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§ 1. Introduction. In Part I it has been shown that, given a contact
transformation, two equations

Q(q,P) = Q (i.i)
V{q,p)=P (1.2)

can be derived which lead to the compatible differential equations

(1.3)-
(1.4)

It will be shown in the present communication that the necessary
and sufficient condition that (1.3), (1.4) should be compatible is that

Q (q, p) P (q, p)-P (q, p) Q{q,p)=l, (1.5)

regarded as an equation in the non-commutative variables q, p which
themselves satisfy the condition

qp-pq=l. (1.6)

We shall call functions satisfying this condition conjugate functions.
From this point of view the method employed by Professor Whittaker
in his original paper, involving the use of a contact transformation,,
was really a particular method of generating conjugate functions.
This powerful method may be supplemented and extended by the
other methods developed in the following pages.

In working out this theory it has been found necessary to
develop somewhat the algebra of non-commutative variables obeying
the law (1.6). Section A contains certain results, including an
extension of Taylor's Theorem to this algebra, which appear to
possess an interest of their own.

The next Section deals with the general theory of conjugate
functions and canonical transformations and the relation of this-
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theory to the solution of differential equations by the methods of
Professor Whittaker.

In the last Section some results are given relating to infini-
tesimal canonical transformations, and it is shown how this theory
may be used to obtain further identities in non-commutative
algebra.

It may be added that although for the sake of simplicity we
have considered only the case of one pair of conjugate variables,
practically all the results may without difficulty be generalised to
the case of n such pairs, provided that the variables belonging to-
different pairs commute.

A. Non-commutative algebra.

§ 2. We shall give a few theorems in the algebra of a pair of
variables q, p which obey all the laws of ordinary algebra except the
commutative law, in place of which we have

qp—pq = l. (2.1)

Clearly, if we have any identity holding between functions of
q, p, it remains an identity when both sides are pre-multiplied or both
post-multiplied by the same function of q, p.

For partial differentiation with respect to q, p we shall use the
symbols 8/Sq, 8/Sp. This will avoid confusion in subsequent applica-
tions to contact transformations. These operations are always to be
carried out without transposing any non-numerical factors, e.g.,

Spq2/Sq = pBq2/Sq = 2pq,

8pqp/8p = qp +pq-

When this is done it is clear that the ordinary rule for differentiating
a product remains valid.

All mixed derivatives are independent of the order of differentia-
tion, provided the necessary differentiability conditions are satisfied.
It would, however, be difficult to formulate conditions of convergence
or continuity or differentiability in the present variables. In this
paper we leave aside such considerations and assume that the
functions with which we deal are such that we may legitimately
perform the required operations upon them.
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§ 3. Theorem I. If K (q, p) be any function of q, p then

K (g, p)p-pK (q, p) = 8K (g, p)/8q, (3.1)

qK (q, p)-K (q, p) q = 8K (q, p)/8p. (3.2)

This result has been given by Dirac.1

§ 4. Theorem II. Any function K (q, p) possesses a unique derivative
with respect to q or p.

For let L (q, p) be some other way of writing K (q, p), so that

K(q, p) = L(q,p),
giving

K(q,p)p—p K{q,p) = L(q,p)p—p L (q, p).
Hence from (3.1)

8
and similarly

8K (q, p)jhp = hL (q, p)/8p.
This shows that the permutation of th.e variables according to

the law (2.1) and differentiation are processes whose order may be
interchanged. It is further to be noted that the fundamental rule
(2.1) is consistent with the definition of differentiation.

§ 5. We define integration as the process inverse to differentiation.

Theorem III. There exists a unique integral of any function
K{q, p) with respect to q, apart from an arbitrary function of p, and a
-unique integral with respect to p, apart from an arbitrary function of q.

For if there exist two functions L (q, p), M (q, p) such that

8L (q, p)/8q = K (q, p), 8M (q, p\ISq= K (q, p)
and

L (q, p) — M (q, p) = N (q, p) (say),
then

8N(q,p)/8q = O;
or, from (3.1)

N(q, p) p — p N {q, p) = 0.

Therefore N (q, p) commutes with p, and so is a function2 of p.
.Similarly for the second part of the Theorem.

1 Dirac, Principles of Quantum Mechanics (1930), 34. The present algebra differs
from Dirac's only in taking qp—pq = X instead of qp— pq = i. In some previous work
Dirac used the first relation, cf. Proc. Camb. Phil. Soc, 23 (1936), 412.

2 Dirac, Op. cit, 41.
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Theorem IV. If a function L (q, p) is such that

8L/8q = 8L/8p = M (q, p) (4.1)

then L(q, p) is a function of (q + p) since it follows from (4.1) that
L (q, p) commutes with (q + p). Consequently M (q, p) is a function
of (q + p), and hence we have

| M (q + p) 8q = j M (q + p) 8p = J M (a) da (4.2).

the last integral being the ordinary integral with respect to a(=q + p).

§6. Theorem V. The derivatives of (p + q)n, where n is a positive
integer, are given by

8(p + q)»/8q = n(p + qr-\ (6.1)
8(p + q)n/8p = n(p+qr-1. (6.2)

If the theorem is true for n we have
S (p + qr+1/8q = 8(p + q)(p + qTi8q

= (p + q)n+(p + q)n(p + q)n~l

from which the Theorem follows by induction, since it is certainly
true for n = 1.

It is evident that {p + q)n cannot be expanded by the ordinary
binomial theorem, since the variables do not commute. But let us
denote the formal binomial expansion

^ Kniyqn-1 + qn (6.3),
by (Pi + q)n-
Thus (pi + q)n is to be expanded formally by the ordinary binomial
theorem, keeping px factors to the left in each term, and px finally
replaced by p. We may now prove the following theorem, which
may be looked upon as the first step in generalising the binomial
theorem to the present algebra.

Theorem VI. The expansion of (p + q)n is given by

(p + qT _ (Pi + q)n ± (Px + q)n-2 , / J V J (P
n\ n\ 2 (n - 2 ) ! \ 2 ̂  2! (n - 4)!

6
+ . . ( 6 4 >

2j 3! (n-6)!

where the series stops with the last exponent which is positive or zero.
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From the definition (6.3) it follows that

Jfa + g)"Sg = (V+gl"+

where f(p), g (q) are arbitrary functions.
Assume the Theorem holds for n, and integrate both sides of

(6.4) with respect to (q + p). Using Theorem IV and (6.5) we find for
n = 2m,

(P
(2m+1)! + ¥ (2m-l)l + "" + U J ml i P l + q)

But we may also get (p + q)n+1/(n + 1)! by multiplying both sides of
(6.4) by (p + q)/(n + 1), and this shows that the constant in (6.6)
is zero.

Similarly if n = 2m + 1, we find

ip + g)-H-« {P + g)-*» i fa + g r / 1 y i fa + g)2 , ^.gf. (6.7)
' \2) m! 2!

_ y
(2m + 2)! (2m + 2)! ' 2 (2m)! ^' \2) m! 2!

Again multiplying both sides of (6.4) by (p + q)f(n + 1), it is clear
that the constant in (6.7) comes from the difference between
(p + q) (pi + q) and (pL + qf, and so it is just (|)m+1/(m + 1)!.

Hence in either case the Theorem is true for (n + 1) if it is true
for n. It is obviously true for n = 1, 2. Hence it is true in general.

§7. The exponential function. We define this function by the
exponential series. This presents no novelty for commuting
variables but demands special treatment for non-commuting
variables. The first case we consider is ep + q and we prove :

Theorem VII. The function ep + t) is given by
ep + <i= epenei. (7.1)

For by definition,

1 + (p+ g) 4 . - ^ ^ + ( £ + ^ ! + . . . .

+ 2* 2~! + "' ' '
+ . . . . (7.2)
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using Theorem VI. and putting the successive terms of (p + q)"/n\
in (7.1) into successive lines on the right hand side of (7.2). Prom
this last result

eP + * = e1'2 ep> "**'

= e"2 ep ei

since in every term of ePi+<!the p's are written first. This is the
Theorem.

Suppose now we write p=—djdq, which is consistent with (2.1),
and operate on any function /(<?). We find

l)- (7.3)
We have similarly:

Theorem VIII. ep+q = e-*e*ep. (7.4)

Comparing (7.1) and (7.4), we have

which is a special case of the general theorem

f(q-l)=e'f{q)e-', (7.5)

where / (q) is any function of q, and is merely the symbolic expression
of Taylor's Theorem for that function.

A simple but important rule that may be inserted here is: In
•any identity in q, p we may interchange the variables if we simultaneously
•change the sign of one of them.

So, for example, (7.5) gives

§ 8. We may now write Theorem VI. in a different form. For
we have

(Pl + qf = q» " ^ ^

(8.01)
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where ePiS/Sq stands for the formal exponential series with p kept to
the left in each term. But we also have

?) n (n - 1

)2 h n {n ~l) {n ~2) {n ~3) (Pi+q)n~*= 21 ( i J ) 2 (Pi + q)n'
and so on.

Hence, together with (8.01), these results allow us to write
Theorem VI. as

= gitvw+pisisi q"w (8.02)

It can now be verified that the results holds also for negative
integral values of n. For it would give

.. (8.03)

where m is a positive integer and (m)r = m(m + 1) . . . . (m -f r — 1).

Here (px + q)~m stands formally for the expansion

, m (m 4- 1) „ „ \

'-I+—i———'ptq-t — .. .. \q-m. (8.04)

It is easy to prove that, for any positive integer I,

(q + p) (PI + q)~l = (pi + q)'l+1 - i(pi + q)'1'1. (8.05)
Multiplying (8.03) by (q + p) and making use of (8.05), we

should have
(q + p) (q + prm =

+ (
Repeating this process m times, we then get

(2+ ? ) " ( ? + i>)— = l. (8.06)

Hence (q + p)~m as defined by (8.03) is that function, assumed
unique, which when multiplied by (q -f- p)m gives unity. This is what
is required.
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Hence (8.02) holds for all integral n, positive or negative.
Therefore if f (q) is any function which may be expanded in positive or
negative integral powers of q, we have

f(q + p) = ei«W+*.«/««/(gr). (8.07)

Theorem IX. If <j> (p) be any function of p, the function
{q + <f> (p)}n is given by

T = I exp [^ 8/Sq + ±<f>1' (S/Sq)' + 2 j>{ ( ^ J + . .]}?', (8.08)

where </>!W = 8r<f>i(p)/8pr, and <f>i = <f>, and the suffix indicates that all
<j>-factors must be kept on the left of each term.

Consider the right hand side of (8.08), with qn+1 substituted for
•q. This we shall write as

.9», (8.09)

-where P = — S/S9, and so P satisfies the relation (2.1), viz.,

qP-Pq=l. (8.10)

Hence, by Theorem I, if F(P) be any function of P, we have

F {P)q = q F(P) - F'(P). (8.11)

Applying this to the expression (8.09), we may write it

[(<?) exp [ - fr P + ± ̂  P2 - 1 tf P3+ •• ]}<?"

- [~ exp [ - ^ P + 1 ^' P2 - 1 ^" P3 + . . ]|<?% (8.12)

when the first bracket means that the q has been brought to the left
of the P-f actors in each term, but remains to the right of the p-iactors.
But we may repeat the process for the latter factors, since

G(p)q=qG(p)-Q'(p), (8.13)

where G(p) is any function of p.
The expression (8.12) then becomes
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But

^+SP* - . .]exp [ 4>,P +

Hence (8.14) reduces to

if Theorem IX holds for n. Therefore the theorem is true for (TO + IV
if it is true for n. The result for positive n follows by induction, and
the proof may be completed for negative n as in the previous case,.
and so for any function of q expansible in powers of q.

The result may be further generalised in either of two ways.
First, it may be noticed that the proof is not affected if <f> is a function
also of q. Thus we may expand any function of the form

f{q + <k(q,p)}. (8.16)

Second, if </> remains a function of p only, but f(q) is replaced by
F (q, p) a function also of p, the proof is again unaffected. Thus w&
may expand any function of the form

F{q + <f>{p), p). (8.17)

It is not, however, possible to introduce both extensions
simultaneously since the additional .parts are then not permutable
as required. The final generalisation can only be obtained by trans-
forming the variables, as shown in §16.

B. The solution of differential equations.

§9. The main object of this section is to give certain general
theorems connected with our preceding paper. A few preliminary
results must first be stated.

Theorem X. Given any function p(q, p), there exists a function
•a (q, p), such that

p(q, p) = rs{q, jo) tfCT-1 (q, p). (9.1)
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Here q, p still satisfy the condition (2.1) and zn'1 is denned by
uTtrr"1 = 1, which requires vy'1^ = 1.

We may write (9.1) as

p(2. p)Mq, p) = ~M> P)I

= q&{q, p) - 8ts(q, p)/Sp

or 8v/Sp — (q - p)rs = 0, (9.2)

which is a linear differential equation for zs.

It must be noted that if ex can be factorised in the form
CT = Cnojo, then its inverse is given by CT"1 = CT2""1^I"1- In particular
we notice that rrr in (9.1) may be post-multiplied by any arbitrary
function of q.

Hence if we assume rrr expansible in the form

v(q, p) = ao(q) + a^p + a2(q)p2 + , (9.3)

then ao(q) is arbitrary.

Let us assume that (q — p) may be expanded as

q-p = A0(q) + A^p + A2{q)p* +.... (9.4)

Now we have

p'a,{q) =pr-i{a,(q)p - a.'(

= a.pr - ([V.Y-1 + . . + ( - Ya{'). (9.5>

Hence, substituting (9.3), (9.4) in (9.2) we obtain

= Aoao

+ Axa^p

— AxaJ p

Aia0"—2Aia0'p+ A2a0' p2

+ A2 a"p —
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where we have employed (9.5) to bring all the p's to the right in
each term. Since this has been done we may equate coefficients of
powers of p^ obtaining

d\ = AQ &Q — A \ &o -\- A 2 CLf) — . . . .

2a2 = (Ala0 — 2A2a0' + . . . . ) + (Aoar — AxaJ + A2a/'— . . . . )

3a3 = (A2 a0 — ) + (A1 a, ) + (Ao a2 — )

and so on.

Since a0 is an arbitrary function of q, and Ao, Au . . . . are
assumed known, this process determines formally the successive
coefficients au a2, . . . . Thus wherever p (q, p) is formally expansible
in powers of p there exists a, formal solution in series of equation (9.2).

In what follows we shall take it for granted that the functions
involved are such that solutions of (9.2) do exist.

Theorem XI. Conjugate functions. Given any function p (q, p)
there exists another function a (q, p) such that

pa—op = 1. (9-6)

Take vs (q, p) as defined in Theorem X and define a (q, p) by the
relation

o(q, p) = K(q,p)ptJ-1(q,p). (9.7)
Then we have

pa — op = 1 1 l l

Hence a (q, p) given by (9.7) is the function required.

We call p and a conjugate functions, and the transformation from
q, p to p, a a canonical transformation. It is clear that we may add
to a any function of p and still preserve the condition (9.6). It will
be seen that any identity holding for q, p must hold for any pair of
conjugate functions. Such identities are therefore invariant under
canonical transformations.

Theorem XII. If p, a are conjugate functions of q, p, then there
•exists a function zrs (q, p) such that

p{q,p):=Ts(q,p)qts-1{q,p), (9.8)

(q,p). (9.9)
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For by Theorem X a function &*(q, p) satisfying (9.8) does exist.
But we have

pa — op = 1,

from which we obtain, using this function cr*,

or*""1

or qrr,*'1 era*—~j*'lavj*q=\,

from which it follows that

where <f> (q) is some function of q only.
Now let <p (q) be such that

tfi {q) = dcf>/dq.
Then we have

= p.
Therefore

But we have
p =

since e*, being a function of q, only commutes with q,
Hence the required function oj(q,p) exists and is given by

§ 10. Theorem XIII. A necessary and sufficient condition that the
relations

= PX (10.02)

should yield a pair of compatible differential equations when p and P
are interpreted respectively as — 8/dq and 8/.8Q is that Q (q, p) and
P (q,p) should be conjugate functions.

For if (10.01), (10.02) are compatible with the solution X(q,Q),
we have

Q (q, p) P (q, p)x = Q (q, p) Px = P.Q (q, p)x = PQX,

P (?. P) Q (?. P)X = P (?, 1») Gx = G-P (?. 2»)X = ^ P X-
Therefore

(Q (3= 1») P (2.2>) - P (3.1») Q (q, P))x = (PQ - QP)X = X. (10.03>
since

- QP)X = f5n« ~ « s A = X- (10.04)
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It follows from (10.03) that, either

Q (<?, p) P (q, p)-P (q, p) Q (q, p) = 1 (10.05)
identically, i.e. Q (q, p), P (q, p) are conjugate functions, or else that

x(<Z><3) = A('<z)/x«2), (10.06)
where A (q) is a solution of the equation

But it is clear that a function of the form (10.06) will not satisfy
equations of the form (10.01), (10.02).

Hence a necessary condition is that Q (q, p), P (q, p) should be
conjugate.

Conversely, if these functions are conjugate, then by a variant
of Theorem XII there exists a function zs (q, p) such that

Q(q>p) = tsp7s-\ (10.08)
P(q, p) = — Tsqrs-1. (10.09)

Now considered as differential equations for x*> the equations

PX* = Qx* (IO.IO)

-qx* = Px* (io.li)
are compatible and have the solution %* = e~q<i.

Operating on both sides of (2.10), (2.15) with xz(q,p) we obtain

or, by (10.08), (10.09)
Q(q,p)x = Qx (lo.oi)

PX, ' (10.02)
where

X=®X*- (10-12)
Thus the equations (10.01), (10.02) are compatible, having the

common solution % = K>(i>P) e~iQ.

§ 11. Relation to solution by definite integrals. We are now in a
position to give the discussion, relegated from Paper I, of the degrees
of generality of the methods there given.

The first method employs the contact transformation derived
from any function W (q, Q). The nucleus of the integral is then

The second method employs the canonical transformation
specified by r^(q,p), say, giving the transformation Q =
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P = — ajgnj"1. The nucleus of the integral is then vje~qQ. Any
arbitrary function cr may be used.

It is evident that these two methods must be equivalent. In
practice a combination of them may be most useful, as is illustrated
in Paper I. The equivalence is made more explicit by the following
theorem.

Theorem XIV. To any given vs-function there corresponds a
X-function given by x(i> Q) = & (q, p) e'qQ = e~qQro(q, Q), and to any
X-function there corresponds a Tu-function given by vs (q, Q) = eqQx (q, Q)-

Throughout we suppose that in each term of zs (q, p) the part
that involves p has been brought to the extreme right. This Theorem
is an immediate consequence of equation (10.12).

Finally we may notice that there are certain general groups of
canonical transformation exemplified by the following result:

Theorem XV. If k(q, p), h(q, p) are conjugate functions of q, p
and if a (hlc) is any function of the product hk, then the transformation
given by

Q = ka
j

is canonical.
For QP = a'xhka = hk, since a is a function of hk and must

consequently commute with hk.
Also

Therefore
PQ-QP = kh-hk= 1,

since k, h are conjugate, and so the transformation is canonical.1

It is to be noted that when a is fixed the arbitrariness of k
implies that the function giving Q is still completely arbitrary, so
that actually it must be possible to put any canonical transforma-
tion into this form in any number of ways.

Theorem XVI. The solution of a differential equation

g(q,p)if, = O, (p=-d/8q) (11.02)
is given by

^ (11.03)

where the function EJ (q, p) is such that

(11.04)

1 A particular example of this is k = q, h = p, which gives the type of transforma-
tion used by Professor Whittaker in § 7 of his paper.
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By Theorem X a function ~> satisfying (11.04) does exist, and.
by Theorem XIV the corresponding ^-function is

X = ETl?,2>)e-'e. (11.05).

Now define ifi (q) by the integral

0(S) = Jx(?.O^(<)d« (11-06)
along a suitable contour. Further, let (f> (t) be a solution of the
differential equation

d<f>/dt = O or P</>=0. (11.07)

Then by Paper I, § 3.1, and equation (10.09) of this paper, the
function i/r (q) satisfies the equation

Since from (11.07) <f> is merely a constant, we have the required-
result (11.03).

Thus the solution of any linear equation has been reduced to the
determination of a function xs. Theorem X shows that this is the
solution of a linear partial differential equation of the first order.
Since however the variables involved in this equation are non-
commutative, it is in general difficult to solve except by the formal
series we have discussed.

We can now prove that there exists a ^-function connecting
the solutions of any two linear differential equations.

Theorem XVII. If ${q),<l>{Q) are respectively solutions of the
linear differential equations

g(q,p)t = O, G(Q,P)</>=0, (11.08)

where p = — 8j8q, P = 8/8Q, then there exists a function x (<Z> Q) such

that 4>(q) = \x(Z,Q)<t>(Q)dQ (11.09)

for a suitable path of integration.

For by Theorem X there exist functions TS (q, p), U (Q, P) such

that g (q, p) = - rsqa-\ G(Q, P) = HFII"1,

where G{Q,P) is the "adjoint" of G(Q,P) obtained from it by
reversing the order in each term and changing the sign of P. Then
if the equations for x (<7> Q) a r e taken to be

x (11.10)
\ \ , ( l l . i l )

they have the solution
nQ (11.12)

https://doi.org/10.1017/S0013091500007781 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500007781


SOLUTION: OF DIFFERENTIAL EQUATIONS BY DEFINITE INTEGRALS 235

Since then (11.10), (11.11) are compatible equations they may be
taken to define the transformation from q, p to Q, P. But (11.10)
then gives

g(q,p) = G(Q,P). (11.13)

By Paper I, §3.1, however, this is just the condition that, if in (11.09)
<f> (Q) satisfies the equation

G(Q, P)<£ = 0,
then ip (q) must satisfy

9 (q, P) <A = °-
Hence the ^-function required is given by (11.12), viz.,

X (S. Q) = a (3, P) n (Q, P) e-«« = e-"«BT (q, Q) n (Q, - q), (11.14)

where as usual the # and P parts of each term in rar and II respec-
tively have first been brought to the right hand side.

§ 12. We revert for a moment to the consideration of the function try
of Theorem XIV. Suppose we are given some function Q (q, p) and
we wish to find the function xs such that Q (q, p) — isptz'^. If we
may suppose the contact transformation corresponding to (10.01),
(10.02) known, then from Paper I we know ^, and from Theorem
XIV we obtain rs immediately. The question arises, can we find
CJ"1 by ordinary algebra?

Let us define the function 6 (Q, t) by the equation

\ ) d t (12.1)

that is

J ( G , t)xz{q,p)e-'>tdt,
giving

= J d(Q,t)e-«'dt. (12.2)

Hence just as Theorem XIV gives or derived from the function x>
so from (12.2) we may give tu"1 derived analogously from a function

iX*' viz->
a-1 (q, p) e-iQ = x* (V, Q) (12.3)

where x* = \ 0{Q, 0 e^'dt,

and 6(Q, t) is defined by (12.1) with a suitable path of integration.
This provides formally a method of obtaining To'1 without recourse
to non-commutative algebra.
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C. The identical transformation and infinitesimal transformations.

§ 13. The identical transformation. This is given by

so that the corresponding equations for the function x (<7> Q) a r e

(Q ~ 9) X = 0
(8/8Q + 8/dq) x = 0.

These have the solution
X = 8(Q-q) (13.2)

where 8 (Q — q) is Dirac's 8-function.1

In this case Professor Whittaker's general theorem reduces to
the property of the S-function expressed by

>P(q)=\<P(t)8(t-q)dt (13.3)
where ip is any function.

In the preceding Section we studied the general transformation
by relating it to the transformation Q = p, P = — q, that is, in effect,
just the Laplace Transformation. The theory can be worked out by
relating it instead to the identical transformation (13.1). But this
involves the use of the S-function in place of the function e~qQ; and
so on account of difficulties in the theory of the S-function we
thought it better to sacrifice some of the symmetry introduced by it
and to use the simpler function.

§14. Theorem XVIII. Infinitesimal Contact Transformation. Let
9 (q, p) be any function of q, p. Then the transformation given by

Q = q-eS9/8p (14.1)
P = p + eSe/Sq (14.2)

is canonical, when powers of e greater than the first are neglected.
We have from (14.1), (14.2)

neglecting terms in e2,

T)SqTp)

using2 Theorem I. Hence (14.1) (14.2) define a canonical trans-
1 Dirac, op. cit., 63.
2 Recalling the remarks in § 2 on the type of function used.
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formation. We may therefore write it in the form, using Theorem
XII,

(14.3)

(14.4)

Since it reduces to the identical transformation when • e = 0, we

shall write cr (q, p) = 1 + eA (q, p).

Then v-1(q,p)= l-e\(q,p),

since this gives CJCT"1 = 1 = VS'1TS

neglecting terms in e2. We have then to this order

zsqvs-i = (l + eX)q(l - e A )

= q - e (qX - Xq)

8A
= q~€8p

86
= q~€bp

by the definition (14.1), and so we may take

*(q,p) = 0(q,p), (14-5)
that is

rs(q,p)={l+ed). (14.6)

It can be verified immediately that this satisfies also equation (14.2).
Comparing the equations (14.1), (14.2) with (13.1) it is evident

that the corresponding ^-function is given by

q) (14.7)

This result can also be obtained directly from the differential
equations for x-

§ 15. Algebraic Identities. Consider now any function p (Q, P). We
can change to the variables q, p in two ways.

( i) p {Q, P) = p(q- e88J8p, p +

= p(q,p) + ep'(q,p), (15.1)

where p is derived from p by replacing, for instance, a term ppppqqq
by the expression

j-pppqqq + p ̂ -PPIM + • • - PPPP g- W - . . - ppppqq§~- (15.2)
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(ii) By the general properties of canonical transformations

p(Q,P) = r3P(q,p)v-*
= (1 + e0)p(l -e0)

= p(q,p)+e{eP-pe) (15.3)

Identifying (15.1) and (15.3) we obtain the general identity

6p-P9 = p'(q,p). (15.4)

This is a general theorem on the permutation of two arbitrary
functions. It is seen from (15.2) that in (15.4) the degree of the right
hand side is two less than the degree of either term on the left hand
side. When 9, p are conjugate, the right hand side reduces, of
course, to unity.

Example. Take p=pn, 0 = qm; then, from (15.4), we have
q^p*— Pnqm = m{qm-1pn-'1+pqm-xpn-2 + .. + f - 1 g 1 - 1 ) .

Interchanging p, 6 we find

pngm _ gmpn _ _ n(pn~1qm-~l + qpn~1qm-2 + . . + qm'1pn-1).

These identities are, of course, derivable by other means, but are
scarcely self-evident.

4} 16. Taylor's Theorem. We are now in a position to extend Theorem
IX. By applying a canonical transformation to the function (8.16)
we get a new one given by

ra/{? + «£(?> P)}™'1 =f{rsqvs~1 + zs<f>{q,p)ts-1},

vyhich may be written
f{\(q,p)+H.(q,p)} (16.1)

where A, /z are arbitrary functions, since ET, <f> are arbitrary. Applying
then the same transformation to the expansion of (8.16) given by
Theorem IX we get a method of expanding any function of the form
(16.1). This may be regarded as the complete generalisation of
Taylor's Theorem to non:commuting variables.

•§17. Now let the function (8.16) be

f{q-ee'(q,p}.
Then Theorem IX gives

, jL +- .*• „, ,» _ eip { « [ , j
- / (S ) - < [eV + ~, «"/' + I H'"f" + . . . . ] . (17.1)

neglecting terms in e of degree higher than the first. The accents on
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6 denote differentiation with respect to p, while those on / denote
differentiation with respect to a.

But applying to f(q) the canonical transformation given by
(14.6), we have

f6). (17.2)
Hence comparing (17.1), (17.2) we have

fB = 8j + e-f + _L e-f" + A. e-'f" + ...., (17.3)

another general theorem on the permutation of two arbitrary
functions, subject only to the restriction that one of them is a
function of only one of the variables q, p.

By applying a canonical transformation to the result (17.3) we
get an expression for (fd — Of) for completely arbitrary/, 6.

Example. An elementary example of (17.3) is got by taking

) 0 ?> P) = P" '< w e n n d t n a t

™ + nmp"-lq"-1 + n(n~ J> "* (m ~ 1)j)n-»g»-i +
^!

§ 18. RELATION TO OTHER ALGEBRAS.

Every non-commutative algebra in a pair of variables q, r in which
the difference qr — rq is an explicit function of the variables, say

qr - rq = F (r, q), (18.1)

can be reduced to the algebra for which
qp-pq=\. (18.2)

For we merely have to change from the variables q, r to new
variables q, p according to

q = q

r = r(q,p),

where from (18.1) r (q,p) satisfies the equation

8r{q,p)/Sp=F{r(q,p), q}. (18.3)

For example, in the algebra specified by qr + rq — 0, we take
r = q-'e^.

When differentiation is involved it is of course necessary to
change to q, p before any differentiations are actually performed.

The variables used may throughout be regarded as infinite
matrices. When however the difference qr — rq is not any given
function of the variables we have the case of finite matrices, and the
methods used above are not applicable. Taylor's Theorem for finite
matrices has been given by Turnbull.1

1 H. W. Turnbull, Proc. Edin. Math. Soc. (2) 2 (1930), 33.
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