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ON THE NUMBER OF PARTITIONS OF {1,...,n} INTO
TWO SETS OF EQUAL CARDINALITIES AND EQUAL
SUMS

BY
HELMUT PRODINGER

ABSTRACT. Let A(n) be the number of partitions of {1, ..., n} into
two sets A, B of cardinality n/2 such that Y, .. k=Y, g k. Then
there is the asymptotic result

n

2 3
A(n)~—2i- as n — o, n=0 (mod 4).
n®

1. Introduction. Suppose that the best n tennis players play a master
tournament in such a way that, as a first step, two sets of n/2 players and equal
power play two sub-tournaments.

In mathematical language this reads: The set {1, ..., n} is partitioned into
two sets A, B of cardinality n/2 such that

(1) Y k=Y k="t

keA keB 4

In this paper the number A(n) of such partitions is considered. Apparently
n=0(mod 4) must hold. For instance, for n =4 there are two solutions
A ={1,4}, B={2,3} and A ={2, 3}, B={1, 4}, hence A(4)=2.

An asymptotic answer is

THEOREM.

2" 43
{(51,...,3 ) e e{-1,1}, Z g =0, Z gk = 0}\~;1—-%-

The proof of this result is along the lines of [1], where it is shown that

{(S_n,...,sn) eefo 1}, ¥ ekk=0}| 22';;‘ \/3

k=-n

A(n)=

B(n)=

However, the present situation is more complicated.

2. Proof of the Theorem. A(n) is the constant term in the expansion of
r_1 (uz"+u"'z7*). This yields with u =e™, z =¢"

H (uzk+utz7*%)=2n H cos(x + ky) =:2"f.(x, y).
k=1 k=1
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Note that
falm+x,y)=f.(x,y) if n=0,2(mod4)

and
fulx,m+y)=f.(x,y) if n=0,3(mod4).

Since f,(x, y) is just a trigonometrical polynomial, its constant term (which is
27"A(n)) is found by integrating. Hence

r3mw/2 £37/2

47227 "A(n) = f.(x, y) dxdy

/2 d—a/2

e /2 r /2

= G ) Hf(m+x, y)+fulx, m+y)
—q/2 d—m/2

+f,(m+x, w+y)}dxdy

/2 r /2

= 4f.(x,y) dxdy, onlyif n=0(mod4).

/2 d—m/2
Hence the condition n=0 (mod 4) is assumed to hold throughout the rest of

this paper.
Now the integrand will be estimated for values of y not near to the origin.

[ﬁ cos(x+ky)]2= l_n[ (1-sin*(x + ky))
k=1 k=1

(2) <exp[— i sin?(x + ky)]
k=1

n  cos((n+1)y+2x) - sin ny] _
= ——4 f— 0 Bn
exp[ 2 2siny (™),

with B> 0 for 7/2(n+1)=<|y|=n/2. Hence the integration with respect to y is
only to be done in the interval [—a/2(n+ 1), 7/2(n+ 1)]:

w/2(n+1) /2
j fu(x, y) dx dy.

w22 "A(n) ~ j
—1/2(n+1) Y—a/2
Now assume that |(n+1)y+2x|= /2, |y|=#/2(n+1), |x|=<m/2 holds. Since
fo(=x, —y)=f.(x, y), it is sufficient to discuss
v

'y
+1)y+2x=— =
(n+1)y+2x > y<2(n+l),

In the estimation (2), the cosine is negative and thus the integrand is again
0(e™), y>0. Hence

Nl

w2 am~ [ [0y dxay,
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where the integration is to be done in the domain

s v ™
= =—lyl= +1)y+2 s—},
D {(x, y) | xl=3, Iyl Wty |(n+ 1y +2x| =
Note that —@/2=<x+ky=<m/2 holds for k=1, ..., n in this domain. Also note

that cos z <exp(—3%z?) for —m/2=<z=<m/2. Thus

w22 "A(n) ~j J f.(x,y)dxdy < [: J: exp[ —%kg (x+ ky)z] dx dy

© o 2
~j j exp[—%(nx2+n2xy+%y2>]dxdy

1 V3

B ur (with r=v312).
n

I j exp(— (x> +2rxy +y?)/2) dx dy

Now for |x|<n ™3, |y|<n™3:

IT cosx+ky) =TT exp(—3(x + kyy?) [T {1+0((x + ky)*)}
k=1 k=1 k=1

= exp[—% ki (x+ ky)2+0(n“”3)].

=1

Note that for (x, y)e D the integrand is positive. Hence

ﬂnmwww>j [ reyara

n-43 -

n-4/3 n-13 n 3
~J J exp[—% Y (x+ky)2] dx dy~% 4.
k=1

Therefore (v3-4)/n? is an asymptotic equivalent for w22 "A (n).

3. Miscellaneous. Here are some numerical values.

2"4./3 2"4./3
n A(n) ;/ A(n)/ 2«/_
n’m n’w
4 2 2.205316 0.9069
8 8 8.821264 0.9069
12 58 62.72899 0.9246

16 526 564.5609 0.9317
20 5448 5781.104 0.9424
24 61108 64234.48 0.9513
28 723354 755082.9 0.9580
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In the language of probability theory, the theorem can be reformulated. If g,
are independent identically distributed random variables with values —1 and 1,
each with probability 3, then

d 143
3 (kzl ek =0 and kX k= 0) =

Now

@ O e

by Stirling’s formula. Furthermore,

< 1 6
(5) P(k; ek = 0) ~ \/ —
which can be derived by van Lint’s method [1].

It is worth noting that f,(x, y) is the characteristic function of the random
vector S=X;+ - -+ + X, where X, ==(1, k) each with probability 3. From the
Liapounov Central Limit Theorem it follows that if S=(S,,S,) then
(S1n7Y2,/38,n?) is asymptotically normally distributed with the density
function

oy Jl 2exp{ (> —=2rtu+u?2(1-r%)},

where r=./3/2 is the asymptotic correlation (see [2]).
Thus (3) is not unexpected; (3) is two times the product of (4) and (5) and
this factor 2 is just (1—r?) "2,

I wish to thank F. J. Urbanek, F. Vogl and the referee for helpful remarks.
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