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SUMMARY

A deterministic model of cyclical selection in randomly mating popula-
tions is studied. Sufficient conditions for a protected polymorphism, which
are for the special case of alternating selection also necessary conditions,
are obtained using a simple graphical approach. The most important
condition requires 'marginal overdominance' (Wallace, 1968); the other
conditions seem hard to satisfy in a natural situation. Furthermore it is
shown that the cyclical selection model can be regarded as a special case
of a frequency-dependent selection model (Cockerham et al. 1972). Using
this property, a mean fitness function for the cyclical selection model is
derived. Generally, the mean fitness will not be maximized under cyclical
selection. The relevance of the model to the problem of the role of cyclical
selection in the maintenance of genetic polymorphism in natural popula-
tions is discussed. It is concluded that this relevance is probably rather
limited with regard to the creation of protected polymorphism, but that the
influence of cyclical selection on transient polymorphisms might be more
significant. An approximate formula for the time needed for a given
change in gene frequency under cyclical selection is derived. I t appears
that cyclical selection can extend considerably the time during which a
transient polymorphism persists, especially if the selective differences in
the different environments are of the same order of magnitude and of oppo-
site sign.

1. INTRODUCTION

Since the discovery that a large proportion of loci in natural populations are
polymorphic, as revealed by electrophoretic studies of proteins (e.g. Lewontin &
Hubby, 1966; Prakash, Lewontin & Hubby, 1969; Selander & Yang 1969; Harris,
Hopkinson & Luffman, 1968), considerable discussion has been devoted to the mech-
anisms responsible for maintaining such large amounts of genetic polymorphism.
Some authors suggest that most electrophoretic variation is selectively neutral or
nearly neutral (e.g. Kimura, 1968; King & Jukes, 1969), while others stress the
importance of some type of balancing selection (e.g. Prakash et al. 1969; Ayala,
1972; Wills, 1973). The maintenance of a single-locus polymorphism can be ex-
plained by a variety of selection models, covering situations of overdominance,
frequency-dependent selection, density-dependent selection, and differential
selection due to environmental heterogeneity in space or in time. Relatively little
attention has been paid to the latter class of models, namely those in which temporal
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variation in selection intensities is assumed. Environmental variables relevant to
fitness may vary in a stochastic manner, for example diseases, or (in some cases)
numbers of parasites and predators, or they may vary regularly, for example those
correlated with seasons. Models applicable to the first situation were studied by
(among others) Kimura (1954), Ohta (1972) and Gillespie (1973), while a determin-
istic model which fits the second situation was given by Haldane & Jayakar
(1963).

In this paper we will study a deterministic model of cyclical selection. I t fits,
for example, species living in a seasonal environment where generation-time is
short relative to the duration of a season, a situation faced by for example many in-
sects and small rodents. In this study we are primarily interested in the question
to what extent genetic polymorphism may be maintained by cyclical selection.

2. THE MODEL

Consider, in a diploid organism, a single autosomal locus with two alleles Ax

and A2, segregating in a very large population (so that random variation in gene
frequency is negligible), in which mating is at random, and generations are discrete.
Mutation and migration are ignored. The population is subjected to cyclical selec-
tion with cycle length n. Let wt, 1, vt denote the relative fitness values of the three
genotypes AiAlt A±A2 and A2A2 respectively in generation i + kn (i = 1, 2, ..., n;
k = 0, 1,2,...). The parameters wi and vt specify the ith environment. I t is clear that
not all environments making up a cycle need to be different: for example a popula-
tion having three generations in the summer and one in the winter has a cycle of
four environments, the first three of which are the same. Thus the simplest case of
cyclical selection is when n = 2: we then have an alternation from generation to
generation of two environments, and will call this case alternating selection. For
simplicity, we will start exploring the alternating selection model.

3. GRAPHICAL ANALYSIS OF ALTERNATING SELECTION

We denote the relative frequencies of Ax and A2 prior to selection by p and
q = 1 — p. Considering just one cycle, the gene frequency after one generation of
selection p1 is related to the gene frequency before selection p0 by the familiar recur-
rence relation

(^^)^iPO), (1)

where wx = wxp\ + 2p0q0 + vxq% is the mean (relative) fitness.
Similarly, the gene frequency after the second generation of selection is given by

to). (2)

with w2 = w2 p\ + 2pxqx + v2q\ being the mean fitness prior to the onset of selection
in the second generation. Depending on the selective values wt and vit the graph
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of the function 6t is one of the four possible types, sketched in Fig. 1 (adapted from
Falk (1966) and Li (1967); see also Cannings (1969)). This graphic representation
can be used to show the successive values of p from generation to generation in the
selection process. In Fig. 2 some cases of alternating selection are represented by
plotting the functions 61 and d2 together in the same diagram, and constructing the
successive values of p under selection in the same manner as in Fig. 1. In Fig. 2 (a)
alternating selection ultimately leads to fixation of the .^-allele because this allele
is favoured in both environments; in Fig. 2 (b) there is a stable equilibrium situation in
which p fluctuates from generation to generation between two fixed values px and ft2.

Now suppose that the actual parameters in a given case are such that the graph
of the functions 0x and 62 are as plotted in Fig. 2(c); (however, the following argu-
ment is not confined to the case given in Fig. 2(c), but also applies to the general
case). If the curve pt+1 = 62(pt) is mirrored with respect to the line^>t+1 = pt, the
graph of pt = 92{pt+i) is obtained.

I t is easy to see that a point of intersection S between the curves of pt+1 = dx(pt)
and pt = 62(Pt+i) represents an equilibrium, the coordinates of S being the equili-
brium frequencies of p. The converse is also true: any equilibrium point will corre-
spond with a point of intersection between the curves of pt+1 = dx(pt) and
Pt = QziPt+i)' The stability of an equilibrium can be inferred from the graph by
looking at the slope of the two curves in their point(s) of intersection in (0,1). An
equilibrium, represented by a point S lying above the diagonal pt+1 = pt will be
stable if the slope at S of the curve which forces p to increase is smaller than the
slope of the other curve, while for a point S lying below the diagonal the reverse
holds (see Fig. 2(d): Sx represents a stable equilibrium, S2 an unstable one).

This graphic approach finally enables us to find sufficient conditions for a ' pro-
tected polymorphism' (Prout, 1968), which refers to the situation that the two alleles
Ax and A2 cannot be lost or fixed by selection (see also Bodmer & Parsons, 1960).
This will be the case if the two trivial points # = 0 and# = 1 are unstable, therefore
if (see Fig. 2 (c)):

or

which is equivalent to

d62{pt)

Pt=0,

> 1,
Pt=0,

or, using the notation of equations (1) and (2):

dp
dpt

> 1. (3)
Pa=0,

Further conditions can be found by considering the cases

i dp*
= 1 a n d -£-*•

Po=O ' dp,Po=l
dpQ

= 1.
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Then the points p0 = 0 and p0 = 1 are unstable if (in terms of the geometrical
approach of Figs. 1 and 2) the curve oip2 = 02 (9i(p0)) is concave a t ^ 0 = 0 and/or
convex at p0 = 1.

Therefore the additional sufficient conditions for a protected polymorphism are:

(4)

(5)

d£2
dp0

dp2

dpn

= 1,

> 1,

dp2

dp0

dp2

dPa

PO=I ' dpi

1 d2p2

' dpi

dp0 Po=O,l ' dpi
< 0. (6)

Generalization of these sufficient conditions to a cycle-length of n generations
is straightforward: for the general case, p2 in the expressions (3) to (6) has to be
replaced by pn = 0n{dn_1(...[62{61{pQ)}]...)}. After working out, which involves
application of the chain rule for derivatives and some rearranging, the sufficient
conditions for a protected polymorphism in the cyclical selection model with cycle
length n become:

n
(i) UVi<

n

(ii) fj vi =
1=1

(iii) n Vi <
i = l

(iv) n vi =
»=1

71.

i, n ^i = l

t = i
n

l, iiu
i = l

i, n«i = l

»i r

3 = 1 L
n f

Jt= l, 2
3 = 1 L

« r

(Wj.—i) n v
i=i
n

(»ri)n»,

:^-i)n»i s f(«v-1) n
3 = 1 L f=3

(7)

Condition (i) and a special case of (ii, iii), namely the case of complete dominance,
were already obtained by Haldane & Jayakar (1963), using a different approach.
In principle, further conditions may be found by examining subsequently higher
derivatives, but since the conditions thus obtained will be extremely hard to
satisfy, it does not seem worthwhile to do so.

The first condition of (7), is fulfilled in a situation where there is some kind of
generalized heterosis, or, as Wallace (1968) called it, 'marginal overdominance'.
There is no need for heterosis in all the different environments: for example, if
both homozygotes have a very low relative fitness once in a cycle, this condition
could be satisfied rather easily while in the other environments of the cycle there
is dominance or even heterozygote inferiority.

The other conditions of (7) are less likely to be met. Fig. 3 shows for the alternating
selection case (n = 2) the region in which a point, representing a set of relative
fitness values, has to be situated to give a protected polymorphism. Fig. 3 (a)
gives the region in which the special case of complete dominance (v± = v2 = 1) of
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6 ROLF F. HOEKSTRA

condition (ii) is satisfied; Fig. 3 (b) applies to the general formulation of condition
(ii), and Fig. 3(c) shows the points satisfying condition (iv).

4 - i

Fig. 3. A protected polymorphism in the alternating selection model is established if
the point (wlt w2) is on the shaded area in (a) and (6) or on the heavily drawn part of
the curve in (c). The relative fitnesses of A^AX, AXA2 and A2A2 in the two environ-
ments are respectively: (a): wlt 1, 1, and w2, 1, 1; (6): wv 1, vl and w2, 1, v2, with
v1vi= 1; (c): wl, 1, vx and w2, 1, v2, with wlw2 = v1v2 — 1 and wx =j= w2,v1 =)= v%.

4. THE CYCLICAL SELECTION MODEL AS A SPECIAL CASE OF A
FREQUENCY-DEPENDENT SELECTION MODEL

An interesting feature of the cyclical selection model is that it can be regarded
as a special case of the frequency-dependent selection model of Cockerham et al.
(1972). In order to show this, we first give very briefly an outline of their model.

(i) Brief description of the Cockerham model

Relative fitness values are denned for pairwise associations of genotypes; this
applies to situations where for instance competitive ability, mating success or
viability of a given genotype depend on what other genotype(s) are present. Thus
an individual of genotype i has a relative fitness value wit when in association with
an individual of genotype j , where in our notation i and j refer to the number of
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Ax alleles in the genotype. For one autosomal locus with two alleles the following
matrix of fitness values results:

In association with

JTL I xx i £*. | xi. g x\. o xx o xVXGctn

f ^ i ^ i w22 w21 w20 w2|

Genotype-J^! ̂ 4 2 ^12 w i i ^10 ^ l f (8)
l^ 2 ^4 2 w02 w01 w00 wj

With random mating and random association of individuals, the mean relative
fitness of genotype i is Wt = phui2 + 2pqwn + qhv^, and the overall mean fitness is
W= p2W2 + 2pqWx + q2W0. The gene frequency after selection is

p' __ -P^P a__ tf " ; a n ( j the change in gene frequency,

When studying equilibria it is more convenient to consider the so-called competi-
tive comparisons dy = w^ — w^ instead of the relative fitness values w^. The result-
ing matrix of comparisons is

d12 0 d1Q (9)
d02 d01 0

j)q — — — — pq
a n d Ap = == [p(do — di) + q(d-,— dQ)\ = ==K(p,d). (10)

W W

A non-trivial equilibrium frequency p (0 < p < 1) will satisfy the equation

K{p,d) = 0, or (see formula (10)):

K(p, d) = p3( - 2d12 + d02 - 2d21 - 2d01 + d20 - 2d10)

+p\2d2X -f 4:d01 — 2d2o + 5d10 + dX2 — d02)

+p(d20 - 4<Z10 - 2d01) + d10 = 0. (11)

Cockerham et al. (1972) give the necessary and sufficient conditions for a protected
polymorphism in their frequency-dependent model. These are six mutually ex-
clusive conditions in terms of the comparisons dip easily derived from (11) using
endpoint analysis:

(1) d10 > 0, d12 > 0,
> 0, d20 > 2dQ1,
— n ,J -* 9/7

(12)

(2)
(3)
(4)
(5)
(6)

«10 =
d10 >
dxo =
dlo =
dlo>

0, d,
0, d:

0, d
0, d,
0, di

2 > 0,

2 = 0>

L2 = 0>

2 > 0,

2 = 0,

d20 > 2c
d02 > 2c
d20 > 2c
d20 = 2c
d02 = 2c

'oi»

l21,

hv d02 :
ki> ^02 <

'21 > ^ 2 0 *

> 2^21,
; d2X + 2d21,
; dxo + 2dQ1J
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(ii) The cyclical selection model as a special case of the Cockerham model

In order to incorporate the cyclical selection model into the framework of the
Cockerham model, we first derive the relative genetic contribution of each geno-
type to the population after one cycle of selection. This is a measure of the relative
fitness when a cycle is taken as the time-unit of the selection process, instead of a
single generation, which is usually regarded as the time-unit in selection models.

Table 1. Derivation of the relative fitnesses over a cycle of selection
(r.f.c. functions) for the case of alternating selection

Genotypes ... ^i-4i AlA2 A2AZ

Frequencies before selection p% 2pq q2

Relative fitness values in wl 1 vr

environment 1
Mean relative fitness wx = wxp

2 + 2pq + vt q*

Frequencies after selection (WiP + 9)2
 2 (wlp + q)(v1q + p) (ViQ + P)2

 2

and random mat ing ^2 P ^2 ^ ^2 '

Rela t ive fitness values in w2 1 v2

environment 2

w\

(wlP + g) (v.g+p)

Mean relative fitness w2 = " tl, P2 + _ , 2w +

R.f.c. functions w ^ P H

or w2c2

with c2 =
vxq+p

These relative fitnesses covering a cycle of selection will be called relative-/itness-
cycle functions (r.f.c. functions). The r.f.c. functions for the case of TO = 2 (alternating
selection model) are derived in Table 1. The r.f.c. functions for cases of n > 2 can be
obtained in an analogous way: cyclical selection with a cycle length of 3 generations
can be interpreted as an alternation in the following scheme:

Environment 1, 2 w9c, 1 —

Environment 3 w3 1 v3

Similarly, for n = 4 there is an alternation between environments 1, 2, 3 and en-
vironment 4, and so on.

The r.f.c. functions for TO ̂  2 are given in Table 2. The r.f.c. functions appear to
be frequency-dependent, which is not surprising: if a cycle were to consist of n
identical environments (the case of constant selection), the r.f.c. functions would be
frequency-dependent too; it merely reflects the fact tha t the magnitude of the
selection response depends on the gene frequency. Nevertheless, the cyclical
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selection model can now be analysed as a special case of the frequency-dependent
selection model of Cockerham et al.

First, consider the case of alternating selection (n = 2). Clearly, ther.f.c. functions
derived in Table 1 correspond to the mean relative fitnesses Wi in (8). Therefore, a
set of w{j (see (8)) can be found from the following equations in which the left-hand

Table 2. Relative-fitness-cycle functions for different cycle-lengths

R.f.c. functions of genotypes

Cycle-length in generations AXAX AXA2 A2A2

2 w2c2 1
8

c2

—, c 3 —

w.cn 1 —; cn =
O
—; c n = ;

On (Vn-ll°n-l)q+P

sides represent the r.f.c. functions from table 1 and the right-hand sides the Wi from
(8).

1p + q)(v1q+p) = w12P
2 + 2w11pq + wmq2,\ (13)

The following matrix of fitness values w^ satisfies the equations (13):

(14)

w2w\ w2wx w2

and the corresponding matrix of comparisons (5) becomes

wtwi ± - | — w2-v2v\

ux(l — w2wx) 0 vx(l — v2vx)

v2-w2w\ v2vx-
l^±— 0

(15)

These values can be substituted in (11); the resulting cubic equation reduces to
a quadratic equation in a number of special cases of which the two biologically most
interesting ones will now be examined (see (11 and (15)).

Special case 1. dxo = 0, or vx(l — v2vx) = 0; (the same applies to dx2 = 0, as can be
seen for example from writing K as a function of q). This includes the following two
cases: (1) one homozygote is lethal in one environment {vx = 0), and (2) one allele
is fully dominant in both environments (vx = v2 = 1). The derivation of the equili-
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10 R O L F F . H O E K S T B A

brium frequencies from (11) is straightforward: for example, in the case vx = v2 = 1,
one obtains

(16)

ut-i+Vq-tw) i f
W2(l-Wl)

and P = 2 l , r * r V if « i < L

By interchanging wl and w;2 in (16), the other equilibrium frequency in the alter-
nating system can be calculated.

Special case 2. For the symmetric model: w1 = v2 = 1 + x; w2 = vx = 1 — x, the
coefficient of p3 in (11) equals zero, and the solution of the resulting quadratic
equation is

= 3^-2 + 7(4-3^)
6x '

We now turn to the general case of cyclical selection with cycle-length n. The
matrix of fitness values w^ becomes (see (14) and Table 2):

(18)

To include in this general formulation the case of alternating selection (n = 2) we
put by definition:

c =wop + q ̂  p + q _ 1
1 Vo9+P 1+P

Now the wti in (18) and therefore also the corresponding d^ are no longer con-
stants (as in (14)) but are complicated functions of p. We therefore extend the
Cockerham model to account for higher-order interactions. Thus, for second-order
interactions we have to define

a n d d^j — ^tj — ^a

= P2dij2 + Zpqdi}1 + q2dij0 and so forth.

Equation (11) and the conditions (12) can be modified to account for these higher-
order interactions, while the dy can be calculated from the above defined relations,
and the wti in turn can be obtained in a similar manner as the wtj were obtained
from the equations (13).

I t can be shown that from conditions (12) (or the higher-order equivalents of
(12)) the same conditions for a protected polymorphism result as formulated in (7).
Moreover, for n = 2 (though not for larger n) the conditions (5) and (6) of (12)
appear to be (internally) contradictory, from which it follows that for the alter-
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nating selection model conditions (7) are not only sufficient but also necessary for
a protected polymorphism.

Finally it may be noted that it is not surprising that the alternating selection
model can be fitted within the Cockerham et al. model, since both models give rise to

where/and g are arbitrary homogeneous cubics in p and q; similar arguments apply
for the general case of cyclical selection and the Cockerham model extended to
higher-order interactions. In fact, the Cockerham et al. scheme can be used even
when / and g are not homogeneous in p and q, which illustrates the generality of
this model.

5. MEAN FITNESS

It is not at first sight clear how to define a mean fitness function in the cyclical
selection model. In a cycle of n different environments there are n different single-
generation mean fitness functions, and the change in mean fitness within a cycle
cannot be approximated with some continuous function. When considering a
cycle as the time-unit of the selection process one could define a mean fitness func-
tion by constructing some average of the single generation mean fitnesses.

However, a possibility for defining a mean fitness function over a cycle of
selection arises naturally in our approach, namely by using the r.f.c. functions
derived in Tables 1 and 2. Thus for a cycle-length of n generations the mean fitness is

W=wncnp
2 + 2pq + ̂ q2. (19)

This is the same function as the overall mean fitness W from the matrix of fitness
values (8).

Two important conclusions result from this definition. First, the mean fitness
will generally not be maximized under cyclical selection, and therefore the mean
fitness may decrease during the selection process. This is a well-known characteris-
tic of frequency-dependent selection models and can be shown by putting

dW/dp = 0,

as is done by Cockerham et al. (1972) for the frequency-dependent selection model
applied in this study. The second conclusion is that for a given cycle of environments
the mean fitness (19) depends on the starting point in the cycle.

In the case of a cycle of environments 1, 2, ..., n (with fixed sequence), the cycle
can start at n different environments, which gives rise to n different descriptions
of essentially the same process. A particular fitness matrix (8) is associated with
each of these mean fitness functions and consequently also a particular function
K (p,d) (11) with its equilibrium-solution(s).
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6. DISCUSSION

The conditions which must be satisfied in order to obtain protected polymorphism
in the cyclical selection model are severe, except for the first condition, which
requires 'marginal overdominance' (Wallace, 1968): if we assume that the actual
selective differences between genotypes and between different environments are
mostly small (that is, if we assume that the wt and vt mostly do not differ greatly
from 1), then the most important region in the diagrams of Fig. 3 is around the point
(1,1). I t is clear from Fig. 3 that the area of protected polymorphism in this region
is quite small. Therefore the relevance of cyclical selection to the maintenance of
genetic polymorphism in natural populations seems to be rather limited, at least
in those cases where the action of natural selection on a single locus is independent
of other loci. This probably will be true in some instances, but evidence is accumu-
lating concerning selection acting on correlated blocks of genes rather than on single
genes (e.g. Franklin & Lewontin, 1970; Mukai, Mettler & Chigusa, 1971; Allard &
Kahler, 1972).

If strong linkage disequilibrium between polymorphic loci is a common pheno-
menon, the role of cyclical selection in the maintenance of genetic variation might
be more important, but this cannot be explored with the present model.

There are a few reports in the literature of regularly fluctuating gene frequencies
in natural populations: Timofeeff-Ressovsky (1940) found cyclic changes in the
frequencies of colour morphs of the ladybird Adalia bipunctata correlated with the
seasons. Especially well known are the seasonal changes in frequencies of inversion
types in Drosophila (Dobzhansky, 1943, 1956; Dubinin & Tiniakov, 1945). There is
also some evidence of cyclical changes in enzyme polymorphisms in Drosophila
(Dobzhansky & Ayala, 1973).

Gershenson (1945) described seasonal changes in the frequencies of the black and
grey morphs in the Russian population of the hamster. In vole populations, allelic
frequencies of some enzyme loci are fluctuating regularly, correlated with the
fluctuating population density (e.g. Semeonoff & Robertson, 1968; Tamarin &
Krebs, 1969; Games & Krebs 1971). In some of these cases cyclical selection may
be the cause of the observed changes in frequency, especially when they are
seasonal. However, regular cycles in gene frequencies can also occur in populations
with overlapping generations and fluctuations in age structure, due to causes
which are non-specific with respect to genotype (Charlesworth & Giesel, 1972a),
or when there is density-dependent selection (Charlesworth & Giesel, 19726).

Cyclical selection may influence the amount of genetic polymorphism pre-
sent in natural populations at a given time by creating protected polymorphisms
(the relevance of which we have just discussed), but also by changing the time
till fixation. If in a cyclical selection situation no stable equilibrium exists, the
population will become monomorphic for the locus under consideration. However,
the time till fixation, that is, the time that the so-called transient polymorphism
lasts, may vary considerably, depending on the fitness values in the different
environments.
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To get some information on the number of generations of selection needed for a
given change in gene frequency we use the following approximations; we consider
only the alternating selection case (n = 2), but the result is easily extended for
cycle-lengths greater than 2. The alternating selection model is approximated
by a model in which the population faces the different selection regimes within one

Table 3. Number of generations required for a given change in gene frequency in the
alternating selection model compared with the rate of change in the environments
separately

From 0-5 to 005
(or from 0-5 to 0-95)

Fitness
0-9
11
0-9
1 1
0-98
1-02
0-98
102
0-98
102
102

1
1
1
1
1
1
1
1
1
1
1

values

n
i i
i
1-021
1 J
1-02
1
1-021
0-99/
0-99

Exact

80

30
40

390

150
196

788

168

Approximated
with (21)

75

—

386

783

generation (e.g. in two different stages in the life-cycle), the fitnesses being
multiplicative. So the model

wx 1 vt

w2 1 v2

is approximated by the model
A1A1 AXA2 A2A2

w1w2 1 vxv2

If in model (20) 1 — sx is substituted for wxw2 and 1 — s2 for vxv2, and second and
higher order terms in sx and s2 are neglected, then the change in gene frequency
per cycle is

Ap=p(l-p)(-(Sl +

By putting Ap = dp/dt and solving the resulting differential equation, one gets the
following approximate formula for the number of cycles (which is in this case
half the number of generations) required to change the gene frequency fromp0 topk:

s(l+r)l°8p(p + r)+rlO8p0(l-pk)\'
 ('L)

V, V9 — 1
where « 2 = 1 — v±v2 and r =
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The approximation appears to be sufficiently close as can be seen from a few ex-
amples shown in Table 3.

The transient polymorphism in the alternating selection situation may last con-
siderably longer than in the different environments separately, especially if the
selective forces in the two environments are in opposite directions and approxi-
mately equally strong.

I am grateful to Drs W. van Delden and C. Strobeck and Professor A. J. Stam for helpful
discussions in various stages of this work. I thank Professor J. Maynard Smith for his
hospitality during my stay at Sussex University, and Professor W. J. Feenstra for critical
reading of the manuscript.
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