 𝑁)2𝑛−2) and Lemma 5.2 to show that

‖K̂−1
0
[
ΔK[𝑊𝑛]

]
‖𝛿 ≤ 𝑐(𝛿)

√
ln 𝑁
𝑁

‖𝑊𝑛‖𝛿/2 ≤ 𝑐(𝛿)𝑁
3
2−𝑛 (ln 𝑁)2𝑛−

3
2 .

◦ The A-term. Applying Lemma 5.5 for𝑊𝑛+1 and Equation (5.28), we find

‖K̂−1
0 [𝐴𝑛+1]‖𝛿 ≤

𝑐(𝛿)
𝑁

‖𝑊𝑛+1‖𝛿 ≤ 𝑁−𝑛 (ln 𝑁)2𝑛. (5.47)

◦ The B-term contributes to the second term in the definition of𝑊 {𝑛−2}
𝑛 and also from errors Δ𝑛′−2𝑊𝑛′

with 𝑛′ ≤ 𝑛−1 to this limiting term. They are, by the induction hypothesis, of order 𝑁2−𝑛− 1
2 (ln 𝑁)2𝑛− 1

2 .
◦ The C-term yields the first contribution in𝑊 {𝑛−2}

𝑛 , and the remaining term from 𝐶𝑛−1 is of the same
order than the error coming from the B-term, divided by (ln 𝑁)2.
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Hence, we deduce by subtracting𝑊 {𝑛−2}
𝑛 and applying K̂−1

0 that

‖Δ𝑛−2𝑊𝑛‖𝛿 ≤ 𝑐(𝛿)
(ln 𝑁)2𝑛− 1

2

𝑁
1
2

,

which is the desired result for the n-point correlator. We conclude by induction. �

5.4. Recursive expansion of the correlators

Proposition 5.6. For any 𝑛 ≥ 1 and 𝑘0 ≥ 𝑛 − 2, we have an expansion of the form

𝑊𝑛 (𝑥1, . . . , 𝑥𝑛) =
𝑘0∑

𝑘=𝑛−2
𝑁−𝑘𝑊 {𝑘 }

𝑛 (𝑥1, . . . , 𝑥𝑛) + 𝑁−𝑘0 (Δ 𝑘0𝑊𝑛) (𝑥1, . . . , 𝑥𝑛),

where

(i) for any 𝑛 ≥ 1 and any 𝑘 ∈ �𝑛 − 2, 𝑘0�, 𝑊 {𝑘 }
𝑛 in H(𝑛)

2 (S) are specified by the data of 𝑊 {−1}
1 and

𝑉 { 𝑗 } for 0 ≤ 𝑗 ≤ 𝑘 + 3 − 𝑛. More precisely, they are defined inductively by Equation (5.39) and the
equation

𝑊 {𝑘+1}
𝑛 (𝑥, 𝑥𝐼 ) = K̂−1

0
[
𝐸 {𝑘 }
𝑛 (•, 𝑥𝐼 )

]
(𝑥), (5.48)

with for 𝑛 = 1,

𝐸 {𝑘 }
1 (𝑥) = (L2 − id)

[
𝑊 {𝑘 }

2 (•1, •2)
]
(𝑥)

+ (L2 − id)
[ 𝑘∑
𝑙=0
𝑊 {𝑘−𝑙 }

1 (•1)𝑊 {𝑙 }
1 (•2)

]
(𝑥)

−
(
1 − 2

𝛽

)
(𝜕𝑥 + L1) [𝑊 {𝑘 }

1 ] (𝑥) +
𝑘+2∑
ℓ=1

N(𝑉 {ℓ})′,0 [𝑊
{𝑘+1−ℓ }
1 ] (𝑥) , (5.49)

whereas for 𝑛 ≥ 2,

𝐸 {𝑘 }
𝑛 (𝑥; 𝑥𝐼 ) = (L2 − id)

[
𝑊 {𝑘 }

𝑛+1 (•1, •2, 𝑥𝐼 )
]
(𝑥)

+
∑

0≤ℓ≤𝑘
𝐽 ⊆𝐼

(L2 − id)
[
𝑊 {ℓ }
|𝐽 |+1(•1, 𝑥𝐽 )𝑊 {𝑘−ℓ }

𝑛−|𝐽 | (•2, 𝑥𝐼\𝐽 )
]
(𝑥)

−
(
1 − 2

𝛽

)
(𝜕𝑥 + L1)

[
𝑊 {𝑘 }

𝑛 (•, 𝑥𝐼 )
]
(𝑥) +

𝑘∑
ℓ=𝑛−2

N(𝑉 {𝑘+1−ℓ})′,0
[
𝑊 {ℓ }

𝑛 (•, 𝑥𝐼 )
]
(𝑥)

− 2
𝛽

∑
𝑖∈𝐼

M𝑥𝑖

[
𝑊 {𝑘 }

𝑛−1 (•, 𝑥𝐼 \{𝑖 })
]
(𝑥). (5.50)

In the above formula,𝑊 {ℓ }
𝑝 vanishes if ℓ ≤ 𝑝 − 1.
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(ii) for any 𝑛 ≥ 1, Δ 𝑘0𝑊𝑛 ∈ H(𝑛)
2 (A), and there exists a finite constant 𝑐𝑛,𝑘0 (𝛿) so that for any 𝛿 > 0,

for N large enough,

‖Δ 𝑘0𝑊𝑛‖𝛿 ≤ 𝑐𝑛,𝑘0 (𝛿)
(ln 𝑁)2𝑛− 1

2+2(𝑘0−𝑛+2)

𝑁
1
2

. (5.51)

Proof. The case 𝑘0 = 𝑛−2 follows from §5.3.2, and we prove the general case by induction on 𝑘0, which
can be seen as the continuation of the proof of Proposition 5.4. Assume the result holds for all 𝑛 ≥ 1 and
all 𝑘 ≤ 𝑛 − 2 + 𝑗 =: 𝑘𝑛 − 1 for some 𝑗 ≥ 0. We prove it by induction for all n and 𝑘𝑛. Let us decompose

𝑉 =
𝑗+2∑
𝑘=0

𝑁−𝑘 𝑉 {𝑘 } + 𝑁−( 𝑗+2)Δ 𝑗+2𝑉.

We already know that the Dyson–Schwinger equation for𝑊𝑛 is satisfied up to order 𝑁1−𝑘𝑛 for all n. We
first show that it holds at 𝑘1 for 𝑛 = 1. Returning to Equation (4.2), we see that

𝑁Δ 𝑘1−1𝑊1 (𝑥) = 𝑊 {𝑘1 }
1 (𝑥) + K̂−1

0 [𝑅 {𝑘1 }
1 ] (𝑥)

𝑅 {𝑘1 }
1 (𝑥) = (L2 − id)

[
Δ 𝑘1−1𝑊2 (•1, •2)

]
(𝑥) −

(
1 − 2

𝛽

)
(𝜕𝑥 + L1) [Δ 𝑘1−1𝑊1]

+ 2(L2 − id)
[
Δ 𝑘1−1𝑊1 (•1) (Δ−1𝑊1) (•2)] (𝑥)

−
(
1 − 2

𝛽

)
(𝜕𝑥 + L1) [Δ 𝑘1−1𝑊1] (𝑥) +N(Δ0𝑉 )′,0 [Δ 𝑘1−1𝑊1] (𝑥).

Strictly speaking, we should also add the D-terms, but since they are always exponentially small, we
will systematically omit them. But we have bounded by induction the 𝛿-norms of

◦ Δ 𝑘1−1𝑊1 by 𝑐1,𝑘1−1 (𝛿) (ln 𝑁)2−
1
2+2𝑘1𝑁− 1

2 ,
◦ Δ 𝑘1−1𝑊2 (notice that 𝑘2 ≥ 𝑘1) by 𝑐2,𝑘1−1(𝛿) (ln 𝑁)4−

1
2+2(𝑘1−1)𝑁− 1

2 ,
◦ Δ−1𝑊1 has norm of order 1

𝑁 by Proposition 5.3 and (Δ0𝑉)′ has also norm of order 1
𝑁 by hypothesis.

Hence, the continuity of K̂−1
0 implies that

‖K̂−1
0 [𝑅 {𝑘1 }] ‖𝛿 ≤ 𝑐1,𝑘1 (𝛿)

(ln 𝑁)2− 1
2+2𝑘1

𝑁
1
2

,

which is our inductive bound.
This proves the induction hypothesis for 𝑛 = 1 and 𝑘1. Let us assume that it was proved for all n and

𝑘𝑛 − 1, and for 𝑛 ≤ 𝑛0 at 𝑘𝑛. Let us prove it at 𝑛 = 𝑛0 + 1 and 𝑘0 with 𝑘0 = 𝑘𝑛0 . We can decompose the
remainder for 𝑛 ≥ 2 as

𝑁Δ 𝑘0−1𝑊𝑛 (𝑥, 𝑥𝐼 ) = K̂−1
0 [𝐸 {𝑘0 }

𝑛 (•; 𝑥𝐼 ) + 𝑅 {𝑘0 }
𝑛 (•; 𝑥𝐼 )] (𝑥) .

Where 𝐸 {𝑘 }
𝑛 was defined in Proposition 5.6, we have set

𝑅 {𝑘0 }
𝑛 (𝑥; 𝑥𝐼 ) = (L2 − id)

[
Δ 𝑘0−1𝑊𝑛+1 (•1, •2, 𝑥𝐼 )

]
(𝑥)

+
∑
𝐽 ⊆𝐼

(L2 − id)
[
Δ 𝑘#𝐽+1𝑊#𝐽+1 (•1, 𝑥𝐽 )𝑊 {𝑘0−𝑘#𝐽+1 }

𝑛−#𝐽 (•2, 𝑥𝐼\𝐽 )
]
(𝑥)
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+
∑
𝐽 ⊆𝐼

(L2 − id)
[
𝑊 {𝑘0−𝑘𝑛−#𝐽−1}

#𝐽+1 (•1, 𝑥𝐽 )Δ 𝑘𝑛−#𝐽𝑊𝑛−#𝐽 (•2, 𝑥𝐼 \𝐽 )
]
(𝑥)

+N𝑁 [ (𝑉 ′−𝑉 {0})′ ],0
[
Δ 𝑘0−1𝑊𝑛 (•, 𝑥𝐼 )

]
(𝑥) − 2

𝛽

∑
𝑖∈𝐼

M𝑥𝑖

[
Δ 𝑘0−1𝑊𝑛−1 (•, 𝑥𝐼\{𝑖 })

]
(𝑥).

Again, by the continuity of the involved operators, and because 𝑘0 − 𝑘#𝐽+1 − 1 ≤ 𝑘𝑛−#𝐽 + 1 so that the
induction hypothesis can be used, we get the announced bound. Again, the largest error comes from
the first term and is by induction of order (ln 𝑁)2(𝑛+1)− 1

2+2(𝑘0−1−𝑛+2)𝑁− 1
2 which is of the announced

order. �

This proves the first part of Theorem 1.3 for real-analytic potentials (i.e., the stronger Hypothesis 1.2
instead of 1.3). For given n and k, the bound on the error Δ 𝑘𝑊𝑛 depends only on a finite number of
constants 𝑣 {𝑘′ } appearing in Hypothesis 5.1.

5.5. Central limit theorem

With Proposition 5.3 at our disposal, we can already establish a central limit theorem for linear statistics
of analytic functions in the fixed filling fractions model.

Proposition 5.7. Let 𝜑 : A → R extending to a holomorphic function in a neighbourhood of S. Let
𝑵 = (𝑁1, . . . , 𝑁𝑔) be a sequence (indexed by N) of g-tuples of integers such that

∑𝑔
ℎ=1 𝑁ℎ ≤ 𝑁 , denote

𝝐 = 𝑵/𝑁 , and assume all limit points of 𝝐 are in E . Assume Hypothesis 5.1. Then, when 𝑁 →∞,

𝜇𝑉 ;A
𝑁 ,𝛽;𝝐

[
exp

( 𝑁∑
𝑖=1

𝜑(𝜆𝑖)
)]

= exp
(
𝑁

∫
A

d𝜇𝑉eq;𝝐 (𝑥)𝜑(𝑥) + 𝑀𝛽;𝝐 [𝜑] +
1
2
𝑄𝛽;𝝐 [𝜑, 𝜑]

)
+ 𝑜(1), (5.52)

where

𝑀𝛽;𝝐 [𝜑] =
∮

A

d𝜉
2i𝜋

𝜑(𝜉)𝑊 {0}
1;𝝐 (𝜉),

𝑄𝛽;𝝐 [𝜑, 𝜑] =
∯

A

d𝜉1 d𝜉2

(2i𝜋)2
𝜑(𝜉1)𝜑(𝜉2)𝑊𝑉 ;{0}

2;𝝐 (𝜉1, 𝜉2).

Here, 𝑊 {0}
1 = 𝑊 {0}

1;𝝐 is the term of order 1 (subleading correction) in 𝑊1 – cf. Equation (5.36) – and
𝑊 {0}

2 = 𝑊 {0}
2;𝝐 is the leading order of 𝑊2 – cf. Equation (5.39). Observe above that 𝝐 may depend on N

and therefore so does the right-hand side of Equation (5.52).

Proof. Let us define 𝑉𝑡 = 𝑉 − 2𝑡
𝛽𝑁 𝜑. Since the equilibrium measure is the same for 𝑉𝑡 and V, we still

have the result of Proposition 5.3 for the model with potential 𝑉𝑡 for any 𝑡 ∈ [0, 1], with uniform errors.
We can thus write

ln 𝜇𝑉 ;A
𝑁 ,𝛽;𝝐

[
exp

( 𝑁∑
𝑖=1

𝜑(𝜆𝑖)
)]

=
∫ 1

0
d𝑡
∮

A

d𝜉
2i𝜋

𝑊𝑉𝑡

1;𝝐 (𝜉) 𝜑(𝜉)

=
∫ 1

0
d𝑡
∮

A

d𝜉
2i𝜋

𝜑(𝜉)
[
𝑁𝑊𝑉𝑡 ;{−1}

1;𝝐 (𝜉) +𝑊𝑉𝑡 ;{0}
1;𝝐 (𝜉)

]
+ 𝑜(1). (5.53)

As already pointed out,𝑊𝑉𝑡 ;{−1}
1;𝝐 = 𝑊𝑉 ;{−1}

1;𝝐 , and from Equation (5.37),

𝑊𝑉𝑡 ;{0}
1;𝝐 = 𝑊𝑉 ;{0}

1;𝝐 − 2𝑡
𝛽

(
K̂−1

0 ◦N𝜑′,0
)
[𝑊𝑉 ;{−1}

1;𝝐 ] .
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Hence, Equation (5.53) yields Equation (5.52) with

𝑄𝛽;𝝐 [𝜑, 𝜑] = −
1
𝛽

∮
A

d𝜉
2i𝜋

𝜑(𝜉)
(
K̂−1

0 ◦N𝜑′,0
)
[𝑊𝑉 ;{−1}

1;𝝐 ] (𝜉) . (5.54)

This expression can be transformed by comparing with (5.39) for 𝑛 = 2, but we can cut this short by
observing that 𝑄𝛽;𝝐 [𝜑, 𝜑] must also be the limiting covariance of

∑𝑁
𝑖=1 𝜑(𝜆𝑖). Hence,

𝑄𝛽;𝝐 [𝜑, 𝜑] =
∯

A

d𝜉1 d𝜉2

(2i𝜋)2
𝜑(𝜉1)𝜑(𝜉2)𝑊𝑉 ;{0}

2;𝝐 (𝜉1, 𝜉2), (5.55)

where 𝑊𝑉 ;{0}
2;𝝐 has been introduced in Equation (5.38). From the proof of Proposition 5.3, we observe

that the 𝑜(1) in (5.52) is uniform in 𝜑 such that sup𝑑 ( 𝜉 ,A) ≥𝛿 |𝜑(𝜉) | is bounded by a fixed constant. �

In other words, if lim𝑁→∞ 𝝐 = 𝝐∞, the random variable Φ𝑁 =
∑𝑁

𝑖=1 𝜑(𝜆𝑖) − 𝑁
∫

A 𝜑(𝜉)d𝜇
𝑉
eq;𝝐 (𝜉)

converges in law to a Gaussian variable with mean 𝑀𝝐∞ [𝜑] and variance𝑄𝝐∞ [𝜑, 𝜑] when 𝑁 →∞. This
is a generalisation of the central limit theorem already known in the one-cut regime [Joh98, BG11].
A similar result was recently obtained in [Shc12]. In the next section, we are going to extend it to
holomorphic 𝜑 which could be complex-valued on A (Proposition 6.1).

6. Fixed filling fractions: refined results

In this section, we show how to extend our results to the case of harmonic potentials and potentials
containing a complex-valued term of order 𝑂 ( 1

𝑁 ). The latter is performed by using fine properties of
analytic functions (the two-constants theorem) as was recently proposed in [Shc12].

6.1. Extension to harmonic potentials

The main use of the assumption that V is analytic came from the representation (1.3) of n-linear
statistics described by a holomorphic function, in terms of contour integrals of the n-point correlator.
If 𝜑 is holomorphic in a neighbourhood of A, its complex conjugate 𝜑 is anti-holomorphic, and we can
also represent

𝜇𝑉 ;A
𝑁 ,𝛽;𝝐

[ 𝑁∑
𝑖=1

𝜑(𝜆𝑖)
]
=
∮

A

d𝑥
2i𝜋

𝜑(𝑥)𝑊1;𝝐 (𝑥). (6.1)

In this paragraph, we explain how to use a weaker set of assumptions than Hypothesis 1.2, where
‘analyticity’ and ‘ 1

𝑁 expansion of the potential’ are weakened as follows.
Hypothesis 6.1.
◦ (Harmonicity) 𝑉 : A → R can be decomposed 𝑉 = V1 + V2, where V1,V2 extends to holomorphic

functions in a neighbourhood U of A.
◦ ( 1

𝑁 expansion of the potential) For 𝑗 = 1, 2, there exists a sequence of holomorphic functions
(V {𝑘 }

𝑗 )𝑘≥0 and constants (𝑣 {𝑘 }𝑗 )𝑘 so that for any 𝐾 ≥ 0,

sup
𝜉 ∈U

���V 𝑗 (𝜉) −
𝐾∑
𝑘=0

𝑁−𝑘 V {𝑘 }
𝑗 (𝜉)

��� ≤ 𝑣 {𝐾 }
𝑗 𝑁−(𝐾+1) . (6.2)

In other words, we only assume V to be harmonic. ‘Analyticity’ corresponds to the special case V2 ≡ 0.
The main difference lies in the representation (6.1) of expectation values of antiholomorphic statistics,
which come into play at various stages but do not affect the reasoning. Let us enumerate the small
changes to take into account in the order they appear in Section 5.

https://doi.org/10.1017/fms.2023.129 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.129


Forum of Mathematics, Sigma 55

In §4, in the Dyson–Schwinger equations (Theorem 4.2 and 4.2), we encounter a term

𝜇𝑉 ;A
𝑁 ,𝛽;𝝐

[ 𝑁∑
𝑖=1

𝐿(𝜆𝑖)
𝐿(𝑥)

𝑉 ′(𝜆𝑖)
𝑥 − 𝜆𝑖

𝑛∏
𝑗=2

( 𝑁∑
𝑖 𝑗=1

1
𝑥 𝑗 − 𝜆𝑖 𝑗

)]
𝑐
. (6.3)

It is now equal to

1
𝐿(𝑥)

∮
A

d𝜉
2i𝜋

𝐿(𝜉)
V ′

1 (𝜉)
𝑥 − 𝜉 𝑊𝑛;𝝐 (𝜉, 𝑥𝐼 ) −

1
𝐿(𝑥)

∮
A

d𝜉
2i𝜋

𝐿(𝜉)
V ′

2 (𝜉)
𝑥 − 𝜉 𝑊𝑛;𝝐 (𝜉, 𝑥𝐼 ). (6.4)

Remark that Equation (6.3) or (6.4) still defines a holomorphic function of x in C \ A. In §5.2, we can
define the operator K by Equation (5.9) with Q(𝑥) now given by

Q[ 𝑓 ] (𝑥) = −
∮

A

d𝜉
2i𝜋

𝑃{−1}
𝝐 (𝜉) (𝑥; 𝜉) 𝑓 (𝜉)

+
∮

A

d𝜉
2i𝜋

𝐿(𝜉) (V {0}
1 )′(𝜉) − 𝐿(𝑥) (V {0}

1 )′(𝑥)
𝜉 − 𝑥 𝑓 (𝜉)

+
∮

A

d𝜉
2i𝜋

𝐿(𝜉) (V {0}
2 )′(𝜉) − 𝐿(𝑥) (V {0}

2 )′(𝑥)
𝜉 − 𝑥 𝑓 (𝜉).

It is still a holomorphic function of x in a neighbourhood of A; thus, it disappears in the computation
leading to Equation (5.13) for the inverse of K, which still holds. In §5.2.4, the expression (5.27) for the
operator ΔK used in Equation (5.30) should be replaced by

ΔK[ 𝑓 ] (𝑥) = 2Δ−1𝑊1;𝝐 (𝑥) 𝑓 (𝑥) +
1
𝑁

(
1 − 2

𝛽

)
L1 [ 𝑓 ] (𝑥)

−N(Δ0V1)′,Δ−1𝑃𝝐 (𝑥;•) [ 𝑓 ] (𝑥) −N(Δ0V2)′,0 [ 𝑓 ] (𝑥),

and the bound of the form (5.28) still holds and involves the constants 𝑣 {1}1 and 𝑣 {1}2 introduced in
Equation (6.2). ΔJ is defined and bounded similarly. In §5.3.1–5.4, all occurrences of N𝑉 ′,0 [ 𝑓 ] (𝑥)
should be replaced by N(V1)′,0 [ 𝑓 ] (𝑥) +N(V2)′,0 [ 𝑓 ] (𝑥) (and similarly for N(Δ𝑘𝑉 )′,0 or N(𝑉 {𝑘})′,0). The
key remark is that the terms where V2 appear involve complex conjugates of contour integrals of the type
𝑓 (𝜉)𝑊 {𝑘 }

𝑛;𝝐 (𝜉, 𝑥𝐼 ) or 𝑓 (𝜉) Δ 𝑘𝑊𝑛;𝝐 (𝜉, 𝑥𝐼 ) where f is some holomorphic function in a neighbourhood of A.
Their norm can be controlled in terms of the norms of 𝑊 {𝑘 }

𝑛;𝝐 or Δ 𝑘𝑊𝑛;𝝐 on contours, as were the terms
involving V1, so the inductive control of errors in the large N expansion of correlators for the fixed filling
fractions model is still valid, leading to the first part of Theorem 1.3 and to the central limit theorem
(Proposition 5.7) for harmonic potentials in a neighbourhood of A, which are still real-valued on A.

6.2. Complex perturbations of the potential

Proposition 6.1. The central limit theorem (5.52) holds for 𝜑 : A → C, which can be decomposed as
𝜑 = 𝜑1 + 𝜑2, where 𝜑1, 𝜑2 are holomorphic functions in a neighbourhood of A.

Proof. We present the proof for 𝜑 = 𝑡 𝑓 , where 𝑡 ∈ C and 𝑓 : A → R extends to a holomorphic function
in a neighbourhood of A. Indeed, the case of 𝑓 : A → R, which can be decomposed as 𝑓 = 𝑓1 + 𝑓2
with 𝑓1, 𝑓2 extending to holomorphic functions in a neighbourhood of A, can be treated similarly with
the modifications pointed out in §6.1. Then, if 𝜑 : A → C can be decomposed as 𝜑 = 𝜑1 + 𝜑2 with
𝜑1, 𝜑2 holomorphic, we may decompose further 𝜑 𝑗 = 𝜑𝑅𝑗 + i𝜑𝐼𝑗 and then write 𝑉̃ = 𝑉 − 2

𝛽𝑁 (𝜑
𝑅
1 + 𝜑

𝑅
2 )

and 𝑓 = (𝜑𝐼1 − 𝜑
𝐼
2), and
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𝜇𝑉 ;A
𝑁 ,𝛽;𝝐

[
exp

( 𝑁∑
𝑖=1

𝜑(𝜆𝑖)
)]

= 𝜇𝑉 ;A
𝑁 ,𝛽;𝝐

[
exp

( 𝑁∑
𝑖=1
(𝜑𝑅1 + 𝜑

𝑅
2 ) (𝜆𝑖)

)]
𝜇𝑉̃ ;A
𝑁 ,𝛽;𝝐

[
exp

( 𝑁∑
𝑖=1

i 𝑓 (𝜆𝑖)
)]
.

The first factor can be treated with the initial central limit theorem (Proposition 5.7), while an equivalent
of the second factor for large N will be deduced from the following proof applied to the potential 𝑉̃ .

This proof is inspired from the one of [Shc12, Lemma 1]. From Theorem 1.3 applied to V up to
𝑜(1), we introduce𝑊 {𝑘 }

𝑛;𝝐 for (𝑛, 𝑘) = (1,−1), (2, 0), (1, 0) (see (5.38)–(5.36)). If 𝑡 ∈ R, the central limit
theorem (Proposition 5.7) applied to 𝜑 = 𝑡 𝑓 implies

𝜇𝑉 ;A
𝑁 ,𝛽;𝝐

[( 𝑁∑
𝑖=1

𝑡 𝑓 (𝜆𝑖)
)]

= 𝐺𝑁 (𝑡)(1 + 𝑅𝑁 (𝑡)), 𝐺𝑁 (𝑡) = exp
(
𝑁𝑡 Λ𝛽;𝝐 [ 𝑓 ] + 𝑡 𝑀𝛽;𝝐 [ 𝑓 ] +

𝑡2

2
𝑄𝛽;𝝐 [ 𝑓 , 𝑓 ]

)
,

(6.5)

where sup𝑡 ∈[−𝑇0 ,𝑇0 ] |𝑅𝑁 (𝑡) | ≤ 𝐶 (𝑇0) 𝜂𝑁 and lim𝑁→∞ 𝜂𝑁 = 0. Let 𝑇0 > 0, and introduce the function

𝑅̃𝑁 (𝑡) =
1

𝐶 (𝑇0)𝜂𝑁
𝑅𝑁 (𝑡).

For any fixed N, it is an entire function of t, and by construction,

sup
𝑡 ∈[−𝑇0 ,𝑇0 ]

|𝑅̃𝑁 (𝑡) | ≤ 1. (6.6)

Besides, for any 𝑡 ∈ C, we have���𝜇𝑉 ;A
𝑁 ,𝛽;𝝐

[
exp

( 𝑁∑
𝑖=1

𝑡 𝑓 (𝜆𝑖)
)] ��� ≤ 𝜇𝑉 ;A

𝑁 ,𝛽;𝝐

[
exp

( 𝑁∑
𝑖=1
(Re 𝑡) 𝑓 (𝜆𝑖)

)]
.

Using that f is real-valued on A, we deduce that

sup
|𝑡 | ≤𝑇0

|𝑅̃𝑁 (𝑡) | ≤
1

𝐶 (𝑇0)𝜂𝑁

(
1 + sup

|𝑡 | ≤𝑇0

𝐺𝑁 (Re 𝑡)
|𝐺𝑁 (𝑡) |

)
≤ 1
𝐶 (𝑇0)𝜂𝑁

sup
|𝑡 | ≤𝑇0

exp
( (Im 𝑡)2

2
𝑄𝛽;𝝐 [ 𝑓 , 𝑓 ]

)
≤ 1
𝐶 ′(𝑇0)𝜂𝑁

(6.7)

for some constant 𝐶 ′(𝑇0). By the two-constants lemma [NN22] (see [N70, p41] for a more recent
reference), Equations (6.6)–(6.7) imply

∀𝑇 ∈ (0, 𝑇0), sup
|𝑡 | ≤𝑇

|𝑅̃𝑁 (𝑡) | ≤ (𝐶 ′(𝑇0)𝜂𝑁 )−2𝜙 (𝑇 ,𝑇0)/𝜋 , 𝜙(𝑇,𝑇0) = arctan
( 2𝑇/𝑇0

1 − (𝑇/𝑇0)2
)
.

In particular, for any compact K ⊂ C, we can find an open disk of radius 𝑇0 containing K and thus show
(6.5) with 𝑅𝑁 (𝑡) = 𝑜(1) uniformly in K. �

We observe from the proof that Proposition 6.1 cannot be easily extended to |𝑡 | going to ∞ with
N. Indeed, the ratio 𝐺𝑁 (𝑇𝑁 (Re 𝑡))/|𝐺𝑁 (𝑇𝑁 𝑡) | in Equation (6.7) will not be bounded when 𝑁 → ∞;
hence, applying the two-constants lemma as above does not show 𝑅𝑁 (𝑡) → 0.

Corollary 6.2. In the model with fixed filling fractions 𝝐 , assume the potential 𝑉0 satisfies Hypotheses
5.1. If 𝜑 : A → C can be decomposed as 𝜑 = 𝜑1 +𝜑2 with 𝜑1, 𝜑2 extending to holomorphic functions in
a neighbourhood of A, then the model with fixed filling fractions 𝝐 and potential 𝑉 = 𝑉0 + 𝜑/𝑁 satisfies
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Hypotheses 5.1. Therefore, the result of Proposition 5.6 also holds. More generally, if there exists a
sequence of holomorphic functions V {𝑘 }

𝑖 , 𝑘 ≥ 0, 𝑖 = 1, 2 on a neighbourhood U of A so that

lim sup
𝑁 ≥1

𝑁𝐾+1 sup
𝜉 ∈U

���𝜑(𝜉) − 𝐾∑
𝑘=0

𝑁−𝑘 [V {𝑘 }
1 + V {𝑘 }

1 ] (𝜉)
��� < ∞,

the result of Proposition 5.6 also holds with 𝑉 = 𝑉0 + 𝜑/𝑁 .

Proof. Hypothesis 5.1 constrains only the leading order of the potential (i.e., it holds for (𝑉0, 𝝐) if and
only if it holds for (𝑉 = 𝑉0 + 𝜑/𝑁, 𝝐)). Proposition 6.1 implies a fortiori the existence of constants
𝐶+, 𝐶− > 0 and 𝐶 = exp

(
− Re (

∫
A 𝜑(𝑥)d𝜇

𝑉
eq;𝝐 (𝑥))

)
, such that

𝐶− 𝐶
𝑁 ≤

|𝑍𝑉 ;A
𝑁 ,𝛽;𝝐 |

|𝑍𝑉0;A
𝑁 ,𝛽;𝝐 |

≤ 𝐶+ 𝐶𝑁 .

Using this inequality as an input, we can repeat the proof of the large deviation principles given in
Section 3 to check Lemma 3.1 (i.e., the restriction to the vicinity of the support) and Corollary 3.7
(i.e., the a priori control reminded in (5.2)–(5.3)) for the potential V. Then, in the recursive analysis of
the Dyson–Schwinger equation of Section 5 for the model with fixed filling fractions, the fact that the
potential is complex-valued does not matter; we have established the expansion of the correlators. �

This proves Theorem 1.3 in full generality.

6.3. 1
𝑁 expansion of n-point kernels

We can apply Corollary 6.2 to study potentials of the form

𝑉𝒙,c (𝜉) = 𝑉 −
2
𝛽𝑁

𝑛∑
𝑗=1
𝑐 𝑗 ln(𝑥 𝑗 − 𝜉),

where 𝑥 𝑗 ∈ C \ A, and thus derive the asymptotic expansion of the kernels in the complex plane (i.e.,
Corollaries 1.9 and 1.10).

First, let us choose a simply connected domain D ⊂ C∗ in which the complex logarithm is an analytic
function. Choose 𝑥1, . . . , 𝑥𝑟 and an extra reference point p such that all 𝑥 𝑗 − 𝜉 for 𝜉 in a complex
neighbourhood AC of A and 𝑥 𝑗 − 𝑝 belong to D. Then, we can write for 𝜉 ∈ AC,

ln(𝑥 𝑗 − 𝜉) − ln(𝑝 − 𝜉) =
∫ 𝑥 𝑗

𝑝

d𝑧
𝑧 − 𝜉 .

Recalling the notation L = diag(𝜆1, . . . , 𝜆𝑁 ) for the random matrix, we have for 𝑟 ≥ 1,

𝜕𝑐 𝑗1
· · · 𝜕𝑐 𝑗𝑟

ln 𝑍𝑉𝒙,c;A
𝑁 ,𝛽 = 𝜇𝑉𝒙,c;A

𝑁 ,𝛽

[
Tr
(
ln(𝑥 𝑗1 − L) − ln(𝑝 − L)

)
, . . . ,Tr

(
ln(𝑥 𝑗𝑟 − L) − ln(𝑝 − L)

) ]
𝑐

=
∫ 𝑥 𝑗1

𝑝
· · ·

∫ 𝑥 𝑗𝑟

𝑝
𝑊𝑟 ;𝝐 (𝜉1, . . . , 𝜉𝑟 )

𝑟∏
𝑖=1

d𝜉𝑖 , (6.8)

where we pick the unique relative homology class of path between p and 𝑥 𝑗𝑟 in D′ :=
⋂

𝜉 ∈AC (𝜉 + D) to
perform the integration. Here, the subscript c refers to the cumulant expectation value as in (1.2). Since
ln(𝑝−L) is deterministic up a 𝑜(1) when 𝑝 →∞, we can take the limit 𝑝 →∞ in (6.8) for 𝑟 ≥ 2 and find
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E𝑐

[
Tr ln(𝑥 𝑗1 − L), . . . ,Tr ln(𝑥 𝑗𝑟 − L)

]
=
∫ 𝑥 𝑗1

∞
· · ·

∫ 𝑥 𝑗𝑟

∞
𝑊𝑟 ;𝝐 (𝜉1, . . . , 𝜉𝑟 )

𝑟∏
𝑖=1

d𝜉𝑖 . (6.9)

Since𝑊𝑟 ;𝝐 (𝜉1, . . . , 𝜉𝑟 ) for 𝑟 ≥ 2 behaves as𝑂 (1/𝜉2
𝑖 ) when 𝜉𝑖 →∞ and has vanishing periods around Aℎ

for any h, the left-hand side of (6.9) is a well-defined single-valued analytic function of 𝑥1, . . . , 𝑥𝑟 ∈ C\A
which does not depend on the choice of path from ∞ to 𝑥 𝑗𝑖 in this domain. For 𝑟 = 1, the situation is
different. We have indeed ∮

Aℎ

𝑊1;𝝐 (𝑥) = 𝑁𝜖ℎ , 𝑊1;𝝐 (𝑥) ∼
𝑁→∞

𝑁

𝑥
.

By taking |𝑝 | large enough, we may assume that 𝑝 ∈ D, and we can always choose D in conjunction
with 𝑥1, . . . , 𝑥𝑟 such that 𝑥1, . . . , 𝑥𝑟 ∈ D. Then we can write

E
[
Tr ln(𝑥 𝑗 − L)

]
= E

[
Tr ln(𝑝 − L)

]
+ 𝑁

(
ln 𝑥 𝑗 − ln 𝑝

)
+
∫ 𝑥 𝑗

𝑝

(
𝑊1;𝝐 (𝜉) −

𝑁

𝜉

)
d𝜉,

where the path from p to 𝑥 𝑗 remains in D′. Choosing a continuous path ℓ̃ ⊆ D going to ∞, the limit

lim
𝑝→∞
𝑝∈ℓ̃

ln 𝑥 𝑗 − ln 𝑝 + ln(𝑝 − 𝜉) = 2i𝜋𝜒 𝑗 𝜒 𝑗 ∈ Z

exists and is independent of 𝜉 ∈ AC but depends on the choice of path ℓ̃ and domain D. Therefore,

E
[
Tr ln(𝑥 𝑗 − L)

]
=
∫ 𝑥 𝑗

∞

(
𝑊1;𝝐 (𝜉) −

𝑁

𝜉

)
d𝜉 + 𝑁 ln 𝑥 𝑗 + 2i𝜋𝑁𝜒 𝑗 . (6.10)

We stress that the ambiguity 𝜒 𝑗 only appears for 𝑟 = 1 and with a prefactor N. It depends on various
choices pertaining to the determination of the logarithm, also restricting the allowed domain of 𝑥 𝑗 , but
in such a way that (C \ A)𝑟 can be covered by finitely many opens in which various domains D and
determinations of the logarithm can be chosen to fulfil our needs.

Let us now introduce the random variable𝐻𝒙,c =
∑𝑟

𝑗=1 𝑐 𝑗Tr ln(𝑥 𝑗−L). We know from Proposition 6.1
that ln 𝜇𝑉 ;A

𝑁 ,𝛽;𝝐
(
𝑒𝑡𝐻𝒙,c

)
is an entire function. Therefore, its Taylor series is convergent for any 𝑡 ∈ C, and

we have at 𝑡 = 1,

K𝑟 ,c;𝝐 (𝒙) =
[ 𝑟∏
𝑗=1
(𝑥 𝑗 − 𝑝)𝑁𝑐 𝑗

]
exp

(
ln 𝜇𝑉 ;A

𝑁 ,𝛽;𝝐
(
𝑒𝐻𝒙,c

) )
.

The right-hand side can be computed via the cumulants and thus (6.9)–(6.10). We arrive to

K𝑟 ,c;𝝐 (𝒙) = exp
( 𝑟∑
𝑗=1

𝑁𝑐 𝑗
(
ln 𝑥 𝑗 + 2i𝜋𝜒 𝑗

)
+
∑
𝑛≥1

1
𝑛!
L⊗𝑛
𝒙,c [𝑊𝑛;𝝐 ]

)
, (6.11)

where

L𝒙,c [ 𝑓 ] (𝑥) =
𝑟∑
𝑗=1
𝑐 𝑗

∫ 𝑥 𝑗

∞
𝑓 (𝜉)d𝜉, 𝑓 (𝑥) = 𝑓 (𝑥) + 1

𝑥
R𝑒𝑠
𝑥=∞

𝑓 (𝜉)d𝜉. (6.12)

The difference between 𝑓 and f in (6.12) is only relevant for the 𝑟 = 1 term in (6.11), and 𝑓 (𝑥) = 𝑂 (1/𝑥2)
as 𝑥 →∞, and so is integrable near∞. For this 𝑟 = 1 term, the integral does depend on choices of paths
from ∞ to 𝑥 𝑗 because the 𝑊1;𝝐 has nonvanishing Aℎ-periods, but these ambiguities are the same as the
ambiguities in the definition of the kernels before taking any asymptotics (see §1.1.3); they only appear
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in the leading order term of the asymptotics. As we have explained above, they can be resolved if we
work with a fixed 𝑥1, . . . , 𝑋𝑟 and fixed domain D of definition of the logarithm.

As a consequence of Proposition 5.6, 𝑊𝑛;𝝐 = 𝑂 (𝑁2−𝑛) and has a 1
𝑁 expansion. Therefore, only a

finite number of terms contribute to each order in the n-point kernels, and we find

Proposition 6.3. Assume Hypothesis 1.2. Then, for any given 𝐾 ≥ −1 and 𝛿 > 0, we have a uniform
asymptotic expansion for min1≤ 𝑗≤𝑟 𝑑 (𝑥 𝑗 ,A) ≥ 𝛿:

K𝑟 ,c;𝝐 (𝒙) = exp
⎧⎪⎨⎪⎩

𝑟∑
𝑗=1

𝑁𝑐 𝑗 (ln 𝑥 𝑗 + 2i𝜋𝜒 𝑗
)
+

𝐾∑
𝑘=−1

𝑁−𝑘
( 𝑘+2∑
𝑛=1

1
𝑛!
L⊗𝑛
𝒙,𝒄 [𝑊

{𝑘 }
𝑛;𝝐 ]

)
+𝑂 (𝑁−(𝐾+1) )

)⎫⎪⎬⎪⎭ .
7. Fixed filling fractions: 1

𝑁 expansion of the partition function

In this section, we continue to work within the fixed filling fractions model: 𝑵 = (𝑁1, . . . , 𝑁𝑔) is a
sequence of integer vectors, we set 𝝐 = 𝑵/𝑁 (which may depend implicitly on N), and we assume
Hypothesis 5.1.

7.1. First step: one-cut interpolation

7.1.1. The result
We remind that in the one-cut case 𝑔 = 1, the main Theorem 1.5 was proved in [BG11] and ensures that
the partition function has an asymptotic expansion of the form, for any 𝐾 ≥ 0,

𝑍𝑉
𝑁 ,𝛽 = 𝑁

𝛽
2 𝑁+𝜘 exp

( 𝐾∑
𝑘=−2

𝑁−𝑘 𝐹 {𝑘 };𝑉𝛽 +𝑂 (𝑁−(𝐾+1) )
)
. (7.1)

The leading term is of order 𝑁2 and given by potential theory

𝐹 {−2};𝑉
𝛽 =

𝛽

2

(∬
A2

d𝜇𝑉eq (𝑥)d𝜇𝑉eq (𝑦) ln |𝑥 − 𝑦 | −
∫

A
𝑉 {0} (𝑥)d𝜇𝑉eq (𝑥)

)
. (7.2)

It is well known – and we reprove below with Lemma 7.3 and Equation (7.21) – that the terms of order
N are related to the entropy of the equilibrium measure.

Proposition 7.1. We have

𝐹 {−1};𝑉
𝛽 = − 𝛽

2

∫
A
𝑉 {1} (𝑥)d𝜇𝑉eq (𝑥) +

(
1 − 𝛽

2

) (
Ent(𝜇𝑉eq) − ln

( 𝛽
2
) )
+ 𝛽

2
ln
(2𝜋
𝑒

)
− ln Γ

( 𝛽
2
)
,

where

Ent[𝜇] = −
∫

S
ln
(d𝜇

d𝑥

)
d𝜇(𝑥).

In [BG11], the potential was assumed independent of N, but it is straightforward to include a V having
a 1

𝑁 expansion, and this results in 𝐹 {−1};𝑉
𝛽 in the extra term involving 𝑉 {1}. The exponent 𝜘 describing

the 𝑂 (ln 𝑁) correction is identified in [BG11] as

𝜘 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3+𝛽/2+2/𝛽

12 if both edges are soft,
𝛽/2+2/𝛽

6 if one edge is soft and the other is hard,
−1+𝛽/2+2/𝛽

4 if both edges are hard.
(7.3)
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This exponent can be compactly rewritten:

𝜘 =
1
2
+ (#soft + 3#hard) −3 + 𝛽/2 + 2/𝛽

24
. (7.4)

7.1.2. Strategy to prove this result and computation of coefficients
As we now review, this theorem was proved by interpolating, for fixed location of the cut 𝛾 = [𝛾−, 𝛾+]
and nature of the edges, the partition function 𝑍𝑉 ;A

𝑁 ,𝛽 with a partition function 𝑍 ref
𝑁 ,𝛽 , which is exactly

computable by Selberg integrals. We denote 𝑉ref the potential of these reference models. The choice of
reference models will be made explicit in Section 7.2 and depends only on the position of edges 𝛾± and
of their nature (soft or hard). For the moment, it is enough to mention that its associated equilibrium
measure 𝜇ref

eq has same support [𝛾−, 𝛾+] as 𝜇𝑉eq, and 𝛾+ (resp. 𝛾−) have same nature – hard or soft – in
𝜇ref

eq and 𝜇𝑉eq. Moreover, 𝑉ref will satisfy Hypothesis 5.1. Then, we observe that the measure

𝜇𝑡eq = (1 − 𝑡)𝜇𝑉eq + 𝑡𝜇ref
eq

satisfies the characterisation of the equilibrium measure for the potential

𝑉𝑡 = (1 − 𝑡)𝑉 + 𝑡𝑉 ref . (7.5)

Thus, by uniqueness, 𝜇𝑡eq must be the equilibrium measure for 𝑉𝑡 . It is then clear that if V satisfies
Hypothesis 5.1, so does 𝑉𝑡 uniformly for 𝑡 ∈ [0, 1]. Proposition 5.6 guarantees that the one-point
correlator𝑊 𝑡

1 for the model with potential 𝑉𝑡 on A has an asymptotic expansion, for all 𝐾 ≥ 0,

𝑊 𝑡
1 =

𝐾∑
𝑘=−1

𝑁−𝑘𝑊 {𝑘 };𝑡
1 +𝑂 (𝑁−(𝐾+1) ), (7.6)

and the error is uniform for 𝑡 ∈ [0, 1]. Therefore, the exact formula

ln
( 𝑍𝑉 ;A

𝑁 ,𝛽

𝑍 ref
𝑁 ,𝛽

)
= −𝑁𝛽

2

∮
A

d𝑥
2i𝜋

(𝑉 (𝑥) −𝑉 ref (𝑥))
( ∫ 1

0
𝑊 𝑡

1 (𝑥)d𝑡
)

turns into an asymptotic expansion.

Lemma 7.2. For any 𝐾 ≥ −2, we have

ln
( 𝑍𝑉 ;A

𝑁 ,𝛽

𝑍 ref
𝑁 ,𝛽

)
=
𝛽

2

𝐾∑
𝑘=−2

𝑁−𝑘 𝐹 {𝑘 };𝑉→ref
𝛽 +𝑂 (𝑁−(𝐾+1) ), (7.7)

where

𝐹 {𝑘 };𝑉→ref
𝛽 =

𝛽

2

∮
A

d𝑥
2i𝜋

(𝑉 ref (𝑥) −𝑉 (𝑥))
( ∫ 1

0
𝑊 {𝑘+1};𝑡

1 (𝑥) d𝑡
)
. (7.8)

Let us explain the principles giving more explicit computations of 𝐹 {𝑘 };𝑉→ref
𝛽 . As 𝑊 {−1};𝑡

1 is the
Stieltjes transform of 𝜇𝑡eq, we have

𝑊 {−1};𝑡
1 = (1 − 𝑡)𝑊 {−1};𝑉

1 + 𝑡𝑊 {−1};ref
1

https://doi.org/10.1017/fms.2023.129 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.129


Forum of Mathematics, Sigma 61

with obvious notations. In this one-cut case, we remind the notations

𝜎(𝑥) =
√
(𝑥 − 𝛾+)(𝑥 − 𝛾−), 𝐿(𝑥) =

∏
𝛾 = hard edge

(𝑥 − 𝛾),

and the decomposition (see Equation (5.7))

𝑊 {−1};𝑡
1 (𝑥) =

𝑉 ′𝑡 (𝑥)
2

− 𝑆𝑡 (𝑥)
𝜎(𝑥)
𝐿(𝑥) . (7.9)

By construction, we have

𝑆𝑡 (𝑥) = (1 − 𝑡)𝑆𝑉 (𝑥) + 𝑡𝑆ref (𝑥), (7.10)

and it is a property of our choice of reference models that 𝑆ref (𝑥) = 𝑆ref is a constant only depending on
𝛾± and the nature of the edges. The proof of the expansion (7.6) – either in [BG11] or here in Section 5
specialised to the one-cut case – also provides a recursive computation of the coefficients 𝑊 {𝑘};𝑡

1 for
𝑘 ≥ 0. The only place where t is involved is via the initial data 𝑊 {−1};𝑡

1 , as well as the inverse operator
K−1

𝑡 , which reads in the present one-cut case (see Equation (5.11) with 𝑔 = 0):

K−1
𝑡 [ 𝑓 ] (𝑥) = 1

2𝜎(𝑥)

∮
𝛾

d𝜉
2i𝜋

𝐿(𝜉) 𝑓 (𝜉)
𝑆𝑡 (𝜉) (𝜉 − 𝑥)

. (7.11)

Therefore, the integrand of the k-th term in Equation (7.7) is a priori a rational function of t and the
integral over t can be in principle explicitly performed.

In the present one-cut case, 𝐿2 (𝑥; 𝜉1, 𝜉2) defined in Equation (4.1) is equal to 1 if the two edges are
hard, and 0 otherwise. One can then check using that (𝑊1 −𝑁𝑊 {−1}

1 ) (𝜉) = 𝑂 ( 1
𝜉 2 ) when 𝜉 →∞ and for

𝑛 ≥ 2 using that 𝑊𝑛 (𝜉1, . . . , 𝜉𝑛) = 𝑂 ( 1
𝜉 2
𝑖

) uniformly for (𝜉 𝑗 ) 𝑗≠𝑖 away from A, that the terms involving
the operators L1 and L2 in the Dyson–Schwinger equations vanish in the recursive computation of
𝑊 {𝑘 }

𝑛 s, independently of the nature of the edges.
We can easily check that 𝐹 {−2};𝑉→ref

𝛽 given by Equation (7.8) is indeed the difference of (7.2) for V
and for 𝑉 ref , since𝑊 {−1};𝑡

1 being a convex combination with respect to t implies∫ 1

0
𝑊 {−1};𝑡

1 (𝑥) d𝑡 =
𝑊 {−1};𝑉

1 (𝑥) +𝑊 {−1};ref
1 (𝑥)

2
.

To obtain the order N, we need to compute 𝑊 {0};𝑡
1 given by Equation (5.37), taking into account the

disappearance of Ls:

𝑊 {0};𝑡
1 = K−1

𝑡

[
−
(
1 − 2

𝛽

)
𝜕𝑥𝑊

{−1};𝑡
1

]
.

Using Equation (5.7) and the analyticity of V, we find

𝑊 {0};𝑡
1 (𝑥) =

( 2
𝛽
− 1

) ∮
𝛾

d𝜉
2i𝜋

1
𝜉 − 𝑥

𝜎(𝜉)
2𝜎(𝑥) 𝜕𝜉 ln

(
𝑆𝑡 (𝜉)

𝜎(𝜉)
𝐿(𝜉)

)
.

Some algebra reveals the following:

Lemma 7.3.

𝐹 {−1};𝑉→ref
𝛽 =

(
1 − 𝛽

2

) (
Ent[𝜇𝑉eq] − Ent[𝜇ref

eq ]
)
.
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Proof. We first make some preliminary remarks. If we denote 𝐺𝑡 (𝑥) = 𝑆𝑡 (𝑥)𝜎(𝑥)/𝐿(𝑥), the density of
the equilibrium measure is given by

𝜌𝑡 (𝑥) = −
𝐺𝑡 (𝑥 − i0) − 𝐺𝑡 (𝑥 + i0)

2i𝜋
. (7.12)

In particular, the total mass is

1 = −
∮
𝛾
𝐺𝑡 (𝑥)

d𝑥
2i𝜋

.

Therefore, 𝑥 ↦→ 𝜕𝑡𝐺 (𝑥) has zero period around 𝛾. This implies that, for an arbitrary choice of 𝑜 ∈ C \ 𝛾,
the function

𝐻𝑡 (𝑥) =
∫ 𝑥

𝑜
𝜕𝑡𝐺𝑡 (𝑦)d𝑦

is analytic for x in a neighbourhood of 𝛾 in C \ 𝛾. As 𝐺𝑡 (𝑥) has at most inverse squareroot singularities,
we conclude that 𝐻𝑡 (𝑥) remains bounded when x approaches 𝛾. Besides, applying

∫ 𝑥
𝜕𝑡 to 𝐺𝑡 (𝑥 + i0) +

𝐺𝑡 (𝑥− i0) = 0 and taking into account that
∮
𝛾
𝜕𝑡𝐺𝑡 (𝑥) d𝑥 = 0, we deduce that𝐻𝑡 (𝑥+ i0) +𝐻𝑡 (𝑥− i0) = 0

as well.
We can now start the computation of

𝐹 {−1};𝑉→ref
𝛽 = − 𝛽

2

∫ 1

0
d𝑡
∮
𝛾

d𝑥
2i𝜋

𝜕𝑡𝑉𝑡 (𝑥)𝑊 {0};𝑡
1 (𝑥).

We substitute and find by Equation (7.9),

𝜕𝑡𝑉𝑡 (𝑥)
2

= 𝐶𝑡 +
( ∫ 𝑥

𝑜
𝜕𝑡𝑊

{−1};𝑡
1 (𝑥 ′)d𝑥 ′

)
+ 𝐻𝑡 (𝑥),

where 𝐶𝑡 is independent of x. Since 𝑊 𝑡
1 (𝑥) = 𝑁

𝑥 + 𝑂 ( 1
𝑥2 ), we have 𝑊 {−1};𝑡

1 (𝑥) = 1
𝑥 + 𝑂 (

1
𝑥2 ) and

𝑊 {0};𝑡
1 (𝑥) = 𝑂 ( 1

𝑥2 ) when 𝑥 → ∞. This implies as well 𝜕𝑡𝑊 {−1}
1 (𝑥) = 𝑂 ( 1

𝑥2 ) and
∫ 𝑥

𝑜
𝜕𝑡𝑊

{−1};𝑡
1 (𝜉)d𝜉.

Then, as we can transform the contour integral into a residue at infinity, only 𝐻𝑡 (𝑥) contributes to the
contour integral. We then substitute𝑊 {0};𝑡

1 (𝑥) for its expression to deduce

𝐹 {−1};𝑉→ref
𝛽 =

(
1 − 𝛽

2

) ∫ 1

0
d𝑡
∮
𝛾

d𝑥
2i𝜋

𝐻𝑡 (𝑥)
𝜎(𝑥)

∮
𝛾

d𝜉
2i𝜋

𝜎(𝜉)
𝜉 − 𝑥 𝜕𝜉 ln𝐺𝑡 (𝜉),

where the contour for x surrounds the contour for 𝜉. If we exchange the two contours, we receive an
extra term picking up the residue at 𝑥 = 𝜉 and contour integrating 𝜉,

𝐹 {−1};𝑉→ref
𝛽 =

(
1 − 𝛽

2

) ∫ 1

0
d𝑡
{
−
∮
𝛾

d𝜉
2i𝜋

𝐻𝑡 (𝜉) 𝜕𝜉 ln𝐺𝑡 (𝜉)

+
∮
𝛾

d𝜉
2i𝜋

𝜎(𝜉) 𝜕𝜉 ln𝐺𝑡 (𝜉)
∮
𝛾

d𝑥
2i𝜋

𝐻𝑡 (𝑥)
𝜎(𝑥) (𝜉 − 𝑥)

}
, (7.13)

where in the second term, 𝜉 is now outside the contour of integration for x. The properties of 𝐻𝑡 imply
that 𝐻𝑡 (𝑥)

𝜎 (𝑥) ( 𝜉−𝑥) is integrable on (𝛾 ± i0). We can then squeeze the contour of integration to the union
of (𝛾 − i0) from left to right and (𝛾 + i0) from right to left, and as 𝐻𝑡 (𝑥) and 𝜎(𝑥) both take a minus
sign when x crosses 𝛾, the contribution of the upper and lower parts of the contour cancel each other.
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So only the first term in Equation (7.13) remains, which can be written after integration by parts

𝐹 {−1};𝑉→ref
𝛽 =

(
1 − 𝛽

2

) ∫ 1

0
d𝑡
∮
𝛾

d𝜉
2i𝜋

𝜕𝑡𝐺𝑡 (𝜉) ln𝐺𝑡 (𝜉).

Squeezing the contour to 𝛾 = [𝛾−, 𝛾+] and using Equation (7.12), we find

𝐹 {−1};𝑉→ref
𝛽 = −

(
1 − 𝛽

2

) ∫ 1

0
d𝑡
{ ∫ 𝛾+

𝛾−

d𝜉 𝜕𝑡 𝜌𝑡 (𝜉) ln(𝜌𝑡 (𝜉))
}
.

Here, we recognise

𝜕𝑡Ent[𝜇𝑡eq] = 𝜕𝑡
(
−
∫ 𝛾+

𝛾−

𝜌𝑡 (𝑥) ln(𝜌𝑡 (𝑥))d𝑥
)
= −

∫ 𝛾+

𝛾−

𝜕𝑡 𝜌𝑡 (𝑥) ln(𝜌𝑡 (𝑥)) d𝑥,

given that
∫ 𝛾+
𝛾−

𝜌𝑡 (𝑥)d𝑥 = 1 is independent of t. Performing the integration over 𝑡 ∈ [0, 1] entails the
claim. �

To obtain the order 1, we need to compute the leading covariance𝑊 {0};𝑡
2 and use the formula (5.48),

taking into account the disappearance of Ls:

𝑊 {1};𝑡
1 (𝑥) = K−1

𝑡

[
− 𝜄[𝑊 {0};𝑡

2 ] −
(
𝑊 {0};𝑡

1
)2 −

(
1 − 2

𝛽

)
𝜕𝑥𝑊

{0};𝑡
1

]
(𝑥),

where 𝜄[ 𝑓 ] (𝑥) = 𝑓 (𝑥, 𝑥). The leading covariance is itself obtained from the formula (5.39) for 𝑛 = 2:

𝑊 {0};𝑡
2 (𝑥1, 𝑥2) = K−1

𝑡

[
− 2
𝛽
M𝑥2 [𝑊

{−1};𝑡
1 ]

]
(𝑥1).

It can be computed explicitly and only depends on 𝛽, 𝛾± and is independent of t and of the nature of the
edges.

Lemma 7.4. We have

𝑊 {0};𝑡
2 (𝑥1, 𝑥2) =

2/𝛽
2(𝑥1 − 𝑥2)2

(
− 1 + 𝑥1𝑥2 − (𝑥1 + 𝑥2) (𝛾− + 𝛾+)/2 + 𝛾−𝛾+

𝜎(𝑥1)𝜎(𝑥2)

)
(7.14)

and

𝜄[𝑊 {0};𝑡
2 ] (𝑥) = 2

𝛽

(𝛾+ − 𝛾−)2

16𝜎4 (𝑥)
.

Proof. This is the well-known universal expression for the leading covariance in the 1-cut situation. The
derivation of (7.14) from (5.39) is classical, but we include it for the reader convenience (the formula
for 𝜄[𝑊 {0};𝑡

2 ] is then a direct consequence). We use the formula (7.11) for K−1
𝑡 and the definition (5.27)

of M𝑥2 to rewrite (5.39) as

𝑊 {0};𝑡
2 (𝑥1, 𝑥2) = −

2
𝛽

1
2𝜎(𝑥1)

∮
𝛾

d𝜉
2i𝜋

1
𝑆𝑡 (𝜉1) (𝜉1 − 𝑥1)

∮
𝛾

d𝜉2
2i𝜋

𝐿(𝜉2)𝑊 {−1};𝑡
1 (𝜉2)

(𝑥2 − 𝜉2)2(𝜉1 − 𝜉2)
. (7.15)

Here, it is understood that the 𝜉2-integration contour is closer to the cut 𝛾 and the 𝜉1-integration contour,
and that both 𝑥1, 𝑥2 are kept outside those contours. We are going to prove the desired formula (7.14) for
𝑥2 in the domain U of analyticity of V (which is a complex neighbourhood of the cut). By uniqueness
of analytic continuation, this implies the formula without this restriction on 𝑥2. We can always assume
that the contours in (7.15) remain inside U.
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From the decomposition (5.7)–(5.8) with our specific potential (7.5), we have

𝑊 {−1};𝑡
1 (𝜉2) =

(𝑉 {0}
𝑡 (𝜉2))′

2
− 𝑆𝑡 (𝜉2)
𝐿(𝜉2)

𝜎(𝜉2).

Since 𝑉 {0}
𝑡 is analytic in U, its contribution to the 𝜉2-integration in (7.15) vanishes. We can then rewrite

𝑊 {0};𝑡
2 (𝑥1, 𝑥2) =

2
𝛽

1
2𝜎(𝑥1)

𝜕𝑥2

( ∮
𝛾

d𝜉1
2i𝜋

1
𝑆𝑡 (𝜉1) (𝜉1 − 𝑥1)

∮
𝛾

d𝜉2
2i𝜋

𝑆𝑡 (𝜉2)𝜎(𝜉2)
(𝜉2 − 𝑥2) (𝜉1 − 𝜉2)

)
.

We push the 𝜉2-integration contours towards the exterior while staying in the neighbourhood U. This
picks up residues (with a minus sign) at 𝜉2 = 𝑥2 and 𝜉1, while the new 𝜉2-integration contour is now
larger than the 𝜉1-integration contour. The latter gives a vanishing contribution, as the integrand is an
analytic function with respect to 𝜉1 inside the 𝜉1-integration contour. It remains only to evaluate the two
residues, which gives

𝑊 {0};𝑡
2 (𝑥1, 𝑥2) =

2
𝛽

1
2𝜎(𝑥1)

𝜕𝑥2

( ∮
𝛾

d𝜉1
2i𝜋

1
𝑆𝑡 (𝜉1) (𝜉1 − 𝑥1)

𝑆𝑡 (𝜉1)𝜎(𝜉1) − 𝑆𝑡 (𝑥2)𝜎(𝑥2)
𝜉1 − 𝑥2

)
.

We split the numerator of the ratio in two. The second term is holomorphic inside the integration
contour, thus gives zero, and remains the first term:

𝑊 {0};𝑡
2 (𝑥1, 𝑥2) =

2
𝛽

1
2𝜎(𝑥1)

𝜕𝑥2

( ∮
𝛾

d𝜉1
2i𝜋

𝜎(𝜉1)
(𝜉1 − 𝑥1) (𝜉1 − 𝑥2)

)
.

We now see that all the peculiarities of the model have disappeared and the answer only involves

𝜎(𝜉1) =
√
(𝜉1 − 𝛾−)(𝜉1 − 𝛾+).

Moving the integration contour towards∞, we pick (with a minus sign) the residues at 𝜉1 = 𝑥1, 𝑥2,∞, but
the residue at ∞ gives a contribution independent of 𝑥2 and so disappears when we apply the derivative.
This yields

𝑊 {0};𝑡
2 (𝑥1, 𝑥2) = −

2
𝛽

1
2𝜎(𝑥1)

𝜕𝑥2

(
𝜎(𝑥1) − 𝜎(𝑥2)

𝑥1 − 𝑥2

)
.

With 𝜎′(𝑥) = (2𝑥 − 𝛾− − 𝛾+)/𝜎(𝑥), we get

𝑊 {0};𝑡
2 (𝑥1, 𝑥2) =

2
𝛽

1
2(𝑥1 − 𝑥2)2

(
− 1 +

𝜎2 (𝑥2) + (𝑥1 − 𝑥2) (𝑥2 − 𝛾−+𝛾+
2 )

𝜎(𝑥1)𝜎(𝑥2)

)
,

and this evaluates to (7.14). �

These are all ingredients necessary to compute𝑊 {1};𝑡
1 and thus the term of order 1 in Equation (7.7).

We do not push the computation further.

7.2. The reference partition functions

To complete the description of the asymptotic expansion of 𝑍𝑉 ;A
𝑁 ,𝛽 in the one-cut regime, we describe,

as promised, the reference potentials and the asymptotic expansion of 𝑍 ref
𝑁 ,𝛽 .
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7.2.1. Preliminaries
The result builds on the properties of the double Gamma function Γ2 which we now review following
[Spr09]. The Barnes double Zeta function is defined for 𝑏1, 𝑏2 > 0 by

𝜁2 (𝑠; 𝑥; 𝑏1, 𝑏2) =
1

Γ(𝑠)

∫ ∞

0

𝑒−𝑡 𝑥 𝑡𝑠−1d𝑡
(1 − 𝑒−𝑏1𝑡 ) (1 − 𝑒−𝑏2𝑡 )

,

for Re 𝑠 > 2, and admits a meromorphic analytic continuation to 𝑠 ∈ C. Barnes double Gamma function
is then defined by

Γ2(𝑥; 𝑏1, 𝑏2) = exp
( d
d𝑠

���
𝑠=0
𝜁2(𝑠; 𝑏1, 𝑏2, 𝑥)

)
.

In particular, it satisfies the functional equation

Γ2(𝑥 + 𝑏2; 𝑏1, 𝑏2) =
Γ2(𝑥; 𝑏1, 𝑏2)

Γ
(
𝑥
𝑏1

) √
2𝜋 𝑏

1
2−

𝑥
𝑏1

1 , Γ2(1; 𝑏1, 𝑏2) = 1. (7.16)

We will only need the specialisation to 𝑏1 = 2
𝛽 and 𝑏2 = 1. It admits the asymptotic expansion, for any

𝐾 ≥ 1,

ln Γ2
(
𝑥; 2

𝛽 , 1
)
= − 𝛽𝑥

2 ln 𝑥
4

+ 3𝛽𝑥2

8
+ 1

2

(
1 + 𝛽

2

)
(𝑥 ln 𝑥 − 𝑥) − 3 + 𝛽/2 + 2/𝛽

12
ln 𝑥

− 𝜒′
(
0; 2

𝛽 , 1
)
+

𝐾∑
𝑘=1

(𝑘 − 1)! 𝐸𝑘
( 2
𝛽 , 1

)
𝑥−𝑘 +𝑂 (𝑥−(𝐾+1) ), (7.17)

where 𝐸𝑘 (𝑏1, 𝑏2) are the polynomials in two variables defined by the series expansion, for any 𝐾 ≥ 0,

1
(1 − 𝑒−𝑏1𝑡 ) (1 − 𝑒−𝑏2𝑡 )

=
𝑡→0

𝐾∑
𝑘=−2

𝐸𝑘 (𝑏1, 𝑏2) 𝑡𝑘 +𝑂 (𝑡𝐾+1),

and 𝜒(𝑠; 𝑏1, 𝑏2) is the analytic continuation to the complex plane of the series defined for Re 𝑠 > 2:

𝜒(𝑠; 𝑏1, 𝑏2) =
∑

𝑚1 ,𝑚2≥0
(𝑚1 ,𝑚2)≠(0,0)

1
(𝑚1𝑏1 + 𝑚2𝑏2)𝑠

.

For instance,

𝜒′(0; 1, 1) = − ln(2𝜋)
2

+ 𝜁 ′(−1)

in terms of the Riemann zeta function. We also remind Stirling formula for the asymptotic expansion of
the Gamma function, for any 𝐾 ≥ 0,

ln Γ(𝑥) =
𝑥→∞

𝑥 ln 𝑥 − 𝑥 − ln 𝑥
2

+ ln(2𝜋)
2

+
𝐾∑
𝑘=1

𝐵𝑘+1

𝑘 (𝑘 + 1)𝑥𝑘
+𝑂 (𝑥−(𝐾+1) ), (7.18)

where 𝐵𝑘 are the Bernoulli numbers: 𝐵2 = 1
6 , 𝐵4 = − 1

30 , 𝐵6 = 1
42 , etc. and 𝐵2 𝑗+1 = 0 for 𝑗 ≥ 1.
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7.2.2. Two soft edges
We have 𝐿(𝑥) = 1. We take as reference the Gaussian potential

𝑉 ref (𝑥) = 8
(𝛾+ − 𝛾−)2

(
𝑥 − 𝛾− + 𝛾+

2

)2
.

Its equilibrium measure is the semi-circle law, and its Stieltjes transform is

𝑊 {−1};ref
1 (𝑥) = (𝑉 ref)′(𝑥)

2
− 𝑆ref 𝜎(𝑥)

𝐿(𝑥) , 𝑆ref =
8

(𝛾+ − 𝛾−)2
.

The partition function with potential 𝑉 ref over R𝑁 is equal to [Meh04]:

𝑍 ref
𝑁 ,𝛽 =

[ 𝑁∏
𝑗=1

Γ
(
1 + 𝑗 𝛽2

)
Γ
(
1 + 𝛽

2
) ] (2𝜋) 𝑁

2

( (𝛾+ − 𝛾−)2
16

2/𝛽
𝑁

) 𝛽
4 𝑁 2+(1− 𝛽

2 )
𝑁
2
, (7.19)

and it differs from the partition function on A by exponentially small corrections (see Corollary 3.2).
Equation (7.19) can be rewritten in terms of Barnes double Gamma function: if we express the Gamma
function using Equation (7.16) with 𝑏1 = 2

𝛽 and 𝑏2 = 1, the product becomes telescopic. The result is

𝑍 ref
𝑁 ,𝛽 =

𝑁! (2𝜋)𝑁
( 𝛽

2
) ( 𝛽2 −1)𝑁

Γ𝑁
( 𝛽

2
)
Γ2
(
𝑁 + 1; 2

𝛽 , 1
) ( (𝛾+ − 𝛾−)216𝑁

) 𝛽
4 𝑁 2+(1− 𝛽

2 )
𝑁
2
,

and its asymptotic expansion can be computed with help of Equations (7.17)–(7.18). It yields an
expansion of the form (7.1) with

𝐹 {−2};ref
𝛽 =

𝛽

2

[
− 3

4
+ ln

(𝛾+ − 𝛾−
4

)]
,

𝐹 {−1};ref
𝛽 =

(
1 − 𝛽

2

)
ln
(𝛾+ − 𝛾−

4

)
− 1

2
− 𝛽

4
+ ln(2𝜋) − ln Γ

( 𝛽
2
)
+
( 𝛽

2 − 1
)

ln
( 𝛽

2
)
,

𝐹 {0};ref
𝛽 = 𝜒′

(
0; 2

𝛽 , 1
)
+ ln(2𝜋)

2
,

𝜘ref =
3 + 𝛽/2 + 2/𝛽

12
,

and explicitly computable higher 𝐹 {𝑘 };ref
𝛽 .

7.2.3. One soft edge, one hard edge
Up to exchanging the role of 𝛾±, we can assume that 𝛾+ is hard and 𝛾− is soft. Then, 𝐿(𝑥) = (𝑥 − 𝛾+).
We take as reference the linear potential

𝑉 ref (𝑥) = 4(𝛾+ − 𝑥)
𝛾+ − 𝛾−

.

Its equilibrium measure is the Marčenko–Pastur law, whose Stieltjes transform is

𝑊 {−1};ref
1 (𝑥) = (𝑉 ref)′(𝑥)

2
− 𝑆ref 𝜎(𝑥)

𝐿(𝑥) , 𝑆ref =
2

𝛾+ − 𝛾−
.
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The partition function for 𝑉 ref over (−∞, 𝛾+] is the Laguerre Selberg integral

𝑍 ref
𝑁 ,𝛽 =

𝑁∏
𝑗=1

Γ
(
1 + ( 𝑗 − 1) 𝛽2

)
Γ
(
1 + 𝑗 𝛽2

)
Γ
(
1 + 𝛽

2
) (2/𝛽

𝑁

𝛾+ − 𝛾−
4

) 𝛽
2 𝑁 2+(1− 𝛽

2 )𝑁
,

and it differs from the partition function over A by exponentially small corrections. We transform it
using Barnes double Gamma function:

𝑍 ref
𝑁 ,𝛽 =

𝑁!2 (2𝜋)𝑁
( 𝛽

2
) (𝛽−1)𝑁

Γ
(
1 + 𝑁 𝛽

2
)
Γ𝑁

( 𝛽
2
)
Γ2

2
(
𝑁 + 1; 2

𝛽 , 1
) (𝛾+ − 𝛾−4𝑁

) 𝛽
2 𝑁 2+(1− 𝛽

2 )𝑁
.

We then deduce the asymptotic expansion with coefficients

𝐹 {−2};ref
𝛽 =

𝛽

2

[
− 3

2
+ ln

(𝛾+ − 𝛾−
4

)]
,

𝐹 {−1};ref
𝛽 =

(
1 − 𝛽

2

)
ln
(𝛾+ − 𝛾−

4

)
− 1 + ln(2𝜋) − ln Γ

( 𝛽
2
)
+ ( 𝛽2 − 1) ln

( 𝛽
2
)
,

𝐹 {0};ref
𝛽 = 2𝜒′

(
0; 2

𝛽 , 1
)
− ln(𝛽/2)

2
+ ln(2𝜋)

2
,

𝜘ref =
𝛽/2 + 2/𝛽

6
,

and explicitly computable higher 𝐹 {𝑘 };ref
𝛽 .

7.2.4. Two hard edges
We have 𝐿(𝑥) = (𝑥 − 𝛾+)(𝑥 − 𝛾−). We take as reference potential 𝑉 ref = 0 on [𝛾−, 𝛾+]. The equilibrium
measure is the arcsine law, and its Stieltjes transform is

𝑊 {−1};ref
1 =

1
𝜎(𝑥) =

(𝑉 ref)′(𝑥)
2

− 𝑆ref 𝜎(𝑥)
𝐿(𝑥) , 𝑆ref = −1.

The partition function for the zero potential on [𝛾−, 𝛾+] is the Jacobi Selberg integral:

𝑍 ref
𝑁 ,𝛽 =

1
Γ2 (1 + 𝑁 𝛽

2
) 𝑁∏

𝑗=1

Γ3 (1 + 𝑗 𝛽2 )
Γ
(
2 + (𝑁 + 𝑗 − 2) 𝛽2

)
Γ
(
1 + 𝛽

2
) (𝛾+ − 𝛾−) 𝛽

2 𝑁 2+(1− 𝛽
2 )𝑁 .

We rewrite it in terms of the Barnes double Gamma function

𝑍 ref
𝑁 ,𝛽 =

(2𝜋)𝑁 𝑁!3 (𝑁 − 2)! Γ
( 2
𝛽 + 𝑁 − 1

) ( 𝛽
2
) ( 3𝛽

2 −1)𝑁

(2𝑁 − 2)! Γ
( 2
𝛽 + 2𝑁 − 1) Γ𝑁

( 𝛽
2
)
Γ2 (1 + 𝑁 𝛽

2
) Γ2

(
2𝑁 − 1; 2

𝛽 , 1
)

Γ2
(
𝑁 − 1; 2

𝛽 , 1
)
Γ3

2
(
𝑁 + 1; 2

𝛽 , 1
)

× (𝛾+ − 𝛾−)
𝛽
2 𝑁 2+(1− 𝛽

2 )𝑁 ,

and we find the asymptotic expansion with coefficients

𝐹 {−2};ref
𝛽 =

𝛽

2
ln
(𝛾+ − 𝛾−

4

)
,

𝐹 {−1};ref
𝛽 =

(
1 − 𝛽

2

)
ln
(𝛾+ − 𝛾−

8

)
− 𝛽

2 + ln(2𝜋) − ln Γ
( 𝛽

2
)
+
( 𝛽

2 − 1
)

ln
( 𝛽

2
)
,
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𝐹 {0};ref
𝛽 = 3𝜒′

(
0; 2

𝛽 , 1
)
+ 27 − 13(𝛽/2 + 2/𝛽)

12
ln(2) − ln

( 𝛽
2
)
+ ln(2𝜋)

2
,

𝜘ref =
−1 + 𝛽/2 + 2/𝛽

4
,

with explicitly computable higher 𝐹 {𝑘 };ref
𝛽 .

7.2.5. Nondecaying terms
The asymptotic expansion of the reference partition takes the form, for any 𝐾 ≥ 0,

ln 𝑍 ref
𝑁 ,𝛽 =

𝐾∑
𝑘=−2

𝑁−𝑘 𝐹 {𝑘 };ref
𝛽 + 𝛽

2
ln 𝑁 + 𝜘ref ln 𝑁 +𝑂 (𝑁−(𝐾+1) ).

As the reference equilibrium measures are explicit, we can check by explicit computation that the
potential-theoretic formula (7.2) holds. Using the change of variables 𝑥 = 𝛾++𝛾−

2 , we can also compute
the entropy of the reference equilibrium measures. The result is

Ent[𝜇ref
eq ] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− 1

2 + ln(2𝜋) + ln
(
𝛾+−𝛾−

4

)
if 𝛾+ and 𝛾− are soft,

−1 + ln(2𝜋) + ln
(
𝛾+−𝛾−

4

)
if 𝛾± is soft and 𝛾∓ is hard,

− ln(2) + ln(2𝜋) + ln
(
𝛾+−𝛾−

4

)
if 𝛾+ and 𝛾− are hard.

(7.20)

Collecting the previous expressions, we find that independently of the nature of the edges,

𝐹 {−1};ref
𝛽 =

(
1 − 𝛽

2

) (
Ent[𝜇ref

eq ] − ln
( 𝛽

2
) )
+ 𝛽

2
ln
(2𝜋
𝑒

)
− ln Γ

( 𝛽
2
)
. (7.21)

Adding this contribution to the formula of Lemma 7.3 gives a proof of Proposition 7.1 relating 𝐹 {−1};𝑉
𝛽

to the entropy of the equilibrium measure for general potential V. We also remark from the previous
expressions that

𝜘ref =
1
2
+ (#soft + 3#hard) −3 + 𝛽/2 + 2/𝛽

24
,

𝐹 {0};ref
𝛽 =

#soft + 3#hard
2

𝜒′
(
0; 2

𝛽 , 1
)
+ ln(2𝜋)

2
− #hard

2
ln
( 𝛽

2
)

+ 𝛿#hard,2
27 − 13(𝛽/2 + 2/𝛽)

12
ln(2).

7.3. Second step: decoupling the cuts

7.3.1. General strategy
This step is new compared to the one-cut situation treated in [BG11]. We are going to interpolate
between the partition function of a (𝑔 + 1)-cut model with fixed filling fractions to a product of (𝑔 + 1)
partition functions of one-cut models. For this purpose, we introduce a slightly more general model

𝑍𝑉 ;A
𝑁 ,𝛽;𝝐 (𝑠)

=
∫

A𝑁ℎ
ℎ

[ 𝑔∏
ℎ=0

𝑁ℎ∏
𝑖=1

d𝜆ℎ,𝑖 𝑒−𝑁
𝛽
2 𝑉 (𝜆ℎ,𝑖)

] [ ∏
0≤ℎ<ℎ′ ≤𝑔

∏
1≤𝑖≤𝑁ℎ

1≤𝑖′≤𝑁ℎ′

|𝜆ℎ,𝑖 − 𝜆ℎ′,𝑖′ |𝑠𝛽
] [ 𝑔∏

ℎ=0

∏
1≤𝑖< 𝑗≤𝑁ℎ

|𝜆ℎ,𝑖 − 𝜆ℎ, 𝑗 |𝛽
]
,
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which realises our interpolation for 𝑠 ∈ [0, 1]. Although this s-dependent model is not of the form of
the 𝛽-ensemble announced in introduction, we justify the following in §7.4 below:

Lemma 7.5. Assume Hypothesis 1.1–1.3 for V and consider the s-dependent model with s-dependent
potential

𝑇𝑠 (𝑥) = 𝑉 (𝑥) − 2(1 − 𝑠)
∑
ℎ′≠ℎ

∫
Aℎ′

d𝜇𝑉eq;𝝐 (𝜉) ln |𝑥 − 𝜉 |, 𝑥 ∈ Aℎ . (7.22)

The correlators𝑊 𝑠
𝑛;𝝐 of the model 𝑍𝑇𝑠 ;A

𝑁 ,𝛽;𝝐 (𝑠) have a 1
𝑁 asymptotic expansion of the form

𝑊 𝑠
𝑛;𝝐 =

𝐾∑
𝑘=𝑛−2

𝑁−𝑘𝑊 {𝑘 };𝑠
𝑛;𝝐 +𝑂 (𝑁−(𝐾+1) )

for any 𝐾 ≥ −2, for some N-independent functions 𝑊 {𝑘 };𝑠
𝑛;𝝐 . This expansion is uniform for 𝑠 ∈ [0, 1].

Besides, 𝑊 {−1};𝑠
1;𝝐 is independent of s and therefore equals the Stieltjes transform of the equilibrium

measure 𝜇𝑉eq;𝝐 . It is simply denoted by𝑊 {−1}
1;𝝐 . Moreover, for any 𝐾 ≥ 0, we have

ln
( 𝑍𝑉 ;A

𝑁 ,𝛽;𝝐

𝑍𝑇0;A
𝑁 ,𝛽;𝝐 (𝑠 = 0)

)
= 𝑁2𝐹 {−2};𝑇

𝛽;𝝐 +
𝐾∑
𝑘=0

𝑁−𝑘𝐹 {𝑘 };𝑇𝛽;𝝐 +𝑂 (𝑁−𝐾−1) (7.23)

with

𝐹 {−2};𝑇
𝛽;𝝐 =

𝛽

2

∑
0≤ℎ≠ℎ′ ≤𝑔

∫
Aℎ

∫
Aℎ′

ln |𝑥 − 𝑦 | d𝜇𝑉eq;𝝐 (𝑥)d𝜇𝑉eq;𝝐 (𝑦)

and some constants 𝐹 {𝑘 };𝑇𝛽;𝝐 depending on𝑊 𝑠
𝑛;𝝐 with 𝑛 = 1, 2 and 𝑠 ∈ [0, 1].

The choice of our interpolation has two advantages. First, at 𝑠 = 1, we get our initial model, whereas
at 𝑠 = 0, we get a product of one cut models which have already been analysed; see Section 7.3.2.
However, our choice is such that the equilibrium measure for the model 𝜇𝑇𝑠 ;A

𝑁 ,𝛽;𝝐 (𝑠) is independent of s
and equals 𝜇𝑉eq;𝝐 ; see Section 7.4.5. This implies clearly that𝑊 {−1};𝑠

1;𝝐 is independent of s. Integrating the
log-derivative of 𝑍𝑇𝑠 ;A

𝑁 ,𝛽;𝝐 (𝑠) along the family of potentials (𝑇𝑠)𝑠∈[0,1] given in Equation (7.22), we have
the exact formula

ln
( 𝑍𝑉 ;A

𝑁 ,𝛽;𝝐

𝑍𝑇0;A
𝑁 ,𝛽;𝝐 (𝑠 = 0)

)
= 𝛽

∫ 1

0
d𝑠 𝜇𝑇𝑠 ;A

𝑁 ,𝛽;𝝐

[ ∑
0≤ℎ<ℎ′ ≤𝑔

∑
1≤𝑖≤𝑁ℎ

1≤𝑖′≤𝑁ℎ′

ln |𝜆ℎ,𝑖 − 𝜆ℎ′,𝑖′ | − 𝑁
∑

0≤ℎ′≠ℎ≤𝑔

∑
1≤𝑖≤𝑁ℎ

∫
Sℎ′

ln |𝜆ℎ,𝑖 − 𝑥 |d𝜇𝑉eq;𝝐 (𝑥)
]

= −𝑁𝛽
∑

0≤ℎ≠ℎ′ ≤𝑔

∮
Aℎ

∮
Aℎ′

d𝑥 d𝑥 ′

(2i𝜋)2
ln[(𝑥 − 𝑥 ′)sgn(ℎ − ℎ′)]𝑊 {−1}

1;𝝐 (𝑥)
( ∫ 1

0
d𝑠𝑊 𝑠

1;𝝐 (𝑥
′)
)

+
∑

0≤ℎ′≠ℎ≤𝑔

𝛽

2

∮
Aℎ

∮
Aℎ′

d𝑥 d𝑥 ′

(2i𝜋)2
ln[(𝑥 − 𝑥 ′)sgn(ℎ − ℎ′)]

( ∫ 1

0
d𝑠
[
𝑊 𝑠

2;𝝐 (𝑥, 𝑥
′) +𝑊 𝑠

1;𝝐 (𝑥)𝑊
𝑠
1;𝝐 (𝑥

′)
] )
,

and in the right-hand side, the uniformity of the asymptotic expansion when 𝑁 → ∞ of 𝑊 𝑠
1;𝝐 and 𝑊 𝑠

2;𝝐
with respect to s allows integrating over 𝑠 ∈ [0, 1] term by term. We obtain, for any 𝐾 ≥ 0,
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ln
( 𝑍𝑉 ;A

𝑁 ,𝛽;𝝐

𝑍𝑇0;A
𝑁 ,𝛽;𝝐 (𝑠 = 0)

)
= − 𝛽𝑁

2

2

∑
0≤ℎ≠ℎ′ ≤𝑔

∫
Aℎ

∫
Aℎ′

ln |𝑥 − 𝑦 | d𝜇𝑉eq;𝝐 (𝑥)d𝜇𝑉eq;𝝐 (𝑦)

+
𝐾∑
𝑘=0

𝑁−𝑘
∑

0≤ℎ′≠ℎ≤𝑔

𝛽

2

∮
Aℎ

∮
Aℎ′

d𝑥 d𝑥 ′

(2i𝜋)2
ln[(𝑥 − 𝑥 ′)sgn(ℎ − ℎ′)]

×
{ ∫ 1

0

(
𝑊 {𝑘 };𝑠

2;𝝐 (𝑥, 𝑥 ′) +
∑

𝑘′,𝑘′′≥0
𝑘′+𝑘′′=𝑘

𝑊 {𝑘′ };𝑠
1;𝝐 (𝑥)𝑊 {𝑘′′ };𝑠

1;𝝐 (𝑥 ′)
)
d𝑠
}
+𝑂 (𝑁−(𝐾+1) ),

where we noticed that the term depending linearly on N vanishes since the two first terms of the expansion
reads𝑊 𝑠

1;𝝐 = 𝑁𝑊
{−1}
1;𝝐 (𝑥) +𝑊 {0};𝑠

1,𝝐 (𝑥) + .... This proves (7.23) if the first part of the Lemma is granted.

7.3.2. The decoupled partition function
For 𝑠 = 0, we have

𝑍𝑇0;A
𝑁 ,𝛽;𝝐 (𝑠 = 0) =

𝑔∏
ℎ=0

𝑍𝑇0/𝜖ℎ ;Aℎ

𝑁 𝜖ℎ ,𝛽
, (7.24)

and its asymptotic expansion follows from (7.1). We remind that, in the partition function of the
usual model (1.1) where filling fractions are not fixed, the eigenvalues are not ordered, while in
(7.24) the groups of eigenvalues are ordered. We shall therefore study the asymptotic expansion of

𝑁 !∏𝑔
ℎ=0 𝑁ℎ! 𝑍

𝑇0;A
𝑁 ,𝛽;𝝐 (𝑠 = 0). Taking into account

∑𝑔
ℎ=0 𝜖ℎ = 1, Stirling expansion (7.18) yields

𝑁!∏𝑔
ℎ=0 𝑁ℎ!

=
[ 𝑔∏
ℎ=0

𝜖
− 1

2
ℎ

]
exp

{
− 𝑁

( 𝑔∑
ℎ=0

𝜖ℎ ln 𝜖ℎ
)
− 𝑔 ln 𝑁

2
− 𝑔 ln(2𝜋)

2

+
𝐾∑
𝑘=1

𝑁−𝑘 𝐵𝑘+1
𝑘 (𝑘 + 1)

(
1 −

𝑔∑
ℎ=0

𝜖−𝑘ℎ

)}
+𝑂 (𝑁−(𝐾+1) ).

As the equilibrium measure of the s-dependent model with potential 𝑇𝑠 is independent of s, the equi-
librium measure corresponding to the h-th model in (7.24) is the restriction to Aℎ of 𝜖−1

ℎ 𝜇𝑇0/𝜖ℎ
eq;𝝐 , and it

has only one cut Sℎ . Noticing that the entropy is additive for measures with disjoint support, we find
the asymptotic expansion

ln
(𝑁! 𝑍𝑇0;A

𝑁 ,𝛽;𝝐 (𝑠 = 0)∏𝑔
ℎ=0 𝑁ℎ!

)
= 𝑁2

{
− 𝐸 [𝜇𝑉eq;𝝐 ] +

𝛽

2

∑
0≤ℎ≠ℎ′ ≤𝑔

∬
Aℎ×Aℎ′

ln |𝑥 − 𝑦 |d𝜇𝑉eq;𝝐 ,ℎ (𝑥)d𝜇
𝑉
eq;𝝐 ,ℎ (𝑦)

}
+ 𝛽

2
𝑁 ln 𝑁 + 𝑁

{
− 𝛽

2

∫
A
𝑉 {1} (𝑥)d𝜇𝑉eq;𝝐 (𝑥)

+
(
1 − 𝛽

2

) (
Ent[𝜇𝑉eq;𝝐 ] − ln

( 𝛽
2
) )
+ 𝛽

2
ln
(2𝜋
𝑒

)
− ln Γ

( 𝛽
2
)}
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+
(1
2
+ (#soft + 3#hard) −3 + 𝛽/2 + 2/𝛽

24

)
ln 𝑁 +

𝑔∑
ℎ=0

(
𝐹 {0};𝑇0/𝜖ℎ ,Aℎ

𝛽 +
(
− 𝜖ℎ

2 + 𝜘ℎ
)

ln 𝜖ℎ
)

+
𝐾∑
𝑘=1

𝑁−𝑘
{

𝐵𝑘+1
𝑘 (𝑘 + 1) +

𝑔∑
ℎ=0

1
𝜖 𝑘ℎ

(
𝐹 {𝑘 };𝑇0/𝜖ℎ ,Aℎ

𝛽 − 𝐵𝑘+1
𝑘 (𝑘 + 1)

)}
+𝑂 (𝑁−(𝐾+1) ), (7.25)

where

𝜘ℎ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3+𝛽/2+2/𝛽

12 if two soft edges in Sℎ

𝛽/2+2/𝛽
6 if one soft and one hard edge in Sℎ

−3+𝛽/2+2/𝛽
4 if two hard edges in Sℎ .

We are going to use the notation ref (ℎ) for the reference model that we associate to the one-cut model
𝑍𝑇0/𝜖ℎ ;Aℎ

𝑁 𝜖ℎ ,𝛽
. When we write the coefficients of the large N asymptotic expansion of ln

(
𝑍𝑇0/𝜖ℎ ;Aℎ

𝑁 𝜖ℎ ,𝛽
/𝑍 ref (ℎ)

𝑁 𝜖ℎ ,𝛽

)
as in Equation (7.7), we find two possible sources1 of explicit dependence in 𝜖ℎ: (𝑁𝜖ℎ)−𝑘 , which is the
natural variable of expansion for the h-th model, and a factor of 1

𝜖ℎ
from each occurrence of 𝑆𝑠 (i.e.,

each application of K−1
𝑠 ) due to the normalisation of the equilibrium measure of the h-th model. We

then obtain

ln 𝑍𝑇0/𝜖ℎ ;Aℎ

𝑁 𝜖ℎ ,𝛽
=

𝐾∑
𝑘=−2

𝑁−𝑘 𝐹 {𝑘 };𝑇0/𝜖ℎ ,Aℎ

𝛽 +𝑂 (𝑁−(𝐾+1) ),

with

𝐹 {𝑘 };𝑇0/𝜖ℎ ,Aℎ

𝛽 = 𝐹 {𝑘 };ref (ℎ)
𝛽 + 𝛽

2

∮
Sℎ

d𝑥
2i𝜋

(
𝑉 ref (ℎ) (𝑥) − 𝑇0 (𝑥)/𝜖ℎ

) ( ∫ 1

0
𝑊 {𝑘+1};𝑠

1;(ℎ) (𝑥) d𝑠
)
, (7.26)

where by convention, 𝑉 ref (ℎ) denotes the reference potential associated with the equilibrium measure of
the h-th model – it only depends on the edges of the support Sℎ and their nature and not on the filling
fractions 𝝐 . Besides, 𝑊 {𝑘+1};𝑠

1;(ℎ) (here denoting the 1-point correlator of the h-th model) is obtained by
𝑘 + 2 successive applications of K−1

𝑠 to a quantity involving 𝑊 {−1};𝑠
1;(ℎ) , the latter being proportional to

𝜖−1
ℎ . Therefore,𝑊 {𝑘+1};𝑠

1;(ℎ) is proportional to 𝜖−1+(𝑘+2)
ℎ . As a result, the contributions from (7.26) result in

Equation (7.25) in affine functions of 𝜖ℎ , and the terms of degree 1 in 𝜖ℎ are the ones involving𝑉 ref (h) (𝑥).

7.3.3. Comparison with decoupled partition function
Note that there is no contribution of order N in the right-hand side and that the contribution of order
𝑁2 reconstructs with that in ln 𝑍𝑇0;A

𝑁 ,𝛽;𝝐
(
𝑠 = 0) the energy functional for 𝜇𝑉eq,𝝐 . Putting all results together

(mainly Lemma 7.5 and (7.25)), we find the following:
Proposition 7.6. Assume Hypothesis 5.1. The partition function with fixed filling fractions admits an
asymptotic expansion of the form, for any 𝐾 ≥ 0,

ln
(𝑁! 𝑍𝑉 ;A

𝑁 ,𝛽;𝝐∏𝑔
ℎ=0 𝑁ℎ!

)
= −𝑁2𝐸 [𝜇𝑉eq;𝝐 ] +

𝛽

2
𝑁 ln 𝑁

+ 𝑁
{
− 𝛽

2

∫
A
𝑉 {1} (𝑥)d𝜇𝑉eq;𝝐 (𝑥) +

(
1 − 𝛽

2

) (
Ent[𝜇𝑉eq;𝝐 ] − ln

( 𝛽
2
) )
+ 𝛽

2
ln
(2𝜋
𝑒

)
− ln Γ

( 𝛽
2
)}

+ 𝜘 ln 𝑁 +
𝐾∑
𝑘=0

𝑁−𝑘 𝐹 {𝑘 };𝑉𝛽;𝝐 +𝑂 (𝑁−(𝐾+1) ).

1By explicit dependence in 𝜖ℎ , we mean dependence in the first variable for functionals of (𝜖ℎ , 𝜇𝑉
eq;𝝐 ) .
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The coefficient of ln 𝑁 is

𝜘 =
1
2
+ (#soft + 3#hard) −3 + 𝛽/2 + 2/𝛽

24
. (7.27)

The constant term is

𝐹 {0};𝑉𝛽;𝝐 =
#soft + 3#hard

2
𝜒′
(
0; 2

𝛽 , 1
)
+ ln(2𝜋)

2
+ #hard

2
ln(𝛽/2)

+ #(hard cut) 27 − 13(𝛽/2 + 2/𝛽)
12

ln(2) +
𝑔∑

ℎ=0

(
𝐹 {0};𝑇0/𝜖ℎ ,Aℎ

𝛽 − 𝜖ℎ ln 𝜖ℎ
2

)
+

∑
0≤ℎ≠ℎ′ ≤𝑔

𝛽

2

∯
Aℎ×Aℎ′

d𝑥 d𝑥 ′

(2i𝜋)2
ln[(𝑥 − 𝑥 ′)sgn(ℎ − ℎ′)]

(
𝑊 {0};𝑉

2;𝝐 (𝑥, 𝑥 ′) +𝑊 {0};𝑉
1;𝝐 (𝑥)𝑊 {0};𝑉

1;𝝐 (𝑥 ′)
)
.

(7.28)

The corrections for 𝑘 ≥ 1 are

𝐹 {𝑘 };𝑉𝛽;𝝐 =
𝑔∑

ℎ=0
𝜖−𝑘ℎ 𝐹 {𝑘 };𝑇0/𝜖ℎ ,Aℎ

𝛽 + 𝐵𝑘+1
𝑘 (𝑘 + 1)

(
1 −

𝑔∑
ℎ=0

𝜖−𝑘ℎ

)
+

∑
0≤ℎ≠ℎ′ ≤𝑔

𝛽

2

∯
Aℎ×Aℎ′

d𝑥 d𝑥 ′

(2i𝜋)2
ln[(𝑥 − 𝑥 ′)sgn(ℎ − ℎ′)]{ ∫ 1

0

(
𝑊 {𝑘 };𝑠

2;𝝐 (𝑥, 𝑥 ′) +
∑

𝑘′+𝑘′′=𝑘
𝑊 {𝑘′ };𝑠

1;𝝐 (𝑥)𝑊 {𝑘′′ };𝑠
1;𝝐 (𝑥 ′)

)
d𝑠
}
. (7.29)

To compute the last term in Equation (7.28), at least in principle, we need formulas for 𝑊 {0};𝑉
1;𝝐 and

𝑊 {0};𝑉
2;𝝐 in the multi-cut fixed filling fractions case. 𝑊 {0};𝑉

1;𝝐 is computed by Equation (5.45). Although
we can use Equation (5.48) to compute𝑊 {0};𝑉

2 , it is better expressed via its relation to the fundamental
bidifferential of the second kind; see Equations (1.26)–(1.27).

7.4. Proof of Lemma 7.5: expansion of correlators in the s-dependent model

We indicate how the arguments used so far in the article can be carried to the s-dependent model with
fixed filling fractions without any difficulty. The interested reader can find all the details – in the greater
generality of arbitrary pairwise interactions – in [BGK15]. Let us take Hypotheses 1.1 and 1.3, as the
weakening of the latter to Hypothesis 1.2 can be done as in Section 6.

7.4.1. Preliminary: the s-dependent energy functional and associated pseudo-distance
Hereafter, we study the energy functional associated with 𝑍𝑉 ;A

𝑁 ,𝛽;𝝐 (𝑠). We introduce the matrix

𝝇𝑠 =
(
𝑠 + (1 − 𝑠)𝛿ℎ,ℎ′

)
0≤ℎ,ℎ′ ≤𝑔 .

It is positive semi-definite, has an eigenvector (1)𝑔ℎ=0 with positive eigenvalue (𝑔 + 1) and has a g-
dimensional nullspace orthogonal to it. We define the s-dependent energy functional

𝐸𝑉
𝑠 [𝜇] =

𝛽

2

(
−

∑
0≤ℎ,ℎ′ ≤𝑔

∬
Aℎ×Aℎ′

𝜍𝑠ℎ,ℎ′ ln |𝑥 − 𝑦 |d𝜇ℎ (𝑥)d𝜇ℎ′ (𝑦) +
𝑔∑

ℎ=0

∫
Aℎ

𝑉 {0} (𝑥)d𝜇ℎ (𝑥)
)
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depending on a probability measure 𝜇 supported A, which we decompose as 𝜇 =
∑𝑔

ℎ=0 𝜇ℎ , where 𝜇ℎ is
supported on Aℎ . We see that, with 𝐸 = 𝐸𝑉 as defined in (1.5),

𝐸𝑉
𝑠 [𝜇] =

𝑔∑
ℎ=0

𝐸𝑉 [𝜇ℎ] + 𝑠
∬

A2
Λ(𝑥, 𝑦)d𝜇(𝑥)d𝜇(𝑦) , (7.30)

where

Λ(𝜉, 𝜉 ′) =
{

ln |𝜉 − 𝜉 ′| if (𝜉, 𝜉 ′) ∈ Aℎ × Aℎ′ and ℎ ≠ ℎ′

0 otherwise (7.31)

is a smooth bounded function on A2. Since 𝐸 [𝜇ℎ] is well defined in R ∪ {+∞}, this shows that 𝐸𝑉
𝑠 [𝜇]

is also well defined in R ∪ {+∞}.
In intermediate steps, we will need the s-dependent analog of the pseudo-distance 𝔇 – namely,

𝔇𝑠 [𝜇, 𝜈] =
(
− 𝑠

∑
0≤ℎ≠ℎ′ ≤𝑔

∬
Aℎ×Aℎ′

ln |𝑥 − 𝑦 |d[𝜇 − 𝜈] (𝑥)d[𝜇 − 𝜈] (𝑦)

−
𝑔∑

ℎ=0

∬
A2
ℎ

ln |𝑥 − 𝑦 |d[𝜇 − 𝜈] (𝑥)d[𝜇 − 𝜈] (𝑦)
) 1

2

=

( ∫ ∞

0

d𝑝
𝑝

{ ∑
0≤ℎ,ℎ′ ≤𝑔

𝜍𝑠ℎ,ℎ′ (𝜇ℎ − 𝜈̂ℎ) (𝑝) (𝜇ℎ′ − 𝜈ℎ′ ) (𝑝)
}) 1

2

. (7.32)

We claim that it is well defined in [0, +∞] for any two positive measures 𝜇, 𝜈 of finite mass on A such
that 𝜇(Aℎ) = 𝜈(Aℎ) for any ℎ ∈ �0, 𝑔�. This is also the setting in which we need it since we work with
the s-dependent model for fixed filling fractions. To see this, we first remark that

−
𝑔∑

ℎ=0

∬
A2
ℎ

ln |𝑥 − 𝑦 |d[𝜇 − 𝜈] (𝑥)d[𝜇 − 𝜈] (𝑦) =
𝑔∑

ℎ=0
𝔇2 [𝜇ℎ , 𝜈ℎ]

is well defined in [0, +∞]. Again, as (𝑥, 𝑦) ↦→ Λ(𝑥, 𝑦) is continuous bounded for (𝑥, 𝑦) ∈
⋃

ℎ≠ℎ′ Aℎ×Aℎ′ ,
we see that

−
∑

0≤ℎ≠ℎ′ ≤𝑔

∬
Aℎ×Aℎ′

ln |𝑥 − 𝑦 |d[𝜇 − 𝜈] (𝑥)d[𝜇 − 𝜈] (𝑦)

is well defined in R. So the quantity under the squareroot in Equation (7.32) is well defined a priori
in R ∪ {+∞}. Since 𝝇𝑠 is positive semi-definite, we deduce that 𝔇𝑠 [𝜇, 𝜈] ∈ [0, +∞] is well defined.
If 𝔇𝑠 [𝜇, 𝜈] = 0, we must have

∑𝑔
ℎ=0

(
𝜇ℎ (𝑝) − 𝜈̂ℎ (𝑝)

)
= 0 for p almost everywhere (corresponding to

projection on the eigenvector with positive eigenvalue); hence,
∑𝑔

ℎ=0 (𝜇ℎ − 𝜈ℎ) = 0. Since the summands
have pairwise disjoint supports, this implies 𝜇ℎ = 𝜈ℎ for all ℎ ∈ �0, 𝑔� – that is, 𝜇 = 𝜈. So, 𝔇𝑠 is a
pseudo-distance.

We now explain how to control linear statistics in terms of𝔇𝑠 , uniformly in s. Let 𝜇, 𝜈 be two positive
measures on A such that 𝜇(Aℎ) = 𝜈(Aℎ) for any ℎ ∈ �0, 𝑔�. We decompose 𝜌 = 𝜇 − 𝜈 =

∑𝑔
ℎ=0 𝜌ℎ ,

where 𝜌ℎ is a signed measure of zero mass supported on Aℎ . Let f be a smooth test function on A. Let
𝜒ℎ [ 𝑓 ] be a smooth function on R which is equal to f in Aℎ , 0 outside a compact neighbourhood of Aℎ

and, in particular, 0 on
⋃

ℎ′≠ℎ Aℎ′ . One can choose the extension procedure so that

|𝜒ℎ [ 𝑓 ] |1/2 ≤ 𝐶 | 𝑓 |1/2
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for a constant 𝐶 > 0 independent of f and ℎ ∈ �0, 𝑔� (it is controlled by the minimum distance between
the segments Aℎ). We observe that for 𝑠 ∈ [0, 1], the matrix 𝝇̃𝑠 = (𝑢𝑠 + 𝑣𝑠𝛿ℎ,ℎ′ )0≤ℎ,ℎ′ ≤𝑔 squares to 𝝇𝑠

when we choose

𝑢𝑠 =

√
1 + 𝑔𝑠 −

√
1 − 𝑠

𝑔 + 1
, 𝑣𝑠 =

√
1 − 𝑠.

On the diagonal, this matrix has diagonal entries

𝑢𝑠 + 𝑣𝑠 =
𝑔
√

1 − 𝑠 +
√

1 + 𝑔𝑠
𝑔 + 1

≥ 1
𝑔 + 1

. (7.33)

Let us write���� ∫
A
𝑓 (𝑥)d[𝜇 − 𝜈] (𝑥)

���� = ���� 𝑔∑
ℎ=0

∫
R

𝜒ℎ [ 𝑓 ] (𝑥)d𝜌ℎ (𝑥)
��� = 1

𝑢𝑠 + 𝑣𝑠

���� ∫
R

𝑔∑
ℎ=0

𝜒ℎ [ 𝑓 ] (𝑥)
( 𝑔∑
ℎ′=0

𝜍𝑠ℎ,ℎ′d𝜌ℎ′ (𝑥)
)����

≤ (𝑔 + 1)
���� ∫
R

𝑔∑
ℎ=0

C𝜒ℎ [ 𝑓 ] (𝑝) ( 𝑔∑
ℎ′=0

𝜍𝑠ℎ,ℎ′𝜈ℎ′ (𝑝)
)
d𝑝
����,

where we have used the bound (7.33) in the last line. We then use the Cauchy–Schwarz inequality:���� ∫
A
𝑓 (𝑥)d[𝜇 − 𝜈] (𝑥)

����
≤ (𝑔 + 1)

( ∫
R

𝑔∑
ℎ=0

��C𝜒ℎ [ 𝑓 ] (𝑝)��2 |𝑝 | d𝑝) 1
2
( ∫
R

∑
0≤ℎ,ℎ′,ℎ′′ ≤𝑔

𝜍𝑠ℎ,ℎ′𝜍
𝑠
ℎ,ℎ′′𝜈ℎ′ (𝑝) 𝜈ℎ′′ (𝑝)

d𝑝
|𝑝 |

) 1
2

≤
√

2(𝑔 + 1)
( 𝑔∑
ℎ=0

|𝜒ℎ [ 𝑓 ] |1/2
) ( ∫ ∞

0

∑
0≤ℎ′,ℎ′′ ≤𝑔

𝜍𝑠ℎ′,ℎ′′𝜈ℎ′ (𝑝)𝜈ℎ′′ (𝑝)
d𝑝
|𝑝 |

) 1
2

≤
√

2𝐶 (𝑔 + 1)2 | 𝑓 |1/2𝔇𝑠 [𝜇, 𝜈], (7.34)

where we have used
√
𝑋0 + · · · + 𝑋𝑔 ≤

√
𝑋0 + · · · +

√
𝑋𝑔 for nonnegative 𝑋𝑖 in the first squareroot factor

to get the second line.

7.4.2. Equilibrium measure
The properties of 𝐸𝑉

𝑠 and its quadratic part established in the previous paragraph allow to apply the
standard potential theoretic arguments. This leads to an analog of Theorem 1.2 for the s-dependent model
with fixed filling fractions 𝝐 and potential V. It states the existence and uniqueness of the minimiser
𝜇𝑉 ;𝑠

eq;𝝐 of 𝐸𝑉
𝑠 among probability measures supported in A and having fixed filling fractions 𝝐 . The analog

of (1.12) (i.e., the characterisation of the s-dependent equilibrium measure) is as follows: for each
ℎ ∈ �0, 𝑔�, there exists a constant 𝐶𝑉 ;𝑠

𝝐 ,ℎ such that

2
∫

Aℎ

d𝜇𝑉 ;𝑠
eq;𝝐 (𝜉) ln |𝑥 − 𝜉 | +

∑
ℎ′≠ℎ

2𝑠
∫

Aℎ′
d𝜇𝑉 ;𝑠

eq;𝝐 (𝜉) ln |𝑥 − 𝜉 | −𝑉 (𝑥) ≤ 𝐶𝑉 ;𝑠
𝝐 ,ℎ , (7.35)

with equality 𝜇𝑉 ;𝑠
eq;𝝐 almost surely.
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7.4.3. Concentration estimates
The s-dependent model differs from the 𝛽-ensemble (i.e., 𝑠 = 1) by multiplication of the weight by

exp
(
(1 − 𝑠)𝛽

∑
0≤ℎ<ℎ′ ≤𝑔

∑
1≤𝑖≤𝑁ℎ

1≤𝑖′≤𝑁ℎ′

ln |𝜆ℎ,𝑖 − 𝜆ℎ′,𝑖′ |
)
= exp

( (1 − 𝑠)𝛽
2

∬
R2

d𝐿𝑁 (𝜉1)d𝐿𝑁 (𝜉2)Λ(𝜉1, 𝜉2)
)
,

where Λ was introduced in Equation (7.31) and is smooth bounded on A2. This is a perturbation of the
𝛽-ensemble by a smooth functional of the empirical measure 𝐿𝑁 . Therefore, using 𝐸𝑠 and 𝔇𝑠 instead
of E and 𝔇, we can estimate the error made by replacing 𝐿𝑁 with the regularised empirical measure
𝐿̃u
𝑁 as done in Section 3.4.1 and estimate the large deviations of 𝔇𝑠 [𝐿̃u

𝑁 , 𝜇
𝑇 ;𝑠
eq;𝝐 ] as in Section 3.4.2,

leading to an analog of Lemma 3.5 with s-independent constants. We can then proceed to estimate the
large deviations of fluctuations of linear statistics like in Section 3.5.1 – using the new Equation (7.34)
instead of (3.26) – and obtain an analog of Corollary 3.6, where the constants are chosen independent of
s and the only difference is that |𝜑|1/2 should be replaced by 𝐶−1 |𝜑|1/2 for some𝐶 > 0 independent of s.
We also get the a priori bound of the n-point correlators of the s-dependent model with filling fractions
𝝐 (analog of Corollary 3.7) and an estimate of the large deviations of the filling fractions (analog of
Corollary 3.8 with t replaced by 𝐶𝑡 in the right-hand side) by a similar adaptation of Section 3.5.2. We
conclude that all results of Section 3 extend to the s-dependent model with constants that can be chosen
independent of 𝑠 ∈ [0, 1].

7.4.4. Dyson–Schwinger equations
If f is a holomorphic function in C \ A and is decaying like 𝑂 ( 1

𝑥 ) at infinity, we may write

𝑓 (𝑥) =
𝑔∑

ℎ=0
Pℎ [ 𝑓 ] (𝑥), Pℎ [ 𝑓 ] (𝑥) =

∮
Aℎ

d𝜉
2i𝜋

𝑓 (𝜉)
𝑥 − 𝜉 .

The operator Pℎ is a projector, and by construction, Pℎ [ 𝑓 ] is holomorphic in C \ Aℎ , is continuous
across Aℎ′ for ℎ′ ≠ ℎ, and behaves like 𝑂 ( 1

𝑥 ) at infinity.
As in Section 4, we can derive the one-variable Dyson–Schwinger equation for the s-dependent

model with potential V by integration by parts. The result is a small modification of Equation (4.2):

0 =
∑

0≤ℎ≠ℎ′ ≤𝑔
𝑠
(
Pℎ ⊗ Pℎ′ [𝑊 𝑠

2 ] (𝑥, 𝑥) + Pℎ [𝑊 𝑠
1 ] (𝑥) · Pℎ′ [𝑊 𝑠

1 ] (𝑥)
)

+
𝑔∑

ℎ=0

(
Pℎ ⊗ Pℎ [𝑊 𝑠

2 ] (𝑥, 𝑥) + Pℎ [𝑊 𝑠
1 ] (𝑥) · Pℎ [𝑊 𝑠

1 ] (𝑥)
)

+
(
1 − 2

𝛽

)
𝜕𝑥𝑊

𝑠
1 (𝑥) +

(
1 − 2

𝛽

) ∮
A

d𝜉
2i𝜋

𝐿2 (𝑥; 𝜉, 𝜉)
𝐿(𝑥) 𝑊 𝑠

1 (𝜉)

− 𝑁
𝑔∑

ℎ=0

∮
Ah

d𝜉
2i𝜋

𝐿(𝜉)
𝐿(𝑥)

𝑉 ′ℎ (𝜉)Pℎ [𝑊 𝑠
1 ] (𝜉)

𝑥 − 𝜉 − 2
𝛽

∑
𝑎∈(𝜕A)+

𝐿(𝑎)
𝑥 − 𝑎 𝜕𝑎 ln 𝑍𝑇 ;A

𝑁 ,𝛽;𝝐 (𝑠)

−
∑

0≤ℎ≠ℎ′ ≤𝑔
𝑠

(∯
Aℎ×Aℎ′

d𝜉1d𝜉2

(2i𝜋)2
𝐿2 (𝑥; 𝜉1, 𝜉2)

𝐿(𝑥)
(
Pℎ ⊗ Pℎ′ [𝑊 𝑠

2 ] (𝜉1, 𝜉2) + Pℎ [𝑊 𝑠
1 ] (𝜉1) · Pℎ′ [𝑊 𝑠

1 ] (𝜉2)
))

−
𝑔∑

ℎ=0

∯
A2
ℎ

d𝜉1d𝜉2

(2i𝜋)2
𝐿2 (𝑥; 𝜉1, 𝜉2)

𝐿(𝑥)
(
Pℎ ⊗ Pℎ [𝑊 𝑠

2 ] (𝜉1, 𝜉2) + Pℎ [𝑊 𝑠
1 ] (𝜉1) · Pℎ [𝑊 𝑠

1 ] (𝜉2)
)
. (7.36)

For 𝑛 ≥ 2, a similar modification of Equation (4.3) for the n-variables Dyson–Schwinger equations can
be written down.
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7.4.5. Analysis of the Dyson–Schwinger equations
Let 𝜇𝑉eq;𝝐 be the equilibrium measure of the 𝛽-ensemble (i.e., 𝑠 = 1) and fix Uℎ pairwise disjoint
neighbourhoods of Aℎ . We remark that the equilibrium measure 𝜇𝑇𝑠 ;𝑠

eq;𝝐 in the s-dependent model with
the choice of a s-dependent potential on the h-th segment (h fixed),

𝑇𝑠 (𝑥) := 𝑉 (𝑥) − 2(1 − 𝑠)
∑

0≤ℎ′≠ℎ≤𝑔

∫
Aℎ′

d𝜇𝑉eq;𝝐 (𝜉) ln[(𝑥 − 𝜉)sgn(ℎ − ℎ′)],

satisfies from (7.35) with 𝑇𝑠 in place of V the same characterisation as 𝜇𝑉eq;𝝐 and hence, by uniqueness,
is equal to 𝜇𝑉eq;𝝐 for any 𝑠 ∈ [0, 1]. This justifies the choice of 𝑇𝑠 in Lemma 7.5.

Let us study the s-dependent model with this choice of s-dependent potential. The correlators are
still denoted𝑊 𝑠

𝑘 . The previous remark means that

𝑊 𝑠
1 = 𝑁 (𝑊 {−1}

1 + Δ−1𝑊
𝑠
1 ), Δ−1𝑊

𝑠
1 = 𝑜(1),

where𝑊 {−1}
1 is the (s-independent) Stieltjes transform of 𝜇𝑉eq;𝝐 , and the error is uniform in 𝑠 ∈ [0, 1]. We

now decompose the modified Dyson–Schwinger equations (7.36) with 𝑉ℎ = 𝑇𝑠 and the many variables
analogue as in Equation (5.30), Section 5.3.1. Note that for x near Aℎ for a fixed h, we have

𝑇 ′𝑠 (𝑥) = 𝑉 ′(𝑥) − 2(1 − 𝑠)
∑

0≤ℎ′≠ℎ≤𝑔
Pℎ′ [𝑊 {−1}

1 ] (𝑥) . (7.37)

The relevant operators K𝑠 and ΔK𝑠 are now

K𝑠 = K +D𝑠 ,

ΔK𝑠 = ΔK + ΔD𝑠 ,

ΔJ 𝑠 = ΔJ + 1
2ΔD

𝑠 ,

where

D𝑠 [ 𝑓 ] (𝑥) = 2(𝑠 − 1)
∑

0≤ℎ≠ℎ′ ≤𝑔

(
Pℎ [𝑊 {−1}

1 ] (𝑥) · Pℎ′ [ 𝑓 ] (𝑥) − Pℎ′
[
Pℎ [𝑊 {−1}

1 ] · 𝑓
]
(𝑥)

)
,

ΔD𝑠 [ 𝑓 ] (𝑥) = 2(𝑠 − 1)
∑

0≤ℎ≠ℎ′ ≤𝑔

(
Pℎ [Δ𝑊 {−1};𝑠

1 ] (𝑥) · Pℎ′ [ 𝑓 ] (𝑥) − Pℎ′
[
Pℎ [𝑊 {−1}

1 ] · 𝑓
]
(𝑥)

)
.

The second term in D𝑠 is the contribution of the extra term in the s-dependent potential (7.37) to the
linearisation of the fourth line of the s-dependent Dyson–Schwinger equation (7.36), while the first term
is what remains from the linearisation of the two first lines of (7.36) after we isolate the contribution of
the usual 𝑠 = 1 operator K.

In general, D𝑠 and ΔD𝑠 are nonzero operators. Indeed, if 𝑔ℎ ∈ H(1)
1 (Aℎ) and 𝑓 ∈ H(1)

2 (A), we have
for ℎ ≠ ℎ′,

𝑔ℎ (𝑥) · Pℎ′ [ 𝑓 ] (𝑥) − Pℎ′ [𝑔ℎ · 𝑓 ] (𝑥) = 𝑔ℎ (𝑥)
∮

Aℎ′

d𝜉
2i𝜋

𝑓 (𝜉)
𝑥 − 𝜉 −

∮
Aℎ′

d𝜉
2i𝜋

𝑔ℎ (𝜉) 𝑓 (𝜉)
𝑥 − 𝜉

=
∮

Aℎ′
𝑓 (𝜉) 𝑔ℎ (𝑥) − 𝑔ℎ (𝜉)

𝑥 − 𝜉
d𝜉
2i𝜋

= −
∮

Aℎ

𝑓 (𝜉) 𝑔ℎ (𝑥) − 𝑔ℎ (𝜉)
𝑥 − 𝜉

d𝜉
2i𝜋

,

where the last expression comes from moving the contour away from Aℎ , noticing that 𝜉 ↦→ 𝑔ℎ (𝑥)−𝑔ℎ ( 𝜉 )
𝑥−𝜉

is holomorphic in C \ Aℎ and that there is no contribution from ∞ since the integrands are 𝑂 ( 1
𝜉 2 ) as

𝜉 →∞ (by definition of the spaces H(1)
𝑚 ). The nature of (7.4.5) is better seen if we further assume that
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f and 𝑔ℎ have upper/lower boundaries values on A (resp. Aℎ′). Indeed, by computing the difference of
upper and lower boundary values of (7.4.5) for 𝑥 ∈ Aℎ , we find(

𝑔ℎ (𝑥 + i0) − 𝑔ℎ (𝑥 − i0)
)
Pℎ′ [ 𝑓 ] (𝑥), (7.38)

while for 𝑥 ∈ A𝑘 for 𝑘 ≠ ℎ (including 𝑘 = ℎ′), we find 0. Therefore, (7.4.5) reconstructs the unique
function in H(1)

2 (Aℎ), whose jump (from upper to lower boundary value) is (7.38). The (ℎ, ℎ′)-term in
D𝑠 [ 𝑓 ] is 2(𝑠 − 1) times (7.4.5) with 𝑔ℎ = Pℎ [𝑊 {−1}

1 ] (𝑥).
Unlike K, the operator K𝑠 cannot be explicitly inverted, but we can nevertheless prove the analogue

of Lemma 5.1 and 5.2 by functional analysis arguments.

Proposition 7.7. Assume Hypothesis 1.1. ImK𝑠 is closed in H(1)
2 (A), and there exists an operator

(K̂𝑠
0)
−1, with domain ImK𝑠 and target the subspace of functionsH(1)

2 (A) with zeroA-periods, providing
the unique such solution 𝑓 (𝑥) = (K̂𝑠

0)
−1 [𝜑] (𝑥) to the equation K𝑠 [ 𝑓 ] (𝑥) = 𝜑(𝑥). For any 𝛿 > 0

independent of N, there exists s-independent constant 𝐶 (𝛿) > 0 such that

∀𝜑 ∈ ImK𝑠 × C𝑔, ‖(K̂𝑠
0)
−1 [𝜑]‖ 𝛿 ≤ 𝐶 (𝛿)‖𝜑‖ 𝛿 .

Besides,

‖(K̂𝑠
0)
−1 [ΔX 𝑠]‖2𝛿 ≤ 𝐶 ′(𝛿)

√
ln 𝑁
𝑁

‖𝜑‖ 𝛿 , X = K or J . (7.39)

Proof. Given 𝜑, let us try to solve the equationK𝑠 [ 𝑓 ] (𝑥) = 𝜑(𝑥) for a function f such that
∮

Aℎ

𝑓 (𝑥)d𝑥
2i𝜋 = 0

for any ℎ ∈ �1, 𝑔�. Following the computations of Section 5.2.2, we have(
id + G ◦D𝑠 + Π

)
[ 𝑓 ] (𝑥) = G [𝜑] (𝑥), (7.40)

where

Π[ 𝑓 ] (𝑥) = Res
𝜉=∞

𝜎(𝜉)
𝜎(𝑥)

𝑓 (𝜉)d𝜉
𝜉 − 𝑥 .

We now prove that the operator (id+G ◦D𝑠 +Π), with domain the subspace of functions in H(1)
2 with

zeroA-periods, is injective. Assume we have an element q in the kernel of this operator. The expression,

𝑞(𝑥) = −(G ◦D𝑠) [𝑞] (𝑥) − Π[𝑞] (𝑥) (7.41)

and the fact that Pℎ′ [𝑞] (𝑥) is holomorphic in a neighbourhood of Aℎ for ℎ ≠ ℎ′, shows that 𝜎(𝑥)𝑞(𝑥)
admits continuous upper and lower boundary values on Sℎ and is continuous across Aℎ \ Sℎ . Hence,
there exists an integrable measure 𝜈𝑞 supported on

⋃𝑔
ℎ=0 Sℎ such that

𝑞(𝑥) =
∫

A

d𝜈𝑞 (𝜉)
𝑥 − 𝜉 .

As 𝑞(𝑥) has zero A-periods, we have 𝜈𝑞 (Aℎ) = 0 for every h. Besides, computation with Equation
(7.41) shows that

∀ℎ ∈ �0, 𝑔� ∀𝑥 ∈ Sℎ , Pℎ [𝑞] (𝑥 + i0) + Pℎ [𝑞] (𝑥 − i0) + 2𝑠
𝑔∑

ℎ′=0
ℎ′≠ℎ

Pℎ′ [𝑞] (𝑥) = 0,
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which means in terms of the measure 𝜈𝑞 ,

∀ℎ ∈ �0, 𝑔�, ∀𝑥 ∈ Sℎ , 2
⨏

Sℎ

d𝜈𝑞 (𝜉)
𝑥 − 𝜉 + 2𝑠

𝑔∑
ℎ′=0
ℎ′≠ℎ

∫
Sℎ′

d𝜈𝑞 (𝜉)
𝑥 − 𝜉 = 0.

Integrating this equation from the left edge of Sℎ to x in the segment Sℎ yields

∀ℎ ∈ �0, 𝑔�, ∀𝑥 ∈ Sℎ ,

𝑔∑
ℎ′=0

2𝜍𝑠ℎ,ℎ′
∫

Sℎ′
ln |𝑥 − 𝜉 |d𝜈𝑞 (𝜉) = 𝑐ℎ

for some constant 𝑐ℎ , where we remind that 𝜍𝑠ℎ,ℎ′ = 1 if ℎ = ℎ′, and s if ℎ ≠ ℎ′. Integrating this equation
against the measure d𝜈𝑞 over Sℎ , the constant in the right-hand side disappears as 𝜈𝑞 (Aℎ) = 0. Then
summing over h, we find ∑

0≤ℎ,ℎ′ ≤𝑔

∬
Sℎ×Sℎ′

𝜍𝑠ℎ,ℎ′ ln |𝑥 − 𝜉 |d𝜈𝑞ℎ (𝑥)d𝜈
𝑞
ℎ′ (𝜉) = 0,

but we have shown that in §7.4.3 that this equality implies 𝜈𝑞 = 0; hence, 𝑞 = 0. This concludes the
proof of injectivity.

Therefore, (id + G ◦ D𝑠 + Π) is invertible on its image. We proceed to show the continuity of this
inverse. For this purpose, we fix once for all contours 𝛾ℎ surrounding Aℎ and not (Aℎ′ )ℎ′≠ℎ , and set
𝛾 =

⋃𝑔
ℎ=1 𝛾ℎ and 𝜸 = (𝛾ℎ)𝑔ℎ=1. We equip 𝛾 with a curvilinear measure. From the expression of these

operators – by moving the contour of integration to 𝛾 – one readily sees that (G ◦ D𝑠 + Π) can be
considered as endomorphisms of 𝐿2 (𝛾), denote 𝔑𝑠 , which is compact. Let 𝛾̃ be the disjoint union of
the set �1, 𝑔� (equipped with the uniform measure) and 𝛾 (equipped with the curvilinear measure), so
𝐿2 (𝛾̃) = C𝑔 ⊕ 𝐿2 (𝛾). We consider further the operator

𝔑𝑠 :
𝐿2 (𝛾̃) −→ 𝐿2 (𝛾̃)(
𝒘, 𝜙

)
↦−→

(
− 𝒘 +

∮
𝜸

𝜙 ( 𝜉 ) d𝜉
2i𝜋 , 𝔑𝑠 [𝜙]

) ,
and one can check as before that id + 𝔑𝑠 is injective. As 𝔑𝑠 is compact, Fredholm alternative ensures
that id +𝔑𝑠 is continuously invertible. Its inverse is id −ℜ𝑠 , where ℜ𝑠 is the resolvent operator of 𝔑𝑠 ,
and it has a smooth integral kernel. This is enough to prove continuous invertibility of K̂𝑠 and a bound
for the norm of its inverse. The sought-for inverse for K̂𝑠 is

𝑓 (𝑥) = pr2 ◦ (K̂𝑠
0)
−1 ◦ G [𝜑] (𝑥) = (id −ℜ𝑠) (0,G [𝜑]),

where pr2 is the projection on the second factor 𝐿2 (𝛾̃). The fact that this solution is actually in H(1)
2 (A)

can be read from the equivalent versions of Equation (7.40) that we have encountered earlier – namely,
(5.13), where one takes into account that ImG ⊆ H(1)

2 (A) (manifest on (5.12)) and the fact that 𝜓(𝑥) is
a polynomial of degree 𝑔 − 1, while 𝜎(𝑥) is the squareroot of a polynomial of degree 2𝑔 + 2.

The very construction of 𝔑𝑠 guarantees that
∮
𝜸

𝑓 (𝑥)d𝑥
2i𝜋 = 0 as desired, and the estimate on the norm

of (K̂𝑠
0)
−1 comes from the properties of the resolvent kernel. The proof of the estimate (7.39) follows

the steps of Lemma 5.2 and is omitted. �

For 𝑛 ≥ 2 variables, the Dyson–Schwinger equations of the s-deformed model can be recast as

(K𝑠 + ΔK𝑠) [𝑊 𝑠
𝑛 (•, 𝑥𝐼 )] (𝑥) = 𝐴𝑠

𝑛+1(𝑥; 𝑥𝐼 ) + 𝐵𝑠
𝑛 (𝑥; 𝑥𝐼 ) + 𝐶𝑠

𝑛−1 (𝑥; 𝑥𝐼 ) + 𝐷𝑠
𝑛−1 (𝑥; 𝑥𝐼 ),
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with modified expression for A and B. For 𝑛 ≥ 2, we have

𝐴𝑠
𝑛+1(𝑥; 𝑥𝐼 ) = 𝑁−1(L2 − id)

{
𝑠
( ∑

0≤ℎ≠ℎ′ ≤𝑔
Pℎ ⊗ Pℎ′ [𝑊 𝑠

𝑛+1 (•1, •2, 𝑥𝐼 )] (𝑥, 𝑥)
)

+
𝑔∑

ℎ=0
Pℎ ⊗ Pℎ [𝑊 𝑠

𝑛+1 (•1, •2, 𝑥𝐼 )] (𝑥, 𝑥)
)}
,

𝐵𝑡
𝑛+1(𝑥; 𝑥𝐼 ) = 𝑁−1(L2 − id)

{ ∑
𝐽 ⊆𝐼

𝐽≠( ∅,𝐼 )

∑
0≤ℎ≠ℎ′ ≤𝑔

𝑠Pℎ [𝑊 𝑠
#𝐽+1 (•, 𝑥𝐽 )] (𝑥) · Pℎ′ [𝑊 𝑠

𝑛−#𝐽 (•, 𝑥𝐼\𝐽 )] (𝑥)

+
𝑔∑

ℎ=0
Pℎ [𝑊 𝑠

#𝐽+1 (•, 𝑥𝐽 )] (𝑥) · Pℎ [𝑊 𝑠
𝑛−#𝐽 (•, 𝑥𝐼\𝐽 )] (𝑥)

}
,

𝐶𝑠
𝑛−1 (𝑥; 𝑥𝐼 ) = −

2
𝛽𝑁

∑
𝑖∈𝐼

M𝑥𝑖 [𝑊 𝑠
𝑛−1 (•, 𝑥𝐼\{𝑖 })] (𝑥),

𝐷𝑠
𝑛−1 (𝑥; 𝑥𝐼 ) =

2
𝛽𝑁

∑
𝑎∈(𝜕A)+

𝐿(𝑎)
𝑥 − 𝑎 𝜕𝑎𝑊

𝑠
𝑛−1 (𝑥𝐼 ).

And for 𝑛 = 1 variable, we find the analogue of Equation (5.32),[
K𝑠 + ΔJ 𝑠] [Δ−1𝑊

𝑠
1 ] (𝑥) =

𝐴𝑠
2 (𝑥) + 𝐷

𝑠
0

𝑁
− 1 − 2/𝛽

𝑁
(𝜕𝑥 + L1) [𝑊 {−1}

1 ] (𝑥) +N(Δ0𝑉 )′,0 [𝑊
{−1}
1 ] (𝑥),

with

Δ−1𝑃
𝑠 (𝑥; 𝜉) =

∮
A

d𝜂
2i𝜋

2𝐿2 (𝑥; 𝜉, 𝜂) Δ−1𝑊
𝑠
1 (𝜂),

ΔJ 𝑠 [ 𝑓 ] (𝑥) = −N(Δ0𝑉 )′,Δ−1𝑃𝑠 (𝑥;•)/2 [ 𝑓 ] (𝑥) +
∑

0≤ℎ≠ℎ′ ≤𝑔
𝑠Pℎ [Δ−1𝑊

𝑠
1 ] (𝑥) Pℎ′ 𝑓 (𝑥)

+
∑
ℎ

Pℎ [Δ−1𝑊
𝑠
1 ] (𝑥) Pℎ [ 𝑓 ] (𝑥) +

1
𝑁

(
1 − 2

𝛽

)
(𝜕𝑥 + L1) [ 𝑓 ] (𝑥).

One can then repeat all the steps of Section 5.3, with the key point being that we use the inverse
(K̂𝑠

0)
−1 of K𝑠 and its norm estimate constructed in Proposition 7.7. This results in the proof of an

asymptotic expansion, for any 𝐾 ≥ 0,

𝑊 𝑠
𝑛 (𝑥1, . . . , 𝑥𝑛) =

𝐾∑
𝑘=𝑛−2

𝑁−𝑘𝑊 {𝑘 };𝑠
𝑛 (𝑥1, . . . , 𝑥𝑛) +𝑂 (𝑁−(𝐾+1) ),

where the coefficients 𝑊 {𝑘 };𝑠
𝑛 are N-independent, are given by a s-dependent recursion which is a

s-dependent modification of the recursions provided in Section 5.4.

7.5. Regularity with respect to the filling fractions

Let 𝝐★ be the equilibrium filling fraction in the initial model 𝜇𝑉 ;A
𝑁 ,𝛽 . In order to finish the proof of

Theorem 1.3, it remains to show that the Hypotheses 1.1–1.2 for 𝜇𝑉 ;A
𝑁 ,𝛽 imply Hypothesis 5.1 for the

model 𝜇𝑉 ;A
𝑁 ,𝛽;𝝐 with fixed filling fractions 𝝐 ∈ E close enough to 𝝐★, that all coefficients of the expansion

extend as smooth functions of 𝝐 , and that the Hessian of 𝐹 {−2}
𝝐 with respect to filling fractions is negative

definite. These properties are proved in the Appendix; see Propositions A.2–A.4.
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Lemma 7.8. If V satisfies Hypotheses 1.1–1.3, then (𝑉, 𝝐) satisfies Hypotheses 5.1 for 𝝐 ∈ E close
enough to 𝝐★. Besides, the soft edges 𝛼•ℎ and 𝑊 {−1}

1;𝝐 (𝑥) (for x away from the edges) extend as C∞
functions of 𝝐 , while the hard edges remain unchanged, at least for 𝝐 close enough to 𝝐★.

We observe that once 𝑊 {−1}
1;𝝐 and the edges of the support 𝛼•𝝐 ,ℎ are known, the 𝑊 {𝑘 }

𝑛;𝝐 for any 𝑛 ≥ 1
and 𝑘 ≥ 0 are determined recursively by Equations (5.38)–(5.36) and (5.50)–(5.48), where the linear
operator K̂−1 is given explicitly in Equations (5.12)–(5.19), and thus depends smoothly on 𝝐 close
enough to 𝝐★. Similarly, 𝐹 {𝑘 }𝛽;𝝐 for 𝑘 ≥ 0 are obtained from Equation (7.1) leading to Equations (7.28)–
(7.29), which shows their smooth dependence for 𝝐 close enough to 𝝐★.

Corollary 7.9. If V satisfies Hypotheses 1.1–1.3, then 𝑊 {𝑘 }
𝑛;𝝐 (𝑥1, . . . , 𝑥𝑘 ) (for 𝑥1, . . . , 𝑥𝑘 away from the

support) and 𝐹 {𝑘 }𝛽;𝝐 extend as C∞ functions of 𝝐 ∈ E𝑔 close enough to 𝝐★.

This concludes the proof of Theorem 1.4 announced in Section 1.4.

8. Asymptotic expansion in the initial model in the multi-cut regime

8.1. The partition function (Proof of Theorem 1.5)

We come back to the initial model 𝜇𝑉 ;A
𝑁 ,𝛽 , and we assume Hypotheses 1.1–1.3 with number of cuts

(𝑔 + 1) ≥ 2. We remind the notation 𝑵 = (𝑁ℎ)1≤ℎ≤𝑔 for the number of eigenvalues in Aℎ , and the
number of eigenvalues in A0 is 𝑁0 = 𝑁 −

∑𝑔
ℎ=1 𝑁ℎ . The 𝑁ℎ are here random variables, which take the

value 𝑁𝝐 with probability 𝑍𝑉 ;A
𝑁 ,𝛽;𝝐/𝑍

𝑉 ;A
𝑁 ,𝛽 . We denote 𝝐★ the vector of equilibrium filling fractions, and

𝑵★ = 𝑁𝝐★. Let us summarise five essential points:

◦ By concentration of measures, Corollary 3.8 yields the existence of a constant 𝑐, 𝑐′ > 0 such that, for
N large enough,

𝜇𝑉 ;A
𝑁 ,𝛽

(
|𝑵 − 𝑵★ |1 > 𝑐

√
𝑁 ln 𝑁

)
≤ 𝑒−𝑐′𝑁 ln 𝑁 . (8.1)

◦ We have established in Theorem 1.4 an expansion for the partition function with fixed filling fractions.
◦ Thanks to the strong off-criticality assumption and Lemma 7.8, we can apply Proposition 7.6: there

exists 𝑐′′ > 0 small enough such that for |𝝐 − 𝝐★ |1 ≤ 𝑐′′, the model with fixed filling fractions 𝝐
admits an asymptotic expansion of the form, for any 𝐾 ≥ 0,

𝑁! 𝑍𝑉 ;A
𝑁 ,𝛽;𝝐∏𝑔

ℎ=0 (𝑁𝜖ℎ)!
= 𝑁

𝛽
2 𝑁+𝜘 exp

( 𝐾∑
𝑘=−2

𝑁−𝑘 𝐹 {𝑘 };𝑉𝛽;𝝐 +𝑂 (𝑁−(𝐾+1) )
)
, (8.2)

with 𝜘 independent of 𝝐 and given by Equation (7.27) and an error depending only on 𝑐′′.
◦ As established later in Proposition A.4, the Hessian (𝐹 {−2}

𝛽;★ )′′ is negative definite.
◦ According to Lemma 7.8, 𝝐 ↦→ 𝐹 {𝑘 };𝑉𝛽;𝝐 is smooth in the domain |𝝐 − 𝝐★ | < 𝑐′′. From there, we deduce

that, for any 𝐾, 𝑘 ≥ −2, there exist a constant 𝐶𝑘,𝐾 > 0 and tensors (𝐹 {𝑘 }𝛽;★ )
( 𝑗) = 𝜕

⊗ 𝑗
𝝐 𝐹 {𝑘 };𝑉𝛽;𝝐 |𝝐=𝝐★ ,

such that������𝑁−𝑘 𝐹 {𝑘 };𝑉
𝛽;𝑵/𝑁 −

𝐾−𝑘∑
𝑗=0

𝑁−(𝑘+ 𝑗)
(𝐹 {𝑘 }𝛽;★ )

( 𝑗)

𝑗!
· (𝑵 − 𝑵★)⊗ 𝑗

������ ≤ 𝐶𝑘,𝐾 𝑁
−(𝐾+1) |𝑵 − 𝑵★ |𝐾−𝑘+1

1 . (8.3)

We now proceed with the proof of Theorem 1.5.
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8.1.1. Taylor expansion around the equilibrium filling fraction
Due to the large deviation estimates for filling fractions (8.1), we can write for N large enough,

(𝑍𝑉 ;A
𝑁 ,𝛽)

−1
( ∑

0≤𝑁1 , · · · ,𝑁𝑔≤𝑁
|𝑵−𝑵★ |1≤𝑐

√
𝑁 ln 𝑁

𝑁! 𝑍𝑉 ;A
𝑁 ,𝛽;𝑵/𝑁∏𝑔
ℎ=0 𝑁ℎ!

)
= 𝜇𝑉 ;A

𝑁 ,𝛽

(
|𝑵 − 𝑵★ |1 ≤ 𝑐

√
𝑁 ln 𝑁

)
= 1 +𝑂 (𝑒−𝑐′𝑁 ln 𝑁 ).

In other words,

𝑍𝑉 ;A
𝑁 ,𝛽 =

( ∑
0≤𝑁1 , · · · ,𝑁𝑔≤𝑁

|𝑵−𝑵★ |1≤𝑐
√
𝑁 ln 𝑁

𝑁! 𝑍𝑉 ;A
𝑁 ,𝛽;𝑵/𝑁∏𝑔
ℎ=0 𝑁ℎ!

) (
1 +𝑂 (𝑒−𝑐′𝑁 ln 𝑁 )

)
.

For the range of filling fractions appearing in the sum in the right-hand side, we dispose of an asymptotic
expansion of each term which are the partition functions of the model with fixed filling fractions by
(8.2). Moreover, we can do the Taylor expansion of its coefficients with respect to 𝑵/𝑁 around 𝝐★ by
(8.3) up to order𝑂 (𝑁−(2𝐾+1) ) (and these errors are uniform for the range of filling fractions considered).
This gives∑

0≤𝑁1 ,...,𝑁𝑔≤𝑁
|𝑵−𝑵★ |1≤𝑐

√
𝑁 ln 𝑁

𝑁! 𝑍𝑉 ;A
𝑁 ,𝛽;𝑵/𝑁∏𝑔
ℎ=0 𝑁ℎ!

=
∑

0≤𝑁1 ,...,𝑁𝑔≤𝑁
|𝑵−𝑵★ |1≤𝑐

√
𝑁 ln 𝑁

exp
( 2𝐾∑
𝑘=−2

2𝐾−𝑘∑
𝑗=0

𝑁−(𝑘+ 𝑗)
(𝐹 {𝑘 }𝛽;★ )

( 𝑗)

𝑗!
· (𝑵 − 𝑵★)⊗ 𝑗 + 𝑁−(2𝐾+1)𝑅2𝐾 (𝑵)

)
. (8.4)

The error 𝑁−(2𝐾+1)𝑅2𝐾 (𝑵) can be controlled according to Equation (8.3) using the constraint
|𝑵 − 𝑵★ |1 ≤ 𝑐

√
𝑁 ln 𝑁 , as follows:

|𝑁−(2𝐾+1)𝑅2𝐾 (𝑵) | ≤ 𝑁−(2𝐾+1)
2𝐾∑
𝑘=−2

𝐶𝑘,2𝐾 𝑐
2𝐾−𝑘 |𝑵 − 𝑵★ |2𝐾−𝑘1

≤ 𝐶𝐾 𝑐
2𝐾𝑁−(2𝐾+1)𝑁𝐾 (ln 𝑁)𝐾 = 𝐶 ′

𝐾𝑁
−𝐾−1 (ln 𝑁)𝐾 . (8.5)

Note here that all sums are finite since we stop them up to an error term which is uniformly bounded.
Observing that exp(𝑁−(𝐾+1)𝑅𝐾 (𝑵)) − 1 = 𝑂

(
𝑁−𝐾−1(ln 𝑁)𝐾

)
when 𝑁 →∞ uniformly over the range

of filling fractions on which we sum in Equation (8.4), we get

𝑍𝑉 ;A
𝑁 ,𝛽

1 +𝑂 (𝑁−(𝐾+1) (ln 𝑁)𝐾 )
=

∑
0≤𝑁1 ,...,𝑁𝑔≤𝑁

|𝑵−𝑵★ |1≤𝑐
√
𝑁 ln 𝑁

exp
( 2𝐾∑
𝑘=−2

2𝐾−𝑘∑
𝑗=0

𝑁−(𝑘+ 𝑗)
(𝐹 {𝑘 }𝛽;★ )

( 𝑗)

𝑗!
· (𝑵 − 𝑵★)⊗ 𝑗

)
.

(8.6)

Here, the previous error 𝑂 (𝑒−𝑐′𝑁 ln 𝑁 ) has been absorbed in the larger error 𝑂 (𝑁−(𝐾+1) (ln 𝑁)𝐾 ).
Since 𝝐★ is the equilibrium filling fraction, which is characterised as the filling fraction maximising

𝐹 {−2}
𝛽;𝝐 , we have (𝐹 {−2}

𝛽;★ )′ = 0. We can factor out the exponential containing the 𝐹 {−𝑘 }𝛽;★ without derivative.
We then expand the exponential of terms containing (𝐹 {𝑘 }𝛽;★ )

( 𝑗) with 𝑘 + 𝑗 > 0, doing so up to an error of
magnitude𝑂 (𝑁−(𝐾+1) (ln 𝑁)𝐾 ). In this way only, remain in the exponential (𝐹 {−2}

𝛽;★ )′ = 0, (𝐹 {−2}
𝛽;★ )′′ and

(𝐹 {−1}
𝛽;★ )′. The result is the following expansion (note here that all sums are finite, including the one on r):
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𝑍𝑉 ;A
𝑁 ,𝛽

1 +𝑂 (𝑁−(𝐾+1) (ln 𝑁)𝐾 )

= exp
( 𝐾∑
𝑘=−2

𝑁−𝑘𝐹 {𝑘 }𝛽;★

)
×
{∑

𝑟 ≥0

1
𝑟!

∑
𝑘1 ,...,𝑘𝑟 ≥−2
𝑗1 ,..., 𝑗𝑟 ≥1
𝑘𝑖+ 𝑗𝑖>0∑𝑟

𝑖=1 𝑘𝑖+ 𝑗𝑖≤2𝐾

𝑟⊗
𝑖=1

(𝐹 {𝑘𝑖 }𝛽;★ ) ( 𝑗𝑖)

𝑗𝑖!

·
( ∑

0≤𝑁1 ,...,𝑁𝑔≤𝑁
|𝑵−𝑵★ |1≤𝑐

√
𝑁 ln 𝑁

𝑁−
∑𝑟

𝑖=1 (𝑘𝑖+ 𝑗𝑖) (𝑵 − 𝑵★)⊗(
∑𝑟

𝑖=1 𝑗𝑖)𝑒
1
2 (𝐹

{−2}
𝛽;★ )′′ · (𝑵−𝑵★)⊗2+(𝐹 {−1}

𝛽;★ )′ ·(𝑵−𝑵★)
)}
.

(8.7)

8.1.2. Waiving the constraint on the sum
Our next task will be, for each of the finitely many tuples ( 𝑗1, . . . , 𝑗𝑟 ) involved in the sum in the last line,
to replace the constrained sum over 𝑵 such that |𝑵−𝑵★ |1 ≤ 𝑐

√
𝑁 ln 𝑁 , with an unconstrained sum over

𝑵 ∈ Z𝑔. This will be possible because (𝐹 {−2}
𝛽;★ )′′ is negative definite (Proposition A.4) – in other words,

because the minimum eigenvalue q of the symmetric matrix −(𝐹 {−2}
𝛽;★ )′′ is positive. More precisely, set

𝐽 =
∑𝑟

𝑖=1 𝑗𝑖 and notice Equation (8.7) only involves 𝐽 ≤ 2𝐾 . Let us equip R𝑔 with the euclidean norm

∀𝒘 ∈ R𝑔, |𝒘 |2 =

√√
𝑔∑

ℎ=1
𝑤2
ℎ .

In particular, we denote 𝑟 =
��(𝐹 {−1}

𝛽;★ )′|2. The tensor product (R𝑔)⊗𝐽 is naturally equipped with a
euclidean norm also denoted | · |2, such that

∀𝒘1, . . . ,𝒘𝐽 ∈ R𝑔 |𝒘1 ⊗ · · · ⊗ 𝒘𝐽 |2 = |𝒘1 |2 · · · |𝒘𝐽 |2.

Let m be a positive integer. We shall estimate the contribution – with respect of the aforementioned
euclidean norm in (R𝑔)⊗𝐽 – that the 𝑵 ∈ Z𝑔 in the shell between the euclidean balls of radius 𝑚 − 1
and m would give to the sum∑

𝑵 ∈Z𝑔
|𝑵−𝑵★ |2≥𝑚

��𝑵 − 𝑵★

��𝐽
2 𝑒

1
2 (𝐹

{−2}
𝛽;★ )′′ · (𝑵−𝑵★)⊗2+(𝐹 {−1}

𝛽;★ )′ ·(𝑵−𝑵★)

≤
∑
𝑵 ∈Z𝑔

𝑚−1≤ |𝑵−𝑵★ |2<𝑚

𝑚𝐽 𝑒−
𝑞
2 (𝑚−1)2+𝑚𝑟 ,

≤ 𝐶 𝑚𝐽+𝑔−1𝑒−
𝑞
2 𝑚

2+𝑚𝑟 ′

for some constants 𝐶 > 0 coming from the number of integer points in the spherical shell in g-
dimensional space, and 𝑟 ′ = 𝑟 + 𝑞. Then, there exists 𝑀𝐾 > 0 such that for 𝑚 ≥ 𝑀𝐾 , we have
𝐶 𝑚𝐽+𝑔−1𝑒−𝑞𝑚

2+𝑚𝑟 ′ ≤ 𝑒−
𝑞
4 𝑚

2 . Up to choosing a larger 𝑀𝐾 , we can assume as well for 𝑀 > 𝑀𝐾 ,

𝑒−
𝑞
2 𝑀 < 1,

𝑒−
𝑞
4 𝑀

2

1 − 𝑒−
𝑞
2 𝑀

≤ 𝑒−
𝑞
8 𝑀

2
.
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Then, ∑
𝑵 ∈Z𝑔

|𝑵−𝑵★ |2≥𝑀

��𝑵 − 𝑵★

��𝐽
2 exp

(1
2
(𝐹 {−2}

𝛽;★ )′′ · (𝑵 − 𝑵★)⊗2 + (𝐹 {−1}
𝛽;★ )′ · (𝑵 − 𝑵★)

)
≤

∑
𝑚≥𝑀

𝑒−
𝑞
4 𝑚

2 ≤
∑
𝑚≥0

𝑒−
𝑞
4 𝑀

2− 𝑞
2 𝑚𝑀 =

𝑒−
𝑞
4 𝑀

2

1 − 𝑒−
𝑞
2 𝑀

≤ 𝑒−
𝑞
8 𝑀

2
.

By Cauchy–Schwarz inequality, we have |𝑵 − 𝑵★ |1 ≤
√
𝑔 |𝑵 − 𝑵★ |2. Therefore, the terms 𝑵 ∈ Z𝑔 not

included in Equation (8.7) can be bounded by Equation (8.1.2) with the choice 𝑀 =
⌈
𝑐
√

𝑁
𝑔 ln 𝑁

⌉
:

���� ∑
𝑵 ∈Z𝑔

|𝑵−𝑵★ |1≥𝑐
√
𝑁 ln 𝑁

(𝑵 − 𝑵★)⊗𝐽2 exp
(
(𝐹 {−2}

𝛽;★ )′′ · (𝑵 − 𝑵★)⊗2 + (𝐹 {−1}
𝛽;★ )′ · (𝑵 − 𝑵★)

)����
2

= 𝑂
(
𝑒
− 𝑞

8 ( !𝑐
√

𝑁
𝑔 ln 𝑁 ")2 )

= 𝑂 (𝑒−𝑞′𝑁 ln 𝑁 )

for some constant 𝑞′ > 0 when 𝑁 →∞. As a result,

𝑍𝑉 ;A
𝑁 ,𝛽

1 +𝑂 (𝑁−(𝐾+1) (ln 𝑁)𝐾 )

= exp
( 𝐾∑
𝑘=−2

𝑁−𝑘𝐹𝑉
𝛽;★

)
×
{∑

𝑟 ≥0

1
𝑟!

∑
𝑘1 ,...,𝑘𝑟 ≥−2
𝑗1 ,..., 𝑗𝑟 ≥0
𝑘𝑖+ 𝑗𝑖>0∑𝑟

𝑖=1 𝑘𝑖+ 𝑗𝑖≤2𝐾

𝑁−
∑𝑟

𝑖=1 (𝑘𝑖+ 𝑗𝑖)
𝑟⊗
𝑖=1

(𝐹 {𝑘𝑖 }𝛽;★ ) ( 𝑗𝑖)

𝑗𝑖!

·
( ∑
𝑵 ∈Z𝑔

(𝑵 − 𝑵★)⊗(
∑𝑟

𝑖=1 𝑗𝑖) exp
(
(𝐹 {−2}

𝛽;★ )′′ · (𝑵 − 𝑵★)⊗2 + (𝐹 {−1}
𝛽;★ )′ · (𝑵 − 𝑵★)

))}
. (8.8)

Note that the error may not be uniform when K increases due to the choice of 𝑀𝐾 in the intermediate
steps.

Eventually, we recognise in the sum of the last line the J-th tensor of derivatives of the Theta function
defined in Equation (1.20), with arguments:

𝜏𝛽;★ =
(𝐹 {−2}

𝛽;★ )′′

2i𝜋
, 𝒗𝛽;★ =

(𝐹 {−1}
𝛽;★ )′

2i𝜋
.

More precisely,

∑
𝑵 ∈Z𝑔

(𝑵 − 𝑵★)⊗𝐽 𝑒
1
2 (𝐹

{−2}
𝛽;★ )′′ · (𝑵−𝑵★)⊗2+(𝐹 {−1}

𝛽;★ )′ ·(𝑵−𝑵★) =
( ∇𝒗

2i𝜋

) ⊗𝐽
𝜗

[
−𝑵★

0

]
(𝒗 |𝝉𝛽;★)

���
𝒗=𝒗𝛽;★

,

and this contribution is of order 1, so that we only need to sum up to
∑𝑟

𝑖=1 𝑘𝑖 + 𝑗𝑖 ≤ 𝐾 in Equation
(8.8) to get the expansion up to 𝑂 (𝑁−(𝐾+1) (ln 𝑁)𝐾 ). By looking at the expansion for 𝐾 ↦→ 𝐾 + 1, we
know that this error done for the expansion with K is, in fact, 𝑂 (𝑁−(𝐾+1) ). This concludes the proof of
Theorem 1.5.
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8.2. Deviations of filling fractions from their mean value (proof of Theorem 1.6)

We now describe the fluctuations of the number of eigenvalues in each segment. Let 𝑷 = (𝑃1, . . . , 𝑃𝑔)
be a vector of integers, depending on N in such a way that 𝑷 − 𝑁𝜖★,ℎ = 𝑜(𝑁 1

3 ) when 𝑁 → ∞. We set
𝑃0 = 𝑁 −

∑𝑔
ℎ=1 𝑃ℎ . The joint probability for ℎ ∈ �1, 𝑔� to find 𝑃ℎ eigenvalues in the segment Aℎ is

𝜇𝑉 ;A
𝑁 ,𝛽 [𝑵 = 𝑷] = 𝑁!∏𝑔

ℎ=0 𝑃ℎ!

𝑍𝑉 ;A
𝑁 ,𝛽;𝑷/𝑁

𝑍𝑉 ;A
𝑁 ,𝛽

.

We recall that the coefficients of the large N expansion of the numerator are smooth functions of 𝑷/𝑁 .
Therefore, we can perform a Taylor expansion in 𝑷/𝑁 close to 𝝐★ with the method used in Section 8.
We leave out the details and only state the result: provided 𝑷 − 𝑁𝝐★ = 𝑜(𝑁 1

3 ), only the quadratic term
of the Taylor expansion remains when 𝑁 →∞:

𝜇𝑉 ;A
𝑁 ,𝛽 [𝑵 = 𝑷] ∼ 𝑒

1
2 (𝐹

{−2}
𝛽;★ )′′ · (𝑷−𝑁 𝝐★)⊗2+(𝐹 {−1}

𝛽;★ )′ ·(𝑷−𝑁 𝝐★)

𝜗
[ −𝑵★

0
]
(𝒗𝛽;★ |𝝉𝛽;★)

.

In other words, the random vector Δ𝑵 = (Δ𝑁1, . . . ,Δ𝑁𝑔) defined by

Δ𝑁ℎ = 𝑁ℎ − 𝑁𝜖★,ℎ +
𝑔∑

ℎ′=1
[(𝐹 {−2}

𝛽;★ )′′]−1
ℎ,ℎ′ (𝐹

{−1}
𝛽;★ )′ℎ′

is approximated in law by a random Gaussian vector, with covariance [(𝐹 {−2}
𝛽;★ )′′]−1 and conditioned to

live in the shifted lattice

Δ𝑵 ∈
(
Z
𝑔 − �𝑁𝝐★� +

𝑔∑
ℎ′=1

[(𝐹 {−2}
𝛽;★ )′′]−1

ℎ,ℎ′ (𝐹
{−1}
𝛽;★ )′ℎ′

)
,

where for 𝒘 ∈ R𝑔, we denote �𝒘� =
(
�𝑤1�, · · · , �𝑤𝑔�

)
. Strictly speaking, we cannot say that we have a

convergence in law to a discrete Gaussian because the shift of the lattice oscillates with N. We observe
that, when 𝛽 = 2 and the potential V is independent of N, the vector 𝐹 {−1}

𝛽;★ vanishes so that 𝑵 − 𝑁𝝐★ is
approximated in law by a centered Gaussian vector conditioned to live in the shifted lattice

(
Z
𝑔−�𝑁𝝐★�

)
.

8.3. Fluctuations of linear statistics

With a strategy similar to §5.5, the result of Section 8.1 implies, for 𝜑 a test function which is analytic
in a neighbourhood of A,

𝜇𝑉 ;A
𝑁 ,𝛽

(
𝑒i𝑠

( ∑𝑁
𝑖=1 𝜑 (𝜆𝑖 )−𝑁

∫
S 𝜑 ( 𝜉 )d𝜇𝑉

eq ( 𝜉 )
) )
∼ 𝑒i𝑠 𝑀𝛽;★ [𝜑 ]− 𝑠2

2 𝑄𝛽;★ [𝜑,𝜑 ]
𝜗
[ −𝑁 𝝐★

0
] (
𝒗𝛽;★ + i𝑠 𝒖𝛽;★[𝜑] |𝝉𝛽;★

)
𝜗
[ −𝑁 𝝐★

0
] (
𝒗𝛽;★ |𝝉𝛽;★

) .

(8.9)

This formula gives an equivalent when 𝑁 →∞, which features an oscillatory behaviour. We have set

𝒖𝛽;★[𝜑] =
( 1
2i𝜋

𝜕𝜖ℎ

∫
S
𝜑(𝜉) d𝜇𝑉eq;𝝐 (𝜉)

)
1≤ℎ≤𝑔

���
𝝐=𝝐★

=
( 1
2i𝜋

∮
Sℎ

d𝜉 𝜑(𝜉)𝜛ℎ (𝜉)d𝜉
)

1≤ℎ≤𝑔
, (8.10)

where𝜛ℎ (𝜉)d𝜉 are the holomorphic one-forms introduced in Equation (5.16). The linear (resp. bilinear)
form 𝑀𝛽;𝝐 [𝜑] (resp. 𝑄𝛽;𝝐 [𝜑, 𝜑]) is defined in §5.5, and in Equation (8.9) it is evaluated at 𝝐 = 𝝐★. We
recognise that the right-hand side of Equation (8.9) is the Fourier transform of the sum of two independent
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random variables: one of them being Gaussian and the other being the scalar product with 2i𝜋𝒖𝛽;★[𝜑]
of the sampling of a g-dimensional Gaussian vector at points belonging to −𝑵★ +Z𝑔. Therefore, among
a codimension g subspace of test functions determined by the equation 𝒖𝛽;★[𝜑] = 0, the ratio of Theta
functions is 1, and we do find a central limit theorem for fluctuations of linear statistics, as in the one-cut
regime. But when 𝒖𝛽;★[𝜑] ≠ 0, we only find subsequential convergence in law – along subsequences so
that (−𝑁𝝐★ modZ𝑔) converges – to the sum of a random Gaussian vector and an independent random
Gaussian vector conditioned to belong to a lattice with oscillating center. Accordingly, the probability
distribution of those fluctuations displays interference patterns varying with N.

A. Elementary properties of the equilibrium measure with fixed filling fractions

We now prove Theorem 7.8 stating that if V is analytic in a neighbourhood of A, if we denote (𝑔 +1) the
number of cuts of the equilibrium measure 𝜇𝑉eq in the initial model, and if we assume it is off-critical,
then 𝜇𝑉eq;𝝐 still has (𝑔 + 1) cuts and remains off-critical for 𝝐 close enough to 𝝐★ and depends smoothly
on such 𝝐 .

A.1. Lipschitz property

We may decompose

𝜇𝑉eq;𝝐 =
𝑔∑

ℎ=0
𝜖ℎ 𝜇

𝑉
eq;𝝐 ,ℎ , (A.1)

where 𝜇𝑉eq;𝝐 ,ℎ are probability measures in Aℎ , and we know that 𝜇𝑉eq;𝝐 minimises the energy functional
𝐸 [𝜇] – see Equation (1.5) – among such choices of probability measures. We first establish that linear
statistics of the equilibrium measure in the fixed filling fraction model are Lipschitz in 𝝐 . Let 𝛿 ∈ (0, 1]
and set

E𝛿 =
{
𝝐 ∈ (𝛿, 1 − 𝛿)𝑔

��� 𝛿 < 1 −
𝑔∑

ℎ=1
𝜖ℎ < 1 − 𝛿

}
.

If 𝝐 ∈ E𝛿 , we denote 𝜖0 = 1 −
∑𝑔

ℎ=1 𝜖ℎ . If (𝜅0, . . . , 𝜅𝑔) is such that
∑𝑔

ℎ=0 𝜅ℎ = 1, we denote 𝜿 =
(𝜅1, . . . , 𝜅𝑔).

Lemma A.1. For 𝛿 > 0 small enough, there exists a finite constant 𝑐(𝛿) such that, for any 𝝐 ∈ E𝛿 , for
any 𝜅ℎ ∈ (0, 2𝜖ℎ] such that

∑𝑔
ℎ=0 𝜅ℎ = 1, we have for any test function 𝜑,��� ∫

A
𝜑(𝑥) (d𝜇𝑉eq;𝜿 − d𝜇𝑉eq;𝝐 ) (𝑥)

��� ≤ 𝑐(𝛿) |𝜑|1/2 max
0≤ℎ≤𝑔

|𝜅ℎ − 𝜖ℎ |.

Proof. As we have seen in Theorem 1.2, 𝜇𝑉eq;𝝐 is also characterised by saying that for (A.1), there exist
constants (𝐶𝑉

𝝐 ,ℎ)0≤ℎ≤𝑔 so that for any ℎ ∈ �0, 𝑔� and 𝑥 ∈ Aℎ ,

2
∫

A
ln |𝑥 − 𝜉 |d𝜇𝑉eq;𝝐 (𝜉) −𝑉 (𝑥) ≤ 𝐶𝑉

𝝐 ,ℎ ,

with equality 𝜇𝑉eq;𝝐 ,ℎ almost everywhere. Recall the definition of the effective potential (here including
the constants for convenience):

𝑈̃𝑉
eq;𝝐 (𝑥) = 𝑉 (𝑥) − 2

∫
A

ln |𝑥 − 𝜉 |d𝜇𝑉eq;𝝐 (𝜉) −
𝑔∑

ℎ=0
𝐶𝑉
𝝐 ,ℎ1Aℎ (𝑥),
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and of the pseudo-distance between two probability measures 𝜇 and 𝜈:

𝔇2 [𝜇, 𝜈] = −
∬
R2

ln |𝑥 − 𝑦 |d[𝜇 − 𝜈] (𝑥)d[𝜇 − 𝜈] (𝑦) ∈ [0, +∞] . (A.2)

We have for all probability measures on A =
⋃𝑔

ℎ=0 Aℎ ,

𝐸 [𝜇] = 𝛽

2

(
𝔇2 [𝜇, 𝜇𝑉eq;𝝐 ] +

∫
A
𝑈̃𝑉

eq;𝝐 (𝑥)d𝜇(𝑥) +
𝑔∑

ℎ=0
𝐶𝑉
𝝐 ,ℎ 𝜇(Aℎ) + 𝐼𝑉eq;𝝐

)
, (A.3)

with

𝐼𝑉eq;𝝐 =
∬

A2
ln |𝑥 − 𝑦 |d𝜇𝑉eq;𝝐 (𝑥)d𝜇𝑉eq;𝝐 (𝑦).

Indeed, a simple algebra shows that

𝐸 [𝜇] = 𝐸 [𝜇𝑉eq;𝝐 ] +
𝛽

2

(
𝔇2 [𝜇, 𝜇𝑉eq;𝝐 ] +

∫
A

(
𝑉 (𝑥) − 2

∫
A

ln |𝑥 − 𝑦 |d𝜇𝑉eq;𝝐 (𝑦)
)
d[𝜇 − 𝜇𝑉eq;𝝐 ] (𝑥)

)
= 𝐸 [𝜇𝑉eq;𝝐 ] +

𝛽

2

(
𝔇2 [𝜇, 𝜇𝑉eq;𝝐 ] +

∫
A
𝑈̃𝑉

eq;𝝐 (𝑥)d[𝜇 − 𝜇𝑉eq;𝝐 ] (𝑥) +
𝑔∑

ℎ=0
𝐶𝑉
𝝐 ,ℎ (𝜇 − 𝜇

𝑉
eq;𝝐 ) (Aℎ)

)
. (A.4)

Using the characterisation of 𝜇𝑉eq;𝝐 , one finds that

𝐸 [𝜇𝑉eq;𝝐 ] −
𝛽

2

𝑔∑
ℎ=0

𝐶𝑉
𝝐 ,ℎ𝜖ℎ =

𝛽

2
𝐼𝑉eq;𝝐 ,

which completes the proof of Equation (A.3). We next choose 𝜿 ≠ 𝝐 and write that if 𝜇𝜿 is any probability
measure such that 𝜇𝜿 (Aℎ) = 𝜅ℎ , we must have

𝐸 [𝜇𝑉eq;𝜿] ≤ 𝐸 [𝜇𝜿] .

Since 𝜇𝑉eq;𝜿 and 𝜇𝜿 put the same masses on the Aℎ , we deduce from Equation (A.3) that

𝔇2 [𝜇𝑉eq;𝜿 , 𝜇
𝑉
eq;𝝐 ] +

∫
A
𝑈̃𝑉

eq;𝝐 (𝑥)d𝜇𝑉eq;𝜿 (𝑥) ≤ 𝔇2 [𝜇𝜿 , 𝜇𝑉eq;𝝐 ] +
∫

A
𝑈̃𝑉

eq;𝝐 (𝑥)d𝜇𝜿 (𝑥).

We next choose 𝜇𝜿 , whose support is included in the support of 𝜇𝑉eq;𝝐 , so that since 𝑈̃𝑉
eq;𝝐 vanishes there

and is nonnegative everywhere, we deduce

𝔇2 [𝜇𝑉eq;𝜿 , 𝜇
𝑉
eq;𝝐 ] ≤ 𝔇2 [𝜇𝜿 , 𝜇𝑉eq;𝝐 ] . (A.5)

We put 𝜇𝜿 = 𝑡 𝜇𝑉eq;𝝐 + (1− 𝑡)𝜈 for 𝑡 ∈ [0, 1] and a probability measure 𝜈 on A whose support is included
in the support 𝜇𝑉eq;𝝐 and such that for all h,

𝑡𝜖ℎ + (1 − 𝑡)𝜈(Aℎ) = 𝜅ℎ . (A.6)

We have from Equation (A.5) that

𝔇2 [𝜇𝑉eq;𝜿 , 𝜇
𝑉
eq;𝝐 ] ≤ (1 − 𝑡)2𝔇2 [𝜈, 𝜇𝑉eq;𝝐 ] .
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We take

1 − 𝑡 =
(

max
0≤ℎ≤𝑔

𝜖−1
ℎ |𝜅ℎ − 𝜖ℎ |

)
∈ [0, 1).

If 𝜅ℎ ∈ (0, 2𝜖ℎ] and is such that 𝜈(Aℎ) ≥ 0 for any h, as it should for 𝜈 to be a probability measure. We
finally choose 𝜈 such that 𝔇2 [𝜈, 𝜇𝑉eq;𝝐 ] is finite (for instance the renormalised Lebesgue measure on the
support of 𝜇𝑉eq;𝝐 ) to conclude that there exists a constant 𝑐(𝛿) valid for all 𝝐 ∈ E𝛿 such that

𝔇2 [𝜇𝑉eq;𝜿 , 𝜇
𝑉
eq;𝝐 ] ≤ 𝑐(𝛿) max

0≤ℎ≤𝑔
|𝜖ℎ − 𝜅ℎ |2.

Recalling that

𝔇2 [𝜇𝑉eq;𝜿 , 𝜇
𝑉
eq;𝝐 ] =

∫ ∞

0

d𝑝
𝑝
|8𝜇𝑉eq;𝜿 (𝑝) −8𝜇𝑉eq;𝝐 (𝑝) |2,

we deduce that for all 𝜑 ∈ 𝐿1 (A),∫
A
𝜑(𝑥)d[𝜇𝑉eq;𝜿 − 𝜇𝑉eq;𝝐 ] (𝑥) =

∫
A

d𝑝 𝑓̂ (𝑝) (8𝜇𝑉eq;𝜿 −8𝜇𝑉eq;𝝐 ) (𝑝).

This implies that for all 𝜑 with |𝜑|1/2 < ∞, we have��� ∫
A
𝜑(𝑥)d[𝜇𝑉eq;𝜿 − 𝜇𝑉eq;𝝐 ] (𝑥)

��� ≤ 𝑐(𝛿) |𝜑|1/2 max
0≤ℎ≤𝑔

|𝜅ℎ − 𝜖ℎ |. �

Lemma A.2. If 𝜇𝑉eq;𝝐 is off-critical and its support has 𝑔𝝐 + 1 cuts denoted [𝛼−𝝐 ,ℎ , 𝛼
+
𝝐 ,ℎ], then for 𝝐 ′ in

a small enough neighbourhood of 𝝐 , 𝜇𝑉eq;𝝐 ′ is off-critical and has the same number of cuts, of the form
[𝛼−𝝐 ′,ℎ , 𝛼

+
𝝐 ′,ℎ], and 𝛼•𝝐 ′,ℎ are Lipschitz functions of 𝝐 ′. Moreover, for 𝛿 > 0 small enough, assume that A

contains ⋃
𝝐 ′

⋃
𝛼𝝐′ soft edge

{
𝑥 : 𝑑 (𝑥, 𝛼𝝐 ′ ) ≤ 𝛿

}
when the union ranges over a small enough neighbourhood of 𝝐 . Then in the same neighbourhood of 𝝐 ,
the function 𝝐 ′ ↦→ 𝑊 {−1}

1;𝝐 ′ (𝑥) is Lipschitz uniformly for x in any compact of C \ A.

Proof. Restricting to x in the domain U where V is analytic, let us rewrite the leading order of the
one-variable Dyson–Schwinger equation(

𝑊 {−1}
1;𝝐 ′ (𝑥)

)2 −𝑉 ′(𝑥)𝑊 {−1}
1;𝝐 ′ (𝑥) +

𝑄𝝐 ′ (𝑥)
𝐿0 (𝑥)

= 0, (A.7)

where

𝑄𝝐 ′ (𝑥) =
∫

A
𝐿0 (𝜉)

𝑉 ′(𝑥) −𝑉 ′(𝜉)
𝑥 − 𝜉 d𝜇𝑉eq;𝝐 ′ (𝜉), (A.8)

and we have chosen 𝐿0 (𝑥) =
∏

𝑎∈𝜕A (𝑥 − 𝑎). Solving the quadratic equation (A.7), we find

𝑊 {−1}
1;𝝐 ′ (𝑥) =

𝑉 ′(𝑥)
2

−

√
𝐿0 (𝑥)𝑉 ′(𝑥)2 − 4𝑄𝝐 ′ (𝑥)

4𝐿0 (𝑥)
, (A.9)

where the dependence in 𝝐 ′ only appears through 𝑄𝝐 ′ (𝑥). Owing to Lemma A.1, since 𝑉 ′ is analytic in
a neighbourhood of A, 𝑄𝝐 ′ (𝑥) is analytic for x in this neighbourhood and is Lipschitz in 𝝐 ′, uniformly
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for x in any compact of this neighbourhood. The edges of the support of 𝜇𝑉eq;𝝐 ′ are precisely the zeroes
or poles of 𝑅𝝐 ′ (𝑥) = (𝐿0 (𝑥)𝑉 ′(𝑥)2 − 4𝑄𝝐 ′ (𝑥))/𝐿0 (𝑥) on A. Since 𝜇𝑉eq;𝝐 is off-critical, for 𝝐 ′ = 𝝐 , these
zeroes and poles are all simple. By a classical theorem of complex analysis, it implies that the zeroes
of 𝑅𝝐 ′ in A occur as Lipschitz functions 𝝐 ′ ↦→ 𝑎•𝝐 ′,ℎ; in particular, 𝜇𝑉eq;𝝐 keeps the same number of cuts.
Lemma A.1 also implies that 𝑊 {−1}

1;𝝐 ′ (𝑥) is a Lipschitz function of 𝝐 ′ for any fixed 𝑥 ∉ A, and this is, in
fact, uniform away from A. �

A.2. Smooth dependence in the filling fractions

The following result allows the conclusion that d𝜇𝑉eq;𝝐/d𝑥 (or 𝑊 {−1}
1;𝝐 ) is smooth with respect to 𝝐 for x

away from the edges.

Proposition A.3. Lemma A.2 holds with 𝐶∞ regularity instead of Lipschitz.

Proof. We first prove that the Stieltjes transform 𝑊 {−1}
1;𝝐 (𝑧) is a differentiable function of the filling

fractions, for any 𝑧 ∈ C \ S𝝐 . We take 𝝐 , 𝜿, 𝜿′ ∈ E𝛿 . We choose 𝑧, 𝑧′ ∈ C at distance at least 𝛿′ of A for
𝛿′ > 0 fixed but small enough. Let 𝜓𝑧 (𝑥) = 1

𝑧−𝑥 and 𝜓𝑧,𝑧′ (𝑥) = 𝜓𝑧 (𝑥) − 𝜓𝑧′ (𝑥). As in §3.5.2, we can
build functions 𝜑𝑧 (𝑥) and 𝜑𝑧,𝑧′ (𝑥) defined for 𝑥 ∈ R, which coincide with 𝜓𝑧 and 𝜓𝑧,𝑧′ for 𝑥 ∈ A, and
for which

|𝜑𝑧 |1/2 ≤ 𝐶 (𝛿′) |𝜑𝑧,𝑧′ |1/2 ≤ 𝐶 (𝛿′) |𝑧 − 𝑧′|.

After Lemma A.1, we have

|𝑊 {−1}
1;𝜿 (𝑧) −𝑊 {−1}

1;𝜿′ (𝑧)
�� ≤ 𝐶 |𝜿 − 𝜿′|1,�� (𝑊 {−1}

1;𝜿 (𝑧) −𝑊 {−1}
1;𝜿′ (𝑧)

)
−
(
𝑊 {−1}

1;𝜿 (𝑧′) −𝑊 {−1}
1;𝜿′ (𝑧

′)
) �� ≤ 𝐶 ′ |𝑧 − 𝑧′| |𝜿 − 𝜿′ |1. (A.10)

We fix 𝜼 ∈ R𝑔+1 such that
∑𝑔

ℎ=0 𝜂ℎ = 0, and for a given z and 𝜿, we consider the function 𝑡 ↦→ 𝑊 {−1}
1;𝜿+𝑡𝜼 (𝑧)

defined over

V𝜿,𝜼 =
{
𝑡 ∈ R : 𝜿 + 𝑡𝜼 ∈ E𝛿

}
.

We deduce from Equation (A.10) and Rademacher theorem (stating that Lipschitz functions are almost
surely differentiable) that

𝜕𝑠𝑊
{−1}
1;𝜿+𝑠𝜼 (𝑧) = lim

𝑡→0

𝑊 {−1}
1;𝜿+(𝑠+𝑡)𝜼 (𝑧) −𝑊

{−1}
1;𝜿+𝑠𝜼 (𝑧)

𝑡

exists for s in a subset U 𝑧
𝜿,𝜼 with probability 1 in V𝜿,𝜼 . Let 𝔑 [𝜁 ]

𝛿′ be a countable 𝜁-net of

Ã𝛿′ =
{
𝑧 ∈ C : 𝑑 (𝑧,A) ≥ 𝛿′

}
.

By the previous point, we find a subset U 𝛿′, [𝜁 ]
𝜿,𝜼 with probability 1 in V𝜿,𝜼 , such that for any 𝑠 ∈ U 𝛿′, [𝜁 ]

𝜿,𝜼

and 𝑧 ∈ 𝔑 [𝜁 ]
𝛿′ , 𝜕𝑠𝑊 {−1}

1;𝜿+𝑠𝜼 exists. We then choose the 𝜁-nets to be increasing when 𝜁 decreases and denote

U 𝛿′
𝜿,𝜼 =

⋂
𝑛≥1

U 𝛿′, [1/𝑛]
𝜿,𝜼 .

U 𝛿′
𝜿,𝜼 has still probability 1 in V𝜿,𝜼 , and for any 𝑠 ∈ U 𝛿′

𝜿,𝜼 in this set, 𝜕𝑠𝑊 {−1}
1;𝜿+𝑠𝜼 (𝑧) exists for all 𝑧 ∈⋃

𝑛≥1 𝔑
[1/𝑛]
𝛿′ . By Equation (A.10), this implies the existence of a Lipschitz (with respect to z) differential
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(with respect to s) for all 𝑧 ∈ Ã𝛿′ and any 𝑠 ∈ U 𝛿′
𝜿,𝜼 . By Montel theorem and Equation (A.10),

𝑧 ↦→ 𝜕𝑠𝑊
{−1}
1;𝜿+𝑠𝜼 (𝑧) is a holomorphic function in z for any s such that it exists.

By Equation (A.8), 𝑄𝜿+𝑠𝜼 is the expectation value of an analytic function under 𝜇𝑉eq;𝜿+𝑠𝜼; therefore,

𝑄𝜿+𝑠𝜼 (𝑥) =
∮
C

d𝜉 𝐿0 (𝜉)
2i𝜋

𝑉 ′(𝑥) −𝑉 ′(𝜉)
𝑥 − 𝜉 𝑊 {−1}

1;𝜿+𝑠𝜼 (𝜉)

with a contour C included in Ã𝛿′ . Besides, 𝑄𝜿+𝑠𝜼 (𝑥) is a holomorphic function of x in a neighbourhood
U of A in C as V is. Hence, 𝑠 ↦→ 𝑄𝜿+𝑠𝜼 (𝑥) is differentiable for 𝑠 ∈ U 𝛿′

𝜿,𝜼 for each 𝑥 ∈ U, and Lipschitz
in z. By Montel theorem, its derivative – where it exists – is holomorphic in 𝑧 ∈ U. Then, Equation (A.9)
implies that 𝑠 ↦→ 𝑊 {−1}

1;𝜿+𝑠𝜼 (𝑥) is differentiable for 𝑠 ∈ U 𝛿′
𝜿,𝜼 and any 𝑥 ∈ C \ 𝜕S𝜿+𝑠𝜼 .

Now, let us fix a compact neighbourhood of 𝝐 ∈ E𝛿 such that the regularity result of Lemma A.2
applies. When we intersect V𝜿,𝜼 with a small enough neighbourhood of an off-critical 𝝐 ∈ E𝛿 , Lemma
A.2 guarantees that 𝜇𝑉eq;𝜿 remains uniformly off-critical. Arguments already used in Lemma A.2 for
Lipschitz regularity implies that edges at which 𝑊 {−1}

1;𝜿+𝑠𝜼 has a squareroot behaviour are functions
𝑠 ↦→ 𝛼•𝜿+𝑠𝜼,ℎ which are differentiable for 𝑠 ∈ U 𝛿′

𝜿,𝜼 . And, by Equation (A.9), we can write at a hard edge
𝛼 – necessarily independent of s,

𝑊 {−1}
1;𝜿+𝑠𝜼 (𝑥) =

𝑀 [𝛼]
𝜿+𝑠𝜼 (𝑥)

(𝑥 − 𝛼) 1
2
,

and at a soft edge 𝛼𝜿+𝑠𝜼 ,

𝑊 {−1}
1;𝜿+𝑠𝜼 (𝑥) = 𝑀

[𝛼]
𝜿+𝑠𝜼 (𝑥) ·

(
𝑥 − 𝛼𝜿+𝑠𝜼

) 1
2

with functions 𝑀 [𝛼]
𝜿+𝑠𝜼 (𝑥) differentiable in 𝑠 ∈ U 𝛿′

𝜿,𝜼 and holomorphic in x a neighbourhood of the edge
𝛼. Therefore, for s in this set, we have the behaviours

𝜕𝑠𝑊
{−1}
1;𝜿+𝑠𝜼 (𝑥) = 𝑂

(
(𝑥 − 𝛼𝜿+𝑠𝜼)−

1
2
)

at any edge. Given the properties of the Stieltjes transform, we also know that

◦ 𝜕𝑠𝑊
{−1}
1;𝜿+𝑠𝜼 (𝑥) behaves like 𝑂 ( 1

𝑥2 ) when 𝑥 → ∞ – recall that the term in 1
𝑥 in 𝑊 {−1}

1;𝜿+𝑠𝜼 has constant
coefficient.

◦ for any 𝑥 ∈ S̊𝜿+𝑠𝜼 , we have 𝜕𝑠𝑊 {−1}
1;𝜿+𝑠𝜼 (𝑥 + i0) + 𝜕𝑠𝑊 {−1}

1;𝜿+𝑠𝜼 (𝑥 − i0) = 0.
◦ for any ℎ ∈ �0, 𝑔�,

∮
Aℎ
𝜕𝑠𝑊

{−1}
1;𝜿+𝑠𝜼 (𝑥)

d𝑥
2i𝜋 = 𝜂ℎ .

These properties imply that 𝜕𝑠𝑊 {−1}
1;𝜿+𝑠𝜼 (𝑥)d𝑥 can be analytically continued to a holomorphic one-

form2 on the Riemann surface of genus g specified by the equation 𝜎2 =
∏

𝛼∈𝜕S𝜿+𝑠𝜼 (𝑥−𝛼) with periods
𝜂ℎ around the h-th cut. As holomorphic one-forms are characterised by their periods, we deduce that

𝜕𝑠𝑊
{−1}
1;𝜿+𝑠𝜼 (𝑥) = 2i𝜋

𝑔∑
ℎ=1

𝜂ℎ 𝜛ℎ (𝑥), (A.11)

where (𝜛ℎ (𝑥)d𝑥)𝑔ℎ=1 is the basis of holomorphic one-forms on the Riemann surface introduced in
Equation (5.16). These are completely determined by the endpoints and depend smoothly on them. Since
the right-hand side of Equation (A.11) is a continuous function of s, we deduce that 𝑠 ↦→ 𝑊 {−1}

1;𝜿+𝑠𝜼 (𝑥)
is actually C1 for s such that 𝜿 + 𝑠𝜼 is in a vicinity of 𝝐 . These arguments holding for any 𝜼, 𝜿, we

2Note that on this Riemann surface, a local holomorphic coordinate near the points 𝑥 = 𝛼 is given by
√
𝑥 − 𝛼.
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deduce that 𝜿 → 𝑊 {−1}
1;𝜿 is Gâteaux differentiable, and hence Fréchet differentiable, in a neighbourhood

of 𝝐 . Therefore, all the reasoning of the proof of Lemma A.2 can be extended to show that the edges
are C1. The differential equation (A.11) (for any fixed x away from the edges) then implies C2, and
inductively, C∞. �

A.3. Hessian of the energy with respect to filling fractions

We are now in position to prove the following:

Proposition A.4. If 𝜇𝑉eq;𝝐 is off-critical, then 𝐹 {−2};𝑉
𝛽;𝝐 ′ is C2 with negative definite Hessian at least for 𝝐 ′

in a vicinity of 𝝐 .

In other words, the 𝑔 × 𝑔 matrix 𝝉𝛽;𝝐 with purely imaginary entries

∀ℎ, ℎ′ ∈ �1, 𝑔�, (𝝉𝛽;𝝐 )ℎ,ℎ′ =
1

2i𝜋
𝜕2𝐹 {−2};𝑉

𝝐

𝜕𝜖ℎ𝜕𝜖ℎ′
(A.12)

is such that Im 𝝉𝛽;𝝐 > 0.

Proof. Let 𝜼, 𝜼′ ∈ R𝑔+1 so that
∑𝑔

ℎ=0 𝜂ℎ =
∑𝑔

ℎ=0 𝜂
′
ℎ = 0 and 𝝐 ′ be in a vicinity of 𝝐 . The last paragraph

has shown the existence of an integrable, signed measure with 0 total mass:

𝜈𝑉𝝐 ′;𝜼 = lim
𝑡→0

𝜇𝑉eq;𝝐 ′+𝑡𝜼 − 𝜇
𝑉
eq;𝝐 ′

𝑡
.

By Equation (A.4), we have

𝐹 {−2};𝑉
𝛽;𝜿 − 𝐹 {−2};𝑉

𝛽;𝝐 ′ = −
(
𝐸 [𝜇𝑉eq;𝜿] − 𝐸 [𝜇𝑉eq;𝝐 ′ ]

)
=
𝛽

2

(
−𝔇2 [𝜇𝑉eq;𝜿 , 𝜇

𝑉
eq;𝝐 ′ ] +

∫
A
𝑈̃𝑉

eq;𝝐 ′ (𝑥)d[𝜇
𝑉
eq;𝜿 − 𝜇𝑉eq;𝝐 ′ ] (𝑥) +

𝑔∑
ℎ=0

𝐶𝑉
ℎ;𝝐 ′ (𝜅ℎ − 𝜖

′
ℎ)
)
.

Since 𝑈̃𝑉 ;A
eq;𝝐 ′ vanishes on S𝝐 ′ and the derivatives of 𝝐 ′ ↦→ 𝜇𝑉eq;𝝐 ′ are smooth and supported in S𝝐 ′ , we

deduce that 𝐹 {−2},𝑉
𝝐 ′ is a C2 function of 𝝐 ′ and its Hessian is

Hessian(𝐹 {−2};𝑉
𝛽;𝝐 ′ ) [𝜼, 𝜼′] = − 𝛽

2

𝑔∑
ℎ=0

𝔇2 [𝜈𝑉𝝐 ′;𝜼 1Aℎ , 𝜈
𝑉
𝝐 ′;𝜼′ 1Aℎ ], (A.13)

where we recall that 𝔇 is the pseudo-distance from Equation (A.2). Therefore, the Hessian is definite
negative. �
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