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Abstract

We establish the asymptotic expansion in S matrix models with a confining, off-critical potential in the regime
where the support of the equilibrium measure is a finite union of segments. We first address the case where the
filling fractions of these segments are fixed and show the existence of a % expansion. We then study the asymptotics
of the sum over the filling fractions to obtain the full asymptotic expansion for the initial problem in the multi-cut
regime. In particular, we identify the fluctuations of the linear statistics and show that they are approximated in law
by the sum of a Gaussian random variable and an independent Gaussian discrete random variable with oscillating
center. Fluctuations of filling fractions are also described by an oscillating discrete Gaussian random variable. We
apply our results to study the all-order small dispersion asymptotics of solutions of the Toda chain associated with
the one Hermitian matrix model (8 = 2) as well as orthogonal (8 = 1) and skew-orthogonal (8 = 4) polynomials
outside the bulk.
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1. Introduction

This paper is concerned with the asymptotic expansion for the partition function and the multilinear
statistics of 8 matrix models. These laws represent a generalisation of the joint distribution of the N
eigenvalues of the Gaussian Unitary Ensemble [Meh04]. The convergence of the empirical measure of
the eigenvalues is well known (see, for example, [dMPS95]), and we are interested in the all-order finite
size corrections to the moments of this empirical measure. Much attention has been paid to this problem
in the regime when the eigenvalues condense on a single segment, usually referred to as a one-cut
regime. In this case, a central limit theorem for linear statistics was proved by Johansson [Joh98], while
a full # expansion was derived first for § = 2 [APSO1, EMO03, BI0O5] and then for any 8 > 0 in [BG11].
However, the multi-cut regime was, until recently, poorly understood at the rigorous level, except for
B = 2, which is related to integrable systems and can be treated with the powerful asymptotic analysis
techniques for Riemann—Hilbert problems; see, for example, [DKM+99b]. Nevertheless, a heuristic
derivation of the asymptotic expansion for the multi-cut regime has been proposed to leading order by
Bonnet, David and Eynard [BDEOO] and extended to all orders in [Eyn09], in terms of Theta functions
and their derivatives. It features oscillatory behaviour, whose origin lies in the tunneling of eigenvalues
between the different connected components of the support. This heuristic, originally written for 8 = 2,
can be trivially extended to g8 > 0; see, for example, [Borl1].
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More recently, M. Shcherbina has established this asymptotic expansion up to terms of order 1
[Shcll, Shcl2]. This allows us to observe, for instance, that linear statistics do not always satisfy a
central limit theorem (this fact was already noticed for 8 = 2 in [Pas06]). In this work, we go beyond the
O(1) and put the heuristics of [Eyn09] to all orders on a firm mathematical ground. Our strategy is to
first study the asymptotics in the model with fixed filling fractions and then reconstruct the asymptotics
in the original model via a finite-dimensional analysis. As a consequence, we obtain a replacement for
the central limit theorem for linear statistics and for filling fractions. Besides, we treat uniformly soft
and hard edges, while [Shc12] assumed soft edges.

For § = 2, we can establish the full asymptotic expansion outside of the bulk for the orthogonal
polynomials with real-analytic potentials and the all-order asymptotic expansion of certain solutions
of the Toda lattice in the continuum limit. The same method allows us to rigorously establish the
asymptotics of skew-orthogonal polynomials (8 = 1 and 4) away from the bulk, derived heuristically in
[EynO1]. To our knowledge, the Riemann—Hilbert analysis of skew-orthogonal polynomials is possible
in principle but is cumbersome and has not been done before, so our method provides the first proof
of these asymptotics. After this work was released, this method was extended to treat more general
Coulomb-like interactions in [BGK15]. We also note that a proof of the asymptotics up to o(1) with
B = 2 was obtained by the Riemann—Hilbert approach in the two-cuts situation in [CGMcL15] and in
the k-cut situation with £k > 2 in [CFWW].

Since the first release of this work, several authors have considered asymptotic questions in the multi-
cut regime of S-ensembles. A recent approach to central limit theorems inspired by Stein’s method was
proposed in [LLW 19], but it is restricted to the one-cut regime. The transport method introduced in
[BGF15] allowed the rigidity of eigenvalues [Lil6] and universality [B18] in the multi-cut regime to
be established. In [BL.S18], the validity of central limit theorems for linear fluctuations has also been
extended to include test functions with weaker regularity assumptions and to critical cases (and then test
functions in the range of the so-called ‘master operator’). Beyond being a source of inspiration for these
works, and the first rigorous article where Dyson—Schwinger equations were used to derive central limit
theorem in the multi-cut regime, the present article contains results that still did not appear anywhere
else, such as the asymptotics of to (skew) orthogonal polynomials and integrable systems (see Section 2),
a discussion about the relation with Chekhov—Eynard—Orantin topological recursion (see Section 1.5),
and the detailed use of precise estimates of beta ensembles with fixed filling fractions to estimate the
free energy in multi-cut models and the reconstruction of the Theta function (see Section 8). Besides,
Shcherbina derives in [Shc12] via operator methods and for soft edges an expression of the order N in
the free energy in terms of the entropy of the equilibrium measure and a universal constant. Our work
proves a similar formula both with soft and hard edges and with a different method based on complex
analysis.

Our results on the asymptotics of the partition function have been used (e.g., to study the asymptotics
of the determinant of Toplitz matrices in [Mar20, Mar21]). The ideas that we introduce to handle
the multi-cut regime are extended in a work in progress [BGG] to study the fluctuations of discrete
B-ensembles appearing in random tiling models in nonsimply connected domains (with holes and/or
frozen regions).

For Coulomb gases in dimension d > 1, carrying out the asymptotic analysis when the support
of the equilibrium measure has several connected components remains, in general, an open problem.
Some specific d = 2, § = 2 situations have been treated in [ACC, ACCL] relying on the determinantal
structure of these models. In general, probabilistic methods in the spirit of this article that do not rely
on integrability, and therefore could address arbitrary 8 > 0 (where integrability is absent), are still
insufficiently developed.

1.1. Definitions

1.1.1. Model and empirical measure
We consider the probability measure ux% on BV given by
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N

. 1
dpx:%(/l)zzvsnd/l 1a(1;) e~ V) ]—[ i — ;15 (1.1)

N,B i=1 1<i<j<N

B is a finite disjoint union of closed intervals of R possibly with infinite endpoints, 8 is a positive
number and ZI‘\//;?? is the partition function so that (1.1) has total mass 1. This model is usually called
the S-ensemble [Meh04, DEO2, For10]. We introduce the unnormalised empirical measure My of the

eigenvalues
N
My = Z O4;»
i=1
and we consider several types of statistics for M. We sometimes denote L = diag(Ay,...,An).

1.1.2. Correlators
We introduce the Stieltjes transform of the n-th order moments of the empirical measure, called discon-

nected correlators:
_ dMy (&) dMy (£n)
Va1, 2n) = X’,Z[(/ e /R e

They are holomorphic functions of x; € C\ B. It is more convenient to consider the correlators to study
large N asymptotics:

—=:B
vVn(xl"--7xn) = 6& . a (1 ZZ BN le x; )

“‘Nﬁ“_[Tr

By construction, the coefficients of their expansions as a Laurent series in the variables x; (sufficiently
large) give the n-th order cumulants of M. If I is a set, we introduce the notation x; = (x;);¢ for a set
of variables indexed by /; their order will not matter as we insert them only in symmetric functions of
their variables (like W,,, W, etc.). The two types of correlators are related by

Wn(xlw--’xn):i Z ﬁWu,w(XJi),

s=1 JjU---UJ=[1,n] i=1

t;=0

] . (1.2)

where U stands for the disjoint union. If ¢, is an analytic (symmetric) function in n variables in a
neighbourhood of B”, then the n-linear statistics can be deduced as contour integrals of the disconnected
correlators:

el Y e = g5 e e e 6. ()

2im 2i
1<ityin <N B B

We remark that the knowledge of the correlators for an analytic family of potentials (V;), determines
the partition function up to an integration constant since

, N
ainzy® =2 [Z AV, (A )] ﬁ ii 8V, (&) W (&),

where Wf is the first correlator in the model with potential V;, and the notation fB d¢--- means
integration along a contour in C \ B surrounding B with positive orientation. If the integrand has poles
in C \ B (e.g., it depends on extra variables x; € C \ B that are not integrated upon and has poles at
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& = x;), the contour should be chosen (unless stated otherwise) so that the poles remain outside. The
notation should not be confused with fB dé¢ - - -, which is the Lebesgue integral on B C R.

1.1.3. Kernels
Let ¢ be a n-tuple of nonzero complex numbers. We introduce the n-point kernels:

n
Kne(X15. ., xn) = ,u]‘\/,;BB l_[ det (x; — L)
j=1

ZV_BAN Z;'L:I cjIn(xj—e):B
N.B

7@ (1.4)

N.B

When c; are integers, the kernels are holomorphic functions of x; € C\ B. When ¢; are not integers,
the kernels are multivalued holomorphic functions of x; in C \ B, with monodromies around the
connected components of B and around oco. The right-hand side of (1.4), where we used In, has the
same multivalued nature. Alternatively, both sides of (1.4) can be defined as single-valued functions of
X1,...,Xp by choosing a determination of the logarithm in a domain D of the form C \ ¢, where ¢ is a
smooth path in C from 0 to co, and using z¢ = e€!"? for the left-hand side.

In particular, for § = 2, Kj (1) (x) is the monic N-th orthogonal polynomial associated to the weight
1g(x) e~N V(¥ dx on the real line, and Kz, (1,-1)(x, y) is the N-th Christoffel-Darboux kernel associated
to those orthogonal polynomials; see Section 2.

1.2. Equilibrium measure and multi-cut regime

By standard results of potential theory and large deviations — see [Joh98, BAG97] or the textbooks
[Dei99, Theorem 6] or [AGZ10, Theorem 2.6.1 and Corollary 2.6.3] (note there that B = R, but the
generalisation to integration over general sets B is straightforward) — we have the following:

Theorem 1.1. Assume that V : B — R is a continuous function, and if V depends on N, assume also
that V converges towards V% when N goes to infinity in the space of continuous functions over B for
the sup norm. Moreover, for T € {1} with oo € B, assume that

{0}
lim inf V)

> 1
x—>7e0 21n |x|

We consider the normalised empirical measure Ly = N~' My in the space P(B) of probability
measures on B equipped with its weak topology. Then, the law of Ly under ,u]‘\/,;% satisfies a large

deviation principle with scale N> and good rate function J given by

_ . B Vi) + v
Jul = E[u] - Velgfs) E[v], Elu] = > .//52 du(f)d,u(n)( > —Inlé - nl)~
(1.5)

As a consequence, Ly converges almost surely and in expectation to the unique probability measure
,u;f] on B which minimises E. yéf] has compact support, denoted S. It is characterised by the existence of
a constant CV' such that

Vx € B, 2/@5(5) Injx-¢&-v®u <cY, (1.6)
B
with equality realised ,ug] almost surely.
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The goal of this article is to establish an all-order expansion of the partition function, the correlators
and the kernels in all such situations.

1.3. Assumptions
We will refer throughout the text to the following set of assumptions. An integer number g > 0 is fixed.
Hypothesis 1.1.

o (Regularity) V : B — R is continuous, and if V depends on N, it has a limit V{°} in the space of
continuous functions on B for the sup norm.

o (Confinement) For 7 € {£1} so that Too € B, liminf,_, e %ﬁzl > 1. If V depends on N, we require
its limit V{°} to satisfy this condition.

o ((g+1)-cutregime) The support of ,ue‘:f] is of the form S = Uizo Si, where S, = [a;,, a; ] are pairwise
disjoint and «; < a;j forany i € [0, g].

o (Control of large deviations) The effective potential Ug(/l;B(x) =V(x)-2 /B In|x—¢& Id;zég (¢)forx € B
achieves its minimum value for x € S only.

o (Off-criticality) uy has a density of the form

duly S #
- T

" (af —x)Pn/% (x — ay)Pnl?, (1.7)
0

h=

where p} is +1 (resp. —1) if the corresponding edge is soft (resp. hard), and S(x) > 0 for x € S. Hard
edges must be boundary points of B.

Note that if V{%} is real-analytic in a neighbourhood of B, the (g + 1)-cut regime hypothesis is always
satisfied (the support consists of a finite disjoint union of segments) and S is analytic in a neighbourhood
of S. We will hereafter say that V is regular and confining in B if it satisfies the two first assumptions
above. We will also require a stronger regularity for the potential.

Hypothesis 1.2.

o (Analyticity) V extends to a holomorphic function in some open neighbourhood U of S.
o (% expansion of the potential) There exists a sequence (V {¥}); o of holomorphic functions in U and
constants (v¥});5; such that, for any K > 0,

K
sup (V(g) - >IN v{k}(g)| < K1) =K+ (1.8)
geu k=0

In Section 6, we shall weaken Hypothesis 1.2 by allowing complex perturbations of order ﬁ and

harmonic functions instead of analytic functions.

Hypothesis 1.3. V : B — C can be decomposed as V = V| + V), where:

o For j = 1,2, V; extends to a holomorphic function in some neighbourhood U of B. There exists a
sequence of holomorphic functions (V}k})k >0 and constants (v}k})kzl so that, for any K > 0,

K
sup )VJ(S) _ ZN—k V]{k}(f) < V]{.K+1}N_(K+l).
£eu k=0

o VIO = Vl{O} + VZ{O} is real-valued on B.
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The topology for which we study the large N expansion of correlators is described in §5 and amounts
to controlling the (moments of order p)xCP? uniformly in p for a constant C > 0. We now describe our
strategy and announce our results.

1.4. Main result with fixed filling fractions: partition function and correlators

Before coming to the multi-cut regime, we analyse a different model where the number of As in a small
enlargement of Sy, is fixed. Let A = Uizo An, where Ay, = [a,,, a; ] are pairwise disjoint segments such
that @, < @; < aj < a}, where the inequalities are equalities if the corresponding edge is hard and are

strict if the corresponding edge is soft. We introduce the set

g
Ez{ee(o,l)g ) Zeh<1}. (1.9)
h=1
If N = (N1,...,N,) is an integer vector such that € = % € &, we denote Ng = N — Zizl Ny, and
consider the probablhty measure on [[5 h=0 hN Al
Nn ﬂ
Ay e () = g ]‘[ [T ]t ta Qi) 5 V00 T i = ]
ZNBie h=0 = i=i 1<i<j<N

< [T 11 Wwi-wael. (1.10)
0<h<h’<g 1<i<Nj
1<i’ <Ny
The empirical measure My and the correlators W, /n (X1, . ..,x,) for this model are defined as in
§1.1 with /‘x% replaced by “Xf;:z\a; NN We call g, = % the filling fraction of Ay,. It follows from the
definitions that

d
j{ 2.—§Wn;N/N(§,x2,...,xn)=(5n,1Nh=(5n,1N€h (1.11)
An 17T
for x2,...,x, € C\ A. Indeed, from the definition of the correlators (1.2), Wy,.n/n (x1,X2,...,X,) for
n > 2 canbe expressed as a sum of products of moments of products of the n-tuple of random variables
( IN |5 1 ,u N E[ f\i | ﬁ]):t_l which are linear in each of these variables. Therefore, we can
J l J i =

integrate over the variable x; in each of these terms by Fubini’s theorem. The key observation is that
9§Ah va | ;1 i =% .- —; is the number N}, of 4;s belonging to Aj,. Since Ny, is deterministic in the fixed filling
fraction model, it is equal to its expectation, and therefore, each of these terms vanish Wthh implies
(1.11) for n > 2. When n = 1, the cumulant is simply equal to the expectation of Z and the
previous remark proves (1.11).

We will refer to (1.1) as the initial model and to (1.10) as the model with fixed filling fractions.
Standard results from potential theory or a straightforward generalisation of [AGZ10, Theorem 2.6.1
and Corollary 2.6.3] imply the following:

—15/1’

Theorem 1 2. Assume V regular and confining on A. We consider the normalised empirical measures
Lyn = N’ Z "6, € P(Ap) for h € [0,g]. Take a sequence N = (Ni,...,Ng) of g-tuple of
integers, mdexed by N, such that 3% »-1 Nn < N, and such that N/N converges to a given € € £ when
N — oo. Then, the law of (LN n)o<h<g uUnder /“tl‘(/;,?f;N N satisfies a large deviation principle with scale

N? and good rate function

8 g
=] S g £ Se]

h=0 h=0
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where € = 1 — Zi:l €n, No = N — Zi:l Ny, and E is defined in Equation (1.5). As a consequence,
the empirical measure Ly .c = Zﬁ:o %L N.h converges almost surely and in expectation towards the
unique probability measure ,ug];;é on A which minimises E among probability measures with fixed mass
€n on Ay, for any h € [0, g]. It is characterised by the existence of constants CZI;A such that

Vhe[0,g], VxeA 2/@2@3’;‘@) Infx - & -V x) <l (1.12)
. ,

with equality realised ygf;ﬁ‘ almost surely. ygf;ﬁ‘ can be decomposed as a sum of positive measures 'u:,fqge,h
having compact support in Ay, denoted Se ;. Moreover, if V10 is real-analytic in a neighbourhood of

A, the support S¢ j, consists of a finite union of segments.

Later in the text, we shall consider ,u;f?v N with N = (Ny,..., Ng) a vector of positive integers so that

Zi:l Nj, < N: this will denote the unique solution of (1.12) with € = N/N. uqu;A appearing in Theorem

1.1 coincides with ,uéfl;f* for the optimal value €, = (,uga;A(Ah))l <h<g, and in this case, S, 5, is actually
the segment [, , @, ]. The key point — justified in Appendix | — is that, for € close enough to €, the

support S¢ , remains connected, and the model with fixed filling fractions enjoys a % expansion.

Theorem 1.3. If V satisfies Hypotheses 1.1 and 1.3 on A, there exists t > 0 such that, uniformly for
integers N = (N1, ...,Ng) such that N/N € £ and [N/N — €41 < t, we have an expansion for the
correlators, for any K > 0,

K
W n (1) = L NTEWIES (o) + OV, (1.13)
k=n-2

Up 1o a fixed O(N~K*VY and for a fixed n, Equation (1.13) holds uniformly for x1, . . ., x, in compact
regions of C\ A. The W,E;ke} can be extended into smooth functions of € € £ close enough to €.

We prove this theorem, independently of the nature soft/hard of the edges, in Section 5 for real-
analytic potential (i.e., Hypothesis 1.2 instead of 1.3). For 8 = 2 and potential V independent of N, the
coefficients of expansion Wilx IN T 0 are zero for k = (n + 1) mod2, as is well known for hermitian
random matrix models (see 7(].16) and the remarks on B-dependence in Section 1.5). The result is
extended to harmonic potentials (i.e., Hypothesis 1.3) in Section 6.1. In Proposition 5.6, we provide an
explicit control of the errors in terms of the distance of xy, ..., x; to A, and its proof makes clear that
the expansion of the correlators is not expected to be uniform for x1,...,x, chosen in a compact of
C \ A independently of n and K (namely, it is uniform only for K fixed). Note that we will sometimes
omit to specify the dependence in A, V, etc. in the notations (e.g., for the equilibrium measure, for the
correlators and their coefficient of expansions), but we will at least include it when this dependence is
of particular importance.

We then compute in Section 7 the expansion of the partition function, thanks to the expansion of
Wi.n/n and Wa.n N, by an interpolation that reduces the strength of pairwise interactions between
eigenvalues in different segments while preserving the equilibrium measure. At the end of the inter-
polation, we are left with a product of (g + 1) partition functions in a one-cut regime, for which the
asymptotic expansion was established in [BG11].

Theorem 1.4. If V satisfies Hypotheses 1.1 and 1.3 on A, there exists t > 0 such that, uniformly for
g-dimensional vectors of positive integers N such that N/N € € and |[N/N — €|, < t, we have for any

K>0,
N‘ZI‘\;’QN/N B K (k)
_ NBN/N N EN+x -k v —(K+1)
TN NG exp(kz NFEEER + 0K, (1.14)
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with

% = % + (#soft + 3#hard)w.

Besides, F g;ke};v extends to a smooth function of € close enough to €4, and at the value € = €, the first
derivatives of F g;—:};v vanish and its Hessian is negative definite.
We can identify explicitly the following:

g

Fil = §( //A Il = ¥l dprgge (0 dpege (v) = /A v{°}<x>du:q;5<x>) =L it E[Y e

vn€P(An)  Li=4
-1} B B B
PV =2 /AV{I}(x)duéf];E(x) +(1-5) (Entluye = (5) + 5 (2) —mr(5).  @.15)

where

Ent[ ] =—/Rln(%)dy(x)

is the entropy. The formula for F [;—Ez};v is obvious from potential theory, while the formula for F’ {;1 kv

is established in Proposition 7.1 (the first term comes from the fact that we let the potential depefld on
N). The appearance of the entropy in the term of order N in the free energy is well known in the one-cut
case, and here we prove that it appears in the same way for the multi-cut case with fixed filling fractions,
and we determine the additional constant. The term §N In N is universal, while the term » In N only
depends only on the nature of the endpoints of the support. These logarithmic corrections can already be
observed in the asymptotic expansion of Selberg integrals for large N computing the partition function
of the classical Jacobi, Laguerre or Gaussian -ensembles, corresponding to a one-cut regime [BG11].
The fact that the coefficient of In N shadows in some way the geometry of the support was observed in
other contexts (see, for example, [CP88]) and is not specific to two-dimensional Coulomb gases living on
aline. Their identification in the multi-cut regime and fixed filling fractions results from an interpolation
with a product of one such model for each cut, which changes only the coefficients of powers of N. Up
to a given O(N~K), all expansions are uniform with respect to the parameters of the potential and of
€ chosen in a compact set so that the assumptions hold. Theorems 1.3—1.4 are the generalisations to
the fixed filling fractions model of our earlier results about existence of the % expansion in the one-cut
regime [BG11] (see also [Joh98, APSO1, EMO03, BIO5, GMS07, KS10] for earlier results concerning
the one-cut regime in 8 = 2 or general S-ensembles).

1.5. Relation with Chekhov-Eynard-Orantin topological recursion

Once these asymptotic expansions are shown to exist, by consistency, their coefficients W,i;ke} are
computed by the B topological recursion of Chekhov and Eynard [CEO6]. As a matter of fact, the
asymptotic expansion

- k
Wie(X1, ..., xp) = Z N7k W,E;E}(xl, cesXn)
k>-1
has a finer structure so that forn > 1 and k > —1, we can write

+1

Lk%n] 1-n-G
-n— 2\ k+2-2G-n Chi
Wi G x) = ) (g) (1 - 5) WIGK22G (v, (1.16)
G=0

where W,&g’” are the quantities computed by the topological recursion of [CE06]. The initial data
consists of the nondecaying terms in the correlators — namely,
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-1 0,0
w0 = Wi @),

2
Wil = (1= S,

o Wz[;oe’o] (x1,x2).

2
WZ{;E (xl’x2) =7

B

All these quantities have an analytic continuation in the variables x; on the same Riemann surface Ce
called spectral curve. The curve C¢ can, in fact, be defined as the maximal Riemann surface on which
Wl{;l } (x), initially defined for x € C\ A, admits an analytic continuation (cf. Section 1.7 for a continued
discussion on geometry of spectral curves). The information carried by the decomposition (1.16) is that,
if V is chosen independent of 8 and N, all the W,I,;CE;’KJ are also independent of 8 and N (except perhaps
through the implicit dependence in N of €), and thus, the coeflicients of the expansions of the correlators
display a remarkable structure of Laurent polynomial in g This property comes from the structure of
the Dyson—Schwinger equations.
From the same initial data, Chekhov and Eynard also define numbers Wég’K] = ]-'E[G’K]

the coefficients of the asymptotic expansion of the free energy In ZIY] 2, ~/n Uptoan integration constant
independent of the potential, and which are independent of 8 provided V is chosen independent of S.
More precisely, we mean that for any two potentials V and V satisfying the assumptions of Theorem 1.4
and leading to a (g + 1)-cut regime, we must have for k > -2, by consistency with [CE06],

, which give

|_§J+l
k) ARy B\1-G 2\ k+2-2G k42-2G]: 422GV
F[){);E}V — Fﬁ{;e}v — § (_) (1 - _) (-Fe[G +2-2G|.V _]_-E[G +2-2G] V).

G=0 2 B

In particular, the topological recursion defines ]-"f[o’o];v =F [/,l;{l;e] and ]_-6[0,1];v = —Ent[ygl;e]. By
comparison with (1.15), we arrive to an absolute comparison (here, assume the potential to be indepen-
dent of N —i.e., V = V{0

(—23:v _ B 0.0V
Fﬂ‘f -7:5 )

"2
L 2 .
FEY = 'g(l - E)(fe[o’”"’ +1n (§)) + g In () - InT(£). (1.17)

The constant in the second line was not computed in [CE06]. To our knowledge, the absolute — including
a -dependent, possibly g-dependent but otherwise V-independent constant — comparison between the
coeflicients F/ {;kf};v of the asymptotic expansion of the S-ensembles and the invariants F19™ for
(G,m) # (0,0), (0, 1) produced by the topological recursion has not been performed in full generality.
It is only known for 8 = 2 for all G in the one-cut regime; see [Mar17, Proposition 2.5].

When S = 2, only W,[lf] = W,Eg’o] and ]—'E[G] = ]-'G[G’O] appear. These are the quantities defined
by the Chekhov—Eynard—Orantin topological recursion [EO07], and we retrieve the usual asymptotic
expansions

Whe(X1, ... Xp) = Z NZ2Gn W,EGe] (x1,...,x0),

G=0
ZV;A 5
n(Z5R) = DO RO

N.pe’ G20

involving only powers of ﬁ with parity (—1)" in the n-point correlators and powers of ﬁ in the free
energy.
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1.6. Main results in the multi-cut regime: partition function

Let us come back to the initial model (1.1). We can always take A = i:o An C B to be a small
enlargement of the support S respectmg the setup of §1.4. It is indeed well known that the partition
function Z B can be replaced by Z up to exponentially small corrections when N is large (see [PS11,
BG11] for results in this direction, and we give a proof for completeness in §3.1 below). The latter can be
decomposed as a sum over all possible ways of distributing the As between the segments A;, — namely,

N! .

VA VA

Iyp= Z & N | ZN BN N (115
No,....Ng>0 L Lh=0 V0"
2o Nn=N

where we have denoted Ng = N — Zi:l N}, the number of As put in the segment Ag. So we can use our
results for the model with fixed filling fractions to analyse the asymptotic behaviour of each term in
the sum and then find the asymptotic expansion of the sum taking into account the interference of all
contributions. This is carried out in Section 8.1.

Before stating the results, we need two ingredients. First, we let 3 B be the (truncated at an
arbitrary order K) asymptotic series depending on a g-dimensional vector with positive entries, at least
when its coefficients are defined:

K
3y = NEN exp( > N KRRV +0(N-<’<+'>)) . (1.19)
k==2

If we substitute € = N/N as in Theorem 1.4, it gives the asymptotic expansion of the partition function
of the fixed filling fractions model with unordered eigenvalues, and we recall that F, ’B{i};v exists as
a smooth function of € in some non-empty open set. We shall denote (F ’é;kf};v)(f ) the tensor of j-th
derivatives with respect to €.

Second, we introduce the Siegel Theta function with characteristics g, v € C8. If T is a symmetric
g X g matrix of complex numbers such that Im 7 > 0, the Siegel Theta function is the entire function of
v € C8 defined by the exponentially fast converging series

ﬂ[g}vl‘r) = > exp (iﬂ(m )T (m ) 20 +v) - (m o+ ﬂ)). (1.20)
meZs8

Among its essential properties, we mention the following:

o for any characteristics u, v, it satisfies the diffusion-like equation 4i7r67h w0 =20y,0,,0.

o it is a quasi-periodic function with lattice Z8 @ 7(Z#): for any mg, ny € Z8,

9

g}v +mo+ 7 - nolt) = exp (2inmg - p - 2inng - (v +v) —inng - 7 - no) ﬁ[g}vl‘r).

o it has a nice transformation law under 7 — (A7 + B)(Ct + D)~!, where A,B,C,D are the g X g
blocks of a 2g X 2g symplectic matrix [Mum84].
o when 7 is the matrix of periods of a genus g Riemann surface, it satisfies the Fay identity [Fay70].

We define the gradient operator V,, acting on the variable v of this function. For instance, the diffusion
equation takes the form 4ind, 9 = V®24.

Theorem 1.5. Assume Hypotheses 1.1 and 1.3. Let €, = (,uéf][Sh])l <h<g —we shall replace all indices
€ by x in our notations to indicate a specialisation at € = €,. Then, the partition function has an
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asymptotic expansion of the form, with C = B or A, for any K > -2,

,2 SNﬁ*{(ZN T{k} Z;])ﬁ[_lze*}l’ﬁ;f(h’ﬁﬁ)+O(N<K+]))}. (1.21)

k=0

In this expression, 31‘\/,;2_ L IS the asymptotic series defined in Equation (1.19) and evaluated at € = €.

If X is a vector with g components, we set T/;{;Of} [X] =1, and for k > 1,

) k 1 r (F’B{kf};v)(ji)
— _ _ ke 7). yo(Zi )
== Y (® ji! ) - xe@i, (1.22)
r=1 Kiyeons kr>-2  i=1
.jl ----- jr>0
ki+j,'>0
Zrzlki*‘ji:k

where - denotes the standard scalar product on the tensor space. We have also introduced

=11V, =25V
(FiY) (FiY)

VBx = TBx =

2im 2im
Being more explicit but less compact, we may rewrite

k 1 r (F{k"};v)(ji)

Tﬁ{li}[ m]ﬂ[_l\(]f*}vﬁ;v{h’ﬁ;a{) = Z ] Z (® B*T)

r=1 " ki,....kp2-2 i=1

ZL] ki+ji:k
. ( Z (m _ NE*)®(Z?:1ji) ein-‘rﬁ;*-(m—Ne*)®2+Zi7rvﬁ;*~(m—Ne*)).

meZ8

(1.23)

For B = 2, this result has been derived heuristically to leading order in [BDEOO] and to all orders
in [Eyn09]. These heuristic arguments can be extended straightforwardly to all values of 8; see, for
example, [Borl1]. Our work justifies their heuristic argument. To prove this result, we exploit the Dyson—
Schwinger equations for the S-ensemble with fixed filling fractions taking advantage of a rough control
on the large N behaviour of the correlators. The result of Theorem 1.5 has been derived up to o(1) by
Shcherbina [Shc12] for real-analytic potentials, with different techniques, based on the representation
of [Then I1ij 10 — A, ;IP, which is the exponential of a quadratic statistic, as expectation value of
a linear statistics coupled to a Brownian motion. The rough a priori controls on the correlators do not
allow at present the description of the o(1) by such methods. The results in [Shc12] were also written
in a different form: F, {O} v appearing in 3 was identified with a combination of Fredholm determinants
(see also the physics paper [WZ06]), while this representation does not come naturally in our approach.
Also, the steps undertaken in Section 8 where we replace the sum over nonnegative integers such that
No +---+ Ng = N in Equation (1.18), by a sum over N € Z8, thus reconstructing the Siegel Theta
function, was not performed in [Shc12].

The 2ir appears because we used the standard definition of the Siegel Theta function,and should not
hide the fact that all terms in Equation (1.23) are real-valued. Here, the matrix

Hessian(Fg,;Z}‘V)|

€=€4
1.24
2im ( )

TBx =

involved in the Theta function has purely imaginary entries, and Im 7. is definite positive according
to Theorem 1.4; hence, the Theta function in the right-hand side makes sense. Notice also that for it is
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Z8-periodic with respect to y; hence, we can replace —Ne, by —Ne€, + | Ne€, |, and this is responsible
for modulations in the asymptotic expansion, and thus breakdown of the ﬁ expansion. Still, the model
has ‘subsequential’ asymptotic expansions in # For instance, for an even potential with two cuts
(g = 1) model, we have €, = %, s0 (=Ne, mod Z) appearing as characteristic in the Theta function
only depends on the parity of N, and for each fixed parity, we get an asymptotic expansion in ﬁ In fact,
having an even potential implies that the fixed-filling fraction model is invariant under € — 1 — €, so

only the terms with even numbers j; of derivatives with respect to filling fractions contribute in T’g,ke}.

If, furthermore, 8 = 2, only the (F B{gr ) (/) with k even survive, and we deduce that the same is true for

{k}
Tﬁ 2%’

different asymptotic expansion in # for N even (of course, up to the universal logarithmic corrections
gNlnN +x1n N).
Let us give the two first orders of Equation (1 .23):

so that the logarithm of the partition function has an asymptotic expansion in # for N odd and

T{l}[X] (F{ 2}V)/// X®3 (F{ 1}V)// X®2+(F{O}V) X,

and:
TENX) = o5 [ X0 [(F{ e (R X
(é F{ 21V o (F{O}V )] + [(F{ V) ,,] 214 (F{ Z}V)(4))_X®4
b o L) o
(% [(F} (0):v) /]2 %(F;?*}‘V)”) X2 4 (F/;;l*};v)/ X

For B = 2, unlike the one-cut regime where the asymptotic expansion was in W up to constants
independent of the potential, the multi-cut regime features an asymptotic expansion with nontrivial
terms in powers of % For instance, we have a contribution at order % of

1
LX) = ¢ (BASE) - X (P - X,
In a two-cuts regime (g = 1), a sufficient condition for all terms of order N~(k*) to vanish (again, up
to integration constants already present in 3) is that €, = 5 L and ZV; 2_2 e = =zZV 2 2l e for the same
reasons that we ment1oned for the case of an even potential with two cuts. In such a case, we have an
expansion in powers of —5 N2 for the partition function, whose coefficients depend on the parity of N. In
general, we also observe that vg—»., = 0 (i.e., Thetanullwerten appear in the expansion).

Using the fact that the n-th correlator is the n-derivative of the free energy of the partition function
for a perturbed potential or order 1/N, and our asymptotic results are uniform for small perturbations
of this kind, it is pure algebra to derive from (1.5) an asymptotic expansion for the correlators W,, for
the initial model in the multi-cut regime. For 8 = 2, the resulting expression can be found, for instance,
in [BE11, Section 6.2] up to 0(#) and a systematic diagrammatic for all orders is given in [BE12,
Appendix A]. This can be straightforwardly extended to the 8 # 2 case simply by including half-integer
genera g (in our conventions, k not having fixed parity).

1.7. Comments relative to the geometry of the spectral curve

We now stress facts from the theory of the topological recursion [CE06, EO07] which are relevant in the
present case — for further details on the geometry compact Riemann surfaces, see, for instance, [Eyn|18].
When V is a polynomial and € is close enough to €., the density of the equilibrium measure can be
analytically continued to a hyperelliptic curve of genus g, denoted Ce (the spectral curve). Its equation is
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8
Ve[ ]e-es)@-al,, (1.25)
h=0

and Ce is the compactification of the locus of such (x,y) obtained by adding the two points at oo,
where y ~ xg“ (first sheet) and y ~ —x8*! (second sheet). Let A, be the cycle in Ce surrounding
Aen = lag . a7 1. The family A = (Ap)i<n<e can be completed by a family of cycles B so that
(A B) is a symplectlc basis of homology of Ce. More precisely, the cycle 5, travels from a_ en to

h , in the second sheet and o} enp o, in the first sheet. The correlators W,[LGE K1
functlons on C!, computed recurswely by a residue formula on Ce.

In particular, the analytic continuation of

B
2

are meromorphic

WA (x1.x) + )dxldxz = (WZ‘?;OJ (x1,x2) + dode,  (1.26)

1
(x1 — x2)? (x1 —x2)?

is the unique meromorphic bidifferential, denoted Q, on C¢, which has vanishing .A-periods and has for
only singularity a double pole at coinciding point with leading coefficient 1 and without residue. This
Q plays an important role for the geometry of the spectral curve and is called fundamental bidifferential
of the second kind. It sometimes appears under the name of ‘Bergman kernel’, although it does not
coincide with (but it is related to) the kernel introduced by Bergman in [BS53]. It can be explicitly
computed by the formula

22
Q(z1,22) = dyds, ln9(/ wdx+c(r‘fe), (1.27)
Z

where

o 6= 19[ 8] is the Riemann Theta function.
o w@(z)dx(z) is the basis of holomorphic one-forms dual to the A-cycles — that is, characterised by

Vh,h’ < I[l,g]], j{ wh/dx = 5h,h’- (1.28)
Ah

o 7% is the Riemann matrix of periods of the spectral curve Ce:
’ — Ce
Vh,h' €[ 1,¢]. 7{5 wh/dx—‘rh’h,.
h

oc¢= %(r +7%(s)) with r,s € Z¢ such that r - s is odd, is a nonsingular characteristic for the Theta
function (i.e., such that 9( fz TZ wdx + ¢ ’ TCE) is not identically O when z;,z> € C¢). Such a ¢ exists

and the result then does not depend on which such c is chosen.

It is a property of the topological recursion that the derivatives of F’ B{ﬁ};v can be computed as B-cycle
integrals of the correlators:

(FIIVYD) = (/;)’ ji dé; -+ ﬁ dg; Wi &g, (1.29)
This relation extends as well to derivatives of correlators:
Wk . x))Y) = 7{ dé; - 7{ dg; WIS ey, £ E)),
where it is understood that we differentiate keeping x fixed. In particular,

1) de = 9 _ a=b {0}
(WI;G (x)) dx—21ﬂm'(x)dx—7§39(x, ) 5 }ide (x,&). (1.30)
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Besides, the matrix to use in the Theta function appearing in Theorem 1.5 is

B
Tpx = 5 7l

This simple dependence in S of WQ{,(Z} can be traced back to the fact that, as a consequence of the
Dyson—Schwinger equations, we have

1

B 1,0} ) (0 .
Vh e [0, Vx € Ay, —(W.. +i0,x0) + W, -0, =,
I[ g]] x h 2( 2 (x1 +i0,x2) 2 (x1 =i )C2)) (x1 — x2)?

and this equation (together with the properties of the analytic continuation of Wz{g} on C¢ and the
constraint of vanishing .A-periods) fully characterises W{O}.

This relation has a long history and follows from the identification of F 1y 2} V=& }' [0.0]: ( cf.
Equation (1.17)) with the prepotential of the Hurwitz space associated to the famlly of curves (1.25) -
considered as a Frobenius manifold — computed by Dubrovin [Dub91], as well as with the tau function
of the Whitham hierarchy as shown by Krichever [Kri92]. A derivation in the context of matrix model is,
for instance, given in [CMO02]. Although a priori differentiability of F - 2} V' is not justified in [CMO02],
it is guaranteed by our results of Section A.2.

Equation (1.29) at € = €, can be used to compute Tg;’i} [X] appearing in Equation (1.22). The
derivation with respect to € is not a natural operation in the initial model when N is finite since Ne¢j, are
forced to be integers in Equation (1.10). Yet we show that the coefficients of expansion themselves are
smooth functions of €, and thus, d. makes sense.

1.8. Central limit theorems for fluctuations and their breakdown

In Section 8.2, we describe the fluctuation of the number of particles Ny, in each segment A,: when
N — oo, its law is approximated by the law of a Gaussian conditioned to live in a shifted integer lattice.
The shift of the lattice oscillates with N by an amount | Ne,  |. Note that since Ne, j is for general N
not an integer, strictly speaking, one cannot say that it converges in law to a discrete Gaussian random
variable. This is, however, true along subsequences of N in case €, j, = ,uéf](Ah) is a rational number.

Theorem 1.6. Assume Hypotheses 1.1 and 1.3, and let N = (Ny,...,Ng) be the vector of filling

fractions as above. If P is a g-tuple of integers depending on N and such that P — Neéy, = o(N %) when
N — oo, we have

o2 LD - (P-Ne)®+(FL)) - (P-Ney)

I [ (vl Tpin)

N=P)~ (1.31)

F‘Nﬁ(

In Section 8.3, we describe the fluctuations of linear statistics in the multi-cut regime.

Theorem 1.7. Assume Hypotheses 1.1 and 1.3. Let ¢ be an analytic test function in a neighbourhood
of A, and s € R. We have when N — oo,

W e o (ZN ¢ ()-N fe(&)du (9))

2

19 o * * x
_%QB;*[gD,go]) [ ](V,B +isug. HTﬁ,)

ﬂ[ _A(I) ] VB;*|Tﬁ;*)

N, EXP (is Mg o] , (1.32)
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where

walel = (§ SEv@@©) .

Maalel = § 5 @ W @)

dép dé,

b iy PEVRE W (6.6,

Op:x [o, 0] =

We recall that the @y, (x)dx are the holomorphic one-forms from Equations (1.28)—(1.30), while W{O}

and W{ ! appear in the asymptotic expansion of the correlators in the model with fixed filling fractions
( Theorem 1.3), and here they must be specialised at € = €,.

Remark 1.4. In particular, ug. is a linear map associating to a test function ¢ a g-dimensional vector.
When ¢ is such that ug..[¢] = 0, the Theta functions cancel out, and we deduce that the random
variable

N
Ouleli= Y o) - N [ e(@dli(®
i=1 S

converges in law to a Gaussian random variable with mean Mg, [¢] and covariance Qg.. [, ¢]. We
remark that we have the alternative formula from (8.10):

g o) = (5700, [ (0 duly©)

I<h<gle=e, ’

showing that ug.. [¢] vanishes when €, is a critical point of /s w(&) d/,tgfl;e(f). Even though our results
are obtained for analytic potentials and test functions, this condition clearly makes sense with less
regularity. In fact, it is possible to generalise our results and techniques to consider sufficiently smooth
potential and test functions instead of analytic ones. We refer the interested reader to [G19, Sections 4
and 6] to such a generalisation in the one-cut case.

When ug.[¢] # 0, the central limit theorem does not hold anymore. Instead, from the shape of
the right-hand side, ®n [¢] is approximated when N — oo by the sum of two independent random
variables: the first one is a Gaussian random variable with mean Mpg.[¢] and covariance Qg.4[¢, ¢],
and the second one is the scalar product with 2irmug.[¢] (which is a vector in R8 when ¢ is real-
valued) of a random Gaussian vector conditioned to live on the lattice —| Ne4 | + Z8. This also displays
N-dependent oscillations. These oscillations can be interpreted in physical terms from tunnelling of
particles between different segments. One sees, indeed, than moving a single A; from Aj, to Ay, changes
@ [¢] by a quantity of order 1, which is already the typical order of fluctuation of linear statistics when
filling fractions are fixed.

The next term in the asymptotic expansion of the left-hand side of (1.32) is of relative order 0(#),
which therefore gives the speed of convergence of the associated linear statistics of the empirical
measure.

1.9. Asymptotic expansion of kernels and correlators

Once the result on large N expansion of the partition function is obtained, we can easily infer the
asymptotic expansion of the correlators and the kernels by perturbing the potential by terms of order
]3,, maybe complex-valued, as allowed by Hypothesis 1.3.
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1.9.1. Leading behaviour of the correlators

Although we could write down the expansion for the correlators as a corollary of Theorem 1.5, we
bound ourselves to point out their leading behaviour. Whereas W,, behaves as O (N>™") in the one-cut
regime or in the model with fixed filling fractions, W,, for n > 3 does not decay when N is large in a
(g + 1)-cut regime with g > 1. More precisely, we have the following.

Theorem 1.8. Assume Hypothesis 1.1 and 1.3 and that the number of cuts (g + 1) is greater or equal
to 2. When N — oo, we have, uniformly when x, . . ., x, belongs to any compact of (C\ A)",

-N
Wa(x1,x3) = Wz{;(i} (x1,x2) + (w(xl) ® w(xz)) . V‘?Z In 1?[ Oe*}vﬁ;,{hﬁ;*) +o(1),

and for any n > 3,

-N
06*}"[?;47[5’;*) +o(1).

Wa(x1,...,x,) = (®w(x,~)) -VE Ing
i=1

Integrating this result over .A-cycles provides the leading order behaviour of n-th order moments of
the filling fractions N, and the result agrees with Theorem 1.6.

1.9.2. Kernels
We explain in §6.3 that the following result concerning the kernel — defined in Equation (1.4) — is a
consequence of Theorem 1.3:

Corollary 1.9. Assume Hypothesis 1.1 and 1.3. There exists t > 0 such that, for any sequence of
N = (Ni,...,Ng) suchthat IN/N —e€,|| < t, the n-point kernels in the model with fixed filling fractions
have an asymptotic expansion when N — oo of the form, for any K > 0,

n K k+2
(B g, §
Knie(@1s o) = exp | D Nej(In(x) +2im) + 0 N7#( Y —L2e (Wit + o <K+1>)],
=1 k= =l
(1.33)
where Ly ¢ is the linear form
n x, . . l
Leelfl=Yye; [ Fax where S = 0+ 1 Res @ (134)
j=t 7 -

The error terms in this expansion are uniform for xi, . . ., X, in any compact of C \ A.

The (r, k) = 1 term in (1.33) depends on choices for the path of integration from oo to x; (the other
terms do not and are also unaffected by the difference between f and £ in (1.34)), and y i € Z. These
two features are a manifestation of the fact that the definition of the kernel depends on a choice of
determination for the complex logarithm; resolving them by the choice of suitable determinations and
domain of definition leads to specific integer values for y;. These subtleties are explained in details
in §6.3 and can be ignored if all ¢; € Z (in that case, the definition of the kernel does not depend on
choices).

Hereafter, if y is a smooth path in C \ S, we set £, = fy , and C?’ is given by

L8 W :/dx1~~~/dxr Wi (. x).
Y Y
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A priori, the integrals in the right-hand side of Equation (1.33) depend on the relative homology class
in C \ A of paths between oo to x;. A basis of homology cycles in C \ A is given by A = (An)o<n<g-
and we deduce from Equation (1.11) that

dg Wik Ny
Vh 0,2, - s =0,10k-1 —. 1.35
€ [[ g]] ‘%4,1 2in nN/N(é: X2 Xn) n,10k,—1 N ( )

Therefore, the only multivaluedness of the right-hand side comes from the first term NLy C[W{ 1}],
and given Equation (1.35) and observing that N, = N¢, are integers, we see that it exactly reproduces
the monodromies of the kernels depending on c;.

We now come to the multi-cut regime of the initial model. If X is a vector with g components, and
L is a linear form on the space of holomorphic functions on C \ S, let us define

k r ®n; (ki 1y (i)
"{k} . _ l £ [(Wn[-;e ) ] ) . ®(Zl(: ]l)
Tge 1L X] = rl Z (® n;! ji! X o

r=1 J1s-e25 Jr21 1=
Kiseens ky>-2
nl,..., n, >0
ki+ji+n;>0

Yioy kitjitni=k

where we took as convention W{k} =F {k} and the derivatives are computed for fixed xs. Then, as a
consequence of Theorem 1.5, we have the followmg

Corollary 1.10. Assume Hypothesis 1.1 and 1.3. With the notations of Corollary 1.9, the n-point kernels
have an asymptotic expansion, for any K > 0,

(ZE N T L 221 ) N0pn + L[] p4)

(S N T [ 1)l e Jpiatesie)

Kn.e(x) = Ky e (X) (1+0(N-K+Dy),

The first factor comes from evaluation of the right-hand side of Equation (1.33) at € = €x, Lx ¢ =
NERT fo:’ and wdx is the basis of holomorphic one-forms.

A diagrammatic representation for the terms of such expansion was proposed in [BEI2,
Appendix A].

1.10. Strategy of the proof

The key idea of this article is to establish an asymptotic expansion for the partition functions of our
models for fixed filling fractions:

N! ZI‘\//AN N B K
—_NBNIN _ BN exp( NFEIRY O(N‘(K“))), (1.36)
Hh:O Np! k=—

for any K > 0. Indeed, such an expansion allows to estimate the free energy of the original model
In ZV A 5 Up to errors of order O(N~K=1+9); see (1.18) and Theorem 1.5. It also allows to analyse the
asymptotlc distribution of the filling fractions € = N/N (see Theorem 1.6) since this distribution is
given as the following ratio of partition functions:
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VA
N! ZN,BN/N

VA
5 N =
(V) T15_, Ni! zxf‘ﬁ

l‘l]\]’ﬁ

(1.37)

In particular, if (1.36) is known up to o(1), the leading behaviour of (1.37) when N — oo can be
computed. This analysis is detailed in Section 8.2.

To handle fluctuations of linear statistics, we use the well-known approach of considering the free
energy for perturbations of order of the potential. In fact, if we denote by @y [¢] = f\; o) -

N /3 <p(§)dyeq(§), as in Remark | .4, we see that for any real number s,

V—z—mpA
VA - v N.B
#N’ﬁ [esq)N[‘P]:I =e SNfSSD(E)dMeq(‘f) ZV’A .
N.B

Again, the expansion of the free energies up to o(1) allows to derive the asymptotics of the Laplace
transform of @ [¢] and hence the central limit theorem; see Sectlon 8.3. Note in passing that another
way to study these fluctuations is to first condition the law ,u N by fixing its filling fractions to be
equal to some N. Indeed, we can also recover the fluctuations of the linear statistics from those under
the conditioned law (that can be deduced from the ratio of the partition functions of Theorem 1.4 and
lead to classical central limit theorems with Gaussian limits), together with the fluctuations of the filling
fractions. Then, one easily sees that the term u g., comes from the fluctuations of the filling fractions and
more precisely from the difference of centerings N ( fs w(€) d,ueq(f) [S w(&)du ) for varying
N/N.

Therefore, the central result of this article is Theorem 1.5. To prove this theorem, we shall as in [BG11]
interpolate between the partition functions we are interested in and explicitly computable reference
partition functions. For the latter, we take a product of partition functions of one-cut models with
Gaussian, Laguerre or Jacobi weight (depending on the nature of edges, soft or hard, of the equilibrium
measure one wishes to match) that are evaluated as Selberg integrals. Such reference partition functions
were already used in [BG11]. One important new element of the present analysis is the interpolation
from a model with several cuts to independent one-cut models. This is realised by considering the
s-dependent model

sy &)

VA
ZN’ﬁ;e(s)
8 Nh 8
o P 1 L i I N RORE s [ W e
n=0Pn" | h=0 i= 0<h<h’<g 1<i<Nj h=01<i<j<Np
ISi/SNh/

for s € [0, 1]. We choose to take the s-dependent potential V}, (x) = 7}’ (x) on the h-segment

T =V@ =209 [ @ kel orren,

h'#h

where V is the potential of the original model. This choice is such that the equilibrium measure

associated with the model z% 1\; 8 €(s) is the equilibrium measure of the original model; see Section 7.4.

Moreover, Z 25 = Z b’ (1), whereas Z? To; A (0) is a product of models whose equilibrium measure
has only one- cut (they are the restriction of the equilibrium measure of the original model to each of
the connected pieces of its support), which we can compute by [BG11] (see Section 7.1). Interpolating

along this family yields
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ZVA
n( N pre ) / I Z5 (s)ds
Nﬁe(s =0)
Nh
=:B/ ds/,lg:‘;zg;e(s)[ Z Z In|dp; — A |- N / In|Ap,; - x|dﬂeqe(x)]
0 0<h<h’'<g 1<i<Nj 0<h'¢h<gl 1 YSw
1<i’ <Ny
1
= —NB 7{ 75 —— In[(x —x")sgn(h — h')] W, 1}(x)(/ dst;e(x’))
o<igir <o An A (217T) 0
ﬁ ]
+ '7{ }{ 5 21 n[(x —x")sgn(h - h)](/ ds[Wé‘;e(x,x')+Wi‘;6(x)Wi‘;E(x')]).
0<h,¢h<g An Ja, (2im) 0

(1.38)

It is important to note that in the first equality, the singularity of the logarithm is away from the range of
integration as it involves variables in distinct segments, so we could express (1.38) in terms of analytic
linear and quadratic statistics which, in turn, can be expressed in terms of the correlators Wy, . of the

model associated with Z /3 (s). Lemma 7.5 gives the large N expansion of these correlators.

These expansions are based on the so-called Dyson—Schwinger equations (4.1); see also (7.36) for the
correlators of the interpolating models. These equations are exact equations satisfied by the correlators
for any fixed N and obtained simply by integration by parts. They are a priori not closed, but the idea
is to show that they are asymptotically closed so that if we can show that the correlators have a large N
expansion of topological type, their coefficients will satisfy a closed system of equations. The latter is
based on the fact that coefficients beyond the leading order satisfy an inhomogeneous linear equation,
with inhomogeneous term involving coefficients of lower order only. Hence, solving the linear equation
allows to define uniquely and recursively all the coefficients in the expansion of the correlators. The
linear equation is described by a linear operator, called the master-operator, that we denote C (see (5.6))
and which is the same for all orders. An inversion of this operator (continuously on some function space)
precisely allows to solve the linear equation.

The central point of our approach is therefore to invert the operator K. In fact, the operator is not
invertible but rather has a kernel of dimension at least g, where (g + 1) is the number of cuts (i.e.,
connected components of the support of the equilibrium measure). However, its extension K, where we
also record the periods around the cuts, is invertible in an off-critical situation; see Section 5.2.3. Fixing
the filling fractions exactly amounts to use the extended operator IC instead of K, and this is why we first
consider the model with fixed filling fractions. The invertibility of the extended operator indeed allows
us not only to formally solve the Dyson—Schwinger equations but also to show the existence of this
asymptotic expansion to all orders in # To this end, it is necessary to use a priori rough estimates on
the correlators, which we obtain by classical methods of concentration of measure and large deviations;
see Section 3. These estimates can be improved iteratively with the Dyson—Schwinger equations (see,
for example, Section 5.3) to obtain optimal estimates and eventually reach the all-order asymptotic
expansion. This bootstrap strategy was first introduced in [BG1 1] for the one-cut model. We detail these
computations in the case where s = 1 in Section 5. We also need to carry this out for the interpolating
s-dependent model in order to have asymptotic expansions to insert in (1.38). In that case, the extended
operator does not have an explicit inverse, but we can nevertheless show by Fredholm arguments that it
is invertible. Then we indicate in Section 7 the modifications to take into account the previous bootstrap
argument for s € [0, 1].

We stress again that we cannot use the inversion and bootstrap strategy in the Dyson—Schwinger
equations for the correlators of the original model in the multi-cut regime because the relevant master
operator is not invertible. This is the reason why we need the detour through the partition function with
fixed filling fractions (via (1.36)), from which any desired expansion of the correlators of the original
model can be obtained by looking at %-perturbations of the potential.
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2. Application to (skew) orthogonal polynomials and integrable systems

The one-hermitian matrix model (i.e., 8 = 2) is related to the Toda chain and orthogonal polynomials
(see, for example, [Dei99]). Similarly, the one-symmetric (resp. quaternionic self-dual) matrix model
corresponds to 8 = 1 (resp. S = 4) and is related to the Pfaff lattice and skew-orthogonal polynomials
[Eyn01, AvMO2, AHvMO2]. Therefore, our results establish the all-order asymptotics of certain solutions
(those related to matrix integrals) of the Toda chain and the Pfaff lattice in the continuum limit, and
the all-order asymptotics of (skew) orthogonal polynomials away from the bulk. We illustrate it for
orthogonal polynomials with respect to an analytic weight defined on the whole real line. It could be
applied equally well to orthogonal polynomials with respect to an analytic weight on a finite union
of segments of the real axis. We review with fewer details in §2.4 the definition of skew-orthogonal
polynomials and the way to obtain them from Corollary 1.10.

The leading order asymptotic of orthogonal polynomials is well known since the work of Deift et al.
[DKM+97, DKM+99b, DKM+99a], using the asymptotic analysis of Riemann—Hilbert problems which
was pioneered in [DZ95]. In principle, it is possible to push the Riemann—Hilbert analysis beyond
leading order, but because this approach is very cumbersome, it has not been performed yet to our
knowledge. Notwithstanding, the all-order expansion has a nice structure and was heuristically derived
by Eynard [Eyn06] based on the general works [BDEOO, Eyn09]. In this article, we provide a proof of
those heuristics.

Unlike the Riemann—Hilbert technique, which becomes cumbersome to study the asymptotics of
skew-orthogonal polynomials (i.e., 8 = 1 and 4) and thus has not been performed up to now, our method
could be applied without difficulty to those values of 8 and would allow to justify the heuristics of
Eynard [Eyn01] formulated for the leading order and describe all subleading orders. In other words, it
provides a purely probabilistic approach to address asymptotic problems in integrable systems. It also
suggests that the appearance of Theta functions is not intrinsically related to integrability. In particular,
we see in Theorem 2.2 that for 8 = 2, the Theta function appearing in the leading order is associated
to the matrix of periods of the hyperelliptic curve C, defined by the equilibrium measure. Actually,
the Theta function is just the basic block to construct analytic functions on this curve, and this is the
reason why it pops up in the Riemann—Hilbert analysis. However, for § # 2, the Theta function is
associated to 5 times the matrix of periods of C, , which might or might not be the matrix of period of
a curve, and anyway is not that of Ce, . So the monodromy problem solved by this Theta function is not
directly related to the equilibrium measure, which makes, for instance, for 8 = 1 or 4, its construction
via Riemann—Hilbert techniques a priori more involved.

Contrary to Riemann—Hilbert techniques, however, we are not yet in position within our method to
consider the asymptotic in the bulk or at the edges, or the double-scaling limit for varying weights close
to a critical point, or the case of complex-values weights which has been studied in [BM09]. It would
be very interesting to find a way out of these technical restrictions within our method.

2.1. Setting

We first review the standard relations between orthogonal polynomials on the real line, random matrices
and integrable systems see, for example, [CG 12, Section 5]. In this section, 8 = 2, and we omit to precise
it in the notations. Let V4 (1) = V() +Z‘,f= I tx A% Let (P, n (x))n 0 be the monic orthogonal polynomials
associated to the weight dw(x) = dx e~V "4*) on B = R. We choose V and restrict in consequence 7 so
that the weight increases quickly at +co. If we denote &, v the L?(dw) norm of P,, y, the polynomials
13,,, N = Pn.n/+/hn.n are orthonormal. They satisfy a three-term recurrence relation:

xPy N (%) = VN Prst N (%) + BN PN (X) + Vhnot, v Pt v (%),

The recurrence coefficients are solutions of a Toda chain: if we set

Un,N = In hn,N7 Vn,N = _,Bn,Na
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we have

Oy Un,N =Vu,N — Va-1,N, Oy vp,N = €N — glinN 2.1

and the coefficients 7 generate higher Toda flows. The recurrence coefficients also satisfy the string
equations

th,N [V’(QN)]n,nfl = k

v [V'(QN)]nn =0, 2.2

where Qp is the semi-infinite matrix:

Vhin Bin
By VN Bon
Qu = Ban Nh3n BanN

The equations 2.2 determine in terms of V the initial condition for the system (2.1). The partition
function 7 (t) = ZI‘\;‘;R is the Tau function associated to the solution (u, n (t), v, N (t))n>1 of Equation
(2.1). The partition function itself can be computed as [Meh04, PS11]:

N-1
ViR _ .
Zy" =N [ ] i
J=0

We insist on the dependence on N and V by writing h; y = h;(NV). Therefore, the norms can be
retrieved as

\%
n ) NV /(n+1);R ST R
Jj=1 hJ (NV) _ 1 Zn+l — 1 Zn+l 5= . (23)

h,(NV) = = ,
( ) H;l;ll ]’lj(NV) n+1 Z,I;]V/H;R n+1 ZX/S;R

n
N
regime in the Toda chain, where % plays the role of the dispersion parameter.

The regime where n, N — oo but s = & remains fixed and positive corresponds to the small dispersion

2.2. Small dispersion asymptotics of h, N

When Vy, /5o satisfies Hypotheses 1.1 and 1.2 for a given set of times (s, tp), Vi/s satisfies the same
assumptions at least for (s,t) in some neighbourhood U of (so,ty), and Theorem 1.5 determines the
asymptotic expansion of Ty (t) = ZI‘\;‘;R up to O (N~>). Besides, we can apply Theorem 1.5 to study the
ratio in the right-hand side of Equation (2.3) when n — oo up to o(n~*°). For instance, we record below

the expansion up to order O (n™2).

Theorem 2.1. In the regime n, N — oo, s = &; > 0 fixed, and Hypotheses 1.1 and 1.2 are satisfied with
soft edges, we have the following asymptotic expansion:

1 cl
v = n(@F = Ly V) + 14 FE = L W] + 2L VI +1n (52
s s T n

1.3
1 1 ]
+ ;{%— s*+Le W] vin (@-:) ~Lu (W]
l o3 017 V@B@n ~ V®3®n ~ 1 2 017 V®2@n
+6’C%[W3;*] ( G)n ®n ) Z’C%@’C%[W&*] (:)n
+ %LZA ® LW . Vind, - éﬁ@f [wgfj]} +0(n7?). Q2.4)
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We used the shortcut notations

—(n+1) ey

0, =19 0 ](V = Lyys [W]|T*), O, = ﬁ[—i’lof*](vk_*),

and in Equation (2.4), it is understood that the argument v is specialised to 0 after application of the
V = V,. Besides,

Lolf] = dag Vt(f)

K s 2im

1O, Lplfl=§ 5.

When V;/s leads to a multi-cut regime, this asymptotic expansion features oscillations. Numerical
evidence for such oscillations first appeared in [Jur91], where plots of h,_1 n /h, N displaying the phase
transitions from a one-cut to a multi- Cut regime can be found for a sextic potential.

We recall that all the quantities W can be computed from the equilibrium measure associated to
the potential Vt, so making those asymptotlc explicit just requires to solve the scalar Riemann—Hilbert
problem for ,ueq‘ Notice that the number (g + 1) of cuts a priori depends on (sg, tp), and we do not
address the issue of transitions between regimes with different number of cuts (because we cannot relax
at present our off-criticality assumption), which are expected to be universal [Dub08].

2.3. Asymptotic expansion of orthogonal polynomials away from the bulk

The orthogonal polynomials can be computed thanks to Heine formula [Sze39]:

l_[(x - /11')] =Ky, (x).
i=1

Hence, as a consequence of Corollary 1.10, we obtain their asymptotic expansion away from the bulk.
We first collect some notations that appeared throughout the introduction, specialised to the case 8 = 2
relevant here:

Pux) =

(fBO]Q )//
[G] _ ~IG] {2G-2} [G] _ , {2G- 2+n} _ B
Wo;* =F, F[)’Ze , Wiy = Wi, T*——zm ,
and
k r [Gil\ (i)
Ky - N L u) (T, i)
M=yt Y (@) e,
r=1 Jlaerr 21 i=1
Gi.....Gr 20
ZGi—2+ji>0
L (2Gi=2+ji)=k
o £ N (L0 L NP
7 . _ - i3 L Yv® (X i
LOIEXT= 2,5 2 (® il ji! )X o
r=1 Jlaerr 21 i=1
Gr.....Gr >0
Alsenns n, >0
2G;-2+n;+j;>0
i1 2QGi=2+n;+ji)=k
where

WISHD (.. xn)—j{ 7{ W (£ € dE - dE
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Theorem 2.2. In the regime n, N — oo, s = & > 0 fixed, and Hypotheses 1.1 and 1.2 are satisfied, for
x € C\'S, we have the asymptotic expansion, for any K > 0,

LE" [ Whid]
P,(x) = exp( Z nz_zG_m—m! i )(1 + O(n_(K“)))
Kk q{k} .V €y
(Zk=0” T Ly 21”])1'}[ 0 (Lxl@l]ry)

X b
(2t 7] o)

where Ly = /D: For a given K, this expansion is uniform for x in any compact of C \ S.

We remark that £, [@] = /D: @ is the Abel map evaluated between the points x and co. The variable
s = 47 rescales the potential, and therefore, the equilibrium measure and all the coefficient of expansions
depend on s.

As such, the results presented in this article do not allow the study of the asymptotic expansion of
orthogonal polynomials in the bulk (i.e., for x € S). Indeed, this requires perturbing the potential V(1)
by a term —% In(A —x) having a singularity at x € S, a case going beyond our Hypothesis 1.3. Similarly,
we cannot address at present the regime of transitions between a g-cut regime and a g’-cut regime with
g # g’ because off-criticality was a key assumption in our derivation. Although it is the most interesting
in regard of universality, the question of deriving uniform asymptotics, even at the leading order, valid
for the crossover around a critical point is still open from the point of view of our methods.

2.4. Asymptotic expansion of skew-orthogonal polynomials

The expectation values of ]—[f.\i 1(x = 4;) in the B-ensembles for B = 1 and 4 are skew-orthogonal
polynomials. Let us review this point and just mention that the application of Corollary 1.10 implies
all-order asymptotic for skew-orthogonal polynomials away from the bulk. Here, the relevant skew-
symmetric bilinear products are

(Fohuper = [ dedy eV OVOD sgn(y =) £z ),

(Fehupes = [ @™V F0g' () = (0(0). @.5)
A family of polynomials (Py (x))n >0 is skew-orthogonal if
Vi, k>0, <Pj,Pk>n,/3 = (6).k-1 = 6j-1.k) hjinp-

For a given skew-symmetric product, the family of skew-orthogonal polynomials is not unique since
one can add to Pon 4 any multiple of P,y , and this does not change the skew-norms Ay . If we add
the requirement that the degree 2N term in P, 41 vanishes, the skew-orthogonal polynomials are then
unique. The generalisation of Heine formula was proved in [EynO1]:

Theorem 2.3. Let Py ., g be a set of monic skew-orthogonal polynomials associated to (2.5). We can
take
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2N
V/N;R
PZN;n,,B=1(x) = /J;lN,//gzl [l_l(x - /li)]’
i=1

2

N 2N
PaNntnp=1(x) = #;x/f];\fl(x + Z /11‘) l_[(x - ﬂi)l,
il =l

2N;R
PN p=4(x) = #nN\féJ [ (x = /11')2],

i=

N N
(x + 22/1,) l_[(x - /li)zl.
=1 i=1

i

z

—_

V /2N ;R
P2N;n,,3:4(x) = /J’]i],/éj;

Corollary 1.10 then determines the asymptotics of the right-hand side. The partition function itself
can be deduced from the skew-norms [Meh04]

N-1
V/2N;R
Z;N,/,B:I = (2N)! 1_[ Rjnp=1
j=0

N-1
V/(2N+1);R -
Zivpo " = QN+ DU ] e ‘/Re "I PN 10 (x)dx
j=0
N-1
V2INR _
Zy g2 = = N ] i, s
j=0

and conversely,

ZnV/(2N+2);R ZnV/(2N+2);R
n _ 1 2N +2,8=1 h _ N+1,p=4
NnB=l = (ON +2)(2N + 1) Z;}‘\;/;N;R ’ Ninp=4 = N¥1 Z;Véziv;ﬂi

It has been shown that this partition function for 8 = 1 is a tau-function of the Pfaff lattice [AHVMO02,
AvMO02]. Here, we obtain its asymptotic expansion from Theorem 1.5.

3. Large deviations and concentration of measure
3.1. Restriction to a vicinity of the support

Our first step is to show that the interval of integration in Equation (1.1) can be restricted to a vicinity
of the support of the equilibrium measure up to exponentially small corrections when N is large. The
proofs are very similar to the one-cut case [BG11], and we recall briefly their idea in §3.2. Let V be
a regular and confining potential, and p;fl;B the equilibrium measure determined by Theorem 1.1. We
denote by S its (compact) support. We define the effective potential by

UYB(x) = Vi (x) -2 /B Qigg(&) Inlx =&l Ugg®(x) = Ugg®(¥) = inf Ug®(€). (3.

when x € B, and +oco otherwise.

Lemma 3.1. If V is regular, is confining, and converges uniformly to V%" on B, then we have large
deviation estimates: for any F C B\S closed in B and O C B\S open in B,
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A 1 VB . :8 : 7V B
1 —1 =3 1,N o L eF] < -=inf U, ,
imsup 3 In s [30 € [1, N] €Fl <=7 ImflUeg™()
o] VB o, ) B . . ~vs
1}{,n_fgfﬁlnﬂN,ﬁ[31 e[ILN] : A4;€0]=> ~3 ;‘E%Ueq (x).

Definition 3.1. We say that V satisfies a control of large deviations on B if UQ{;B is positive on B \ S.

Note that Ue‘a;B vanishes at the boundary of S. According to Lemma 3.1, such a property implies that
large deviations outside S are exponentially small when N is large.

Corollary 3.2. Let V be regular, confining and satisfying a control of large deviations on B. Let A C B
be a finite union of segments which contains {x € B : d(x,S) < &} for some positive 6. There exists
n(A) > 0 so that

23 = I (1+0(e N 1)), (3.2)
and for any n > 1, there exists a universal constant y, > 0 so that, for any xi, . ..,x, € (C\ B)",
-Nn(A)
VB ViA Yne
|Wn (.X],...,Xn)—Wn (X],...,XyJ'SW. (3.3)

Note that if all edges are hard, we have B = S, and Lemma 3.1 and Corollary 3.2 are useless.
It is useful to have a local version of this result, saying that we can vary endpoints of the segments
which are not hard edges for the equilibrium measure, up to exponentially small corrections.

Corollary 3.3. Let V be regular, confining and satisfying a control of large deviations on B. Let A C B be
a finite union of segments which contains {x € B : d(x,S) < 6} for some positive 6. If ay is the left edge
of a connected component of A and a < ag and is not in S, let us define A, = AU [a, ag]. Forany e > 0
small enough, there exists ne > 0 so that, for N large enough and any a € (ao — €, ag) C B, we have

|0q In Z3 50| < e, (34
and for N large enough and any n > 1 and x1, ..., x, € (C\ A,p),
-Nng
BaWY A (xy, . xn)| € =S 3.5
aWVy (xl xn)| = ?:] d(xi,Aa) (3.5)

A similar result holds at the right endpoint of a connected component of A.

From now on, even though we initially want to study the model on BV, we are first going to study the
model on AN, where A is a small (but fixed) enlargement of S within B, as allowed above. In particular,
when S is a disjoint union of finite segments (Sh)]’fzo, we can take A to be a disjoint union of finite
segments (A, )f;:o such that Ay, is a neighbourhood of S, in B. More precisely, we can take as endpoints
of A points close enough to the soft edges of the equilibrium measure but outside of its support, while
the hard edges must remain endpoints common to S, A and B. We next state similar results for the fixed
filling fractions model of Section 1.4. Recall that part of the data defining this model is a sequence
(indexed by N) of g-uple of positive integers N = (N, ..., Ng) such that No = N — Zi:l Njp > 0 and
such that € = N/N converges to a point in

M=

& = {ee (0,1)% ( n < 1}.

h=1
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In this context, the effective potential is defined for x € A; by the formula
Uegie () =V (x) -2 / dptege (€) Inx =€l Uege (0) = Uegie (v) = inf Uggie (£),
A

and for x ¢ A, we declare Ue‘fl;;? = Uglgﬁ‘ = 400,

Proposition 3.4. If V is regular, confining and uniformly to V% on A, then for any closed set F and

open set O of R,
. L. va . B VA
h]{[n_s)ipﬁln,uN’B;N/N({Elz e[LN] : XeF})< -5 in inf Ueqe(x),
N . B
I%n_}glolenpNﬁN/N ({Fie[LLN] - /liEO})>—§ lnquE(x)

Moreover, Corollaries 3.2 and 3.3 also extend to this setting.

We may omit the superscript A in the equilibrium measure, the effective potential, etc. when it is
clear that we work with the compact set A.

3.2. Sketch of the proof of Lemma 3.1

We only sketch the proof since it is similar to [BG11] as well as [AGZ10, section 2.6.2]. The only
technical difference is that the lower bound is achieved here by introducing the functions Hy . and ¢ g
below rather than localising Ly _; to probability measures on some smaller sets than B in [BG11]. We
first give the proof for the initial model and at the end of the proof precise the necessary changes to deal
with the model with fixed filling fractions.

Recall that Ly = N~! Zf\i 1 0.4; denotes the normalised empirical measure. We observe that

Yap® )2 (F)

YV B(B) {31 e[LN] : 2, €F}) < NYVT(B) (3.6)

where, for any measurable set X,
YN0 = uy lﬁ[/df exp |~ "L vie) + (v - 1)/3/dLN () Infé - AI}]

We shall hereafter estimate +- N In YV B (X)

We first prove a lower bound for YV (X) with X open in B. For any x € X, we can find € > 0 such
that (x —&,x+ &) NB C X. Let

0p = max |V(0) -Vl
x,y€B
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Using twice Jensen inequality and the convention V(&) = +oo for & ¢ B, we get

15002 kf55 | [ acen |- L+ v-np [avamie-a))|

—-&

> e (V(x)+6V) N IB[/ dé exp (N—l),B/dLN 1(AD) In|é - /1|}]
> 2g ¢~ 7 (V(0+0Y) eXp{(N 1)ﬁﬂN 12[/dLN—1(/1) Hx,g(/l)]}

B
> 20 H VO 0 [V - D | [ aLna (D bk DHD]

where we have set

o= [ mle-al

and ¢, g is a continuous function vanishing outside of a large compact K that includes the support of
,uf‘:f], is equal to 1 on a ball around x with radius 1 + £ and on the support of ,uf‘:f], and takes values in
[0, 1]. For any fixed € > 0, ¢ x - Hy . is bounded continuous, so we have by Theorem 1.1

YV B(X) > g et (V(x)+sY ) exp {(N— l)ﬂ/dyeq(/l) Ox.k(A) Hy (1) + NR(e, N)}

with limy e R(e, N) =0 for all € > 0. Letting N — oo, we deduce since
[0 0k Heo) = [ aty) B,

and since V converges uniformly towards V{°}, that

B vo B
li inf ﬁ Yy E00 > 2oy -2 (V{O}(x) -2 dul, (1) Hx,g(ﬂ)).

Exchanging the integration over ¢ and A, observing that & — fB d,uéf](/l) In|¢€ — A| is continuous and
then letting £ — 0, we conclude that for all x € X,

1 VB VB
lgn_}gfﬁ InY 5(X) > —-= U (x), 3.7

where we have recognised the effective potential of Equation (3.1). We finally optimise over x € X to
get the desired lower bound. To prove the upper bound, we note that for any M > 0,

ﬁ(x) </JN 1[3

/d.f exp{— N—V(§)+(N— I)B/dLN 1(1) Inmax(|& — A, M~ )}]

Observe that there exists Cp and ¢ > 0 and d finite such that for |£| > Cy and all probability measures
ponB,

Wu(é) =V () - 2'/de(/l) In max (|¢ —/II,M_I) >cln|é|+d

by the confinement Hypothesis 1.1. As a consequence, if X ¢ B\ [-C, C] for some C large enough, we
deduce that
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Y,‘\/,;%(X) < /dfe—fg\/(g) e—(N—l)/g(cln|§|+d) < e—N%clnC’ (3.8)
’ X

where the last bound holds for N large enough. Combining Equations (3.7), (3.8) and (3.6) shows that

1 .
limsuplimsup—ln,ux’B ({Fie[LN] : 4] >C})=-c0.
C—ooo N-ox N B

NV .
Hence, we may restrict ourselves to X bounded. Moreover, the same bound extends to x:‘l’ 5 50 that we
can restrict the expectation over Ly _; to probability measures supported on [—C, C] up to an arbitrary

small error e~ V¢(©) | provided C is large enough and where lim¢c_,4o0 ¢(C) = +co. The confinement
hypothesis also guarantees that V(&) — 2 /B dLy_1(2) Inmax(|é - 2|, M ") is uniformly bounded from

below by a constant D. As 4 — In max(|§ -, M ‘1) is bounded continuous on compacts and M-
Lipschitz on R, we can then use the large deviation principles of Theorem 1.1 to deduce that for any
g > 0,any C > Cy,

Yz‘\//;z(x) < V?R(£.N.C) 4 ,~N(e(C)-5D)
d _Ng _ v _ -1
+ §ap-7W@HN1MBM@MMmM AL, M)+ NMe
X
with

. 5 . 1 MB
limsup R(e,N,C) = hmsupm lnpl’\‘]’:‘lﬁ({LN_l([—C,C]) =1}n {b(LN_l,,u;fl) > e}) <0.

N —o0 N>

In terms of the Vaserstein distance between two probability measures,
d(u,v) =sup {|/f(§)d[,u -] (f)‘ : f:R—>R 1-Lipschitz}.
R

Moreover, & — V(&) — 2 /B d,uéfl(/l) Inmax(|¢ — 4|, M ‘1) is bounded continuous so that a standard
Laplace method yields, as V goes to V {0},

1 . D
liI{jn_sgp N In Y,‘(,:;(X) < max{— érg( [’g(v{O}(f) - Z/Bd,uxl(/l) In max (|€ - A, M‘l))], 57

—e(C)}.

We finally choose C large enough so that the first term is larger than the second. Then, by the monotone
convergence theorem, we deduce that /B d,ugf] (1) Inmax(|€ — 2|, M ‘1) increases as M goes to infinity
towards fB dugl(/l) In |¢ — 2|. This completes the proof of the large deviation in the initial model.

For the fixed filling fractions model, we make the decomposition

g
a3 elLND o diex)]= 3l {3 e LNl ds € X0 A},
h=0
with
Y8 (XN AL) Y58 (XN AL)
S s B @I bexna)] NS
YN:ﬁ,h(Ah) o YN:B’h(Ah)
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and

NB

80w =it ([ aeeo{- L@ o= [anwwmle-a)))

XNA,
where € — 1, /N corresponds to the filling fraction where one eigenvalue has been suppressed from Ay,.
The estimates for YV 2 »(XNA) are done exactly as above and the result follows since the logarithm of
a finite sum of exponentlally small terms is asymptotically equivalent to the logarithm of the maximal
term.

3.3. Concentration of measure and consequences

We will need rough a priori bounds on the correlators, which can be derived by purely probabilistic
methods. This type of result first appeared in the work of [dMPS95, Joh98] and more recently [KS10,
MMS12]. Given their importance, we find useful to prove independently the bound we need by elemen-
tary means.

Hereafter, we will say that a function f : R — C is b-Holder if

k[ f] = sup L SO

X#y |x — y|b

Our final goal is to control fA px)d[Ly - /ng] (x) for a class of functions ¢ which is large enough
and, in particular, contains analytic functions on a neighbourhood of the interval of integration A. This
problem can be settled by controlling the ‘distance’ between Ly and ug] for an appropriate notion of
‘distance’. We introduce the pseudo-distance D between probability measures y, v given by

(// b=Vl (d[u —v](y)1n|x—y|)2. (3.9)

It can be represented in terms of Fourier transform of the measures:

Dlu.v] = (/O %I(ﬁ—ﬂ(p)lz)z. (3.10)

Since Ly has atoms, its pseudo-distance to another measure is, in general, infinite. There are several
methods to circumvent this issue, and one of them, that we borrow from [MMS12], is to define a
regularised measure Z‘]‘\, (see the beginning of §3.4.1 below) from L . Then, the result of concentration
takes the following form:

Lemma 3.5. Let V be regular, C3, confining, satisfying a control of large deviations on A and satisfying
(1.8) for K = 0 (namely, N(V — V1O is uniformly bounded by a constant v'} on A). There exists C > 0
so that, for t small enough and N large enough,

VA -~ o
”N,B(D[LuN,,u;a] > t) < ¢CNIN-N1

Moreover, for any N = (N1, ...,Ng) so thate = N/N € &,

. ~ _N2:2

1 e (DILY s el = 1) < OV INNTE (3.11)
We prove it in §3.4.1 below. The assumption V of class C3 ensures that the effective potential (3.1)

defined from the equilibrium measure is a 5 1 _Holder function (and even Lipschitz if all edges are soft)

on the compact set A, as one can observe on Equation (A.9) given in Appendix A. This lemma allows
an a priori control of expectation values of test functions.
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Corollary 3.6. Let V be regular, C3, confining, satisfying a control of large deviations on A and satisfying
(1.8) for K = 0 (namely, N(V = V) is uniformly bounded by a constant v{'} on A). Let b > 0 and
assume ¢ : R — C is a b-Holder function with constant kp,[¢] such that

1
—~ 2
b= ( [ an1plpoP) <.
Then, there exists C3 > 0 such that, for t small enough and N large enough,

[¢]

_Bn2s2
] faten = o] = R el 5 B

and for any N = (N1, ..., Ng) sothate = N/N € &,

2kp [ ]

CsNInN-EN22
~ (b+1)N? ’

VA
|| [ Aty = i e > tilela] < e
As a special case, we can obtain a rough a priori control on the correlators. Recall the notation, for
eeé,

dult
{ 1}( )_A :L;q;;f).

Corollary 3.7. Let V be regular, C3, confining and satisfying a control of large deviations on A. Let
D’ > 0and

V| Iné| D’
wny = VNInN, J) = s d(x,A) =inf |[x = ¢| > ——.
=Y 16) = ¥ () = inf £l 2 e

There exists a constant y1 (A, D’) > 0 so that, for N large enough, for any N = (Ny, ..., Ng) so that
e=N/Neé&

Wiie(x) = NW P (@)] < yi(A D) wy f(d(x.A)). (3.12)

Similarly, for any n > 2, there exist constants y, (A, D) > 0 so that, for N large enough,
We (1 xa)| < vu (A DY wi [ | Fd(xi, A). (3.13)

In the (g + 1)-cut regime with g > 1, we denote (S;,)o<n <, the connected components of the support of
,ueq, and we take A = | J% =0 An, where A, = [a,,a;] C B are pairwise disjoint bounded segments such
thatS;, c Aj,. For any configuration 1 € AN, we denote N, the number of A;sin A, and N = (Np)1<p <g-
The following result gives an estimate for large deviations of N away from Ne, in the large N limit.

Corollary 3.8. Let A be as above, and V be C3, confining, satisfying a control of large deviations on A
and leading to a (g + 1)-cut regime. There exists positive constants C, C’ such that, for N large enough
and uniformly in t,

NS (IN = Neuli > 1N InN) < NN (C=C'r?) (3.14)

As an outcome of this article, we will obtain in Section 8.2 a stronger large deviation statement for
filling fractions when the potential satisfies the stronger Hypotheses 1.1-1.3.
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3.4. Concentration of Ly : proof of Lemma 3.5

Throughout this section, proofs will be given for the initial model. They are exactly the same for the
fixed filling fractions model.

3.4.1. Regularisation of Ly
We start by following an idea introduced by Maida and Maurel-Segala [MMS12, Proposition 3.2]. Let
on,nN — 0be two sequences of positive numbers. To any configuration of points 1; < ... < Ay inA,
we associate another configuration A, ..., Ay by the formula

A=A, A =4+ max(in — A, o). (3.15)
It has the properties

Vi # Jj, |4 - ;| = o, |4 = 4] < |4 = 4], = < (i—Doy. (3.16)

Let us denote by Ly = ﬁ > f\i | 07. the new counting measure. Then, we define lelv be the convolution

of Ly with the uniform measure on [0,nnOoN]. _
We are going to compare the (opposite of the) logarithmic energy of Ly to that of LY,, which has
the advantage of having no atom. We first have

Zlnui—/m lenﬁi—/TA (3.17)

i#] i#]
because the logarithm is increasing and the spacings of 1s are larger than the spacings of As. Let
Sl = [ 0l = sldu(duc

denote the (opposite of the) logarithmic energy of a probability measure u. Then,

N
N22[Z“N]—Zln|1i—1j|=2// dudvln‘1+r]N0'N (=) +Z// dudvin|pyon (u=v)|.
[0.1]2 A= A1 Meap

i#j i#j

Thanks to the minimal distance oy enforced between the ;s in Equation (3.16), on ’(u -v)/(A; - /ij)\
is bounded by 1, so that for ny < % (thus for N large enough),

Z/ dudvln‘1+77N0'N(~u_z)‘
P JJ[0,1]2 A=A

it] i

< 2N(N— 1)7’]1\] .

i J

Since (u,v) — In|u — v| is integrable in [0, 1]?, we find for some constants c1, ¢y > 0,

|Zln|1,-—1j|—zv22[z;‘v]
i#j

< ciN|In(pyon)|+ c2N*n,

so that finally, with Equation (3.17), we have proved that for any (1;);<;<ny € R",

Zln |4 = ;] < N*S[L%]+ciN|In(pyon)| + eaN* i (3.18)
i#j
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Besides, if b > Oand ¢ : A — Cisab-Holder function with constant «5, [ ¢ ], we have by Equation(3.16),

ple] <

N

IA
X

(G-Don + UNO'N)b

| [y =100 o)

i=1

IA

N
2
“b][v‘”](afvn?w;(i_l)b Len)?) < 228 (o) 3a9)

3.4.2. Deviations of Z‘;V

We would like to estimate the probability of deviations of Z“N from the equilibrium measure yéfq.
We need first a lower bound on ZX,Z similar to that of [BAG97] obtained by localising the ordered
eigenvalues at a distance N3 of the quantiles /llc.' of the equilibrium measure yevq, which are defined as

/lf‘:inf{xeA : peg([—e0,x]) z%} ie[LN].

Since V is C?, d,ue‘él has a continuous density on the interior of its support, which diverges only at hard
edges, where it blows at most like the inverse of a squareroot and vanishes only at soft edges. Therefore,
there exists a constant C > 0 such that, for N large enough,

vi e [2,N], % < s, (3.20)

Then, since V is a fortiori C! on A compact,

N
BNy (e
zvgem [ [T 1 -2 esi-af [T =Vt as,
[6:1<N7 icion i=1

N
- - _NB ywN cl
> NINNeON T gt = ag)f [ [em ™ Za VD,

1<i<j<N i=1
for some constant C; > 0. Then,
N-1
cl cl cl cl cl cl
Z In a5 — 9| = Z In |45 = A%'] + Z In 28 =2 |
1<i<j<N 1<i,j<N i=1

i+1<j

\%

In |45t = A%, [+ (N = 1) In ()
1<i<j<N-1

> NZH// In |x—y|dy¥(x)d,u¥](y)+(N— 1) In (357)
/l°l<x<y</l§\l/

N2
> — In |x — yldy;f](x)dyéf](y) +(N = 1)In(557)
2 [/IT]’/lj\ll]z

N2
> — [ In|x = yldug (0)duly () = = [ .cp Inlx = yldul (x)dug (v)
2 A2 </lcl
N? % v
_ 7“//;/1?‘ In [x = y|dueq (xX)dpeq(y) + (N = 1) ln(ﬁ)

cl
y<af
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2
> — // In |x — yldugq (x)duy (y) - e /y o (C+ VO (y)duk, ()

2
Y /ﬁmellnlx yldudy (0)duly(y) + (N = 1) In (). (3.21)

y</1°1

Between the first two lines, we used Equation (3.20) to get a lower bound for the second term. In the
third line, we have used the fact that the logarithm is an increasing function. In the fourth line, we
have symmetrised the integral. In the fifth line, we observed that the definition of /13\1, implies that ,uéf]
has support included in A_ := AN (=0, A% ] and completed the square domain [4S', 1%, ] to A* while
subtracting the extra contributions coming from this procedure. In the last line, we used the equality
case of the characterisation of the equilibrium measure. Since duéﬁl has a continuous density possibly

o 10 e = yldpgg ()
is uniformly O(InN) for y € A_ (recall that A_ is compact since A is). Since ug ((—e0, A1) < + by
definition of /lcll, we deduce that the first term in the last line of Equation (3.21) is O(N In N). Besides,

V19 4 C is continuous and hence bounded on A compact, showing for a similar reason that the last term
in the penultimate line of Equation (3.21) is O(N). All in all, this shows the existence of a constant C;
such that for N large enough,

blowing up like @ an inverse squareroot at the endpoints of its support, y fx

Doomi -2z Y g - a8 - GNInN.

I1<i<j<N 1<i<j<N

Next, we have

N
= D - [ v

v e
N ‘/qul V(X)dﬂéfl(X)+;/Agl (V) = V(x))duy (x)

2||V||A A
HIVIA Z / b = A5, (o)

2I|V||A IIV’ I8 L 2IVIS + GV
Z(/ll+1 /lf) = N

for some constant C3 > 0. Then, as N~ Zf\i | 001 is a sequence of measures converging to the minimiser
,uéfl of the energy functional E introduced in Equation (1.5), we find

AR exp{ - §C4NlnN—N2E[u¥l]} (3.22)

for some positive constant Cj. _
Now, consider the event Sy (1) = {D[LY,, ud] = t}. Observing that

N
1
MN[;(SN(I)) v»A/ e[zi(thjln|/1i—/lj|—N2fAdLN(x)V(x))I Id/li
Zy' g JSn(0)

and using the comparison (3.18) of §3.4.1, we find, with the notations of Theorem 1.2,

[;RN .3N2 Tu Tu {0} N
MN ﬁ(SN (t)) vV, A / eT(Z[LN]_'&dLN(X) V) l_[ dﬂi,
Z Sn (1) i=1
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with
Ry = N3on k1 [V] +02N217N +ciN|In(onnn)| + Nyl

We then decompose

B

EILY) = 5 (2130 + [ 4By V)
- E 5(/AU€VCI(x)d[ZuN — dp¥ ] (x) + D[LY ,ﬂ;]).

(] +

The effective potential U, 1s defined in Equation (3.1), and since it is integrated against a signed measure
of zero mass, we can add to it a constant and thus replace it with U‘Xl. According to the characterisation
of the equilibrium measure, ﬁe‘fl vanishes ye‘zl-everywhere. Hence,

EILY) = Elut) + 5 (DTt + [ 000428 (o).

and we obtain

SRN-N2E[u¥]

_ N
#1\\/];,/;(81\[ (t)) < T/ e (DZ[LN N4 +fAdL}'V(x) Ue‘g(x)) l—[dflz
ZN:/j Sy (1) i=1

Since U is at least %-Hélder on A (and even Lipschitz if all edges are soft), we find by Equation (3.19),

- s 1
o5 Ry+ap (UG IN2 o) -N? E[u]

N
BN g2 _BN i
Hy ﬁ(SN([)) VA / e DALY peg] | | 7 Uea () g,
ZNB SN(t) i=1

We now use the lower bound (3.22) for the partition function and the definition of the event Sy (¢) in
order to obtain

1
(SN(t)) < ez(RN+K1/2[Ueq]N%o‘13,+C2N1nN—N2t2)(/d/le NG ‘g(/l))N

<e B(RN+CoNInN- N“)

with

- ~ 1 2N

Ry =Ry +ip[U%I N3o) + 5 In¢(A). (3.23)
Indeed, since UV is nonnegative on A, we observed that the integral in bracket is bounded by the total

length £(A) of the range of integration, which is here finite. We now choose

1 1
ON = —=, T]Nzﬁa

T (3.24)

which guarantees that Ry = O(N In N). Thus, there exists a positive constant C3 such that, for N large
enough,

HNn ,B(SN(I)) < ez(C3N1nN N2t z)
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which concludes the proof of Proposition 3.5. We may rephrase this result by saying that the probability

of Sy (t) becomes small for ¢ larger than w

The proof of (3.11) for fixed filling faction is similar since the same algebra holds, cf. Equation (A.4)
(with measures with same mass on the Ay).

3.5. Large deviations for test functions

3.5.1. Proof of Corollary 3.6
Since ¢ is b-Holder, we can use the comparison (3.19) with oy = N3 chosen in Equation (3.24):

| / Ly - L%] (x)w(x))_ﬁ (3.25)

Then, we compute in Fourier space and using Cauchy—Schwarz inequality
- v =u v = dp , =¢ v b 3
| [ - sl 00| = | [ ap(Ty ~m) ) )] < el [ TEIEn - i) (0F)
we recognise in the last factor the definition (3.10) of the pseudo-distance:
| [T =110 000)] < V2 ligh o DIy ) (3.26)

Corollary 3.6 then follows from this inequality combined with Lemma 3.5.

3.5.2. Bounds on correlators and filling fractions (Proof of Corollary 3.7 and 3.8) _
LetA, ={x €R, : d(x,A) <n}. As we have chosen oy = N~ and ny = N™', the support of LY is
included in A, ys3. If 1 is a probability measure, let V), denote its Stieltjes transform. We have

Wiy =W,y ) (x) —/ [Ln = kgl @) Yx(€), ¥x(&) =93 (&) +iyL(é) = T (3.27)
Since ¥ is Lipschitz on A, 3 with constant k1 [y ] = d”~ 2(x, Ay N3), we have for d(x,A) > Ni
3
Wiy () = Wiy ()] < VEGR (3.28)

We focus on estimating W7, — Wﬂxg. We have the freedom to replace % by any function ¢5 which
N e

coincides with /5 on A,y since the support of Z“N and uf‘:f] are included in A, . Then,

|W‘u (x) =W v(x)| V2(|¢R 112 + 6L 2) DIL N’Heq] (3.29)

We wish to choose ¢3 so that our estimates depend on the distance to A, ;3 (Whereas the choice of the
function ¢% would only gives bounds in terms of the distance to the real line and therefore would not
allow bounds for x € R\A,,y3). We now explain a suitable choice of ¢3. Let a, j, o/n3 € Aj o3 the
point such that d(x, Ay, 5/n3) = |x — ay j 2/n3|- Then, for & € A, /3, we have

1
d(x, Apoyn3)? + (€ —ay pon3)?

(w2 (©)] <
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and therefore,

1

VEe Ay W) @) < Z T vy e rr—— (3.30)

Then, we take a function (¢%)” which coincides with (¥3)” on A2 and extends it continuously on R,
with compact support included in [ -5 ] for some M large enough, independent of N, and such that

g

1
Ve ek, RAQIE . 331
£ e 162 (©)] hZO T S I T — (331)

We denote ¢}, an antiderivative of this function and use it in Equation (3.29). We compute
— 1 —
630 = [ IP1FE@)Pap = [ 1T )Py
R = Pl
-2 [ Inler - el (6@ (60 @)ty

<2 /]R [In|£1 = &1[1(63) ED11(83) (£2)|dé1dé. (332)

We note that, for any aj,ar € [-M, M], by, by € R, we can find a finite constant C (depending only
on M) such that

B dé dé C
JRLE o e T R ey S gl el

So after we insert the bounds of (3.31) in (3.32), we obtain
o D lnd(x,Az/Nz)
05 < A
d*(x, Ayn3)
for some constant D > 0 depending only on A, ys. If d(x,A) > % and for N large enough, we can
also write with a larger constant D,
< D Ind(x,A)
i¢x’1/2 - dz(x,A)
Then, with Equations (3.25), (3.27) and (3.26),
W) = W,y (0] = i Wi () = Wy )|

L3 +2D\/m_NJ|1nd(x,A>|.
N2d?(x,A) N  d(x,A)

If we restrict ourselves to x € C \ A such that
DI

d(x,A) > —o
VN2InN

for some constant D’ > 0, then

InN +/|Ind(x,A)]

! W1 (x)-W v(x) < (2D + D”)\/ A A)

for some constant D’/ > 0.
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Now let us consider the higher correlators. For any n > 2, the same arguments show that there exists

D’
A) > ——
a finite constant c¢,, so that for any x; such that d (x, s ) TR

(1) = uxi’;[]i[wm - W) )|

satisfies

V| Ind(x;, A)

|my, (X1, ..., x0)| < Cn(NlnN) 1_[ d(x;, A)

As W,‘l/ Aisa homogeneous polynomial of degree n in the moments (7 )] <k <n, We conclude that

V| Ind(x;, A)
Wo(x1,....x0)| < yn (NInN)> .
[Wa 1. ...xn)] < 7 (NI N) 1_[ Ty
for some constant y,, > 0, which depends only on A. This concludes the proof of Corollary 3.7.
Similarly, to have a control on filling fractions, we write

Ny~ Newn =N /A d[Ly - p¥1(€) 1, (©).

Following the same steps to extend the function x — 14, (x) initially defined on A by a function defined
on R and with finite | - |;» norm, we can apply Corollary 3.6 to deduce Corollary 3.8.

4. Dyson-Schwinger equations for S ensembles

LetA = U o An be a finite union of pairwise disjoint bounded segments, and let V be a C! function of

A Dyson—Schwmger equations for the initial model ,u N, ” can be derived by integration by parts. Since
the derivation does not use any information on the location of the s, it is equally valid for the model
with fixed filling fractions u N ,8 , in which Nej, = Nj, are integers.

Since these equations are well known (and have been reproved in [BG11]), we state them without
proof. They can be written in several equivalent forms, and here we recast them in a way which is
convenient for our analysis. We assume that V extends to a holomorphic function in a neighbourhood of
A, so that they can be written in terms of contour integrals of correlators — an extension to V harmonic
will be mentioned in §6.1. We introduce (arbitrarily for the moment) a partition dA = (9A); U (0A)- of
the set of edges of the range of integration, and let

Lw= [] &-a, Lixé=

a€e(OA)-

L(x) - L Li(x,&)— Li(x,
(Xi_f(f)’ Lo(x: 61, 6) = 1 (x 5;3_521(16 52).

“.1)

Theorem 4.1. Dyson—Schwinger equation in one variable. For any x € C\ A, we have

0= Wa(x,x) + (Wi (x))> + (1 - %)axwl (x)

_N?[d_fL(f) VOmE© 2 L(”)a Izl

A 2im L(x) x—£ Bae(@A) —-a
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2 dé Ly(x;€,€)
+(1‘/§) A2in L(x)
_j][[ dé1dés Lo(x; €1, &)

n (2in)2 L(x)

Wi(é)

(W (&1, &) + Wi (£DW1(£2)). 4.2)

And similarly, for higher correlators, we have the following:

Theorem 4.2. Dyson—Schwinger equation inn > 2 variables. For any x,x,, . . ., x, € C\ A, if we denote
I =[2,n], we have

2
0= Waat (56,00) 4 37 Wagoa (660 Wacg (x ) + (1= )00Wa (1)
JcI

dg L&) VI Wa(&.x) 2 L(a)
- N Aﬂ L(x) x—é‘: _Eae(zaA)+TaaaW11—l(x1)

2 dé L(&) Wa1(€xn\3iy) 2 dé Lr(x;¢.8)
+E,~Z€1:-7§_ 15, TG +(1——)}£—Lwn(§,xl)

2in L) (x-&)(xi - €)? Bl Ja2in ~ L(x)

dé;d ;
—ﬁz élﬂ)iz LZ(JZ(il)’&) (Wn+1(§la§2,xl)+JZQW#J+1(§1,3CJ)Wn#J(f%xl\]))- (4.3)

The last line in Equation (4.2) or (4.3) is a rational fraction in x, with poles at a € dA, whose
coeflicients are linear combination of moments of A;.

We stress that the Dyson—-Schwinger equations are exact for any finite N and hold for any choice of
splitting A = (dA), U (0A)_. Note here that L, L, L, depend on A_ so that, in fact, all the terms except
those in the first line of Dyson—Schwinger equations depend a priori on this splitting. Later, when we
perform a large N — oo asymptotic analysis, we are led to distinguish soft edges and hard edges (this is
a property of the equilibrium measure). It will then be convenient to declare dA_ to be the set of hard
edges and A, the set of soft edges. This will have for consequence that the simple poles in (4.2)—(4.3)
at x = a € dA, have exponentially small residues and therefore can be neglected to any order O (N—K)
in the asymptotic analysis.

5. Fixed filling fractions: expansion of correlators
5.1. Notations, assumptions and operator norms

The model with fixed filling fractions corresponds to the case where we condition the number of
eigenvalues in each segment Aj, to be a given integer Nj. We set €, = Ny /N for h € [0, g] and
€ = (e,..., eg). Throughout this section, the equilibrium measure, the correlators W, = W,., etc.
all depend on €. The vector e itself could also depend on N, but this dependence will remain implicit.
Accordingly, all coefficients we will find in the asymptotic expansion of the correlators will implicitly
be functions of €.

As explained in Section 4, the correlators in the fixed filling fractions model satisfy the same Dyson—
Schwinger equation as in the initial model. We analyse them under the following assumptions:

Hypothesis 5.1.

o Ais a disjoint finite union of bounded segments A, = [a,, a; ].

o (Real-analyticity) V : A — R extends to a holomorphic function in a neighbourhood U € C of A.

o (Expansion for the potential) There exists a sequence (V {¥}); 5 of holomorphic functions in U and
constants (v{%}); 5, so that, for any K > 0,
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sup
&el

K
k=0

o ((g + 1)-cut regime) The probability measure ugfl;e is supported on S which is a disjoint union of

(g +1) segments S, = [, ,a;] € A,. We set Wl{_l} to be its Stieltjes transform and recall that
dim (VWi - wiT @) =0,

uniformly for x in any compact of C \ A.
0}y
o (Off-criticality) y(x) = M - Wl{fl}(x) takes the form

g
y(@) = 5@ [ [ - ap)i - apprn, (5.1)

h=0
where S does not vanish on A, a,‘l are all pairwise distinct, and p;l = —1if a/;l € 0A, and p;l =1

otherwise.

Later in Section 8, we will come back to the analysis of the initial model, which has ,uéfl = yéfl;s* as
equilibrium measure. We will show in Lemma A .2 that the initial Hypotheses 1.1-1.3 imply the present
Hypotheses 5.1 for € in some neighbourhood of €,; in particular, the off-criticality assumption (5.1) is
verified, making the results of the present section applicable.

)

.....

Definition 5.2. If 6 > 0, we introduce the norm || - || 5 on the space 7—[,(,?1 m, (A) of holomorphic
functions on (C \ A)" which behave like O(ﬁ) when x; — oo:

Iflls= sup  |fCxi.ooxn)l = max — [f(x1,....x0)l,
min; d(x;,A) >3 min; d(x;,A)=6

From Cauchy residue formula, we have a naive bound on the derivatives of a function f € Hil) in
terms of f itself:

m+1

2mC
105" f ()l s < g 1/ 1l5/2-

In practice, we will take ¢ independent of N, and therefore, the constants depending on ¢ will not matter.

Our goal in the next section is to establish under Hypothesis 5.1 below an asymptotic expansion for
the correlators when N — oo, exploiting the Dyson—Schwinger equations. We already notice that it is
convenient to choose

(0A): ={a;, € (OA) : p; ==1}

as bipartition of dA to write down the Dyson—-Schwinger equation, since the terms involving d, In Z
and 9, W, for a € (0A), will be exponentially small according to Corollary 3.3. If a = a}, we denote
a(a) =aj;.

To perform the asymptotic analysis to all order, we need a rough a priori estimate on the correlators.
‘We have established in §3.3 (actually under weaker assumptions than Hypothesis 5.1) that for any 6 > 0,

W, - Nw s < €1(5) VN TN, (5.2)
and for any n > 2,

[Walls < Cu(6) (NInN)Z . (5.3)
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5.2. Some relevant linear operators

In this subsection, we give the list of linear operators that are used in §5.3.1 to recast the Dyson—
Schwinger equations in a form suitable for the asymptotic analysis. The precise expression of these
operators is not essential, but we establish bounds on suitable operator norms that are needed later in
the analysis.

5.2.1. Periods
We fix once for all a neighbourhood U of A so that S has no zeroes in U, and pairwise nonintersecting
contours A = (Ap)i<n <g surrounding Ay, in U. It is not necessary to introduce a contour surrounding

Ay since it is homologically equivalent to — }glzl Ay, in C \ A. We define the period operator £ 4 :
Hil) — C8 by the formula

dg dg
Lalfl=(§ ser@. . § @), (54)

A, 2im A, 207
By Cauchy residue formula, the periods of the Stieltjes transform of the empirical measure are the filling

fractions:
dL
ﬁA[x'_)/ N(f)]zf
A X—=&

Since the (W,,),,>1 are cumulants and the € are fixed (see the remark in Section 1.4), we have

LaA[Wn(e,x2,...,x,)] =0pn,1 N€. (5.5)

In other words, we know that in the model with fixed filling fractions, the correlators (as functions of
one of their variables) have to satisfy the g constraints (5.5).

Definition 5.3. If X is an element of (C8)®", we define its L'-norm:
IX1 = Z | X, ... |-

5.2.2. The operator K
We introduce an operator IC which is the linearisation around the equilibrium measure of the generator
of Dyson—Schwinger equations. It is defined on functions f € 7—[51) (A) by the formula

dé TLE) (VIO

{-1} (4.
2in ¢ + P (x| f(8), (5.6)

KL =20 () £ () ﬁ f\

where x is outside the contour of integration and
_ dn _
e = f SLatateen W ).
A 41T

We remind that L(x) = [],¢(pp)_ (x—@(a)) and L, was defined in Equation (4.1). Notice that Wl{_1 } (x) ~
% when x — oo, and P~} (x, &) is a polynomial in two variables, of maximal total degree [#9A_| — 2
(and it is zero if [#0A_| < 2). Hence, we have at least IC[ f](x) = O(%) when x — co. This gives us a
linear operator:

K HD(A) = HD(A).
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Notice also that

¥ = 5 =W W = ST (5.7)

where L(x) = [Tae(on), (x—a(a)), and by the off-criticality assumption the zeroes of S are away from A.
If we define

o) = \/ [ (-t = Loz,
ac(dn)

we can rewrite

ox) _ L)
Y TS0 G
Then,
KL = =2y () £ (x) + Q[Lﬂgx), (5.9)
where

+ PN (8| £(8).

{0}y _ {0}y
Qlf1(x) = —j{ % L) (v (f;_gux) (VO (x)

For any f € ”H;D (A), x — Q[f](x) is holomorphic in a neighbourhood of A. It is clear from
Equation (5.6) that Im C C Hil)(A). Letg eImKand f € H;l)(A) such that ¢ = KC[ f]. We can write
dg o (§) f(£)

dg —u - ¥
@) £ =) - § 35 T

o (x) f(x) = Res

where

Y (x) =— Res

dé
Res = (&) /(). (5.10)

Since f(x) = O(X—lz), ¥ (x) is a polynomial in x of degree at most g — 1. Recall that /[ f] = ¢. We then

compute
R
df P 1
AR A el LOLGREI RG]
Cy+ g L LO s

217T E—x 2S(§)

using the fact that S has no zeroes on A and Q[ f] is analytic in a neighbourhood of A. Let us denote
G:ImK — Hél) (A), the linear operator defined by

N 1 L)
¢lx) = o-(x) jg217r§ xZS(f) #(£). (5.12)
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One deduces

YW

o(x)

J(x)

+(G o K)[f](x). (5.13)

5.2.3. The extended operator iC and its inverse

It was observed in [Ake96] that ¥ (x)dx/o (x) defines a holomorphic one-form on the compactification
¥ of the Riemann surface of equation o> = [Taec(on) (x —a(a)). The space H 1(2) of holomorphic one-
forms on X has dimension g if all @(a) are pairwise distinct (which is the case by off-criticality) and the
number of cuts is (g + 1). So if g > 1, K is not invertible. But we can define an extended operator:

K #HM(A) — ImK xC?
f— (KLf1. Lalf]). (5.14)

Since (xj‘ldx/C(x))OSisg_
a basis of H'(X) which can be thus identified with C(x)™" - Cg-1[x], where C,_1[x] is the set of
polynomials in x of degree < (g — 1). However, the family of linear forms £ 4 defined in Equation (5.4)
is linearly independent (see, for example, [FK07]), so it determines a unique basis

, is linearly independent over C and holomorphic one-forms on %, it forms

Y (x)
o(x)

wp(x) = eo(x)™ - Cylx] (5.15)

such that

Vi i e [1,g], j{ @ (x) dx = . (5.16)
Ap

Therefore, we can define an operator E;{ :C8 s o(x)7! Ce-1lx] € Hél) by the formula
g
LA w] = th @ (x). (5.17)
h=1
We deduce that K is an isomorphism. Indeed, IE[ f] = (¢, w) if and only if we have, according to

Equation (5.12),

Fl) = % FGoK)fI).  and  Lalfl=w. (5.18)

Plugging the first equality into the second, we deduce
¥ _
La| s+ (GRS =w.
which is equivalent to

¥ (x)

o(x)

=LA[w—La[(GoK)f1]] = LA[w - LalGle]]] -

Plugging this back into Equation (5.18), we deduce that K is invertible, with inverse given by

K~ o, wl(x) = L4 [w - La[Gle]]] () + Gle] (%), (5.19)
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where G is defined in Equation (5.12). We will use the notation E,;l [¢] = K [¢, w]. In other words,
IC;! @] = f is the unique solution of KC[ f] = ¢ with A-periods equal to w. It is equal to  (x)o (x) ™! +

w

Gl¢](x) for some polynomial  (x) of degree smaller than g — 1 so that the A-periods equal to w. The
continuity of this inverse operator is the key ingredient of our method.

Lemma 5.1. Im K is closed in ’Hél) (A), and for § > 0 small enough, there exist constants C,C’,C" > 0
such that

Vig.w) eImEx Tt I gllls < 67{(CDe(8) + C)liglls + C7Iwh}, (520

with exponent k = % and D.(6) defined in Equation (5.22). When the potential is off-critical, D .(6)
remains bounded.

Remark 5.4. In the analysis of the model with fixed filling fractions, we will only make use of Ea I

Proof. If one is interested in controlling the large N expansion of the correlators explicitly in terms of
the distance of x;s to A, it is useful to give an explicit bound on the norm of l%;,l. Let 59 > 0 be small
enough but fixed once for all, and let us move the contour in Equation (5.12) to a contour staying at
distance larger than ¢ from A. If we choose now a point x so that d(x, A) < §y, we can write

Glel(x) = 2D _ o) & Le o 1 & L@ ¢©
P =250 (0) ~ o) Jaen-s, 2t 25@E) x—& o) Ju(en-s, 2im 25(€) x— &

Hence, there exist constants C, C’ > 0 depending only on the position of the pairwise disjoint segments
Ay, such that, for any 6 > 0 smaller than %,

IG1¢]lls < (CD(5) +C) 677 [l s, (5.21)

where

D.(6) =

@| . (5.22)

2 s

For ¢ small enough but fixed, D (8§) blows up when the parameters of the model are tuned to achieve a
critical point (i.e., it measures a distance to criticality). Besides, we have for the operator £ 4,

|Lalf1], < Cliflls, (5.23)
and for L;{ written in Equation (5.17), we find

max;<p<g Wl

—=rEe PRI ), (5.24)
infgeepslo @)

L4 w5 <

and the denominator behaves like -2 when & — 0. We then deduce from Equation (5.19) the existence
of constants C, C’,C”” > 0 so that

1K, @5 < (CDe(6) + €)™ lglls +67% [w — La[Gle] |1
< (CD(6) +C)S 2|glls + C"67% [wly. (5.25)
O

Remark. From the expression (5.19) for the inverse, we observe that, if ¢ is holomorphic in C \ S, so
is IC;,' [¢] for any w € C8. In other words, C;,' (Im K N ”Hil) (8)) ¢ Hél)(S).
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5.2.4. Other linear operators
Some other linear operators appear naturally in the Dyson—Schwinger equation. We collect them below.
Let us first define, with the notations of Equation (4.1),

AW (x) = N W) - WD ),
d
AL P(;6) = 7{ S 2La( £ A W),
AoV (x) = V(x) = VIO (x). (5.26)

Let also k1, hy be two holomorphic functions in U. We define

Lo s HO®) Ll = § a8 EEED .

A 2imr L(x)

2@y [ dédéy Ly(x;é1,6)
L WP W S HOW L0 = § SIS T (@8,
My HOA) 5 HO () Mo[f]) = % 28 - ;;Ef) —
h
Nivs 3 HOB) = 1B Nyl 1100 = 1 § 58 (FEOE o) o),
AK : HV(A) - H (A) KL1(x) = =Nagvy.a_ s pxe [F1(X) +2A_1 Wi (x) £(x)
s 5 (1= )@+ ot
AT HPA) = H A AT = =Nagvy.a, pien 2 [F1() + A Wi (x) £(x)
+ %(1 - %)(ax + L)1) (5.27)

We shall encounter AKC as a correction to the operator K of §5.2.2, which appears in the Dyson—
Schwinger equations with n > 2 variables. For n = 1 variable equation, we shall need the modified
version denoted A 7, which only differs from AC by some symmetry factors %

All those operators are continuous for appropriate norms since we have the bounds, for dp small
enough but fixed, and 6 < 6y small enough,

C ||L”||U
I [fNls < D.0) £l s, »
L),
L2011l s < DL0) £l s, >
C||L||U
sup My flls £ —==flls)2-
d(x',A)>6 °=D .(6) 83 /2

ILAIS + [1h2 ]l

U
INwm L s < Al 11 lls + € 50 DL(0) 171l 5, -

2| 2C
max {IAK T/l 10T T/T5} < (HAVYI% + 2 1A Walls) 1Tl + [1 = 2| 575 17172
L(AV)[IY + 1A PIE
LAV IE AP (5.28)

Dr(6) 6o
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for any f in the domain of definition of the corresponding operator, and
C=C(A)/m+(g+]1), Dp(6)= inf |L(x)|. (5.29)
d(x,A)>6

If all edges are soft, Dy (&) = 1, whereas if there exists at least one hard edge, D (6) scales like ¢ as
0 — 0.

5.3. Recursive expansion of the correlators

5.3.1. Rewriting Dyson-Schwinger equations
For n > 2 variables, we can organise the Dyson—Schwinger equation of Theorem 4.2 as follows:

(K+AK)[Wy(e,x1)](x) = Ans1 (x5x1) + Bu(x57) + Cp1 (x5x7) + Dy (x5x7), (5.30)
where
Ans1 (x3x7) = N7H(Ly = id) [Wisei (o1, 02,%7)] (%),
Ba(xixy) = N7 (L2 =id)| ) Warst (01,50 Waoss (02,51,0)] (),

Jcl
J#0,1
2
Comt (6337) = == " M [Wot (0,1 )] (%),
’BN iel
2 L
Dn_l(X;XI) = _IV Z (_a) aa‘/Vn—l(xI)~ (531)
B ac(0A), a

For n = 1, the equation has the same structure, but some terms come with an extra symmetry factor.
With the notation of (5.26), and in view of Equation (4.2), we can write

Az(x) +D0 _ 1- 2/ﬁ

(K+AT)[AWi](x) = N N

(D + L) W) + Nagwy o W10,

(5.32)
where the operator A 7 was introduced in §5.2.4 and Dy is given by formula (5.31) with the convention
Wo=InZy"% .

Since we are in the model with fixed filling fractions, the A-periods of W, (e, x;) for n > 2, and of
A_1Wy, vanish — cf. (5.5). So we are left with equations of the form

(K+AX)[¢] = f, X=K or J,

and the function ¢ to determine satisfies £ 4[¢] = 0 by (5.5). We can then invert }C on the subspace of
functions with zero periods and write

¢ =Ky'[f - AX[g]].
We will need to check under which conditions the contribution of A X is negligible compared to the

contribution of K in Equation (5.30). This is achieved with the following lemma.

Lemma 5.2. There exists a finite constant C3 such that for any § > 0, for N large enough, if AX is any
of the operator AK or AJ, for any function ¢ € ’HEI) (A), we have

||/€61[AX[90]]||25 <c ( InN Viné DC(26)) (5.33)

lell s N 50 Dy (26)

with k = % coming from the inversion of Kando =1 coming from the a priori bound (3.12).
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Proof. We have from Equation (5.20),
IS [AX[A1]lls < (26)(CDe(26) + C)IAX [ fllhs. k=3 (5.34)

Since we have the same bound (5.28) for the operator norm of AX = AK or AJ, we can keep the
generic letter X in the proof. We have the a priori bound from Corollary 3.7:

InN VIné
IAWills < Ciyf =~ - ¢=1.

which also implies

2 , [InN
A PIE < €\ =

with the notations of §5.2.4. We also remind that by Hypothesis 5.1, [[AoV||] = O(ﬁ). We insert these
bounds in Equation (5.28) and use ||¢|l,5 < ||¢|l s to find

InN Vinéd
”AX[(’D]HZ‘SSCZ( N 6"DL(26) ‘_E|W)”(’D”5'

Together with Equation (5.34), this yields

K5 [AX [¢]] 126
lells

(5.35)

InN Ving CD.(26) +C’ 2| CD(26) +C’)

<y -5l
2 N §k+6 D (26) + B NoK+0+1

As we pointed out at the end of §5.2.4, the fact that the potential is off-critical ensures that D.(6)
remains bounded when 6 — 0, while we have in the worst case, By ( ) 0( ); see Equation (5.29). In
any case, the second term in the above right-hand side is negllglble with respect to the first one, and we
can replace CD.(26) + C’ by D.(6) up to a change in the constant. O

Hereafter, we shall not use the precise dependency of the constants on d; we simply use the fact that
they are finite when ¢ is positive independent of N. We will denote ¢ () for a generic finite constant
depending only on ¢, which may change from line to line.

5.3.2. Initialisation and order of magnitude of W,

The goal of this section is to prove the following bounds for ¢ independent of N and N large enough.
We know from Corollary 3.3 that the D-terms in Equations (5.30)—(5.32) are exponentially small and
remain so after application of K !, so they will never contribute to the order we are looking at, and we
will not bother mentioning them again.

Proposition 5.3. There exists a function WI{O} € H;l) (S) depending only on Wl{_l}, v vl so that
Wi = N e w1 Agwy, (5.36)
so that for all 6 > 0, there exists a finite constant C(6) such that for N large enough,

(lnN)

2

[AoWi|ls < C(6)

It is given by

W () = Ky [( (1= 2)(3x + L1) +N(V(1,),,0) [Wf‘”]] (x). (5.37)
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Proposition 5.4. For any n > 1, we have
Wo = N> (Wi 4 Ao W), (538)

where for n > 2, we have defined

Wi () = Ky [ - ‘ZMX, (W, (o,x1)] (x)

IEI

+(La=id)| D WE W P e |0, (539)

Jcl
J#0,1

and for any § > 0, there exists a finite constant C,,(8) such that for N large enough,

(InN)2=>
it

”An—2Wn”6 < Cn(d)

rol—

In this result, the main information about the error is its order of magnitude. Prior to those results, we
are going to prove the following.

Lemma 5.5. Denote r), = 3n — 4. For any integers n > 2 and § > 0, there exists a finite constant Cy,(6)
such that for N large enough,

Walls < Ca(G)N"F- (In V) “2 . (5.40)

Proof. We shall prove by induction that for any integers n > 2 and r > 0 such that r < r}, for any
¢ > 0, there exists a finite constant C,, - (§) such that for N large enough,

n+r

”Wn”6 < Cn,r (6)N

(5.41)

The a priori control of correlators (3.13) provides the result for » = 0. Let s be an integer and assume
the result is true for any r € [0, s]. Let n be such that s + 1 < 7}, = 3n — 4. We consider Equation (5.30)

which gives after application of IEJ Uthat if x; = (x2,...,Xp),

W (x,x7) = Ky [Ans1 (,x1) + Bu (- x1) + Cpoi (9,x7) + Doy (9,x7) = AW, (0,x)]] (1) . (5.42)

It is understood that all linear operators appearing here (and defined in §5.2) act on the variables which
at the end are assigned the value x. This formula gives the correlator W), in terms of W,.; and W, for
n’ < n. We systematically use the control (5.25) on the operator norm of Ea ! and the fact that AKC
only gives negligible contributions compared to the latter (Lemma 5.2). At each step of application of
Lemma 5.2, we have to use the operator norm with smaller § — namely, 6 — — . This is fine since our
induction hypothesis holds for all § > 0 and we use these bounds only a ﬁnlte number of times (in
fact, at most r times to get the bound at step r). Note here that this reduction a priori holds only on the
variable x as x; is kept fixed, but this is bounded above by the norm where all are greater or equal to %.

We obtain the following bound on the A-term by using the induction at (n+ 1, s) and Equation (5.28),

Ilﬁal[AnH]na < c(0)|Ansills)2

c 6 n+1+.\
O Wil < D02
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so that rearranging terms yields a finite constant c 1(5) such that

n+v+l

1Ky At ]lls < 2

(5.43)

n,s+l1

Let us consider the B term. It involves linear combinations of W;,1W,,_;. Notice that

* % *
s<rn—1—rj+1+rn_j.

Thus, it is always possible to decompose (arbitrarily) s = s” +s” such that s < r% , and s” < r_ _j and

we can use the induction hypothesis with r = s” for W;,; and with r = s” for Wn, j- Multiplying the
bounds and using the control (5.25) on Ky !"and Equation (5.28), we obtain

n— (;+]) n+>+l

(InN) 2

~_ c(0)
s [Ballls < —— Z Wit lls2|Wass llsj2 < €5 1 (6N

The C-term involves W,,_;. If s < r*

< r;_,, we can use the induction hypothesis with r = s to find by
Equation (5.28) that

C

o~ c(6) c(6) ns+1(0)  nmgeen piss

5! Comtlls < == sup M Watllsr2 < = 1W< et DN ()
d(x,A)>6

If s > r;_,, we can only use the induction hypothesis for » = r; | and find the bound

-1

15 [Cut1lls < €1y (N

Using that rj = r7_ +3and s € [ri_, + 1,7, ], we see that the above right-hand side is of the same
order than the A-term. Finally, by Equation (5.33) and the induction hypothesis at s, we find the bound

=_ InN ngs
1Ko [AKIWa]lls < 6(6)\/7 [Wallsj2 < ch 3+1(5)\/

which is of the same order as the bound on the A-term. Using Equation (5.42) and summing all our
bounds on the error terms proves the bound (5.41) for r = s + 1 and, we can conclude by induction. O

Proof of Proposition 5.3. It appears in Equation (5.32) that NA_{W; = W; - N Wl{_l} is given by
NA Wy =W + AWy, (5.44)
where
0 o 2 - -1
W@ =K' [ = (1= 5) @+ Lo+ My ol Wi 0,
A0W1(x) [N(N(A0V)’ (V“)))O[ 1{_1}] +A2+D0—AJ[NA_1W1]](X). (545)

Recalling Remark page 44, WI{O} belongs to ’H;l) (S). To bound the norm of the first term in AgWj,
observe that by Hypothesis 5.1,

1
NAoV =Vl 4 ALY, A v =0(N)’
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so that Equation (5.28) yields

C(5)

w5 <

I3 a0 Wl < 40

For the second term, note that Lemma 5.5 for n = 2 gives the bound
IWalls < C2(8)(InN)*.
Equations (5.20) and (5.28) imply

c(6) 6(5)

lAzlls < —~(InN)*.

IWalls £ —=

Moreover, Dy is exponentially small by Proposition 3.4. By Lemma 5.2 and the a priori bound (3.12)
on A_1 W] ’

IKs' [ATINA Wi]]lls < c(6)InN .
This already shows that ||AgW||s is at most of order In N. To improve this bound, observe that
Ko [ATINAL W] = K [AT W] + K [AT [AWA]] -
From Lemma 5.2 we deduce that

(In N)

1K [aT W] lls < c(é)\/ 15" [AT [AoWi]] lls < ¢(5) (5.46)

We finally deduce, from Equation (5.46) and the fact that the other error terms are smaller, the error
bound

(In N)

lAoWills < c(6)

Proof of Proposition 5.4. We already know the result for n = 1 by Proposition 5.3. Let n > 2 and
assume the result holds for all n” € [[1,n — 1]. We want to use Equation (5.30) once more to compute

W,,. We have W,, = N2 (W, 2 + A,,_oW,,) with W, as in Equation (5.39). The error term A,,_, W,
receives contributions from

o The term in AK. It can be estimated by applying Lemma 5.5 which yields the bound W, =
O(N*™"(InN)*'~2) and Lemma 5.2 to show that

I [AKIWa]]lls < () IIW loj2 < c(6)N>™ (In N)>~3

o The A-term. Applying Lemma 5.5 for W,,;; and Equation (5.28), we find

1IR3 [Aneillls < S Wl < N (0 )2 (5.47)

o The B-term contributes to the second term in the definition of W{" 2} and also from errors A oWy
withn” < n—1 to this limiting term. They are, by the induction hypothesis, of order N 2-n=3 (InN) -3

o The C-term yields the first contribution in W,f"_z}, and the remaining term from C,,_; is of the same
order than the error coming from the B-term, divided by (In N)?.

https://doi.org/10.1017/fms.2023.129 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.129

Forum of Mathematics, Sigma 51

Hence, we deduce by subtracting W,f"_z} and applying IE(; ! that

(InN)2=3
NI

An2Walls < ¢(6)

s

8]

which is the desired result for the n-point correlator. We conclude by induction. o

5.4. Recursive expansion of the correlators

Proposition 5.6. For anyn > 1 and ko > n — 2, we have an expansion of the form

ko
Waxr,.oxn) = > NEWE e, x) + NTO(A W) (1, o),
k=n-2

where

(i) foranyn > 1 and any k € [n -2, ko], W,Ek} in 7—[5") (S) are specified by the data of Wl{_l} and
VU for 0 < j < k +3 — n. More precisely, they are defined inductively by Equation (5.39) and the
equation

W (e xp) = K [ES (0,x0) ] (3), (5.48)
with forn =1,
EM () = (L2 —id) [WI) (o1, 02)] (%)

k
(=i YW oW (o) | )

=0
2 k+2
= (1= 5) @+ Lo+ Y Ny oW @, 49
=1
whereas forn > 2,
EF (esxp) = (L2 - id)[Wﬁl}(ﬂa o2, x7)] (x)
+ ) (La—id) WD (e x )W (02,20 )] ()
0<l<k
Jcl

k
~(1- %)(@c+cl)[W,i"}(-,xz)](x)+ 2 Ny o[ Wi (o.x0)] ()

{=n-2
2
- DM [WE (o xn )] (). (5.50)
i€l

In the above formula, Wl{f} vanishes if ¢ < p — 1.
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(ii) foranyn > 1, A, W, € ”H;n) (A), and there exists a finite constant ¢, k,(6) so that for any 6 > 0,
for N large enough,

(In N)2n—%+2(k0—n+2)

N

Ak Walls < cn i (6) (5.51)

(ST

Proof. The case kg = n—2 follows from §5.3.2, and we prove the general case by induction on k¢, which
can be seen as the continuation of the proof of Proposition 5.4. Assume the result holds for all #n > 1 and
allk <n-2+j=:k,—1forsome j > 0. We prove it by induction for all n and k.. Let us decompose

j+2

V=Y NFVIE L N oy
k=0

We already know that the Dyson—Schwinger equation for W,, is satisfied up to order N'=*» for all n. We
first show that it holds at k; for n = 1. Returning to Equation (4.2), we see that

NA i Wi(x) = W5 (o) + Ko TR ()
R (x) = (L5 —id)[As, 1 Wa (o1, )] (x) - (1 - %)(ax + L) [Ag Wi
+2(Ly = id) [A k-1 Wi (01) (A_ 1 Wp) (92)] (x)
- (1 - %)(ax + L) [A kW1 T(X) + Niagyy ol Ak 1 Wi (x).

Strictly speaking, we should also add the D-terms, but since they are always exponentially small, we
will systematically omit them. But we have bounded by induction the 6-norms of

o Ak,—1Wj by Cl,lq—l(6)(lnN)2_%+2k'N_%,
o Ay,—1Wa (notice that k, > ky) by ¢2.4,-1(6)(In Ny4=3+2(ki=D N3
o A_;Wj has norm of order % by Proposition 5.3 and (AoV)’ has also norm of order % by hypothesis.

Hence, the continuity of Ea !implies that

(In N)Z—%+2k1
—_—

1K TR |5 < e1k, (6) .

s

8]

which is our inductive bound.

This proves the induction hypothesis for n = 1 and k. Let us assume that it was proved for all n and
ky — 1, and for n < ng at k,. Let us prove it at n = ng + 1 and k¢ with ko = k,,. We can decompose the
remainder for n > 2 as

NA 1 W, x1) = Ko [ES) (0321) + RO} (o111 (x)
Where E,{,k} was defined in Proposition 5.6, we have set

R (s xp) = (£, - id) [Ako-1Whs1 (o1, 02,x7) ] ()

+ Z (Lo = id) [A ., Wits1 (o1 ,XJ)W,EI_CZ},C#M }(°2,x1\1)] (x)
Jci
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+ Z(ﬁz —id)[ W;ﬁl " (a1, x ) Aty s Waess (92,200 7) | (%)
jcr

2
+ Ny ((vrovoy1.0 [ Ako-1 Wa (. x1) ] (x) = 3 Z M [Akg=1 Wooi (o, x1iy) | (%)
iel

Again, by the continuity of the involved operators, and because kg — k#j4+1 — 1 < k,—4s + 1 so that the
induction hypothesis can be used, we get the announced bound. Again, the largest error comes from
the first term and is by induction of order (In N)2("+1)‘%+2(k0‘1_"+2)N =2 which is of the announced
order. O

This proves the first part of Theorem 1.3 for real-analytic potentials (i.e., the stronger Hypothesis 1.2
instead of 1.3). For given n and k, the bound on the error A;W,, depends only on a finite number of
constants v{*'} appearing in Hypothesis 5.1.

5.5. Central limit theorem

With Proposition 5.3 at our disposal, we can already establish a central limit theorem for linear statistics
of analytic functions in the fixed filling fractions model.

Proposition 5.7. Let ¢ : A — R extending to a holomorphic function in a neighbourhood of S. Let
N = (N1, ...,Ng) be a sequence (indexed by N) of g-tuples of integers such that qu:l Np < N, denote
€ = N/N, and assume all limit points of € are in £. Assume Hypothesis 5.1. Then, when N — oo,

1Y e oo ( 5 o)) = exp (¥ [ i (0000) + Maelo + 5 Opelingl) +o(D). (552
i=1

where
d.
Mg.elo] = .—§<p(§) w ),

Opelergl = # T clenee Wy 6.

Here, W{O} W{O} is the term of order 1 (subleading correction) in Wy — cf. Equation (5.36) — and

W{O} WZ{O} is the leading order of W — cf. Equation (5.39). Observe above that € may depend on N
and therefore so does the right-hand side of Equation (5.52).

Proof. Letus define V, =V — ﬁ . Since the equilibrium measure is the same for V; and V, we still
have the result of Proposition 5.3 for the model with potential V; for any ¢ € [0, 1], with uniform errors.
We can thus write

lnﬂNﬁe[eXp( o) = [(ar f S Wi
/ f L @ NWE @+ WO @] +o(1).  (5.53)
V,{l} W]Y:{—l}

As already pointed out, Wi, , and from Equation (5.37),

Le Le l:e

. . 2t =~
Wi = Wil = S G o Noo) W)
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Hence, Equation (5.53) yields Equation (5.52) with

Opele. ¢l = (f)( 20 W) (5.54)

ﬁ
This expression can be transformed by comparing with (5.39) for n = 2, but we can cut this short by
observing that Qg.c[¢, ¢] must also be the limiting covariance of Z *, ¢(4;). Hence,

déy dé»

Qﬁ;e[% el = (2 )

=22 o)) Wy N &), (5.55)

where WZY ;{0} has been introduced in Equation (5.38). From the proof of Proposition 5.3, we observe
that the o(1) in (5.52) is uniform in ¢ such that sup; (¢ a)> s [¢(€)| is bounded by a fixed constant. O

In other words, if limy . € = €, the random variable ®p = ZNI o(A;) - NfA go(f)dueqe(f)
converges in law to a Gaussian variable with mean M. _ [¢] and variance Q¢ [¢, ¢] when N — oo. This
is a generalisation of the central limit theorem already known in the one-cut regime [Joh98, BG11].
A similar result was recently obtained in [Shcl2]. In the next section, we are going to extend it to
holomorphic ¢ which could be complex-valued on A (Proposition 6.1).

6. Fixed filling fractions: refined results

In this section, we show how to extend our results to the case of harmonic potentials and potentials
containing a complex-valued term of order 0(%). The latter is performed by using fine properties of
analytic functions (the two-constants theorem) as was recently proposed in [Shc12].

6.1. Extension to harmonic potentials

The main use of the assumption that V is analytic came from the representation (1.3) of n-linear
statistics described by a holomorphic function, in terms of contour integrals of the n-point correlator.
If ¢ is holomorphic in a neighbourhood of A, its complex conjugate @ is anti-holomorphic, and we can
also represent

#mﬂ[z e(A; )] 55 —— @(x) Wie(x). (6.1)

In this paragraph, we explain how to use a weaker set of assumptions than Hypothesis 1.2, where
‘analyticity’ and ‘< expansmn of the potential’ are weakened as follows.

Hypothesis 6.1.
o (Harmonicity) V : A — R can be decomposed V = V| + V_z, where V1, V), extends to holomorphic

functions in a neighbourhood U of A.
o (% expansion of the potential) For j = 1,2, there exists a sequence of holomorphic functions

(V;k})k >0 and constants (v;k})k so that for any K > 0,
K
sup V(&) = )" N v g)] < vl v (K, 6.2)
£eU =0 ’ ’

In other words, we only assume )V to be harmonic. ‘Analyticity’ corresponds to the special case V, = 0
The main difference lies in the representation (6.1) of expectation values of antiholomorphic statistics,
which come into play at various stages but do not affect the reasoning. Let us enumerate the small
changes to take into account in the order they appear in Section 5.
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In §4, in the Dyson—Schwinger equations (Theorem 4.2 and 4.2), we encounter a term

N n N
ViA L) V(i) 1
#N’B;G[i:l L(x) x-A B(; Xj /l,-j)]c' (6.3)
It is now equal to
Vi (f) 2(5)
L(x) 217r Wise(§,x1) — m 217T (f) Wise (€, x1). (6.4)

Remark that Equation (6.3) or (6.4) still defines a holomorphic function of x in C \ A. In §5.2, we can
define the operator KC by Equation (5.9) with Q(x) now given by

QU1 == f SEPHOwe) (0

L 4 LOV© - Lo @
¢¢A\ 2im E—x

f (&

. % & LOWY (@ - LeoW™ ()

A 2im f—)_c f(é:)

It is still a holomorphic function of x in a neighbourhood of A; thus, it disappears in the computation
leading to Equation (5.13) for the inverse of K, which still holds. In §5.2.4, the expression (5.27) for the
operator AKC used in Equation (5.30) should be replaced by

AKLA() = 28 Wae) 10+ (1= 5) 114160
= Ny, s Pe(xiw) LF1(x) = Niagyy o LF1(%),

and the bound of the form (5.28) still holds and involves the constants vfl} and vél} introduced in

Equation (6.2). A7 is defined and bounded similarly. In §5.3.1-5.4, all occurrences of Ny o[ f](x)
should be replaced by N(v,y,0[£1(x) + N(v,),0[f1(¥) (and similarly for Vs, vy,0 or Ny w1y o)- The
key remark is that the terms where V, appear involve complex conjugates of contour integrals of the type
f(&) W,E;ks} (&,xp)or f(&) ArWy.e(&, x1) where f is some holomorphic function in a neighbourhood of A.

Their norm can be controlled in terms of the norms of W,E;kf} or A Wy.e on contours, as were the terms
involving V), so the inductive control of errors in the large NV expansion of correlators for the fixed filling
fractions model is still valid, leading to the first part of Theorem 1.3 and to the central limit theorem
(Proposition 5.7) for harmonic potentials in a neighbourhood of A, which are still real-valued on A.

6.2. Complex perturbations of the potential

Proposition 6.1. The central limit theorem (5.52) holds for ¢ : A — C, which can be decomposed as
© = @1 + @2, where @1, @3 are holomorphic functions in a neighbourhood of A.

Proof. We present the proof for ¢ = ¢ f, wheret € Cand f : A — R extends to a holomorphic function
in a neighbourhood of A. Indeed, the case of f : A — R, which can be decomposed as f = f; + E
with fi, f> extending to holomorphic functions in a neighbourhood of A, can be treated similarly with
the modifications pointed out in §6.1. Then, if ¢ : A — C can be decomposed as ¢ = ¢| + ¢, with
¢1, ¢2 holomorphic, we may decompose further ¢; = ¢ +ig’ and then write V.= V - /%(gol +¢R)

and f = (go{ - cpé), and
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N

e (33 00) | w5 [ e 336t + 0] oo 35 100)]
i=1 i=1

i=1

The first factor can be treated with the initial central limit theorem (Proposition 5.7), while an equivalent
of the second factor for large N will be deduced from the following proof applied to the potential V.

This proof is inspired from the one of [Shc12, Lemma 1]. From Theorem 1.3 applied to V up to
o(1), we introduce W,E;ks} for (n, k) = (1,-1),(2,0), (1,0) (see (5.38)—(5.36)). If t € R, the central limit
theorem (Proposition 5.7) applied to ¢ =t f implies

N

(D 0)] = Gn 1+ RN ), G (1) = exp (Ne s L1+ Myl £1+ 5 0l 1),
i=1

(6.5)

where sup, ¢z, 1,1 |Rn (1) < C(To) nn and limy o 7y = 0. Let Ty > 0, and introduce the function
R (1) = ———— Ry (1
N(t) = ———— Rn(1).
C(To)nn

For any fixed N, it is an entire function of ¢, and by construction,

sup |Ry(1)] < 1. (6.6)
te[-To,To]

Besides, for any ¢ € C, we have
N

#1‘\//;,Aﬁ;e [ exp ( th(/li))” < ux,i/;;;e[exp ( i(Re 1) f(/li))].
i=1

i=1

Using that f is real-valued on A, we deduce that

) Gy (Ret)
R < ——|1 1G]
o v (0= C(To)mv( " 1N @ )
1 (Imt)2
< mlf‘i%e)(p( 3 Qﬁ,E[f’f])

L
C'(To)nn

for some constant C’(7j). By the two-constants lemma [NN22] (see [N70, p41] for a more recent
reference), Equations (6.6)—(6.7) imply

6.7)

2T /Ty )

5 ’ =2¢(T.Ty)/n — N,
VT e 0.7, sup Ry (0] < (C'(Ty)n) LTy = arctan(

[t|]<T
In particular, for any compact K ¢ C, we can find an open disk of radius 7 containing K and thus show

(6.5) with Ry () = o(1) uniformly in K. O

We observe from the proof that Proposition 6.1 cannot be easily extended to |f| going to co with
N. Indeed, the ratio Gy (Ty (Ret))/|Gn (Tnt)| in Equation (6.7) will not be bounded when N — oo;
hence, applying the two-constants lemma as above does not show Ry (1) — 0.

Corollary 6.2. In the model with fixed filling fractions €, assume the potential Vy satisfies Hypotheses
5.1.If ¢ + A — Ccan be decomposed as ¢ = ¢ +¢; with @1, @2 extending to holomorphic functions in
a neighbourhood of A, then the model with fixed filling fractions € and potential V = Vy + ¢/ N satisfies
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Hypotheses 5.1. Therefore, the result of Proposition 5.6 also holds. More generally, if there exists a
sequence of holomorphic functions Vl.{k} ,k >0,i=1,2 on aneighbourhood U of A so that

K -
lim sup N¥*! sup ‘cp(f) - ZN_k [Vl{k} + Vl{k}](f) < 0o,
N>1 &eu k=0

the result of Proposition 5.6 also holds with V = Vy + ¢/N.

Proof. Hypothesis 5.1 constrains only the leading order of the potential (i.e., it holds for (Vj, €) if and
only if it holds for (V = Vy + ¢/N, €)). Proposition 6.1 implies a fortiori the existence of constants
Cy,C_>0and C =exp(-Re (/A ¢(x)dplye(x))), such that

VA
|Zx,7".
N o NG

Using this inequality as an input, we can repeat the proof of the large deviation principles given in
Section 3 to check Lemma 3.1 (i.e., the restriction to the vicinity of the support) and Corollary 3.7
(i-e., the a priori control reminded in (5.2)—(5.3)) for the potential V. Then, in the recursive analysis of
the Dyson—Schwinger equation of Section 5 for the model with fixed filling fractions, the fact that the
potential is complex-valued does not matter; we have established the expansion of the correlators. O

This proves Theorem 1.3 in full generality.

6.3. % expansion of n-point kernels

We can apply Corollary 6.2 to study potentials of the form

n

2
Veel® =V =55 ; c;ln(xj - &),

where x; € C \ A, and thus derive the asymptotic expansion of the kernels in the complex plane (i.e.,
Corollaries 1.9 and 1.10).

First, let us choose a simply connected domain D € C* in which the complex logarithm is an analytic
function. Choose x1,...,x, and an extra reference point p such that all x; — & for £ in a complex
neighbourhood Ac of A and x; — p belong to D. Then, we can write for £ € Ac,

Xj d
R
P

Recalling the notation L = diag(Ay, . .., An) for the random matrix, we have for r > 1,

ln ZVx,CQA Vy,c:A

9 Cjr NBg ~Hnpg

MR [Tr(ln(x,-1 ~L)=In(p—L)),....Te(In(x;, —L) - In(p —L))]

:/ " / " Wr;e(fl’“-’é:r) ]—[d‘fi’ (68)
p p i=1

where we pick the unique relative homology class of path between p and x;, in D" := (zcp. (€ + D) to
perform the integration. Here, the subscript ¢ refers to the cumulant expectation value as in (1.2). Since
In(p—L) is deterministic up a o (1) when p — oo, we can take the limit p — oo in (6.8) for 7 > 2 and find
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Ee[Tr In(xj, —L).....Tr Inx;, —L)] :/x“ .../Xj’ Weeler,...&) [ [d&. 69)
& o i=1

Since W,.¢ (£1, .. ., &) forr > 2 behaves as O(l/fiz) when &; — oo and has vanishing periods around Ay,
for any £, the left-hand side of (6.9) is a well-defined single-valued analytic function of x1,...,x, € C\A
which does not depend on the choice of path from oo to xj, in this domain. For r = 1, the situation is
different. We have indeed

By taking |p| large enough, we may assume that p € D, and we can always choose D in conjunction
with x1, ..., x, such that x1,...,x, € D. Then we can write

xj

E[Tr In(x; ~L)| =E[Tr In(p —L)] + N(Inx; — Inp) +/
P

Wiee(©) - ),
(Wiete) - g

where the path from p to x; remains in D’. Choosing a continuous path ¢ C D going to oo, the limit

pli_r}rgolnxj —Inp+In(p - &) =2iny; XjEZ
pel

exists and is independent of £ € Ac but depends on the choice of path £ and domain D. Therefore,

E[Tr In(x; —L)] = /

o)

K (Wl;f(g-“)—g)d§+Nlnxj+217rN)(j. (6.10)

We stress that the ambiguity x; only appears for » = 1 and with a prefactor N. It depends on various
choices pertaining to the determination of the logarithm, also restricting the allowed domain of x, but
in such a way that (C \ A)" can be covered by finitely many opens in which various domains D and
determinations of the logarithm can be chosen to fulfil our needs.

Let us now introduce the random variable Hy ¢ = ;=1 ¢;Tr In(x ;—L). We know from Proposition 6.1

that In ,ux,;g_e(e’ HN) is an entire function. Therefore, its Taylor series is convergent for any ¢ € C, and
we have att =1,

Kr,c;e (x) =

ﬁ(xj - P)ch] exp (1nﬂx1’2;e(eHx,c))'
j=1

The right-hand side can be computed via the cumulants and thus (6.9)—(6.10). We arrive to

K;.c.e (x) = exp (Z Ncj(Inx; +2imy;) + Z %Effé[wn;e]), (6.11)
j=1 n>1 "'
where
r xj . . 1
Lo I =Ye; [T @0 fw=iwetRe e 612
=t

The difference between f andf in (6.12) is only relevant for the r = 1 termin (6.11),and f (x) = O (1/x?)
as x — oo, and so is integrable near oo. For this r = 1 term, the integral does depend on choices of paths
from oo to x; because the Wi.e has nonvanishing Ap,-periods, but these ambiguities are the same as the
ambiguities in the definition of the kernels before taking any asymptotics (see §1.1.3); they only appear
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in the leading order term of the asymptotics. As we have explained above, they can be resolved if we
work with a fixed x, . .., X, and fixed domain D of definition of the logarithm.

As a consequence of Proposition 5.6, Wy.e = O(N*™) and has a ﬁ expansion. Therefore, only a
finite number of terms contribute to each order in the n-point kernels, and we find

Proposition 6.3. Assume Hypothesis 1.2. Then, for any given K > —1 and § > 0, we have a uniform
asymptotic expansion for mini <<, d(x;,A) > §:

Kr.cie(x) =exp{zr:ch(lnxj+Zi7rXJ Z N- (Z —Len[w, {k}])+0(N (K+1)))}

j=1 k=—1

7. Fixed filling fractions: ﬁ expansion of the partition function

In this section, we continue to work within the fixed filling fractions model: N = (Ny,...,Ng) is a
sequence of integer vectors, we set € = N/N (which may depend implicitly on N), and we assume
Hypothesis 5.1.

7.1. First step: one-cut interpolation

7.1.1. The result
We remind that in the one-cut case g = 1, the main Theorem 1.5 was proved in [BG11] and ensures that
the partition function has an asymptotic expansion of the form, for any K > 0,

K
ZY g =NV exp 30 N ESIY 4 o (v KD)). (7.1)

The leading term is of order N2 and given by potential theory

{ 21V _ (// d,ueq(x)d,ueq()’) Injx —y| - /AV{O}(x)dy;f](x)). (7.2)

It is well known — and we reprove below with Lemma 7.3 and Equation (7.21) — that the terms of order
N are related to the entropy of the equilibrium measure.

Proposition 7.1. We have

R =B [+ (1- ) (Bt <0 () + 5o (3F) - (8),

e

where

Ent[y] = —/Sln(%)du(x).

In [BG11], the potential was assumed independent of N, but it is straightforward to include a V having
a ﬁ expansion, and this results in F/ ;_1};‘/ in the extra term involving V{!}, The exponent x describing
the O(In N) correction is identified in [BG11] as

3BI242/B ¢ both edges are soft,
B2+2]B 222/ B if one edge is soft and the other is hard, (7.3)
“BI22IB i both edges are hard.
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This exponent can be compactly rewritten:

-3+B/2+2/B8

1
w = 3 + (#soft + 3#hard) o

(7.4)

7.1.2. Strategy to prove this result and computation of coefficients

As we now review, this theorem was proved by interpolating, for fixed location of the cut y = [y_, y4]
and nature of the edges, the partition function Z VA with a partition function Zret , which is exactly
computable by Selberg integrals. We denote Vier the potential of these reference models The choice of
reference models will be made explicit in Section 7.2 and depends only on the position of edges y.. and
of their nature (soft or hard). For the moment, it is enough to mention that its associated equilibrium

measure #;gf has same support [y_, y.] as uqu, and 7y, (resp. y-) have same nature — hard or soft — in

pg‘(’f and ,ueq. Moreover, Vi.r will satisfy Hypothesis 5.1. Then, we observe that the measure

ref

piby = (1= Dply +tp

satisfies the characterisation of the equilibrium measure for the potential
Vi=(1—-1)V+tVe, (7.5)
Thus, by uniqueness, yéq must be the equilibrium measure for V;. It is then clear that if V satisfies

Hypothesis 5.1, so does V; uniformly for # € [0, 1]. Proposition 5.6 guarantees that the one-point
correlator Wl’ for the model with potential V; on A has an asymptotic expansion, for all K > 0,

K
wi= > NFwT oK), (7.6)
k=—
and the error is uniform for ¢ € [0, 1]. Therefore, the exact formula

VA
i (igfi) - "% 7{ %(V(x) - erf(x))( /0 | w! (x)dt)

turns into an asymptotic expansion.

Lemma 7.2. For any K > -2, we have

7 VA
In Zfﬁ) Z L e 7.7
ZN,,B k— 2
where
v dx : '
Fﬁ{k},V ref l[; 21 (Vref() V(x))(‘/o‘ Wl{k"'l}’t(x)dl). (7.8)

is the

. L .. .. . {k};V —ref {-1};t
Let us explain the principles giving more explicit computations of F B . As W,

Stieltjes transform of ,uéq, we have
Wl{fl};t - (1 _ [)Wl{fl};V +ZW1{71};ref
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with obvious notations. In this one-cut case, we remind the notations

o) =Va-y)x-7), L= [] -,

y = hard edge
and the decomposition (see Equation (5.7))
1); V/ (x) o (x)
{-1}:t _
W @) = S5 -0 T (7.9)
By construction, we have
S;(x) = (1-0)8Y (x) + 157 (x), (7.10)

and it is a property of our choice of reference models that $*f (x) = $™f is a constant only depending on
v+ and the nature of the edges. The proof of the expansion (7.6) — either in [BG11] or here in Section 5
specialised to the one-cut case — also provides a recursive computation of the coefficients Wl{k};t for
k > 0. The only place where ¢ is involved is via the initial data Wl{_l};t, as well as the inverse operator
IC;I, which reads in the present one-cut case (see Equation (5.11) with g = 0):

e L {4 L@@
o 1) = 20 (x) ji 2im S (€)(€—x)

Therefore, the integrand of the k-th term in Equation (7.7) is a priori a rational function of ¢ and the
integral over ¢ can be in principle explicitly performed.

In the present one-cut case, L;(x; &1, &) defined in Equation (4.1) is equal to 1 if the two edges are
hard, and 0 otherwise. One can then check using that (W; — N W{_l}) (¢) = 0( =) when & — oo and for

n > 2 using that W, (&1, ...,&,) = O( 12) uniformly for (&;);+; away from A, that the terms involving

(7.11)

the operators £; and £, in the Dyson—Schwmger equations vanish in the recursive computation of
W,fk}s, independently of the nature of the edges.
We can easily check that F ﬁ{_Z};V_'ref given by Equation (7.8) is indeed the difference of (7.2) for V

and for V™ since Wl{_1 it being a convex combination with respect to ¢ implies

1 { ]}V(x)_'_“y{ l}ref( )
{-1}t
‘/0 W (x)dr = > .

To obtain the order N, we need to compute WI{O};’ given by Equation (5.37), taking into account the
disappearance of Ls:

w0 = o [ - (1 - %)axwf““] :

Using Equation (5.7) and the analyticity of V, we find

oy, _ (2 ¢ 1 tr(f) o(€)
Wi (x)_(ﬁ 1)%217r§ x 20 (x) 9¢In (St(f)L(f))

Some algebra reveals the following:

Lemma 7.3.

-1}V —ref ﬁ
FATRV e < (1—5)(Ent[u¥] — Ent[u%]).
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Proof. We first make some preliminary remarks. If we denote G, (x) = S;(x)o (x)/L(x), the density of
the equilibrium measure is given by

_G,(x —i0) — G;(x +1i0)
2im '

dx
1=—fcmof<
y 2im

Therefore, x — ;G (x) has zero period around y. This implies that, for an arbitrary choice of 0 € C\ y,
the function

(7.12)

pr(x) =

In particular, the total mass is

mm=/aﬁmm»

is analytic for x in a neighbourhood of y in C\ y. As G,(x) has at most inverse squareroot singularities,
we conclude that H; (x) remains bounded when x approaches y. Besides, applying / ¥ 0,10 G, (x +i0) +
G(x—i0) = 0 and taking into account that ?gy 0;G(x) dx = 0, we deduce that H, (x+i0)+ H,(x—i0) =0
as well.

We can now start the computation of

1 d
{-1}V—ref _ _E {0}t
F} — 2/0 dr ﬁé 5 Ve W ).

We substitute and find by Equation (7.9),

% = ¢+ / 8w (v ) + Hy (),

where C; is independent of x. Since W/ (x) = % + 0(#), we have Wl{_l};’(x) = )17 + O(ﬁ) and
WI{O};I (x) = O(%) when x — oo. This implies as well 6,W1{71}(x) = 0(%) and /Ox 6,W1{71};’(§~‘)d§.
Then, as we can transform the contour integral into a residue at infinity, only H;(x) contributes to the
contour integral. We then substitute Wl{O};t (x) for its expression to deduce

a.f InG,(¢),

Fg—l};VHref _ (1 _ 123)‘/01(” dx H,(x) dg o (&)

2 y 2ir o (x) yﬂf—x

where the contour for x surrounds the contour for €. If we exchange the two contours, we receive an
extra term picking up the residue at x = ¢ and contour integrating &,

pi o (1 - 'g) /01 dt{ —f%m(f) 0¢InG, (&)

dx H;(x)

Y
d¢

where in the second term, ¢ is now outside the contour of integration for x. The properties of H; imply
H; (x)

that =55 te =

of (y — i0) from left to right and (y + i0) from right to left, and as H,(x) and o (x) both take a minus

sign when x crosses 7, the contribution of the upper and lower parts of the contour cancel each other.

is integrable on (y + i0). We can then squeeze the contour of integration to the union
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So only the first term in Equation (7.13) remains, which can be written after integration by parts

{-1};V —>ref _ _ é ! d_g
F| - (0 ZM dt£21ﬂazGt(§) InG, (&),

Squeezing the contour to y = [y, y4+] and using Equation (7.12), we find

F’;—l};v—nef _ _(1 _ g) Al dt{ /y% dé 0, p: (&) ]n(Pt(f))}-

Here, we recognise
Y+ Y+
oyEntlut,] = a,( - [T piomie (x))dx) == [ i) (o)
Y- y-

given that ﬁy T+ p:(x)dx = 1 is independent of 7. Performing the integration over ¢ € [0, 1] entails the
claim. m}

To obtain the order 1, we need to compute the leading covariance WZ{O}J and use the formula (5.48),
taking into account the disappearance of Ls:

2

Wi @) = 1 | = w1 - (w0 - (1 - E)axwl{"}”] (x),

where ([ f](x) = f(x, x). The leading covariance is itself obtained from the formula (5.39) for n = 2:
. B 2 Y
L R = U | (E

It can be computed explicitly and only depends on S, y.. and is independent of # and of the nature of the
edges.

Lemma 7.4. We have

{0}t ___2/B = () (Y- ye) /24 vy
W) = a1 o ()0 (x2) ) oo
and
O3y = 2 e =)?
L[W2 1(x) = 7 160900

Proof. This is the well-known universal expression for the leading covariance in the 1-cut situation. The
derivation of (7.14) from (5.39) is classical, but we include it for the reader convenience (the formula
for L[WZ{O}”] is then a direct consequence). We use the formula (7.11) for IC;] and the definition (5.27)
of My, to rewrite (5.39) as

WO (x1,x) = -

21 de 1 d& LEW! (&)
}é }é (7.15)

B 20 (x1) J, 2in Si (&) (& —x1) Jy 2in (x2 - £)2(E - &)

Here, it is understood that the &,-integration contour is closer to the cut y and the £|-integration contour,
and that both x1, x, are kept outside those contours. We are going to prove the desired formula (7.14) for
X3 in the domain U of analyticity of V (which is a complex neighbourhood of the cut). By uniqueness
of analytic continuation, this implies the formula without this restriction on x,. We can always assume
that the contours in (7.15) remain inside U.
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From the decomposition (5.7)—(5.8) with our specific potential (7.5), we have

V&) si&)
2 L(&)

Wi (&) = o (&2).

Since VI{O} is analytic in U, its contribution to the &;-integration in (7.15) vanishes. We can then rewrite

W{O}t(XLXQ)—— 1 _L g (7{ dé — 7{ d-ffz Si(&2)o (&)

B 20 (x1) 2im Sz(fl)(fl 2in (& -x2)(é1-&))

We push the &;-integration contours towards the exterior while staying in the neighbourhood U. This
picks up residues (with a minus sign) at &, = x; and &1, while the new &;-integration contour is now
larger than the &;-integration contour. The latter gives a vanishing contribution, as the integrand is an
analytic function with respect to &| inside the £;-integration contour. It remains only to evaluate the two
residues, which gives

W;O};t(xl,xz) _2 1 ('74 dé 1 Si(é1)o(€1) = St (x2)0 (x2) )

B 20 (x1) 2\ J, 2im S,(&1) (&1 — x1) &1-x2

We split the numerator of the ratio in two. The second term is holomorphic inside the integration
contour, thus gives zero, and remains the first term:

Oy 21 & o)
W) = 5 2o-(x1>6“(7§ 2in (& —x) (& —x2>)'

We now see that all the peculiarities of the model have disappeared and the answer only involves

(&) =V(E - y-) (& —vs).

Moving the integration contour towards oo, we pick (with a minus sign) the residues at £; = x1, x7, 0o, but
the residue at co gives a contribution independent of x; and so disappears when we apply the derivative.
This yields

WZ{O};t(xl,XQ)=—2 1 a((f(Xl)—O'(m)).

B 20 (x) 2 X1 — X2

With o/ (x) = (2x — y- —y4) /o (x), we get

W (x1,x0) =

2 1 (_1 0-2(x2)+(x1—x2)(x2—7_T+7*))
B 2(x1 —x2)? o (x1)o(x2) ’

and this evaluates to (7.14). |

These are all ingredients necessary to compute Wl{l 5 and thus the term of order 1 in Equation (7.7).
We do not push the computation further.

7.2. The reference partition functions

To complete the description of the asymptotic expansion of Zx 2, in the one-cut regime, we describe,

as promised, the reference potentials and the asymptotic expansion of Zf,f 5
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7.2.1. Preliminaries
The result builds on the properties of the double Gamma function I'; which we now review following
[Spr09]. The Barnes double Zeta function is defined for by, b > 0 by

e 1Xys— ldl

é’z(s X, bl,bz) F( )/ l_e_b]t)(l _e—bzt)’

for Re s > 2, and admits a meromorphic analytic continuation to s € C. Barnes double Gamma function
is then defined by

d
2 (x; b1, by) = exp (—

o L:Oé“z(S; by, bz,X))-

In particular, it satisfies the functional equation

To(x; by, b —&
rz(x+b2;b1,bz)=2(§(—j)2)@bf "L D(libby) =1 (7.16)
by

We will only need the specialisation to b = and by = 1. It admits the asymptotic expansion, for any
K>1,

2 2
In T x; 1)=—ﬂxﬂ+3ﬁ+l(l+é)(xlnx—x)——3-'-'8/2-'-2/'81nx

.2
B 4 8 2 2 12

(0:2,1) Z(k—])'Ek 2 1)k oK), (7.17)
where Ex (b1, by) are the polynomials in two variables defined by the series expansion, for any K > 0,

1
(1-eb1t)(1 — e=b2t) 1~ 2o

Z Ex(b1,by) 1+ 015,

and x(s; by, by) is the analytic continuation to the complex plane of the series defined for Re s > 2:

1
x(ssbib) = )

—_
50 (m1b1 +maby)

(my,m2)#(0,0)
For instance,

1n(27r)

X'(0;1,1) = +'(-1)

in terms of the Riemann zeta function. We also remind Stirling formula for the asymptotic expansion of
the Gamma function, for any K > 0,

Inx In(27) LS By
_ = +1 —(K+1)
InT"(x) L xlnx —x > + 5 + k; Kk + )k +0(x ), (7.18)
where By, are the Bernoulli numbers: B, = é, By = —%, Bg = 42, etc. and Byjy =0for j > 1.
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7.2.2. Two soft edges
We have L(x) = 1. We take as reference the Gaussian potential

Vref (x) —

(v+ —87—)2 (x - 2%)2'

Its equilibrium measure is the semi-circle law, and its Stieltjes transform is

(Vref) ' (x) _ Sref o (x) Sref _ 8

2 L(x)’ (ys —y-)?

Wl{—l};ref(x) —

The partition function with potential V™' over RY is equal to [Meh04]:

X Nor(1+ %) N (s —yo)? 2/B\EN+(-5)K
ref _ 2 La Y+~ </p\1 27)2
Zyl s = [g TieE) ] (2n) (—16 - ) , (7.19)

and it differs from the partition function on A by exponentially small corrections (see Corollary 3.2).
Equation (7.19) can be rewritten in terms of Barnes double Gamma function: if we express the Gamma
function using Equation (7.16) with b; = % and b, = 1, the product becomes telescopic. The result is

)N

NN (8) Y gy vy
()

TN (E) (N +15 2,

ref _
N.B ™

bl

16N

and its asymptotic expansion can be computed with help of Equations (7.17)—(7.18). It yields an
expansion of the form (7.1) with

Fé—2};ref _ é[_ 3 e ()’+ —7—)],

2171 4
(1}iref _ B Ve — Y- 1 B B B B
i _(1—5)111( . )—§—Z+1n(2n)—1nr(5)+(7—1)1n(7),
. In(27)
0};ref r(n. 2
F,B{}re :X(O"E,l)‘l' 5
et = 3+ BI2+2/B
2

and explicitly computable higher F B{k};mf.

7.2.3. One soft edge, one hard edge
Up to exchanging the role of y., we can assume that vy, is hard and y_ is soft. Then, L(x) = (x — y,).
We take as reference the linear potential

Vref(x) — 4(7+ - 'x) .

Y+ — Y-

Its equilibrium measure is the Marcenko—Pastur law, whose Stieltjes transform is

(Vref),('x) _ refo-('x) Sref — 2
2 L(x)’ Y= Y-

—1}iref
Wi () =
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The partition function for V™' over (—co, y,] is the Laguerre Selberg integral

>

]ﬂ[l“(l+(j—l)§) (1+]2) (2/,3 - )§N2+(1—§)N
r(1+%) N 4

and it differs from the partition function over A by exponentially small corrections. We transform it
using Barnes double Gamma function:

VAR
Pr(1+NE) TN (

N12 (27T)N (g)(ﬁ—l)N (')/+—'}’—)gN2+(1_%)N
2 1) 4N

STEsN
—

We then deduce the asymptotic expansion with coefficients

e R

)—1+1n(2n)—1nr(§) E-1Hm(&),

{-1};ref _
Py (1 ) (%3

re ln(ﬁ/2) . In(2m)
F{O} f_2 (0 /% 1) .

“2P,

and explicitly computable higher F/; Jeyiref

7.2.4. Two hard edges
We have L(x) = (x —y,)(x — y_). We take as reference potential V'*f = 0 on [y_, y,]. The equilibrium
measure is the arcsine law, and its Stieltjes transform is

W{ ]}ref 1 (Vref) ('x) Sref O-(X)

T 2 Loy el

The partition function for the zero potential on [y_, v, ] is the Jacobi Selberg integral:

N 3 B
ref _ 1—[ I (1+J_) (7+—y_)§N2+(1_§)N
N r21+Nﬁ T+ (N+j-28)r(1+5)
‘We rewrite it in terms of the Barnes double Gamma function
B_HN
o COVNBEWN-2IT(F+N-1)(5) L2V -1;2,1)

NET N - 2)IT(2+2N - )TN (8) 121+ N8) L(N - 153, 1)I3(N + 13 3,1)

B ar2 _B
X (ys —y-) 2N HIZDN

and we find the asymptotic expansion with coefficients

{—2};ref _ [_3 Y+ — Y-
Fg ) ln( 4 )
Fie 2 (1 - ‘g) In (%) ~81m@r) - () + (5 -1)In (£),
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27— 13(8/2 +2/B)
12

)+ ln(227r) ’

FA=3y7(0:2,1) +

e -1+B/2+2/8
-—

SIS

In(2) - In (

with explicitly computable higher Fg UeJiref,

7.2.5. Nondecaying terms
The asymptotic expansion of the reference partition takes the form, for any K > 0,

InZy! ;= Z Ny glnN+zreflnN+0(N_(K+1)).
k=—2

As the reference equilibrium measures are explicit, we can check by explicit computation that the
potential-theoretic formula (7.2) holds. Using the change of variables x = 7*27’ we can also compute
the entropy of the reference equilibrium measures. The result is

—1+In(27) +1n (%) if v, and y_ are soft,
Ent[/,lng] —1+In(27) +1n (%) if y. is soft and yz is hard, (7.20)

~In(2) + In(27) +In (%;%) if 7, and y_ are hard.
Collecting the previous expressions, we find that independently of the nature of the edges,

R = (1= B) (Bt -0 (8)) + S () <8, a21)

Adding this contribution to the formula of Lemma 7.3 gives a proof of Proposition 7.1 relating F =Ry
to the entropy of the equilibrium measure for general potential V. We also remark from the previous
expressions that

1 -3 242
#l = S+ (soft+ 3#hard)w,
{0)ref _ #soft+ 3#hard = 5 In(27)  #hard = g
Fy i — X'(0:5.1) + 5 5 In (5)
27 —-13(B/2+2
+ O#thard,2 6/ [B) In(2).

12

7.3. Second step: decoupling the cuts

7.3.1. General strategy

This step is new compared to the one-cut situation treated in [BG11]. We are going to interpolate
between the partition function of a (g + 1)-cut model with fixed filling fractions to a product of (g + 1)
partition functions of one-cut models. For this purpose, we introduce a slightly more general model

VA
ZNﬁe(s)
g8 Np 5 g
-NEV (.,
= L T Totnse ™8 @] [T T =l [[] [T =08,
Ay T h=0 i=1 0<h<h'<g 1<i<Nj h=0 1<i<j<Ny,

1<i" <Ny
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which realises our interpolation for s € [0, 1]. Although this s-dependent model is not of the form of
the B-ensemble announced in introduction, we justify the following in §7.4 below:

Lemma 7.5. Assume Hypothesis 1.1-1.3 for V and consider the s-dependent model with s-dependent
potential

Ty(x) = V(x) —2(1 —5) Z/ Al Inlx =€, x €Ay (7.22)

h'#h

The correlators W, of the model z% N ,8 E(s) have a N asymptotic expansion of the form

K
— Z N—k W}i,ke}’v +0(N—(K+l))
k=n-2
for any K > =2, for some N-independent functions W,E;ke};s. This expansion is uniform for s € [0, 1].
Besides, Wl{,;l};‘Y is independent of s and therefore equals the Stieltjes transform of the equilibrium

measure yé{l;e. It is simply denoted by Wl{;l}. Moreover, for any K > 0, we have

ZV;A K
In (—TO N ) = N2 FLT 4 Y NRFSIT oK) (7.23)
ZNpe(s=0) k=0
with
AT [ ke sl )
Ah Ah

0<h¢h’<(g

and some constants Fg,;ke};T depending on Wy withn = 1,2 and s € [0, 1].

The choice of our interpolation has two advantages. First, at s = 1, we get our initial model, whereas
at s = 0, we get a product of one cut models which have already been analysed; see Section 7.3.2.
However, our choice is such that the equilibrium measure for the model uﬁ;g_e(s) is independent of s
1};s

and equals ,ugl;f; see Section 7.4.5. This implies clearly that Wl{_; is independent of s. Integrating the

log-derivative of Zi; ;2, . (s) along the family of potentials (7)sc[o0,1] given in Equation (7.22), we have
the exact formula

VA
ZN,BE
In —To 5
NBE(S— )

—ﬂf ds,uNﬁE[ > > Wmli-dwel-N DY / 1n|ah,i—x|duevq;e(x)]

0<h<h’<g 1<i<Nj, 0<h’#h<g 1<i<Nj
]<i’<N,/
=-NB jf 75 —— In[(x - x")sgn(h — )] W " (x) (/ ds Wf,e(x’))
0<h#h'<g Ap J Ay (21 ) :
ﬂ ’ ’
+ —— In[(x —x "sgn(h — h')] ds[WZS;E(x,x )+ Wi (W] (x )] ,
0<h,¢h<g An J A (217T) 0

and in the right-hand side, the uniformity of the asymptotic expansion when N — oo of W‘ and W2‘ .
with respect to s allows integrating over s € [0, 1] term by term. We obtain, for any K > 0,
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ZVA

In (L)
N B e(s = O)
BN?
== In|x —y| d'ueqe(x)d,ueqe(y)
0<h#h’<g An JA,
K
dxdx'
+ZN_k ﬁ}g ‘7{ ——— In[(x - x")sgn(h — h')]
k=0 O<hzh<g < Y An J A (2imr)
1
(e 3wl romven,
0 K.k >0
K'+k"=k

where we noticed that the term depending linearly on N vanishes since the two first terms of the expansion
reads Wi, _=N Wl{;l}(x) + WI{OE}” (x) + .... This proves (7.23) if the first part of the Lemma is granted.

7.3.2. The decoupled partition function
For s = 0, we have

Zyh (s =0) = ]_[ zyleitn, (7.24)

and its asymptotic expansion follows from (7.1). We remind that, in the partition function of the
usual model (1.1) where filling fractions are not fixed, the eigenvalues are not ordered, while in
(7.24) the groups of eigenvalues are ordered. We shall therefore study the asymptotic expansion of

ﬂﬁi\; !N;. N B E(s = 0). Taking into account Y3 neo €n = 1, Stirling expansion (7.18) yields

L!Nh': [ﬁfﬁ] exp{—N(iehlneh)—gl%N_%

8
h=0 : h=0 h=0
N Bk+1( N K+1
1-Ye )}+0(N<+>)
2 aen

As the equilibrium measure of the s-dependent model with potential 7y is independent of s, the equi-

librium measure corresponding to the 4-th model in (7.24) is the restriction to A, of €, ,ueg/e " and it

has only one cut S,. Noticing that the entropy is additive for measures with disjoint support, we find
the asymptotic expansion

ln(N'Z[T\}’ﬁe(s_o))

h:ONh'

B
= Nz: ~ Elpegel +5 Infx = ylduy.e , (0)dpge » (v)
ApXApr

0<h¢h’<g

+§N1nN+N{—{;AV{I}(x)duX;;e(x)

(1= 2) Bty -0 8)) + S (22) o))
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(1 + (#soft + 3#hard)w)l N+ Z (F{O}T"/fh A (= 2 4 x) In eh)

24 £ ?
+ Z _k Bk+1 + i 1 ( {k} 1o/ €n-An Bk+1 ) + O(N_(K+1)) (7 25)
k(k+1) T L ek T8 k(k+1) ’ '
where
%B/l# if two soft edges in Sy,
wy = 4 BIZ2IB 222/ B if one soft and one hard edge in S,
w if two hard edges in Sy,.

We are going to use the notation ref (/) for the reference model that we associate to the one-cut model

ZI‘,’/S f”[;A". When we write the coefficients of the large N asymptotic expansion of In (ZZ}’/E :”;),A“ / Z;Sfe(:)ﬁ)

as in Equation (7.7), we find two possible sources' of explicit dependence in €;,: (Ne,) ™%, which is the
natural variable of expansion for the s-th model, and a factor of E—lh from each occurrence of S (i.e.,

each application of K;!) due to the normalisation of the equilibrium measure of the A-th model. We
then obtain

K
Inzglendn = %" N7k p{OTadn g o(Nm D),

with

(kY:To/enAn _ plkyret(n) B L AX reran) ( (k+1}is )
Fy = Fy +3 s Yim % (x) = To(x)/en) A W1 () ds), (7.26)

where by convention, V() denotes the reference potential associated with the equilibrium measure of
the h-th model — it only depends on the edges of the support S, and their nature and not on the filling

fractions €. Besides, WI{IZZ; Sis (here denoting the 1-point correlator of the i-th model) is obtained by
{-1}is

k + 2 successive applications of ;! to a quantity involving Wl; )

!, Therefore, WI{IZ;;} * is proportional to e}:]+(k+2). As a result, the contributions from (7.26) result in

Equatlon (7.25) in affine functions of €, and the terms of degree 1 in e, are the ones involving V™f(®™ (x).

the latter being proportional to

7.3.3. Comparison with decoupled partition function
Note that there is no contrlbutlon of order N in the right-hand side and that the contribution of order
N? reconstructs with that in In Z (s = 0) the energy functional for ,ueq - Putting all results together
(mainly Lemma 7.5 and (7.25)), we ﬁnd the following:

Proposition 7.6. Assume Hypothesis 5.1. The partition function with fixed filling fractions admits an
asymptotic expansion of the form, for any K > 0,

N ,Bie

N1 ZVA
i
h:ONh'

): -N?E[ud] +’§NlnN
2
+ N{ - 'g AV{I}(x)dué;e(x) + (1 - g)(Ent[ué;E] —In (g)) + 'g In (;) —In F(g)}

K
+xInN + Z Nk F/j,,"j;" + O (N~ K+,
k=0

1By explicit dependence in €j,, we mean dependence in the first variable for functionals of (e, ,ue‘g:e).
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The coefficient of In N is
1 -3 2+2
w= L4 (soft + 3tthard) T B2 +2/B (7.27)
2 24
The constant term is
ov.v  #soft+3#hard ln(27r) #hard
Fé;s} =X (O;%, 1)+ ——= > In(B/2)
27 - 13(ﬁ/2+2/ﬂ) {0};T0/E)1,Ah €n lnEh
+ #(hard cut) > In(2) + hZ‘) (FB - T)
dx dx’
+ > A > In[(x —x")sgn(h — k)] (WA (x,x) + WY (w0 (1)),
0<h#h’'<g 2 H xay (217)
(7.28)

The corrections for k > 1 are

g g
{(k}v _ —k Ak} To/ en A &( - § *k)
F E €, F + 1 €
B: h
€ P k(k + 1) =0

B dx dx’

2 AnxA, (2im)?

1
{/0 (Wz{;lz};s(x,x')+ 3wk w K ’))ds}. (7.29)

K+ =k

+ In[(x —x")sgn(h — h")]

0<h#h'<g

To compute the last term in Equation (7.28), at least in principle, we need formulas for W{O} Y and

Wz{g} V" in the multi-cut fixed filling fractions case. Wl{_(l} Vs computed by Equation (5.45). Although

we can use Equation (5.48) to compute WZ{O};V, it is better expressed via its relation to the fundamental
bidifferential of the second kind; see Equations (1.26)—(1.27).

7.4. Proof of Lemma 7.5: expansion of correlators in the s-dependent model

We indicate how the arguments used so far in the article can be carried to the s-dependent model with
fixed filling fractions without any difficulty. The interested reader can find all the details — in the greater
generality of arbitrary pairwise interactions — in [BGK15]. Let us take Hypotheses 1.1 and 1.3, as the
weakening of the latter to Hypothesis 1.2 can be done as in Section 6.

7.4.1. Preliminary: the s-dependent energy functional and assoclated pseudo-distance
Hereafter, we study the energy functional associated with Z B (). We introduce the matrix

¢’ = (s +(1- s)éh,h')ogh,h’sg'

It is positive semi-definite, has an eigenvector (1);‘;7:0 with positive eigenvalue (g + 1) and has a g-
dimensional nullspace orthogonal to it. We define the s-dependent energy functional

g
// & I x = yldg () g () + / vio (x)d,uh(x))
AhXAhr ) An

EY [u] = (

0<h,h'<g
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depending on a probability measure u supported A, which we decompose as y = Zi:o Un, where uy, is
supported on A,. We see that, with £ = E V' as defined in (1.5),

g
BV = ) BVl +s [ AGydutodu). (1.30)
h=0
where
AEE) = {gug - &' gttfeivizee A x Ay and h # h’ (731)

is a smooth bounded function on A%. Since E [uy,] is well defined in R U {+co}, this shows that EY [u]
is also well defined in R U {+co0}.
In intermediate steps, we will need the s-dependent analog of the pseudo-distance © — namely,

ms[u,v]:(—s > //A Il = yldle =@ =)

0<h#h'<g
N }
-2, f/ Infx = yld[s = v](x)d[p - v]<y>)
=0 YA,
=( / oy gz,h/@—m(p)m})z. (7132)
o P 0<h,h’<g

We claim that it is well defined in [0, +o0] for any two positive measures y, v of finite mass on A such
that u(A,) = v(Ay,) for any & € [0, g]. This is also the setting in which we need it since we work with
the s-dependent model for fixed filling fractions. To see this, we first remark that

8 8
DN LSS TR ESIES Y an
=0 YA =0

is well defined in [0, +co]. Again, as (x,y) — A(x, y) is continuous bounded for (x, y) € Upzp AnXAn,
we see that

_ Z //AXA/ln|x—y|d[y—V](X)d[/l—v]()’)

0<h#h'<g

is well defined in R. So the quantity under the squareroot in Equation (7.32) is well defined a priori
in R U {+oo}. Since ¢* is positive semi-definite, we deduce that D, [u, v] € [0, +o0] is well defined.
If Dg[u, v] = 0, we must have Zizo (tn(p) = vi(p)) = 0 for p almost everywhere (corresponding to
projection on the eigenvector with positive eigenvalue); hence, Zi:o (un —vn) = 0. Since the summands
have pairwise disjoint supports, this implies up = vy for all & € [0, g]| — that is, u = v. So, Dy is a
pseudo-distance.

‘We now explain how to control linear statistics in terms of Dy, uniformly in s. Let y, v be two positive
measures on A such that u(A) = v(A,) for any h € [0, g]. We decompose p = u—v = ¥5_, pp,
where py, is a signed measure of zero mass supported on Ay,. Let f be a smooth test function on A. Let
Xxn[f] be a smooth function on R which is equal to f in A, 0 outside a compact neighbourhood of Aj
and, in particular, 0 on | J;,-.;, Ap-. One can choose the extension procedure so that

Lxn[f1l2 < Clflij2

https://doi.org/10.1017/fms.2023.129 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.129

74 G. Borot and A. Guionnet

for a constant C > 0 independent of f and & € [0, g] (it is controlled by the minimum distance between
the segments Aj). We observe that for s € [0, 1], the matrix §* = (u® + V05 1 Jo<n, i <g Squares to ¢*
when we choose

MS:\/1+gs—\/1—s s

s vi=VI1 —s.
g+1

On the diagonal, this matrix has diagonal entries

1-s++1+gs 1
Wy =8 8, (7.33)
g+1 g+1

Let us write

8

g
> [tiwanmeo] = ] [ 2w Z_Oghh,dph )
< <g+1)’/2)(h[f (p) Zgh hw(p))dp',

h'=0

‘ / £l ()
A

where we have used the bound (7.33) in the last line. We then use the Cauchy—Schwarz inequality:

] /A £l —v]()

8§ 2 3 2
s<g+1>( [t |p|dp) ( [ Y ausipmermmt |)
h=0

Ro<hn h7<g
g ™) dp %
<V2(g + l)(Z|Xh[f]|1/2)(/ Z s‘f,,h,/ﬂ?(l’)vlh\"(l?)ﬂ)
=0 0 o<ninr<g p
< V2C(g + 12| fli2Ds [, V], (7.34)

where we have used \/Xo + - - - + X, < VXo + - -+ /X, for nonnegative X; in the first squareroot factor
to get the second line.

7.4.2. Equilibrium measure

The properties of EY and its quadratic part established in the previous paragraph allow to apply the
standard potential theoretic arguments. This leads to an analog of Theorem 1.2 for the s-dependent model
with fixed filling fractions € and potential V. It states the existence and uniqueness of the minimiser
u;f]i of EY among probability measures supported in A and having fixed filling fractions €. The analog
of (1.12) (1 e., the characterisation of the s-dependent equilibrium measure) is as follows: for each
h € [0, g]], there exists a constant C ¥ such that

2 [tz mi el 320 / W@ M- £ -V <CVE (739)

h+#h
with equality /1;12 almost surely.
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7.4.3. Concentration estimates
The s-dependent model differs from the S-ensemble (i.e., s = 1) by multiplication of the weight by

(=98 Y 30 sl =ew (S5 ] abnenazniente.e)

0<h<h’<g 1<i<Nj
1<i"<Ny»

where A was introduced in Equation (7.31) and is smooth bounded on A2. This is a perturbation of the
B-ensemble by a smooth functional of the empirical measure Ly . Therefore, using Eg and D, instead
of E and D, we can estimate the error made by replacing Ly with the regularised empirical measure
lelv as done in Section 3.4.1 and estimate the large deviations of s [Z}l\,, peTq;fe] as in Section 3.4.2,
leading to an analog of Lemma 3.5 with s-independent constants. We can then proceed to estimate the
large deviations of fluctuations of linear statistics like in Section 3.5.1 — using the new Equation (7.34)
instead of (3.26) — and obtain an analog of Corollary 3.6, where the constants are chosen independent of
s and the only difference is that |¢|; /> should be replaced by C el /2 for some C > 0 independent of s.
We also get the a priori bound of the n-point correlators of the s-dependent model with filling fractions
€ (analog of Corollary 3.7) and an estimate of the large deviations of the filling fractions (analog of
Corollary 3.8 with f replaced by Ct in the right-hand side) by a similar adaptation of Section 3.5.2. We
conclude that all results of Section 3 extend to the s-dependent model with constants that can be chosen
independent of s € [0, 1].

7.4.4. Dyson-Schwinger equations
If f is a holomorphic function in C \ A and is decaying like 0(%) at infinity, we may write

g
FG) =D Pulf10).  Pulf1) = 7{ 4 f(©)
h=0

A, 20m x =&

The operator P}, is a projector, and by construction, Pp[ f] is holomorphic in C \ A, is continuous
across Ay for h’ # h, and behaves like 0(%) at infinity.

As in Section 4, we can derive the one-variable Dyson—Schwinger equation for the s-dependent
model with potential V by integration by parts. The result is a small modification of Equation (4.2):

0= > s(Pu@PulW3le.x) + PAlW 1) - P [W}I(0)
0<h#h’'<g

g
+ 3 (Pu @ PulW3106) + PalW106) - PalW}1 ()
h=0

2o ws 2\ [ d¢ Laxéd)
+( _E)aXWI(X)-F(l_E)ﬁﬂWWI(f)
S opodE L@ ViOPIWIE) 2 L@ .
_th:;)j{h Din L(x) x—& _’Eae(aA) maa anN,B;e(s)

( nXAp (2171')2 L(x)

8 # dé1déy Ly(x;€1,62)
w2 (2im)? L(x)

- s( # U61des Lo 60.82) p, o i) (61..6) + PU WS (1) - P [WE1(£2)
)<h#h'<g A

(P ® PrlW51(&1,&2) + PrlW1(&1) - PrlWi1(£2)). (7.36)

h=0

For n > 2, a similar modification of Equation (4.3) for the n-variables Dyson—Schwinger equations can
be written down.
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7.4.5. Analysis of the Dyson—Schwinger equations
Let ,u;fl;e be the equilibrium measure of the S-ensemble (i.e., s = 1) and fix U, pairwise disjoint

neighbourhoods of Aj,. We remark that the equilibrium measure /,tch,f in the s-dependent model with
the choice of a s-dependent potential on the A-th segment (4 fixed),

L0 =VW =209 Y [ dul(@mie-esenth - )]

0<h'#h<g

satisfies from (7.35) with T in place of V the same characterisation as ,qu;e and hence, by uniqueness,

is equal to ugl;e for any s € [0, 1]. This justifies the choice of T in Lemma 7.5.
Let us study the s-dependent model with this choice of s-dependent potential. The correlators are
still denoted W}. The previous remark means that

wi=NWI R AL WD), ALWS = 0(1),

where Wl{_l} is the (s-independent) Stieltjes transform of ,uéf];f, and the error is uniform in s € [0, 1]. We
now decompose the modified Dyson—Schwinger equations (7.36) with V;, = T and the many variables
analogue as in Equation (5.30), Section 5.3.1. Note that for x near A, for a fixed &, we have

L) =V@-20-5) > Pulw . (7.37)
0<h'#h<g
The relevant operators ¥ and AXC* are now
KP=K+D?,
AK® = AK + AD?,
AT® = AT +1AD?,

where
D@ =26-1 > (PuW 0 Pulf1) = Pu[Palw - ] ),
0<h#h'<g
AP =26-1) . (PalaW 100 - P A1) = P [Palw, - 7] ().
0<h#h’'<g

The second term in D? is the contribution of the extra term in the s-dependent potential (7.37) to the
linearisation of the fourth line of the s-dependent Dyson—Schwinger equation (7.36), while the first term
is what remains from the linearisation of the two first lines of (7.36) after we isolate the contribution of
the usual s = 1 operator K.

In general, D* and AD* are nonzero operators. Indeed, if g5, € ’Hil) (Ap)and f € Hél) (A), we have
forh + h’,

& F© [ A gnOf (@)

A, 20 x — & Ay 2T x—§

fe) D) = 8n(®) & 0

A x—=£& 2im

gn(x) - P [ f1(x) = Prlgn - f1(x) = gn(x)

gn(x) — gn(é) d&
x—-¢ 2in’
where the last expression comes from moving the contour away from Ay, noticing that & +— %ﬁf(‘f)

is holomorphic in C \ A, and that there is no contribution from oo since the integrands are O(#) as

¢ — oo (by definition of the spaces H$>). The nature of (7.4.5) is better seen if we further assume that
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f and gj, have upper/lower boundaries values on A (resp. Ay/). Indeed, by computing the difference of
upper and lower boundary values of (7.4.5) for x € Ay, we find

(gn(x +10) — gn(x —i0)) P [ f1(x), (7.38)

while for x € Ay for k # h (including k = h’), we find 0. Therefore, (7.4.5) reconstructs the unique
function in 7—[;1) (Ap), whose jump (from upper to lower boundary value) is (7.38). The (%, h’)-term in
DS[f]is2(s — 1) times (7.4.5) with gj, = Ph[Wl{_l}](x).

Unlike K, the operator C® cannot be explicitly inverted, but we can nevertheless prove the analogue
of Lemma 5.1 and 5.2 by functional analysis arguments.

Proposition 7.7. Assume Hypothesis 1.1. Im K* is closed in "Hél)(A), and there exists an operator
(Eg)_l, with domain Im IC* and target the subspace of functions ’H;l) (A) with zero A-periods, providing

the unique such solution f(x) = (Ea)_l[w] (x) to the equation K*[f](x) = ¢(x). For any § > 0
independent of N, there exists s-independent constant C(8) > 0 such that

Vo e ImK* xC5,  [I(K5) ' [ellls < CO)llglls-
Besides,
sy —1 s ’ InN
1K) [AX 25 < €' () [~ llells, X =KorJ. (7.39)
Proof. Given ¢, letus try to solve the equation O [ f](x) = ¢(x) for a function f such that ~9§Ah % =0
for any & € [[1, g]]. Following the computations of Section 5.2.2, we have
(id+G o D* + ) [ f1(x) = Gle] (x), (7.40)

where

_ pee T&) f(£)dE
H[f1(x) = Res o) Eox

‘We now prove that the operator (id+G o D* +11), with domain the subspace of functions in Hél) with
zero A-periods, is injective. Assume we have an element ¢ in the kernel of this operator. The expression,

q(x) = =(G o D*)[q](x) - TI[q] (x) (7.41)

and the fact that Py, [¢](x) is holomorphic in a neighbourhood of Ay, for & # h’, shows that o (x)g(x)
admits continuous upper and lower boundary values on S;, and is continuous across A, \ S;,. Hence,
there exists an integrable measure v¢ supported on U}gz:o Sy, such that

d q
q(x)sz ;_(?.

As g(x) has zero A-periods, we have v4(A;) = 0 for every h. Besides, computation with Equation
(7.41) shows that

8
Vhe0,g] VxeSn  Pulgl(x+i0)+Pylgl(x —i0)+2s > Pulql(x) =0,

h'=0
h'+h
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which means in terms of the measure v4,

dvq(f)ng: / dvi () _
Sp

Vhe[[0,g], VxeSh, 2f
10-¢] sy X—¢& , x—¢&

h'=0
h'+h

Integrating this equation from the left edge of Sj, to x in the segment S, yields

vhelogl vees. Y, / Inx - €4V (€) = e

h'=0

for some constant ¢, where we remind that ¢ o =1 if h = h’, and s if h # h’. Integrating this equation
against the measure dv? over Sy, the constant in the right-hand side disappears as v?(A;) = 0. Then
summing over &, we find

// 63 Inlx — £ldv (0)dv?, (£) =
Sp XSy

but we have shown that in §7.4.3 that this equality implies v¢ = 0; hence, g = 0. This concludes the
proof of injectivity.

Therefore, (id + G o D* + I1) is invertible on its image. We proceed to show the continuity of this
inverse. For this purpose, we fix once for all contours y;, surrounding Ay, and not (A )p-2n, and set
Y= Ui:l ypand y = (yh)]f:l. We equip y with a curvilinear measure. From the expression of these
operators — by moving the contour of integration to y — one readily sees that (G o D* + IT) can be
considered as endomorphisms of L?(y), denote :t*, which is compact. Let 7 be the disjoint union of
the set [ 1, g]] (equipped with the uniform measure) and y (equipped with the curvilinear measure), so
L*(%) = C& @ L?(y). We consider further the operator

0<h,h'<g

o D0 — L2(7>
. (W,¢) W+9§ ¢(2513rd§ ms[¢]),

and one can check as before that id + N* is injective. As NS is compact, Fredholm alternative ensures
that id + N* is continuously invertible. Its inverse is id — R®, where R® is the resolvent operator of ﬁs,
and it has a smooth integral kernel. This is enough to prove continuous invertibility of /C* and a bound
for the norm of its inverse. The sought-for inverse for iCs is

F@x) =pry o (K)o Glpl (x) = (id - R*)(0,G[¢]),

where pr, is the projection on the second factor L?*(7). The fact that this solution is actually in Hgl) (A)
can be read from the equivalent versions of Equation (7.40) that we have encountered earlier — namely,
(5.13), where one takes into account that ImG C 7—[( ) (A) (manifest on (5.12)) and the fact that ¢ (x) is
a polynomial of degree g — 1, while o (x) is the squareroot of a polynomial of degree 2g + 2.

The very construction of N guarantees that 55 Jx)dx (X)dx = 0 as desired, and the estimate on the norm

of (Eg)‘l comes from the properties of the resolvent kernel. The proof of the estimate (7.39) follows
the steps of Lemma 5.2 and is omitted. O

For n > 2 variables, the Dyson—Schwinger equations of the s-deformed model can be recast as

(K + AR [W, (o, x1)](x) = A3, (x;xp) + By (x5x7) + Co_ (x5x7) + D) (x5x7),
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with modified expression for A and B. For n > 2, we have

AZH(X;XI):N_l(ﬁz—id){S( Z Pn ® Pw[W,, (o1, 92,x1)](x, x))

O<h¢h’<g

+ th ® Pr[W;,, (o1, '2,x1)](x,x))},

B;+1<x;x1>=zv-1(z:z—id>{ DD SPuIW (e x )] @) - P (Wi, (0,60 )] (%)

JCI O<h#h'<g
J;&(Q) I

+ Z Pn [W;JJ,] (o, x7)](x) - Py [W;_#](.’ xI\J)] (X)},

h=0
Coy(6xy) = = ZMx, ARTCEAVII (6N
lel
2 L
s (xsxp) = N Z (a) 0aW,_; (x1).
ﬂ ac(9A), r-a

And for n = 1 variable, we find the analogue of Equation (5.32),

A3 (x) + D(S) 2/
N

[KC° + AT [A W] (x) =
with
d
AP i) = S 2La(i ) AW,
AT L) = =Nagvya i psemp[F1@) + D sPAlALW1(0) Po f ()

0<h#h’'<g

IS W@ P + (1= 5)@+ L0110

B (o + L)WM () + Ny ol W),

79

One can then repeat all the steps of Section 5.3, with the key point being that we use the inverse

(ICO) I of K and its norm estimate constructed in Proposition 7.7. This results in the proof of an

asymptotic expansion, for any K > 0,

K
Wi(xt,....xp) = Z N WSS () + O(N~K+D),
k=n-2

where the coeflicients W,Ek};“v are N-independent, are given by a s-dependent recursion which is a

s-dependent modification of the recursions provided in Section 5.4.

7.5. Regularity with respect to the filling fractions

Let €, be the equilibrium filling fraction in the initial model “X;/;%' In order to finish the proof of
Theorem 1.3, it remains to show that the Hypotheses 1.1-1.2 for /JX;, imply Hypothesis 5.1 for the

model ﬂz‘\//;?}e with fixed filling fractions € € £ close enough to €., that all coefficients of the expansion

extend as smooth functions of €, and that the Hessian of F, 6{_2}
definite. These properties are proved in the Appendix; see Propositions A.2—A.4.
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Lemma 7.8. If V satisfies Hypotheses 1.1-1.3, then (V,€) satisfies Hypotheses 5.1 for € € £ close
enough 1o €. Besides, the soft edges a; and W{ 1y (x) (for x away from the edges) extend as C*
functions of €, while the hard edges remam unchanged at least for € close enough to €.

We observe that once W{ 1Y and the edges of the support @ , are known, the W,f E} forany n > 1
and k > 0O are determined recurswely by Equations (5.38)—(5. 36) and (5.50)—(5.48), where the linear
operator K1 is given explicitly in Equations (5.12)—(5.19), and thus depends smoothly on € close
enough to €. Similarly, F { } for k > 0 are obtained from Equation (7.1) leading to Equations (7.28)—
(7.29), which shows their smooth dependence for € close enough to €.

Corollary 7.9. If V satisfies Hypotheses 1.1—1.3, then W,ike} (x1,...,x%) (for x1,...,xx away from the

support) and F ﬁ{,kf} extend as C* functions of € € Eg close enough to €.

This concludes the proof of Theorem 1.4 announced in Section 1.4.

8. Asymptotic expansion in the initial model in the multi-cut regime
8.1. The partition function (Proof of Theorem 1.5)

We come back to the initial model ,uX,;/;,, and we assume Hypotheses 1.1-1.3 with number of cuts
(g +1) = 2. We remind the notation N = (Nh)1 <h<g for the number of eigenvalues in Ay, and the
number of eigenvalues in Ag is Ng = N — ne -1 Ni- The Ny, are here random variables, which take the
value Ne with probability Zz‘\//,?s;e / Zz‘\//,?:' We denote €, the vector of equilibrium filling fractions, and
N, = Ne,. Let us summarise five essential points:

o By concentration of measures, Corollary 3.8 yields the existence of a constant ¢, ¢’ > 0 such that, for
N large enough,

,uX,;AB(|N ~ N, > c\/NlnN) < e NN, 8.1)

o We have established in Theorem 1.4 an expansion for the partition function with fixed filling fractions.

o Thanks to the strong off-criticality assumption and Lemma 7.8, we can apply Proposition 7.6: there
exists ¢’ > 0 small enough such that for |€ — €,|; < ¢”, the model with fixed filling fractions €
admits an asymptotic expansion of the form, for any K > 0,

N'szf g - 3%
g—N, — NN+ exp( Z Nk Fﬁ{;e}’ +0(N_(K+1))), (8.2)
h:O( 6h)~ k=—2

with » independent of € and given by Equation (7.27) and an error depending only on c¢”’.
o As established later in Proposition A.4, the Hessian (F ﬁ{;z}),, is negative definite.

o According to Lemma 7.8, € — F ;_"6};‘/ is smooth in the domain |€ — €4| < ¢”’. From there, we deduce

that, for any K, k > -2, there exist a constant C g > 0 and tensors (F/;k*})(f) = 8f)jFB{,k€};v

|€:E* >

such that
K-k , F{~k*} () '
N~ F;gli\}'/‘l/v - Z N B,j' - (N =N < Crx NN - N[ 83)
Jj=0 ’

We now proceed with the proof of Theorem 1.5.
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8.1.1. Taylor expansion around the equilibrium filling fraction
Due to the large deviation estimates for filling fractions (8.1), we can write for N large enough,

N1 ZVA
(zx;g)l( —_NENIN ’“V/‘N) = 13 (IN = Nuli < cVNTnN) = 14+0(e7 VY,
0<N,,---,Ng<N h:oNh'
IN=-Ny4|i<cVN InN
In other words,
N1 ZVA
Zyh = ( NﬁNN/N)(l_i_O(echnN)).
0<Ny,---,Ng<N h=0 n!
IN-N4|i<cVYNInN

For the range of filling fractions appearing in the sum in the right-hand side, we dispose of an asymptotic
expansion of each term which are the partition functions of the model with fixed filling fractions by
(8.2). Moreover, we can do the Taylor expansion of its coefficients with respect to N/N around €, by
(8.3) up to order O (N ~(2K+1)) (and these errors are uniform for the range of filling fractions considered).
This gives

VA
N'! ZNBN/N

0<Ni,...,Ng <N Hh:O N!
IN-N4|i<cVNInN

2K 2Kk ( {k} )

)
exp( Z Z Nk XD (N - N)® 4 N R (N)]. (8.4)
k=—2 j=0

IN-Ny|i<cVNInN

The error N~ ?X*D Ry (N) can be controlled according to Equation (8.3) using the constraint
IN = Ny|i £ ¢VNInN, as follows:

2K
|N7(2K+1)R2K(N)| < N7(2K+1) Z Ck’ZKCZkalN_N*ﬁka
k=-2

< Cx PENCKD NE (1n YK = ¢} NE- 1 (In N)K (8.5)

Note here that all sums are finite since we stop them up to an error term which is uniformly bounded.
Observing that exp(N~K*D Ry (N)) =1 = O(NX~1(In N)X) when N — co uniformly over the range
of filling fractions on which we sum in Equation (8.4), we get

s 5, ool 38w U
, _ (k+j) B’ ®)
= exp( N~ - (N =N, |.
Z(K+1 K
L+ O(N-K+D(InN)K) 0<Ni.Ng <N k=2 j=0
IN=-Ny|i<cVNInN
(8.6)

Here, the previous error O(e~¢"N "N has been absorbed in the larger error O(N~K+D (In N)X).
Since €, is the equilibrium filling fraction, which is characterised as the filling fraction maximising

B{ 2} , we have (F - 2})’ = 0. We can factor out the exponential containing the F’ B{'_*k} without derivative.
We then expand the exponential of terms containing (F’ ,é-k*})(j ) with k + j > 0, doing so up to an error of
magnitude O (N~K+D (In N)X). In this way only, remain in the exponential (F{ 2})’ =0, (F{ 2})” and

(F - 1})’ The result is the following expansion (note here that all sums are finite, including the one on r):
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VA
ZN’[),
1+ O(N-(K+D (In N)K)

K .
_ 1 :
(zN){z— Y Q@

k,'+ji>0
I, ki) <2K

N=Zh ki) (N N )O(EL ji)eé(Fé;f})”'(NN*)®2+(F[§;,J})"(NN*))}.

IN=-N4|i<cVNInN
(8.7)

8.1.2. Waiving the constraint on the sum
Our next task will be, for each of the finitely many tuples (1, . . ., j,) involved in the sum in the last line,
to replace the constrained sum over N such that [N — N,|; < ¢VN In N, with an unconstrained sum over

N € Z8. This will be possible because (F, ﬁ{'—z}),, is negative definite (Proposition A.4) — in other words,
-2}

x
because the minimum eigenvalue g of the symmetric matrix —(F g; .

J =Y, ji and notice Equation (8.7) only involves J < 2K. Let us equip R# with the euclidean norm

)" is positive. More precisely, set

8
Vw € RS, [w), = Zwi
n=1

In particular, we denote r = |(Fl§,;_*]})'|2. The tensor product (R8)®/ is naturally equipped with a
euclidean norm also denoted | - |5, such that

Ywi,...,ws €RS wi®---@wih=wih---|wsl.

Let m be a positive integer. We shall estimate the contribution — with respect of the aforementioned
euclidean norm in (R$)®’ — that the N € Z# in the shell between the euclidean balls of radius m — 1
and m would give to the sum

1 {-2} ”, _ 2 {=13y/. _
Z [N = N, [} ) (NNl (V=N )

NeZ8
IN=N|p2m

—49(m—1)2
< E mJe 7 (m-1) +mr’
N ez8
m—1<|N=N4|,<m

2

Cc m]+g—le—%m +mr’

IA

for some constants C > 0 coming from the number of integer points in the spherical shell in g-

dimensional space, and ' = r + g. Then, there exists Mg > 0 such that for m > Mg, we have
2 ’ 2 .

C m7*s—lgmam+mr’ < o=Gm* Up to choosing a larger Mk, we can assume as well for M > Mk,

_4q M2
—%M e M

NV
D :
1-e2

<e 38
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Then,

> v N*|Zexp( (FS2)" (N = NP+ (FD) - (N - N*))

NezZ8
|N_N*|22M
Yy
2 2 e 4 2
< E e < E e~ ¥M*=FmM = ——0 < e ¥MY
m>M m>0 l—e™

By Cauchy—Schwarz inequality, we have [N — Ny|; < +/g|N — Ny|>. Therefore, the terms N € Z8 not
included in Equation (8.7) can be bounded by Equation (8.1.2) with the choice M = |-c‘ /% InN -|:

' Y =N e ((F (N =N (L) (N - N)
N eZ8 2
IN-Ny|;2¢cVNInN

_4(r1¢ N 2 )
=0(€ 5 ([ glnN])):O(equnN)

for some constant g’ > 0 when N — oo. As a result,

VA
ZN,ﬁ
1+ O(N-(K+) (In N)K)

1 F{k})(jl
kv — iy (ki ji)
oo St 3 e U
r>0 kiy..., ky>-2
jl ----- erO
ki+ji>0
Z::l ki+ji <2K

( > (N—N*)®<Z?=lff)exp((F{ ) (N =N+ (B - (N - N*)))} (8.8)

NeZ8

Note that the error may not be uniform when K increases due to the choice of Mk in the intermediate
steps.

Eventually, we recognise in the sum of the last line the J-th tensor of derivatives of the Theta function
defined in Equation (1.20), with arguments:

-2 1
TBix = ir YBx = 217r

More precisely,

b
v=v‘3;*

{=2}\» {=1}y/ Vv ®J |[—
S (N = Ny S N _(Fe) ﬂ[ Ig’*}vh&*)
= 2im

and this contribution is of order 1, so that we only need to sum up to 3.\, k; + j; < K in Equation
(8.8) to get the expansion up to O(N~K+D (In N)X). By looking at the expansion for K — K + 1, we
know that this error done for the expansion with X is, in fact, O(N~K*1)_This concludes the proof of
Theorem 1.5.
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8.2. Deviations of filling fractions from their mean value (proof of Theorem 1.6)

We now describe the fluctuations of the number of eigenvalues in each segment. Let P = (Py, ..., Py)
be a vector of integers, depending on N in such a way that P — Ne, j, = o(N %) when N — oo. We set
Py=N - Zi:l Pj,. The joint probability for 4 € [[1, g]| to find Py, eigenvalues in the segment Ay, is
ViA
N! ZN B:P/N
g VA
h=0 Ph ! ZN B

ﬂNﬁ[N P] =

We recall that the coefficients of the large N expansion of the numerator are smooth functions of P/N.
Therefore, we can perform a Taylor expansion in P/N close to €, with the method used in Section 8.
We leave out the details and only state the result: provided P — Nex = o(N %), only the quadratic term
of the Taylor expansion remains when N — oo:

o3 B -(P-Ne)®+(F Y -(P-Ney)
[N =P] ~

#N # ﬁ[ _I(\)I* ] (V,B;*|Tﬁ;*)

In other words, the random vector AN = (AN, ...,AN,) defined by

8
ANp = Ny = Newn + D LFSEY 1y (F
h'=1

is approximated in law by a random Gaussian vector, with covariance [(F - 2})”] I"and conditioned to
live in the shifted lattice

g
AN € (28 - INewl + Y IS T ().

h'=1

where for w € R$, we denote [w]| = ([w1],- -+, [wg]). Strictly speaking, we cannot say that we have a
convergence in law to a discrete Gaussian because the shift of the lattice oscillates with N. We observe
that, when 8 = 2 and the potential V is independent of N, the vector F ﬁ{_*l} vanishes so that N — Ne, is

approximated in law by a centered Gaussian vector conditioned to live in the shifted lattice (Z8 — | Ne4]).

8.3. Fluctuations of linear statistics

With a strategy similar to §5.5, the result of Section 8.1 implies, for ¢ a test function which is analytic
in a neighbourhood of A,

-N
uVA (eis(zfilso(di)—Nfs,w(f)duchl(.f))) - S Mpal6]-5 Opalegl I | (pie +is upilellTpin)
" B[N ] (pie )
(8.9)

This formula gives an equivalent when N — oo, which features an oscillatory behaviour. We have set

gLl = (5200, [ o6 duly©) (5 § @ @) | . s10)

1<h<gle=€4

where @y, (£)dé are the holomorphic one-forms introduced in Equation (5.16). The linear (resp. bilinear)
form Mpg.c[¢] (resp. Op.el¢, ¢]) is defined in §5.5, and in Equation (8.9) it is evaluated at € = €,. We
recognise that the right-hand side of Equation (8.9) is the Fourier transform of the sum of two independent
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random variables: one of them being Gaussian and the other being the scalar product with 2izug.. [¢]
of the sampling of a g-dimensional Gaussian vector at points belonging to —N, +Z8. Therefore, among
a codimension g subspace of test functions determined by the equation ug. [¢] = 0, the ratio of Theta
functions is 1, and we do find a central limit theorem for fluctuations of linear statistics, as in the one-cut
regime. But when ug. [¢] # 0, we only find subsequential convergence in law — along subsequences so
that (—Ne, mod Z8) converges — to the sum of a random Gaussian vector and an independent random
Gaussian vector conditioned to belong to a lattice with oscillating center. Accordingly, the probability
distribution of those fluctuations displays interference patterns varying with N.

A. Elementary properties of the equilibrium measure with fixed filling fractions

We now prove Theorem 7.8 stating that if V is analytic in a neighbourhood of A, if we denote (g + 1) the
number of cuts of the equilibrium measure ,uga in the initial model, and if we assume it is off-critical,

then ,ugf];e still has (g + 1) cuts and remains off-critical for € close enough to €, and depends smoothly
on such e.

A.l. Lipschitz property

We may decompose

g
/'lgl;e = €n luéf];e,h’ (A.D
h=0

where ,ue‘;,e ,, are probability measures in A, and we know that ,ugfw minimises the energy functional
E[u] — see Equation (1.5) — among such choices of probability measures. We first establish that linear
statistics of the equilibrium measure in the fixed filling fraction model are Lipschitz in €. Let § € (0, 1]

and set
g
Es=lee(s,1-0)¢ | s<1-) e <1-d}.
h=1
If € € €5, we denote €9 = 1 — X5_, en. If (ko,...,k,) is such that 3.3_ k, = 1, we denote k =
(K15 .. Kg).

Lemma A.1. For 6 > 0 small enough, there exists a finite constant c¢(8) such that, for any € € Es, for
any ky, € (0,2€p,] such that Zi:() kn = 1, we have for any test function ¢,

| /A P00 (@l — L) 0] < Ol max - el

Proof. As we have seen in Theorem 1.2, ,UXJ;E is also characterised by saying that for (A.1), there exist
constants (Cevh)oghgg so that for any & € [0, g]] and x € A,

2‘/A’1n |X _§|dﬂc¥1;e(§) - V(x) = CZh’

with equality y;f]_e ,, almost everywhere. Recall the definition of the effective potential (here including
the constants for convenience):

8
04 = V() =2 [ b= (€)= )" €Ly, (0,
h=0
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and of the pseudo-distance between two probability measures u and v:
D p,v] = - //Rz In|x — yld[u = v](x)d[u = v](y) € [0, +eo]. (A.2)

We have for all probability measures on A = Uﬁ:o An,

Bl = 5 (Pt + [ 0 G+ €Y, A + 1%, (A3)

h=0

with

eqe ‘// ln|x— |d/~1eqe(x)d/leqe(y)

Indeed, a simple algebra shows that

(Dz[#,#é@;e] + /

(332[#,#21,;6]"'/ eqe(x)d[ﬂ ﬂeqe](x)+zc n(p— iueqe)(Ah)) (A4)

E[u] = E[uygel +

V) =2 [ Inlr = ity (0)dli - il o)

NI NI

= E[pudgc] +

Using the characterisation of ,uf‘:f];E, one finds that

g
B %
,ueqe ) eheh _que’
h=0

which completes the proof of Equation (A.3). We next choose k # € and write that if u, is any probability
measure such that w, (Aj) = kj, we must have

Elpep] < Elu].

Since ug];,( and y, put the same masses on the Ay, we deduce from Equation (A.3) that

Oty byl + [ Ol () < Dl + [ O,

We next choose ., whose support is included in the support of ,u;fl;e, so that since Y __ vanishes there

eq;e
and is nonnegative everywhere, we deduce
mz [,Ugl;p ,ue‘f];e] S ®2 [ﬂK’ /’l;il;é] . (AS)

We put e = t/,teq .+ (1 —1)vfort e [0, 1] and a probability measure v on A whose support is included
in the support ueq;e and such that for all A,

tep + (1 =t)v(Ap) = kp . (A.6)
We have from Equation (A.5) that

D [l Higie] < (1= 1*D?[v, .
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We take

1-t= (0111}?5 €, |kn — €nl) € [0,1).

If k, € (0,2€p,] and is such that v(Ay) > O for any 4, as it should for v to be a probability measure. We
finally choose v such that D*[v, p;fl;e] is finite (for instance the renormalised Lebesgue measure on the

support of ,uéa;e) to conclude that there exists a constant ¢(§) valid for all € € £ such that
2 ~ 2
D [:ue‘:f];’n #X];E] < C(é) Orﬁnl’?gg Ieh - Kh' .
Recalling that
D2 1Y ] = ®dp ~— V2
ﬂeq;x’#eq;e] - 0 7|/~1eq;l{(p) - Heq;e(p)| ’
we deduce that for all ¢ € L'(A),

/A (ALY, — 1] () = /A ap F(p) (a¥oe — 1Y) (P).

This implies that for all ¢ with |¢];» < oo, we have
| /A POl = 1 00] < c(0) el max 1o = el .

Lemma A.2. If ueq ¢ is off-critical and its support has ge + 1 cuts denoted [a_ ,, a1, then for € in

€,h’
a small enough neighbourhood of e, peq_ ¢ s off-critical and has the same number of cuts, of the form

[a/;,, e a:,, 1, and a/;,’ ,, are Lipschitz functions of €. Moreover, for 6 > 0 small enough, assume that A

contains
U U {x od(x,ae) < 5}

€ ag soft edge

when the union ranges over a small enough neighbourhood of €. Then in the same neighbourhood of e,
the function €' W{;,l }(x) is Lipschitz uniformly for x in any compact of C \ A.

Proof. Restricting to x in the domain U where V is analytic, let us rewrite the leading order of the
one-variable Dyson—Schwinger equation

WD) =V w! )+ % ((x)) , (A7)
where
Vv’ Vv’
00 = [ 1o©) "= it e, (A8)
and we have chosen Lo(x) = [[,ega(x — a). Solving the quadratic equation (A.7), we find
-1 4 (X) Lo(x) V' (x)? — 4Q¢ (x)
Wi (x) = \/ PTNES : (A.9)

where the dependence in €’ only appears through Q¢ (x). Owing to Lemma A.1, since V'’ is analytic in
a neighbourhood of A, Q¢ (x) is analytic for x in this neighbourhood and is Lipschitz in €’, uniformly
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for x in any compact of this neighbourhood. The edges of the support of ,ug], o are precisely the zeroes
or poles of Re (x) = (Lo(x)V’(x)? — 4Qe (x))/Lo(x) on A. Since ,uéa;e is off-critical, for €’ = €, these
zeroes and poles are all simple. By a classical theorem of complex analysis, it implies that the zeroes
of Re in A occur as Lipschitz functions €’ — a,  ; in particular, ,uga;s keeps the same number of cuts.

Lemma A.1 also implies that W{_;,l }(x) is a Lipschitz function of €’ for any fixed x ¢ A, and this is, in
fact, uniform away from A. m]

A.2. Smooth dependence in the filling fractions

The following result allows the conclusion that dugfl;e/ dx (or Wl{;] ! ) is smooth with respect to € for x
away from the edges.

Proposition A.3. Lemma A.2 holds with C™ regularity instead of Lipschitz.

Proof. We first prove that the Stieltjes transform Wl{;l}(z) is a differentiable function of the filling
fractions, for any z € C \ S¢. We take €, k, k’ € 5. We choose z,z” € C at distance at least §” of A for
¢’ > 0 fixed but small enough. Let i, (x) = Z_Lx and ¥, o (x) = Y (x) — ¢ (x). As in §3.5.2, we can
build functions ¢, (x) and ¢, - (x) defined for x € R, which coincide with ¢, and ¥, .- for x € A, and
for which

|‘PZ|1/2 < C((S,) I‘Pz,z’ll/z < C(5/)|Z - Z’|~
After Lemma A.1, we have

wil@-wil @< cle-«h,
(Wi @-wh @) - wi @) -wi @) < ¢ lz- 2 k-« (A.10)

1.k’ 1k’

We fix n € R&*! such that Zi:o ny = 0, and for a given z and k, we consider the function ¢ +— Wl{;;lz}q (2)
defined over

Ven={teR : «k+tme&s}.

We deduce from Equation (A.10) and Rademacher theorem (stating that Lipschitz functions are almost
surely differentiable) that

W{—l} (z) - W{—l} (2)

Lik+(s+t)n Lik+sn

{1} — i
Os Wl K+sT) (2) = }5% t

exists for s in a subset U, with probability 11in Vy ;. Let ‘th{] be a countable {-net of
Ay ={zeC : d(z,A) 2 ¢'}.

By the previous point, we find a subset Z/{,f/”’['(] with probability 1 in V, 5, such that for any s € L[,f;;['{]

and z € Rl

& 6SW{7] ) exists. We then choose the {-nets to be increasing when ¢ decreases and denote

Lik+sm
& _ ¢’,[1/n]
Z’{KJ] - ﬂ ux,q .

n>1

{-1}

1:k+s.

Z/{,f;l has still probability 1 in V , and for any s € Z/IK‘T;I in this set, O,W n(z) exists for all z €

Un>1 ng,/ nl, By Equation (A.10), this implies the existence of a Lipschitz (with respect to z) differential
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(with respect to s) for all z € As and any s € L{K‘f;. By Montel theorem and Equation (A.10),
7 O Wl{ Kiin(z) is a holomorphic function in z for any s such that it exists.
By Equation (A.8), O+sy is the expectation value of an analytic function under ,uég;,( sy therefore,

[ dELy(€) VI(x) = V(&) Wil
QK+sn(x) = ‘fé 2in x-¢ 1K+"7(§)

with a contour C included in A4 . Besides, Qy+sp(x) is a holomorphic function of x in a neighbourhood
Uof Ain Cas V is. Hence, s = Q4 (x) is differentiable for s € Z/l,(‘f;] for each x € U, and Lipschitz
in z. By Montel theorem, its derivative — where it exists — is holomorphic in z € U. Then, Equation (A.9)

implies that s > Wl{;;iiq (x) is differentiable for s € Z/l,f;) and any x € C\ 0Sygp.

Now, let us fix a compact neighbourhood of € € £s such that the regularity result of Lemma A.2
applies. When we intersect V , with a small enough neighbourhood of an off-critical € € £5, Lemma
A.2 guarantees that pgl;,( remains uniformly off-critical. Arguments already used in Lemma A.2 for
{-1}

Lipschitz regularity implies that edges at which W[ _ s

has a squareroot behaviour are functions

s ay s h which are differentiable for s € Z/{,f;]. And, by Equation (A.9), we can write at a hard edge

a —necessarily independent of s,

[a]
Wil (o) = Metn)
K+sT) 1
(x-a)
and at a soft edge @y,
| 1
1{K+];U( )= +SH (x) (x a""""’) ’

with functions M,(fv],] (x) differentiable in s € Z/I,f and holomorphic in x a neighbourhood of the edge

a. Therefore, for s in this set, we have the behav1ours
1 _1
AWyt () = O((x = arensy) 7)

at any edge. Given the properties of the Stieltjes transform, we also know that

o 0y wih (x) behaves like 0( 5) when x — oo — recall that the term in - in W has constant

Lik-+s1) Lik+sn
coefficient.
o for any x € Sy, We have 0 Wl{K +}n(x +i0) + GSWI{.;E;,I (x—-1i0) =0
1
o forany 4 € [0, ¢], 9§A Oy W]{Hi”(x) 2 = 1h-

These properties imply that d; Wl{ Kl}q (x)dx can be analytically continued to a holomorphic one-

form? on the Riemann surface of genus g specified by the equation o2 = [Taeos,,s, (x — @) with periods
1, around the A-th cut. As holomorphic one-forms are characterised by their periods, we deduce that

Wl{Kiiq (x) = 2in Z nn @p(x), (A.11)

where (wy, (x)dx);‘f:1 is the basis of holomorphic one-forms on the Riemann surface introduced in
Equation (5.16). These are completely determined by the endpoints and depend smoothly on them. Since
the right-hand side of Equation (A.11) is a continuous function of s, we deduce that s +— Wl{xiin (x)

is actually C! for s such that k + s7 is in a vicinity of €. These arguments holding for any 7, k, we

2Note that on this Riemann surface, a local holomorphic coordinate near the points x = « is given by vx — a.
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deduce that k — W{ 1 is Gateaux differentiable, and hence Fréchet differentiable, in a neighbourhood
of €. Therefore, all the reasoning of the proof of Lemma A.2 can be extended to show that the edges
are C!. The differential equation (A.11) (for any fixed x away from the edges) then implies C2, and
inductively, C*™. O

A.3. Hessian of the energy with respect to filling fractions
We are now in position to prove the following:
Proposition A.4. If ,uéfl;e is off-critical, then F ;j};v is C* with negative definite Hessian at least for €'
in a vicinity of €.
In other words, the g X g matrix 7g, with purely imaginary entries
1 52 F{—2};V

Vh,h' € [1,¢], (Tg:e)n.w = i m (A.12)

is such that Im7g,¢ > 0.

Proof. Letn,n’ € R8*! so that Zi:() nn = Z‘]g;:o 17, = 0 and € be in a vicinity of €. The last paragraph
has shown the existence of an integrable, signed measure with O total mass:

\%4 .,V
lueq;s/+n] lueq;e/
vy, = lim T e
150 t

By Equation (A.4), we have

-2}V 2LV _ \%
Fﬁ{;K } - F,lg e’} (E [ﬂeq,K] - E[:ueq;e’])

g
B 20,V V 5V v v 14
= 5( -D [:ueq;Kv :ueq;e'] + N Ueq;e' ('x)d[/'leq;l( - l’leq;e’] (x) + Z Ch;E'(Kh - 6;,))
h=0
Since U; , vanishes on S and the derivatives of €’ +— ,u;fl_é, are smooth and supported in S¢/, we
deduce that F e{,_Z}’V is a C? function of €’ and its Hessian is

g

Hessian(Fg V'l = —g Z ol [OANS PRIRAAWS PW § (A.13)
h=0

where we recall that D is the pseudo-distance from Equation (A.2). Therefore, the Hessian is definite

negative. i
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