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A GEOMETRIC PROOF OF A RECIPROCITY LAW

RICHARD HILL

1. Introduction

In this paper we prove the reciprocity law for a Kummer extension of an
algebraic number field K. The proof is similar to the proof of the same theorem by
Kubota [14, 15]. Such methods were applied by Gauss [6, 7] to the cases K = Q,
Q(G/— 1) and by Habicht [8] to the case K= Q(/— 3). We now discuss infor-
mally the structure of the proof. All definitions and statements made at this stage
are only approximations to the truth, and shouldn’t be used as references for the
later chapters.

In the following K will always be a fixed algebraic number field containing all
the qth roots of unity, where ¢ is some fixed natural number. We shall write O for
the ring of algebraic integers in K. A Kummer extension of K is a field extension
of the form K(Ja) D K, where a is an element of K. The reciprocity law for such
an extension is a description of how prime ideals b C £ split in the ring of algeb-
raic integers of the extension field. This statement can be rephrased as a

o
statement about the Legendre symbols <€) . The proof given here is a calculation
q

of the Legendre symbol by way of a generalization of the Gauss lemma, which ex-
presses the Legendre symbol in terms of a finite sum. Following Gauss [7] we
shall refer to the finite sums which arise in this way as decidents.

We shall investigate these sums in 82 using purely arithmetical methods.
Actually we prove more there than we later need in proving the reciprocity law.
In particular it is unnecessary to consider ideals b since we will only use the re-
sults for elements (i.e. principal ideals).

A decident is a sum of the form

(1) Dec%‘—' ij(Cjn)f(an),

where 7 runs through a set of b-division points of the lattice © and j runs from 1
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to ¢. The number { is a fixed primitive ¢ root of unity. The function f : O\ K—
Z/qZ belongs to a class of functions which we shall call the fundamental func-
tions. A fundamental function is like the characteristic function of a fundamental
domain for a certain group. The value of the decident is independent of f.

Decidents look like Dedekind sums, and they are in the case K = Q virtually
the same thing. This connection is described in [20] in the case K = Q, and is in-
vestigated in [21, 22, 23, 11, 12, 13] in other cases. We shall say nothing more
about this here.

o a
The Gauss lemma says that the Legendre symbol (F) is equal to CDeCF*
q

where ( the primitive qm root of unity. We are therefore only interested in the
congruency class of the decident modulo q.
We shall also investigate modulo ¢ sums of the form:

(2) LD =2,

where fl and f2 are both fundamental functions. These sums can be thought of a
skew products off1 and fZ. They are bilinear and skew-symmetric, and satisfy in
addition the following cocycle relation:

LD =N+ D,
There is a strong connection between these skew products and decidents. In a
a
certain sense one has DeC‘b‘ = {f, feay. A very similar kind of sum has been

related in [1, 17, 18] to the signs of cubic and biquadratic Gauss sums.

To find out more about decidents than we know from §2, it becomes neces-
sary to construct explicit examples of fundamental functions. We do this in §3.
Our construction is essentially a map from the set of paths from O to 1 (in
K®QR) to the set of fundamental functions. If one takes a straight path from O to
1, then the corresponding fundamental function will be the characteristic function
of a finite union of parallelotopes. If on the other hand the path is not straight,
then the corresponding function could look like the characteristic function of a
twisted parallelotope. The fundamental function could however take on other
values than just zero and one, if the corresponding path is too far from being
straight.

Also in §3 we derive a formula for the skew products (2) in the case tha‘cf1
and f2 are constructed from paths. The formula is given in terms of a homotopy
between the two paths, which can be chosen more or less arbitrarily. The sum (2)
is expressed as a linear combination of numbers of lattice points inside certain
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sets, the sets being constructed from the chosen homotopy.

In 84 we obtain analytic results which solve some difficulties arising from the
constructions of §3. These difficulties occur when a lattice point lies on the
boundary of a certain set. It is then not easy to decide whether the point should be
counted or not. In general we shall show that we have enough freedom in choosing
our paths and homotopies, that we can always move the boundaries away from the
relevant points. The results of §4 enable us to apply those of §3.

In §5 use the results of §2 and §3 to prove the following theorem.

THEOREM 1. Let K be an algebraic number field with ving of integers O. If K
contains all qth root of unity then theve is an ideal | of © such that for all coprime ele-
ments &, B € O witha = B = 1mod | and o and B totally positive one has:

(5),= (&)
B/y \alg
(The left and right hand sides here are Legendre symbols.)

The proof in §5 is similar to that given by Habicht [8] in the case K = Q(/— 3).
Using this we will prove in 1.4 the theorem proved by Kubota [14]:

TueoreM 2. If K is an algebraic number field with ving of integers O and if K
contains all qth root of unity, then there is an ideal § C O such that for all @ € O and
all totally positive B € O with 8 = 1 mod of one has:

a)

- =1.

(B B

Together Theorems 1 and 2 imply immediately:

THEOREM 3. If K is an algebraic number field with ving of integers © containing
all qth roots of unity, then there is an ideal §f < O such that for all totally positive @ €
O with a = mod | one has for all B € O coprime to of :

(5),=(2)
By \aJg

These theorems were first proved by Furtwingler [2, 3, 4, 5] using ideas
from the work of Hilbert [9, 10].
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1.1. Theorem 1 implies Theorem 2

We shall now assume Theorem 1, and use it to prove Theorem 2. We will do
this in a sequence of lemmas. Suppose that Theorem 1 holds with the ideal f,,
which we may assume to be principal. We now fix an o € ©. Depending on the
real signs of a (for which there are only finitely many possibilities) we modify f,
to make af, totally positive.

LEMMA. For any € € O and all B = 1modf, with (8, ae) =1 and B iotally

positive, one has
fl)y _ fi
(%)q - <.8 _’_aaeqh)q'

Proof. Let v = B+ ac’f,, Then 7 = 1mod§, and is totally positive so by

Theorem 1 we have (%) = (g) . Since 7 = a&’f,mod 8 and B = — a&’f, mod 1
q q

ae’f, — at'f, " , e
we have B ) = ( y ) . Our conditions on 8 imply by Euler’s criterion
q q
—1 _ . af1 _ afl
that {——) = 1. We therefore have as required \-5~) = |\—/.
7 q B q T q

LEMMA. There is an ideal §, © O such that every element 1 of f, can be expressed
as a finite sum

7= 2 age;
wheve the € € O are all congruent to 1 modulo f, and totally positive and the a; arve in

Z.

Proof. If this were not the case then all the ¢’ for ¢ = 1 mod f; and totally
positive would lie in some proper subspace V of the real vector space K@Q R.
This would imply that all (¢/%) would also be in V for # € N. This cannot hap-
pen because these elements are dense in a neighbourhood of 1 in K®Q R.

LemMmA.  For all B = B’ mod af,f, with = 1modf, (@, B =1 and both

and B’ totally positive, one has
(), )
B q Bl q.
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Proof. By the previous lemma one can write 8 — 8" as a sum of elements
+ &’af,. By induction one can assume that 8 — 8" = &’af, with ¢ = 1 mod f, and &
totally positive. If (8, ¢) = 1 then the lemma then follows by the first lemma. If
this is not the case then we may decompose € as a product of ideals € = ;¢ with
(¢/, B =1 and ¢, divisible only by primes which divide 8. We choose a ¢ € O
such that ¢ =1 mod 58’e; and ¢ = 0 mod ¢’. This gives us (¢, f) = (¢, 5) =1
and also

B+ af,¢’, &) = (B + af,¢’, &) - (B + af,¢°, &) = 1.

Now applying the first lemma three times we get as before

fy fy A ) 1
B G et G - ),
This now gives us:

THEOREM.  Theorem 2 holds with | = f,f,.

2. Global notation, definitions and general lemmas

In this chapter we define in paragraphs §2.2 to §2.6 the terms fundamental
function and decident, which we will investigate in the rest of the paper. In para-
graph §2.7 we prove some unsurprising facts about division points of lattices,
which we will use later. In paragraphs §2.8 to §2.10 we prove elementary, arith-
metical facts about fundamental functions and decidents. Paragraph §2.11 is the
Gauss-Schering lemma. In paragraph §2.12 we prove a lemma, which often occurs
in proofs of the quadratic reciprocity law. The lemma was also used by Habicht
[8] in the case K = Q(y/— 3). It hasn’t however appeared before in this general-
ity. Finally we introduce in §2.13 the skew product of two fundamental functions.
This will be useful in simplifying certain calculations in chaper §5.

2.1. Notation

From now on K will be an algebraic number field of degree # over Q. The
ring of the integers in K will be written ©. g, © © will be the multiplicative
group of qth roots of unity, where ¢ is a power of a prime p. We choose a primi-
tive qth root of unity { € g, and a primitive t]th root of unity p € y,. The notation
K will mean the ring K®Q R. This is isomorphic to the direct sum of all infinite
completions of K, and the diagonal embedding of K in K, makes K a dense
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subring of K. This is summarized in the diagram:

Uy = Uq c P cKC Koo
I I U U U (degree [K : Q] = n)
o? (@ Z Q R

2.2. The eyclotomic crystallographic group

In this paragraph we define a group I of transformations of K (or of K_). We
also describe the fixed points of I'. Following Kubota [14] we call the group a cyc-
lotomic crystallographic group.

The group I' is important for us because our ‘fundamental functions’ will be
fundamental with respect to this group, similarly to the way in which a fun-
damental domain is fundamental for a given group.

Let 7 and £ be elements of K. We define affine functions

olr,t) : K = K

z P rz+t,
o :K —K

z o7z,
o,t) :K —K

z — z+ ¢t

Thus 0 is a map from K* X K to the set of affine bijections of K.
Now let L be a Z[{]-submodule of K, which is in addition a lattice in K,,. For
any such L we define a cyclotomic crystallographic group,

I'(L,q):=Ao(r,D|r € py,and t € L}.

Since L is p,-invariant, it follows that this is a group with composition of func-
tions as the group law. It will sometimes be abbreviated I'(L) or simply I. We can
think of L and g, as subgroups of I'(L, ¢) by identifying them with their images
under o, and 0,. With this identification, I" is a semi-direct product of L and y,, L
being the normal subgroup and g, acting on L by the usual multiplication in K.

ri, ¢ =Ly, =p.L, LNy, ={id}.

The action of I"on K can be extended to an action on K 1= K@Q R. Since Lis a
lattice in K., and L has finite index ¢ in I'(L, ¢), we conclude that I'(L, ¢) is dis-
crete and cocompact. The points of K., which are fixed by non-trivial elements of

L.

1
I'(L) are exactly the points in =
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This can be seen as follows: let z € K_ and o(r, t) € L(L, ¢) such that
(o(r, ) (2) :=rz+ t =2z We then have 7z = zmod L. Since y, is a minimal
subgroup of #,, we have pz = zmod L; or in other words, there is an element ¢’

1
in L such that pz = z + . From this we have z = 1=, t' and therefore z €

1
1—__‘514.

1
On the other hand if z=5——1f where t€ L, then z=pzt+t=

1-0p
(o(o, D) (2).

2.3. Quotient spaces and projections

We shall often be interested in the quotient spaces L\ K, and I'\ K. The
projection maps between these spaces will be written as follows:
pr;: K. — L\K,,
prr: K, —T'\K,,
and pr: L\ K, — '\ K...

Now let ¢ be a function (to any set), defined on L\ K, (resp. I'\ K_,). We then de-
fine as usual

prf(gb) ‘= ¢epr,
(resp. pry (@) := ¢epry
and pr}k(ﬁb) ‘= @eoprp).

If ¢ is a function with compact support into an additive, abelian group A, and de-
fined for example on K_, then we define

pr (@) : L\K, —A

T ~ Zpr,_(z)=7r¢(2)
prr(®) :T\K, —A

@ — Zprr(z)=m¢(z)'

Since ¢ has compact support, these sums have only finitely many non-zeto terms.
In general we shall try to refer to elements of K or K, as z; elements of
L\ K_ as 7 and elements of I'\ K, as ®.
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2.4. Fundamental functions

We now define the term fundamental function. The idea of generalizing the
concept of a fundamental domain in this way, is due to Kubota.

A function f : K_,— Z/qZ with compact support will be called fundamental
for I" at a point @ € I'\ K,,, iff

> f(2) = (pryyf) (@) = 1 mod q.

pry(2)=w

From this condition follows immediately

2 f(oz) = #Stab,(2) mod g,
oerl’
where pr-(z2) = w. Since f has compact support, all these sums have only finitely
many non-zero terms. We shall say that f is fundamental for I, if it satisfies this
condition for every @ € I'\ K. For example, the characteristic function of a sys-
tem of representatives for I'-orbits in K, is always fundamental.
Now let f : L\ K, — Z/qZ be a function defined on the quotient space. Ana-
logously we call f fundamental for 4, at @, iff
2 f@ = (prrs,) (@) = 1 modg.
prim=w
f is called fundamental for g, if it is fundamental for p, at every @ € I'\K..
If f: K,— Z/qZ is fundamental for I'(L, ), then obviously (pr;,.f) : L\ K.,
— Z/4qZ will be fundamental for g,

2.5. The periodic functions 6,

Let f be fundamental for I'(L). To such an f we define a corresponding
periodic function

9=06,:K—2Z/qZ
2= S i S 67, D).

j=1 tel

Sometimes we will have to deal with many different fundamental function f, f’,
f”, etc. simultaneously. The corresponding periodic functions will be written with
the same superscripts:

0 :=4,,
0" := 6., etc.
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The function @ is periodic with lattice of periods L. By abuse of notation we shall
often write

6. K/L —1Z/qZ
z+L ~ 6@

and also (by a less trivial abuse of notation)

f: K/L —Z/qZ
z+L ~ 2, fz+ D

or in the language of §2.3, f = pr,,(f). The following easily proved equation will
be continually used without further clarification.

2.5.1 Lemma. Let z be an element of K, and let T = pr,(2), the projection of z
in L\ K. Then

# Stab, ,,(2) = # Stab, (7).

Proof. Let o(r, t) € I'(q, L) with (o(r, D) (2) = z. We then have vz + ¢t =
z, thus #2 =2z modulo L or in other words #zx = m. This means that r €
Stab, (7).

Now let 7 be any element of Stab, (7). We have rm = m. There is thus a
t € L such that #z+ ¢t =z or in other words o(», t) € Stab,,,(2). Since the
translation £ is obviously unique, we know that # Stab.(z) = # Stab, (7).

2.6. The decident

As above let L be a Z[{]-lattice. Let D, := {z € K|zL < L} be the order
associated to the lattice L. We now define the decident. This is a function of four
variables: a lattice L; a function f, which is fundamental for I'(L, ¢) ; an element
a € ©; and an ideal b © ;. Later we shall see that the value of the decident is to
a certain extent independent of L and f.

Let « €D, and b be an ideal of O,. Let b™' be the fractional D,-ideal
{a € K| ab C O,}. We define the decident of @ with respect to b as follows:

I

2 f(2 6,(az) modgq

zebTUN\L

> f(m) 6, (am) mod g,

neK/L\L(0} | br=0

Dec, %I

I

where f is fundamental for I'(L). We shall see, that the decident is independent of
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the choice of f, as long as @g and b are coprime in £;. Occasionally the notation
a . .
Decif) %> Will be used to stress the choice of fundamental function f.

It is usually the case that arithmetical investigation of the decident can be
carried out more easily in the quotient space L\ K. The reason for this is that
the action of g, on L\ K_ commutes with the action of @, whereas the action of I’
on K_ does not.

2.7. Division points of L

Arithmetical properties of rings such as O, are often disregarded in books on
algebraic number theory. For this reason we collect here the results on this sub-
ject which we need, rather than citing results from literature. A fuller treatment of
these rings can be found in Hilbert’s Zahlbericht [9].

Let a and b be ideals of ;. We shall say that a and b are coprime in O, iff

a+b=9,.

If & or B are elements rather than ideals, then they will be called coprime if the
principle ideals which they generate are coprime. An element z of K is an
a-division point of L, iff for every & € a one has

az € L.

We shall write S, for the set of all a-division points of L. This is an additive
group. Furthermore let S, = S, \{0}.

2.7.1 Lemma. The ving ZI{] is contained in the ving O,, and there is a natu-
ral number d with the property that 0 C ;.

Proof. The first statement is obvious, since L is a Z[{]-module. For the
second, we can suppose without loss of generality that © is contained in the lattice
L. We choose D € N with the property that oL € ©. Now let @ be any element of
. We must show that ad € ©;. This is however equivalent to saying that @dL C
L, which follows from the following reasoning.

adl T a0 COCL.

2.7.2 Lemma. If a and b are coprime in O, and if z is both an a-division
point and also a b-division point, then z is in L. If on the other hand a and b are
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arbitrary O, -ideals with the property that every a- and b-division point of L is an ele-
ment of L, then a and b are coprime in O;.

Proof. We only prove the first statement; the argument can be easily re-
versed. We have az € L and bz C L. Since L is additively closed, we also have
(a + b))z C L However a and b are coprime, so ©,2 is contatined in L. The lemma
follows because ©; has a unit element.

2.7.3 Lemma. Let D be as i §2.7.1 and let a and b be ideals of ©,. If aD,
b0 and DO are pairwise coprime as O-ideals, then a and b are coprime as O -ideals.
If on the other hand a and b are coprime Oy-ideals, then a and bD are coprime in .

Proof. We prove the first statement first. Let a0, b and d0 be coprime in
0. Again we suppose that 0L C © C L. Let z be both an a-division point and a
b-division point of L. Then bz is also an a- and b-division point of ©. We thus
have bz € ©. Since O is contained in L, we must have bz € L. If a and d were
coprime in 9;, then we could deduce from §2.7.2 that 2 € L, and therefore that a
and b are coprime in ;. Thus it remains only to show that a and D are coprime in
9,. Since d € N, we know that N(a©) and b are coprime in . This implies that
N(a®) and b are coprime in Z, so

aD, + 50, D N@Z + vZ=1Z > 1.

We therefore have aD, + 20, = D,
Now let a and b be coprime in ;. That means a + b = O, and therefore 1 €
a + b. From this follows 1 € a®D + b, and therefore ad + b0 = O.

2.7.4 Lemma. Let @ be an element of O;. Then S, has exactly N(a) elements’
If a and q ave coprime then

N(a) = 1modgq.
Let b be an ideal of O, which is coprime in Oy to q. Then

#S,=1modg.

Proof. The automorphism K, — K., z+— az has module N(a) (see eg. [24]).
Since L\ K, is compact, the endomorphism

"here N(a) is the cardinality of the quotient O /a.
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L\K,— L\K,
T an

must have degree N{(a). Now let b and ¢ be coprime. Let 7 be a non-zero element
of Sb' Then by §2.7.2 w cannot be a g-division point. From this and §2.2 it fol-
lows that 7 has trivial stabilizer in g, The y,-orbit of 7 thus has ¢ element, all of
which lie in S,. The lemma now follows from the observation that S, is a disjoint
union of y,-orbits.

2.7.5 Lemma. Let o and B coprime elements of O;. Then
5,=5,85,

Proof. Let 7, be an element of S, and 7, an element of 53. Then af(r, +
m,) = afm, + afr,= 0+ 0 = 0. We therefore have m, + m, € S, There is
thus a homomorphism

0:5,85,—5,
(7, 7)) P 7, + 7,

Let (m;, — 7,) be in the kernel of the map @. That means x, = 7,. By §2.7.2, 7,
and 7, must both be zero. Therefore @ is injective. In addition we know from
§2.7.4 that

#5,, = Nap) = N@QN@ = # S, x S,

so the map @ is an isomorphism.

2.8. Some small lemmas

We now begin investigating the functions f, § and Dec. Our methods in this
chapter are arithmetical.

If one had a different group I" acting on a different space X, then one could
define corresponding fundamental functions and decidents for this action. One
would then be able to prove similar statements to those in §2.8, 2.9, 2.10, 2.12.
On the other hand there is no Gauss-Schering lemma to make such a generaliza-
tion worthwhile.

Let L be a lattice and L(L, ¢) the corresponding cyclotonic crystallographic
group.

Let f, £/, f”, f” be fundamental for I'(L) ;
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0=0,

0’ = 6,, etc.

S < K/L fonite yt,~invariant subset.
Then the following identities hold in Z/qZ: -

1. The function 60 :K_ —7Z/qZ has the following transformation behaviour
with respect to the group I'(L, q) :
0(c(2)) = 6(2) + k# Stab (2,

where 0(2) = L'z + tand t € L.
We have similarly for the functions 0 : L\K_,—Z/qZ:

6(C*m) = 6(n) + k # Stab, (7).

. Es (f(m — (@) (O () — 8 (x) = 0.
3.
n;:..'sf(ir) 0'(n) = — Esf’(ﬂ:) 6(m).
0 if  is odd,
Z /w0 = [% #(S™) ifq is even.

Heve S™ is the set if elements of S which are fized by every element of U, In
applications of this formula this set will always be empty.

4. If a is an element of O and b an ideal of O, which is coprime to ag in Oy,

a
then the decident DecLF 1s independent of the choice of fundamenial

Sfunction f.

5. Ifa is an element of O; and b an ideal of O;, which is coprime to aq n Oy,
then

Dec,

= 2 fm@ar) —0@).

br=0,r#0

=R

Here the sum is over those T € L\K which correspond to mnon-zero
b-division points of L.
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Proofs.
1. By definition of § we have

8D =S =S G+ AT = 00 + kS £ mod ¢
=0 i=0 =0
=0(n) +kt Stab, () mod g, because f is fundamental.

2. From (1) we know that 6” — 6” is constant modulo ¢ on f,-orbits in
K/L. Let [7] be such an orbit. Then

2remf(@) = 1modyg, because f is fundamental
=2 emf (@), because f is fundamental

One therefore has

2 (@) —f@N@@)—0"@)=(2 f(@)—f @) (@ — 6" () =0.

n’eln] ' eln]

Since S is a disjoint union of y,-orbits, the result follows.

3. By definition of @ it follows that

2 fme(m) = 2 1jf(?r)f’(C"’?r).

nes reS,j=1..q~

We now replace m by C_jn. Here we use the fact that S is invariant
under the action of ¢#,. The sum is then

> D@,

neS,j=1..4~-1
We now replace j by ¢ — J. Since J still takes the same values, we have

T (g pfCn ).

nesS,j=1...q—1
We split the ¢ and the — 7 and obtain two sums

+q X f(Cjn)f’(n)—ZJSO(n)f’(ﬂ).

nes,j=1...q9

The result follows from this.

n A A
L

4, We shall show, that Dec B Dec i is congruent to 0 modulo q.

This is equal to

2 (f(mO(ar) — /() 6 (amn)),
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where 7 runs through the set Sy = {r € L\K| bz = 0 but = # 0}. Mul-
tiplication by a induces a permutation of Sy and this action commutes
with the action of ¢, on S,. The above sum is equal to

2 (f(mOlam) — 0" (am) + (f(@) — (1) 6 (an)).
In the second term we replace ™ by ax. We then have
| > (f(n) (8lan) — @' (an) + (flar) — f(an) O (@’n)).
By (3.) this is congruent to
2 (f(m) (8lam) — 6 (an) — f'(@’n) (Blan) — 6’ (an))).
And this is equal to
3 (f(m) = f(@’m) (Blar) — 6'(an)).

It now follows from (2.) that this is congruent to O modulo g.

5. We begin with the definition of the decident.

DecL% =2 f'(m) 6 (an),

where 7 runs through S, = {x € L\ K|bxr = 0 but = # 0}. From (4.)
we easily have

2f(me =0.
This gives us
DecL% =2 f'(m) (0’ (an) — 6" (7).

We now use the fact that fea:L\K,— Z/qZ is fundamental at
b-division points. It then follows from (2.) that

> (f(m) = f (m)) (0 (am) — 6’ (1)) = 0.
We thus have

DecL% = 2 f@O (ar) — 0" x)).

br=0,mr#0
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2.9. Lemma (Independence of L)

In the previous paragraph we showed that if & and b are coprime in £, and if
b is coprime to ¢, then Dec(Lf) % is independent of f We now describe the
behaviour of Dec,_% as one changes the lattice L, under the condition that ag and

b remain coprime in O;. We shall prove three statements; the most important of
these for us is the second.
Let L and L’ be two Z[{]-lattices in K.

1. If there is an element v € K with YL = L', then the vings O, and O, are
the same, and one has

a a
Dec, + = Dec,, - modg
b b
for all @ € ©; and all ideals b of O, which are coprime to aq.

2. To any two Z[{]-lattices L, L' C K, there is a “conductor” ©, such that for
ale, BE D, N O, with 8 and dga coprime, one has

DecL% = DecL,% mod q.

3. If the lattice L is a fractional ideal of O, then the ring O, is the whole of O,
and for all @ € O and all ideals b of O which are coprime to aq, one has

o a
Dec, ¢ = Decyy modg.
Proofs.
1. It is clear that the rings 9, and O, are the same. Let f : K— Z/qZ be

fundamental for I'(L, q¢). Then f’(2) = f(3'2) is fundamental for
I'(L’, @), and one has

Dec,; = = f@Oad= = fG)6ad
zeb™1I\L zer pTI\rTIL
= X f@6(@ =Dec, 3.
zep~1L\L
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Here b™'L\ L is the set {z € K| bz C Lbut z € L}.

2. We can assume that L’ C L. If this were not the case then we could re-
place L’ by its intersection with L; since L and L’ are both contained in
K, their intersection is also a lattice in K. We choose d € © with dbL C
L. Let B be coprime to ». Then multiplication by d induces an isomorph-
ism of (0, N ©,)-modules

{r € L\K|Br =0} — {r € L'\K|pz = 0}.

If (8, ag) =1, then the decident is independent of the chosen fun-
damental function. It thus depends only on the actions of ¢, and & on this
module. The lemma follows from the isomorphism.

3. If L is an ideal of O, then the OD-modules b"'L/L and 6 'O/D are

a a
isomorphic. We therefore have as in (2.), Dec, b= Decg 3

2.10. Lemma (Additivity with respect to & and b)

a
We now describe the behaviour of DecLF on changing « and b, L remaining
o
fixed. One could say that Dech is almost additive in a and b. The fourth

statement is due to Schering [19], who stated it in the case K = Q, L = Z.
1. If B and B’ are elements of O, which are both coprime to aq i Dy, then

Dec, %7 = DecL% + Dec, %.

2. Ifb and b are ideals of ©,, which are both coprime to aq in O;, then

DecL% = DecL% + Decy %.

3. Ifb and b are ideals of O;, which are both coprime to aq m O, and which
ave coprime to one another, then

o
Dec, T DecL% + Dec, %.
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4., Ifb and ©" are ideals of O, which are both coprime to aq in O, then

Decg % = Decg% + Decg %17.

5 Ifaand & are elements of Oy, which are both coprime to b in Oy, where b is
an ideal of ) coprime to q, then

’ 4

Dech%L = Dec; % + Dec, CEYT

Proofs.

Part 1 follows from part 2 and §2.9.1. Part 3 follows from part 2 and §2.9.2.
Part 4 follows from part 2 and §2.9.3. It is therefore sufficient to prove part 2
and part 5.

2. We have a projection map

prioy: L\K—b7'L\K.

We define two sets

L1L

Sty i={r€L\K|bbr =0}, S, “:={re 0 'L\K) |b'm = 0}.

I . . & &bt .
The projection map induces an £;~module homomorphism from Sﬁb/ to Sy ! This
homomorphism is surjective. Its kernel is the set

Sii={re L\K|br =0},

By §2.7.4 the cardinality of this set is congruent to 1 modulo g.
Let the function f : (67'L\ K) — Z/zZ be fundamental for I'(6"'L, ¢) at all
points apart from 0, and let f(0) = 0. We define

fUINK—Z/qZ

T f(pria,(m).
Then /' is fundamental for I'(L, q) away from the b-division points of L, where it
is always zero. Let f: L\ K— Z/qZ be fundamental for I'(L, q) at b-division
points of L and zero everywhere else. Then the function f3 1=f1 +f2 is fun-

damental for I'(L, @) on the set Sp, .
One has

DecL%= > Fn6(an).

&Sk \0
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Multiplication by « permutes by §2.7.2 the sets Séb, and 5‘5. Therefore a also per-
mutes the set St \ Si. We thus have

Dec, = % F@ban + = @6,
b ana redi\0

and this is equal to

> flmbian) + X fir)6%(an).
§L A

TSty \S§ reSH\0
This is however the same as
#SH X f@oam + T )6 (an).
L AN 7eSI\0

Modulo g this is congruent to
a a
Decy-1, 7 + Dec, g

Part 2 is proved.

a 4
%. From §2.8.5 we know that

5. We now consider Dec;
DecL%‘—(— = 2 f@@laa'm) — 6(n).

br=0,r#0

We can write (aa’n) — 0(x) as Olaa’nr) — O(an) + 6(ar) — 6(x). The above
sum then becomes

2 fm@laa’n) — 6am)) + X f(m Blar) — 0(n)).

br=0,7#0 br=0,7#0

a
The second sum here is Dec R It only remains to show that the first sum is

24 . . . .
Dec—ﬁ*. To see this, it is sufficient to observe that fe & is fundamental on

b-division points and then to apply §2.8.5.
2.11. The Gauss-Schering Lemma

This lemma is the reason for studying decidents. If aq and b are coprime in O,
then
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9_ J— Decgg
(b)q = e

where the left hand side is the q”' power Legendre symbol in the field K.

Proof. By §2.10.4 it is sufficient to prove this in the case that b is a prime
o a
ideal. By §2.9.3 we have DeCDF: Decbg. By §2.8.4 we may let f be the

characteristic function of a fundamental domain D for g, in K/b. Let M be the in-
tersection of D with the set

S,={r€eK/b|lor=0,7+0} = (/b
We therefore have

0/6={0}U U M.

Ceu,
The union is disjoint because g, has no fixed points in Sy (by §2.2, 2.7.2, 2.5.1).

N@) —1
Since £ /b has cardinality N(b), M must have % elements. Therefore we

have from Euler’s criterium:

<%>,,E II @ modb.

neM

We now rearrange this as Gauss did:

I

a ar an) ' (arx -
(F) =0 —=1 M—(——)E I lar) 0 w'(ax) I 7z 'modb

q neM T TeM T TeM reM rTeM
where {(am) is the unique element of g, with ar € {(am)M and n'(ar) =
{(am)ar € M. Since a is coprime to b, multiplication with @ permutes the set Sg.
Since this permutation commutes with the action of g, on S, the map
7~ 7'(arm) is a permutation of M. We therefore have

a -

(w) =1 L) I z I 75 = 1 {(ar) mod b.

b q neM TeM neM TeM

Now notice that if 7 € M then 6({'m) =7, so CM)

therefore have

= {(n) for all T € S,. We

a

(ﬁ) = QI (090 = Teten = (Bl @0 = (o = (P,
b q neM
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2.12. Lemma
Theorem 1, which we will prove in §5, is a statement about the quotient
o -1
(E) (g) . Using the Gauss-Schering lemma this can be rephrased as a statement
q q

a
about the difference Decgﬁ - Decga—. This is however the difference of two

sums over different sets, and is therefore difficult to handle. In this paragraph we
show that the two sums can be taken over the same set. This lemma was proved
by Habicht [8] in the case K = Q(/— 3), and by various authors in the case K =
Q. The idea probably appears first in Eisenstein’s proofs of the reciprocity laws
in Q(Y—1) and Q(y/— 1) using elliptic functions. There is perhaps also a con-
nection with Furtwangler’'s idea of studying the extensions K{a , \"/—B) o
K({/aB) rather than K({a) D K. This is useful because the former extension is
unramified.

If &, B and q ave pairwise coprime elements in Oy, then
DecL% - DecLﬁ Dec,” B Deczf) c‘fB

(N(a) —)WNE) — (g — 1)
2q

2+ V@ ~ NG,

where both decidents in the vight hand side ave calculated with vespect to the same fun-
damental function. Heve N(av) is the cardinality of the quotient a'L/L. In particular,
if & and B are totally positive and = B = 1 mod ¢ then:

Dec,_ 5 DecL B _ = Dec (f) a,B — Decif) EBE'

Proof. We begin with the identity S,; = S, @ S, given in Lemma 2.7.5. This
implies the following expression for S,, as a disjoint union:

SaB=SaU SBUS’
where S’ = {r € L\ K| afr = 0 but ar # 0, B # 0}. This leads to an identity

of the sums over these sets:

Dec” % —Dpec” B = 5 fm)(0lan) — 08m)

v ap T Do qg = 2

= X f(m) (B(an) — 6(Br)) + X f(m) (6(ar) — 6(B))

TESy TESy
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+ 2 f(m) (Blar) — 6(Bn)).

res’

-1
Now using the simple fact that 8(0) = % we have

Dec" &~ Dec/" & = £ s (otam) - L42) - £ s (006w - 112)

TESy neSy

+ ZS f(z) (B(ar) — 6(Br))
B

£+ 921 W - N@)

= DecL g — Dec, =

+ X f(m) (6lar) — 6(Bm)).

res’

It remains to calculate the sum. By 2.8.2 together with the fact that f°a is fun-
damental on S’, we have

2 f(m) (Blar) — 6Bn)) = 2 flam) (0(ar) — 6(Bn)).

res’ nes’

By 2.8.3, we have 2 f(am)f(ar) = 0, so

eSS’

2 f(m) (B(an) — 6(Bm) = — X flam) 68(Br)

nes nes’

== 2 2 flalr, + 7)) 0B(x, + ,)

T1ESy THESy

=— X 0Br) x X flam,)

T1ESy T,ESy
= - Zs 6(m,) X Z f(ﬂz)

N —1 « NP —1

=— Q2+t @-D) T ;

The last line follows from the identity 22, f({m) =1 for w € S, or S;, together
with 2.7 4.

2.13. A skew product

In order to study decidents we introduce a skew product. Let L be a fixed lat-
tice and let I'= I'(L, q). We define x : I'— Z/qZ by x (a(£%, b)) = a. For two
Z / qZ-linear combinations g1 and g2 of I'-fundamental functions and an ideal b C
9, we define
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ghegD= Z 108008 ®.
z&Sy, 0’
Here S, is the set {z € K|bz € L butz € L}. If f' and f? are two fundamental
functions, then

UL = Z 12600

zeSy

= X ff@6w.
br=0,7#0
The skew product has for fundamental functions /', £ and f° the following three
properties:

FH =L D

LDy E = E D

=D =S,
The first property needs no proof and the second is just a special case of §2.8.3.
We now verify the third property. It follows from §2.8.2, that for every four fun-

damental functions £, f% f° and f* we have <{f'—f% f° —f4>b = 0. Thus
f'=f7% £, is independent of f°, and we have in particular

Sr=rL == LD
— <f1’f2>b_ <f2’f2>b
=< D

3. Geometric constructions of some fundamental funections

We shall think of K as a real vector space of dimension # := [K : Q]. Our
next aim is to define the singular homology groups of a topological space. For our
purposes, the definitions given in [16] are most convenient. Later in the chapter
we shall construct using the homology groups a class of fundamental functions. At
the end of the chapter we shall find a formula for the skew product <f1, f2> =
> FUm 6% (), where f' and f° are from the class of fundamental functions
which we shall construct.

The connection with the homology groups is the following we define fl(z) to
be the degree of a map P K at the point z € K, where I" is a hypercube.

3.1. Singular homology groups

1. Let I be the closed interval [0, 1] in R. We shall write I” for the carte-
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sian product of 7 copies of I. I° will be a topological space with exactly
one point.
2. Let X be a topological space. A continuous map
T I'—>X

will be called a singular 7-cube in X. We shall write 2,(X) for the
Z / qZ-module generated by the set of singular #-cube in X, and with re-

lations
T+ TG) =0 1<i<j<r,
where
D@y ) 1= (T Ty, Ty Tigrse o o Limgy Ty Tygrse ey L,)

Therefore one always has in 2,(X) the identity
T-® = sign(®), 7,
where @ is an element of the symmetry group S,, acting on I” by per-

mutation of the coordinates.

3. A singular r-cube 7 is called degenerate, if the function 7 (z,,. . .,x,) is
independent of at least one of the coordinates x;, We shall write
9,(X) for the submodule of 2,(X) generated by the degenerate #-cubes.
The quotient

€,(X) = 2,00/9,(X)

will be called the Z /qZ-wmodule of 7-chains n X.

4. Let 7 be a singular »-cube. We now define the i front face of 7,
AT I > X
@y .., 2,.) P Ty, .., %2, 0, 24, Zyey)
and the 1" back face of 7,
8T 1" —>X
(@, ..., z,. )~ Tx,...,2_1, 1,2,...,%,_).

The faces of an 7-cubes are (# — 1)-cubes.
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5. The boundary of an #-cube J is defined to be the element of
2,_,(X) given by the following formula

3,7:= 3 (= D' T —B9).
i=1

This definition can be extended by Z/gZ-linearity to 2,(X).
0,:2,(X)— 2, ,(X).

This induces a homomorphism of the chain modules

0,:6,X)— ¢, ,(X.
We define the #-cycles to be the kernel of the boundary map
Z,(X) := Ker (3,) € §,(X),
and the #-boundaries to be its image
8,X) :=Im (3,,) C €,X).
One can check that every boundary is a cycle
B,(X) C %,(X).

We can thus define the »™ singular homology group of X to be the quotient
of the cycles by the boundaries:

2,00 1= %,(X/8,00.

6. Now let Y be a subspace of X. Clearly there is an inclusion
2,(1) € 2,(X).
This induces an inclusion of chain modules
€,(V) 6,0,
and we define the relative chain modules of X w.rt. Y to be the quotient:
€,X,Y):=%6,(X/6,(Y).
The boundary map induces a homomorphism of relative chain modules
0,:6,X,N—¢,,X, Y1),

and we define as before the relative cycles to be the kernel; the relative
boundaries to be the image; and the relative homology groups to be the
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quotient of the relative cycles by the relative boundaries.
%,(X,Y):=Kero,C 6,X, V),
B,X,V):=Imo,,, <¥,X, D,
#, X, VN:=%(X, VN/B,X, V).

7. The base set | 7 | of a singular #-cube 7 is defined to be the image of 7,
if 7 is non-degenerate, and the empty set, if & is degenerate. The base
set of an element of %,(X) is defined to be the union of all base-sets of
singular 7-cubes in its support.

8. Let X be an abelian topological group (whose group law we shall write
additively) and let 7 be a singular #-cube and U a singular s-cube in X.
We can define a product (# + s)-cube:

TxXU:I'" =X
@y Xy Yiye o y) P I (2, x) Uy, .. Y.
This product operation can be extended by bilinearity
2,(X) X 2,(X) = 2,,,(X),
and this induces a product operation on the chain modules:

€,(0 X 6,0 —4,,,(X).

9. Let M be a manifold. If x € M then
H,(M, M\{x}) = Z/qZ.

(This is a non-canonical isomorphism of Z/qZ-modules.) The manifold .
is called orientable w.r.t. Z/qZ, if one can associate to each point x €
Z /qZ an isomorphism

Iso,: #,(M, M\{x}) — Z/qZ

with the property that for every & € M there is a neighbourhood U of z,
such that for every y € U the diagram commutes
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Ao, A\U)

SN

Ay (ol MNAxY) (A, M\ 53)

N %

Z/qZ

Such a set of isomorphisms is called an orientation. Every manifold is
orientable over Z/2Z, and if a manifold is orientable over Z then it is
orientable over Z/qZ for every natural number ¢. An #-dimensional,
differentiable manifold, which posesses a global, non-vanishing differen-
tial #-form, is orientable over Z.

Assume that Al is orientable over Z/qZ, and fix an orientation Iso. Let
T €€,(M). Then 0F is a singular #» — 1 chain. Suppose that x € M
does not lie in the base set | 87 | of 07. Then J represents a homology
class in #,(M, M\{x}). We define the degree of 7 at the point x to be

I, (x) 1= Is0,(7).
From our condition on Iso, we have a locally constant function

I, :M\|67 | — Z\ 4Z.

10. The spaces K, and L\ K, are orientable over Z/qZ (the first is a vector
space and the second is a torus). If ¢ is odd, then the qth roots of unity
have positive norms. In that case I'\ K., is orientable over Z. Suppose
that ¢ and # := [K : Q] are both even. Then again the qth roots of unity
have positive norm. If on other hand # is odd, then K has no subfield
whose degree over Q is even. In particular, K doesn’t contain Q(/— 1).
From this it follows that ¢ =2, and thus I'\ K, is orientable over
Z/qZ*

11. The group I acts on %,(K.) by composition of functions. The projection

If ¢ =2, then I'\ K, is unfortunately not a manifold. It is however apart from at

the 2-division points a manifold.
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maps pry, pr; and pr;i induce maps between the chain complexes
pryy: 6,(K.) — 6,(L\K,),
pr.: 6,(K,) — €,(I'\K,),
prrs: 6,(L\K) — 6, ("' K.).
and we have canonical isomorphisms
6,(L\K,) — L\%,(K.),
¢, ('\K,) —TI'\%,K,),
,(I'\K.) = 1,\€,('\K.).
We can choose orientations on K., L\ K, and I'\ K,,, which are compati-
ble with the projection maps. We then have in the notation of §2.3
L., 00 (@) = (pr (1) (@),
L,,.w @ = (pry (1) (7)),
L., a0 @) = (prry (1) (@).

12. If S is a discrete subset of an #-dimensional orientable manifold ./, and
if 7 is an n-chain in M with S N | 0T | = @, then we define
s = T 1L,@.

xeS

Since | 7| is compact, the sum has finite support. If ¢ : .M — Al is an
orientation preserving transformation, then

{{oS| 6T} = ({S| T}}.
The transformations o(r, £) of K., with # in the multiplicative group K.,

and t € K, are all orientation preserving with respect to Z/qZ.

13. The singular O-cubes in a topological space X correspond to the points x
of X. We shall write [x] for the singular O-cube corresponding to x. The
singular 1-cubes in X are paths between points x and y in X. If X is a
real vector space then we shall write the straight path from x to y as

[z, y]
and a general path from x to y in X as

[z, yl".
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Let X be an Abelian topological group and let J be a singular #-cube in
X. Then

[x] X T
is a translation of 7 by x, and one has (because 0 is an even number)
[x] X T =T X [x].

This equality is at the level of singular #-cubes.

3.2. Remarks

1. The boundary of a product of paths is given by

n . n i n i
o(11 10, ¢)) = = (-~ 1™ a] = 10D 11 [0, ¢,
i=1 j=1 i=1,#j
where [0, a,»]i is any path from O to g, in K, and the products are taken
in ascending order.

2. YoeTIW), (o) = 0c(d(J))
V translations 0, € L, 6,(J8) X T = g,(S X T)
¥ rotations g, € g, 0,(8) X 0,(T) = (S X T)

3. Let 7 :I"— X be a singular zn-cube in the topological space X, and let Y
be a subspace of the space X with

loT | C Y.
Then 7 represents a homology class in #,(X, ¥). We cut 7 into two
pieces:

T I"'—X

Xy, ...,x,) '—*f/'(%, Z,, . . .,x,,)

and

T I"— X

(z,...,x,) .—»g<$1 ;- 1, xz,...,:c,,>.

If in addition
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o7, |c Y
andl(’??leY,

then we have in #,(X, ¥) the equation

T, +7,=7.

4. Let Ml be a manifold with an orientation Iso. and let J be a singular
n-cube in . Then we may define as in §3.1.9 a function I, Let z € M
lie outside the base set of 7. Then we always have

I,(2 =0.

We shall now use the homology groups to construct fundamemtal
functions. We shall define the function f : K, — Z/qZ to be I, where ?
is a sum of singular #-cubes. The construction works for every action of
a group I" on a real vector space V, if the pair (I', V) has the Kubota
property. We define this property in the next paragraph. The content of
the next 5 paragraphs can be found in Kubota [14].

3.3. The Kubota property

For the moment we shall forget fundamental functions. Instead we shall use
the simpler idea of a fundamental domain. For our purposes, the following defini-
tion is most convenient:

Let I" be a group acting on a finite dimensional, real vector space V. A
fundamental domain for I" in V is a subset U & V, satisfying the following
three conditions:

(i) every I'-orbit has at least one point in U

(ii) Uis closed in V

(iii) if z is in the interior of U, then no other point of the I-orbit of z
lies in U.

By the word parallelotope we shall mean an expression of the form

~

la;, bl € C'(V,

i

where the vectors @; — b; are linearly independent. The point
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14
Za;, €V
i=1

will be called the origin of the parallelotope. We shall say that two parallelotopes
are properly touching, if their intersection is either empty or a mutual face of both
parallelotopes, having the same origin as a face of each parallelotope.

Now assume I has discrete orbits and a compact fundamental domain. We
shall say that the pair (I', V) has the Kubota property, if V can be tiled by proper-
ly touching parallelotopes, which are permuted by the action of I', without a para-
llelotope being mapped to itself by a non-trivial group element. The Kubota prop-
erty is equivalent to saying that I" has a fundamental domain consisting of finitely
many parallelotopes, whose images under I" are properly touching. We shall show
that (I', K,) has the Kubota property. This statement is not trivial; for example if
q is not a power of a prime, then (I"(©, q), K..) does not always have the Kubota
property. The following observations will be useful:

(i) If (I", V) has the Kubota property, and I is a subgroup of I" with finite
index, then (I/, V) also has the Kubota property.

(i) If (I", V) has the Kubota property, then (I"”, V) also has the Kubota
property, the action of I'" on V” being defined componentwise.

3.4. The Kubota property in Q(p)

We first consider the case that K is the cyclotomic field Q(p), where p is a
e e th . .
primitive p = root of unity for any prime p (even 2).
Define
p-1 o'
gi=1II [0’ 1— ]
i=1 Y
This is a singular p — 1-cube in K, and represents a p — 1-chain. By choosing
an orientation on K, we may define the function I 5 as in §3.1.9. We shall choose

the orientation so that I ; takes only the values 0 and 1. This is possible since &
is a linear map. We then have:

3.5. Lemma (Kubota)

The base set | S| of S is a fundamental domain for I'(Z[o], p) in Q(0)., and it
touches its images under elements of I'(Zlpl, p) properly. If p # 2 then the
(p — 1)-cube prr43 has zero boundary in 6,_,(I'\ Q(0)..) and represents a generator
of #,_, '\ Q).). If ® € I'\Q(0).,, satisfies the condition @ & pr,| 0S|, then I
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is fundamental for I’ at @, and one has im Z/q4 :

(prrly) @) =1, (@) =1.

Proof. (i) The structure of the proof

If p = 2 then this is all trivial. From now on, assume p to be an odd prime.
We first show that 3(prp,(J3)) is zero in 6, ,(I'\K,). Since I, s, is locally
constant on the complement of | (pr4(J8)) |, we can deduce that L., is locally
constant on I'\ K. The space I'\ K_ is however a quotient of the connected space
K., and is itself therefore connected. Thus, we know that I, s is a constant
function. We check that this constant is 1 by integrating the function and compar-
ing the answer with the volume of '\ K_. The lemma follows from this, since for
every @ € I'\ K, not lying in pr,| 84 |, the following holds:

Ly (@) = (prpgly) (@),
(ii) Calculation of 0(pr 4 (J3))
First we apply the statement §3.2.1 to the definition of 3. This gives us:
j i

0d = jg:ll (-~ 6[0, 1 ‘i P] i=1,,1}1>-1, [0’ 1 ‘i p]'

1¥#]

1
From our assumption that p is an odd prime, it follows that d 2 is a whole

number. We can therefore split the sum in two halves as follows:
1

05 =3 ((= 1" alo, - e o, +%5]
) -7 i
v i)
i%p
Again since p is odd, we have (— P77 = — (= 1), which gives us
p-1 ' ; ' p- :
- Fortorty]n bt b o)

We now apply the elementary fact that o’ — 1 is divisible by 1 — p in Z[p] for
i j

. 1
every J. We therefore have prD<-1Ji—E = prD<1—_7>. Replacing 6[0, T‘i—p] by

[1 ‘i} p] — [0], we obtain
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el 725]) = oo 125

We substitute this into the above formula.

p-1

w0 =2 0ol ) (0 o) n o))

i#) i#p—j

We shall now reorder the second product in the inner bracket. Since p is odd, this
product has an odd number of terms. Therefore every cyclic reordering is an even
permutation, requiring no change of sign. We thus have

i

I [O’ ﬂ p] - ,~=:I:I,1~+1 [0’ 1—%] p:ril:l [O’ 1 ‘i p]‘

By renumbering things we obtain

i

0 Pl (p—i) pi+(p—j) pmjit pi—j
O e S O e B D)
i=1,..p=1, i i=1+j

’ 1 -0 i=1 1- 1Y ’ 1 -0
i#p—j
i1 pi—j ] o1 [ pi—j ]
= ’ H O’
i=1 [O 1—plign 1-0p
i—j
0
= II [ R e
i=1,...p—1, 0 1- p]

We therefore have in €,_,(I"\ K,.)

prr*<i=1,..rfp—1, [0’ 1 ﬂ P] B i=1 IL__L [0 L]) =0.

i#j i#p—j

Thus
prr«(048) = 0.

(ii) Computation of the constant
From this we deduce as described above that I
Its value is given by

prry () 1S @ constant function.

1
Vol([‘;Km) ‘/;\K,, IPrr*(.d)'
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From §3.1.11 this is equal to

1 f 1
vol(I'\K,)) Jy_ '

which is just v\(;;)(ll("l MSKP) . Since p is the index of Z[p] in I'(Z{p], p) , we know

that
vol('\ K,)) = p"'vol(Z[p] \ Q(0).).

On the other hand, the set l 0,1 — 0) S l is a well known fundamental domain for
Z[o] in Q(0)... We thus have

vol(g,(1 — p)¥) = vol(Z[p] \ Q(0)..).

When 8 is magnified by multiplication with 1 — p, its volume is multiplied by
N(@1 — p) = p. From this we deduce that

prr(I,) = 1.

3.6. The Kubota property in Q({)

The previous lemma shows that J is a fundamental domain for I'(Z[p], p) in
Q(p)... This implies that Q(p)., is tiled by the images of & under elements of
I'(Zlpl, p). We now apply §3.3(ii). The field Q) is a vector space over

Qo) with basis [Ci li=1,..., %} Thus Q0. is tiled by the images of
a/p .
7= 1 0,3

under elements of the direct sum of g copies of I'(Z[p], p) (acting componentwise

b

with respect to this basis). Since the basis is contained in Z[{], we know that the
action of Z[{] permutes these images of 7. Clearly the action of tt, also permutes
the images of J. We thus know that I'(Z[{], ¢) permutes the images of 7. To
verify the Kubota property for (I'(Z[{], @), Q({)..), we need only show that none
of the images of 7 is mapped to itself by a non-trivial element of I'(Z[{], ¢).

Suppose o(7, ©) maps one of the images 7’ of J under I'(Z[p], p)% to itself.
Then o(7, ) cannot be simply a translation, so # # 1. Therefore, the projection of
T in ZIO\Q(Q),, is fixed be a non-trivial subgroup of g, Every such subgroup
contains g,, so pr;(J’) is mapped to itself by p. It follows that oJ” is a transla-
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tion of 7’ by an element of Z[{]. In other words, 7’ is fixed by a(p, P for a suit-
able t € Z[{]. This leads to a contradiction with §3.5, by projecting 7’ and ¢ onto
one of the Q(p).. components. We have shown that (I", Q({)) has the Kubota
property with the tiling described above.

3.7. The Kubota property in any number field

We now drop all conditions on K. As before, let { be a primitive qth root of
unity in K. We fix a basis b, b, ..., by for K as a vector space over Q({). We
then have

K = e”a 6.(5) QO)...

Let L be the free lattice over Z[{], generated by b, b,,. .., by. As before, we have
a componentwise action on K, by the direct sum of N copies of I'(Z({], ¢). By
§3.3 (ii), (K., I'(Z1Q, @) has the Kubota property. It follows however from the
construction of L, that I'(L, ¢) is a subgroup of I'(Z[¢], @), so from §3.3 (i) we
know that (K, I'(L, ¢)) has the Kubota property. Although it is not necessary,
we could choose our basis so that the lattice L contains the ring ©. This implies
that I'(9, @) is a subgroup of I'(L, @), and we deduce by §3.3 (i), that
I'(Q, ¢) also has the Kubota property.

3.8. Modified parallelotopes

In the previous three lemmas we have shown, that (I'(L, ¢), K.) has the
Kubota property, where L is free over Z[{]. We now exploit this fact to construct
fundamental functions.

Notation. Let # = 2 ?, € €,(K..) be a fundamental domain for I'(L, ¢) in
K, where every P, is a parallelotope:-

X

»,=110,a,6.
1

7

(It is clear from our construction, that every %, can be chosen to have origin 0.)
We fix an orientation on K. Then each parallelotope P, gives rise to a function
I?P, as discribed in §3.1.9. By reordering the a;; if necessary, we ensure that the
function I?;‘, takes only the values O and 1. Since the intersection of any two para-
lellotopes is contained in their boundaries, it follows that L takes only the values
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0 and 1. The boundary of each paralellotope can be expressed in 6, ;(K,) as a
sum of faces:-

0P, = 2 wt(F, DF, wtF, 1) =T 1.
F
Each face # has an expression as an (# — 1)-cube:-
n-1
F =110, az ]l
j=1

We shall write # < #; to mean that # is a face of #,. The function I, is fun-
damental at all points z € K, whose I-orbit does not intersect the boundary of
».

Now let [0, 1]’ be any path from O to 1 in K, that is a continuous function
[0, 11: I— K, with [0, 1] (0) = 0 and [0, 1](1) = 1. We shall use the following
notation:

la, b1 := o(b — a, a) [0,17,
n n—1
P,:= 1[0, a,), F:=110, a5,
i=1 j=1

and
P = 29’2, =1,

Thus %] is an element of §,(K,). We shall call %} a modified parallelotope. The fol-
lowing lemma was known to Kubota. It says that if we modify all our parallelo-
topes with the same path, then their sum is still fundamental.

3.9. Lemma (Kubota)

Let z € K, be chosen such that its ovbit I', has empty intersection with the base
set | 09 |. Then f':= Ly is fundamental for I at z. In other words 2, cp,f'(2)) =
1.

Proof. Since % is fundamental for I' and the images of % are properly
touching, we have in €,_,(I'\ K.) 3

pr4(0%) = 0.

1
3 If K= Q then this only holds in Q?n_l(F\(R - §Z>) In that case the lemma is

however trivial, since f' = f.

https://doi.org/10.1017/50027763000005080 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005080

GEOMETRIC PROOF OF A RECIPROCITY LAW 113

One has

0P = 2 w(PF,
F<P

where wt(®P) = 2 wt(P, 1). If [F] is the I'-orbit of the face %, then we have
from the first formula

2 w9 = 0.

Y&l
If however ¥ = ¢%, then we also have ¥ = ¢%’, and thus
prr(0%) = 0.
From this it follows as in the proof of §3.5 that I, (s is constant. We must now
show that
Lo = Lo

It suffices to show that prp.%® and pr % are homotopic. We shall construct in
§3.10 a homotopy between pry4% and prp %’

3.10. The difference of two modified parallelotopes

We now depart from Kubota’s proof. What follows is based on a technique
used in Habicht's paper [8]). We investigate the difference f" — f” of two of the
functions, which we constructed in §3.8. The basic idea is to express " — #” as
a sum of pieces, each piece being associated to a face ¥ of a parallelotope of .
Actually these pieces will be homotopies from ¥ to #”. This method will lead to a
formula for the skew product

S =2 @0 (r) =2 (f(m) — () 6(n),

Notation. Let & be a homotopy from [0,1) to [0,1]” in K,. This means
h:I*—>K, with hlg,=0,hlyg=1 and 0k=[0,1 — [0,1]” modulo
9,(K.,). Then for any parallelotope 2, = II)_, [0, a,,] we define

l';,-(l'l,. ..y xn’ h) = Z ai‘jh(xjy t)'
j=1

Similarly for any face F = a,(vg) I}, [0, a5 ] we define

- n-1
ho(xy,. ..\ Ty D= 05 + 2 ag bz, D).
i=1
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Then A, is a homotopy from #} to %/ and h~g is a homotopy from ¥’ to #”, and
one has in €,(K,,) :-

o, =% (= 1'W,Gi) — B, ()
(_

DD - P+ Z wtG, F) hy.

F<P,

Letting 2 = X &, in C,,,(K.) one then has
P - =(=1" X wF) hy + (— 1)"0h.

F<@
If zis a point of K, which is not contained in | aﬁg| for any & then one has in

#,(K,, K.\2)
P — P = (—— l)n Z wt(g) 5gy

F<P

and therefore (in the notation of §3.8)

'@ —f"(@= (1" Z w(FP; .

F<P

We now consider the equivalence classes of faces of % under the action of I,
We shall refer to the class of F as [#]. We split the above sum over F < & into
sums over the classes:-

f@ —f@=(—D"Z Z wHP)],).

[F) $elF)

Note that since pry 0% = 0 in 4,_,(I'\ K..) we have
2 wt&) =0.

YelF]

The set S,z ={z€ KlaBz€ L, z€¢ L} is I'(L)-stable, so for ¢ € I'(L) and
T € #,(K,, K,\S,), one has

2 I,0= 2 1,,0.

2€8yp 2€Syp
We have analogously by §2.8.1, if 6 = o({, D,

2 L@k = 2 1, (6 — ).

2€Syp 2E€Sy,
Therefore

D" 2 2 w@IL, 00 = X wZll; (2,

YelF) 2€84g 284,
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where

wlFl = (= D'wt(F) X w9 j(F, 9

YelF)
and
9=0l""?, b7
We can rewrite this as follows:

D" 2 Z w® L, 0:) = wlF] {S,,] hs}}.

Ge F) 2€545

After summing this over the set of classes [#] of faces, we obtain:

3.11. Theorem (Formula for the skew product)

Let [0,1] and [0,1]" be two paths from O to 1 in K, and let h: I’ K_ bea
homotopy from [0,1]" to [0,1]". For a face F = 0,(vy4) H;:ll [0, agz ;] we define an
n-cube

~ n—1
ho(xy, .. 2y, ) = 05 + 20 ag h(x;, D, z,tE 1.
ji=1

If for every face F < P
S, 0|0, = 0,
then we have

SLfPa= 2 (@ —f @) 0 = Z wlF] {({Sy, | st}

2€S4p [F]

Heve the constants wlF] € Z/qZ depend only on P.

3.12. Summary of notation and results

For reference purposes we fix our notation for the remaining chapters and
state the main results in this notation. This will hopefully avoid confusion.
We fix a basis

{by,. .., by}

for K as a vector space over Q({). We write L for the free lattice generated by
{b, ..., by} over Z[{]. We then have an #-chain € €,(K,) with the following
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properties:

prr(0®) = 0in €,., "D\ K.) ;
2. For every point @ € I'\ K, we have
Lo (@) =1 inZ/qZ;

3. There is a (finite) decomposition

=22, in%,(K.),

where each P, is a parallelotope. More precisely

=

P, = [0, a;,1,
1

]

where each a;; is of the form

1 .
T=p b

4. We have a decomposition of 0% as a sum of faces,

0P = 2y p WHFF

where ¥ < ® means that ¥ is a face of at least one of the parallelotopes

%®,. We write the I'-equivalence class of # as [#]. Then for every class
[#],

2 wt(% =0 inZ/qZ.
ge(7)

For every face # < % there is an expression
n—1
F = 0,(vy) 1 [0, ag 1,
7=1

where the a4 ; and vg4 are (1 — p)-division points of L.
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4. Admissible paths and admissible homotopies

Let #: 1" — K_ be a singular n-cube. If z € | 0% | then I,(2) is not defined.
Thus if we write formulae involving I;(2), we must be certain that z € |39 |.
This is the purpose of this chapter. The proofs here are quite technical. For those
just interested in the applications, it is only necessary to understand §4.2, §4.4
and the statement of §4.3. We first prove a technical lemma, which we shall need
for the other proofs in the chapter.

4.1. A technical lemma

2 Let @ be a Hausdorff, real, topological vector space and V an n-dimensional, real
vector space. Let X be a compact polyhedron of dimension less than n. Let B : @ X X
— V be a map with following properties

* B is continuous and piecewise differentiable.

V2 € X, B(—, 2): D— V is an affine map.

* VY € X where B(—, 2) : @ — V is not surjective, one has 0 & B(D, x).
We define a subset

U:=¢c ®| Vre X one has B¢, x) # 0}.

Then W is a dense, open subset of D.

Proof. (i) Let ¢, € @. We shall show that ¥ is dense in a neighbourhood of
¢, and that ¥ is open in @. We call a point £ € X degenerate if B(—, x) is not
surjective. The degenerate points form a closed and therefore compact set. For ev-
ery degenerate point £ we choose neighbourhoods D(z) of x in X and U(x) of ¢,
in @, small enough that for all ¢ € U(zx) and y € D(x) one has B(y, ¢) # 0.
There are finitely many points xy,..., Z, such that every degenerate point lies in
the union D(x;) U ... U D(x,). We set D= D(x) U ... U D(x) and U=
UCz) N ... N Uzxy). Thus U is a neighbourhood of ¢, in @ and D a neighbour-
hood of the set of degenerate points. For every x € D and ¢ € U, we have by
construction B(¢, £) # 0. We shall show that ¥ N U is dense in U.

(ii) Let Y := X\ D. This is closed in X and is therefore compact. To every
¥y € Y we define

E@) :={¢p< O|B, y) =0.

Since y is not degenerate, E(y) has codimension # in ®. Let W be an
n-dimensional subspace of @. We define a subset of ¥ :
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YW :={ye Y| #(WnNE®@) =1}
If ¢y,..., @, is a basis of W, then
YOW) ={y< Y|B(g,v,..., B(¢,, y are linearly independent}.

One sees from this that the subsets Y(W) are open in Y. Now let y be any element
of Y. Since y is non-degenerate, the map B(—, y) is surjective. There are thus
vectors ¢y, ..., ¢, € O such that B(¢,, ),..., B(¢,, y) form a basis of V. That
implies y € Y(Rp, @ ... D R¢p,). Therefore the subsets Y(W) form an open cov-
er of Y. Since Y is compact, there is a finite subcover:

Y=YWw) U ... UY(W,).

For each 1 = 1,..., » we choose a compact subset Z(i) € Y(W,) large enough so
that

Y=Z1 U ... U Z(©».
(iii) For every i = 1,..., 7, define
e :={pe 0| Vxre ZG), B(p, ) #0}.
We then have
rauv=FON...0NT¥HHNU=FQNDN...N0HTF»ND.

We want to show that & N U is a dense subset of U, and that ¥ is an open sub-
set of @. For this we shall need the following lemma:

Lemma.  If R, is a topological space and if R, and R, ave dense, open subsets of
R,, then their intersection R, N R, is also dense and open in R,.

Proof. Since R, and R, are open, R, N R, is also open. Let R, be a
non-empty, open subset of R,. Then R, N R, is non-empty, because R, is dense.
The set R, N R, is also open, because R, and R, are both open. Therefore R, N
R, N R, is non-empty, because R, is dense. This implies that K, N R, is also de-
nse in R,

It thus suffices to show, that for any ¢ the subset ¥(3) N U is dense in U,
and ¥ is open in Q.

(iv) We first show that ¥ is open in @. Let ¢ € ¥, We shall construct a
neighbourhood of ¢ in ¥. Since ¢ € ¥, we have for every x € X, B(¢, ) # 0.
We choose for every £ € X neighbourhoods U,(x) of x in X and U;(x) of ¢ in
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@ small enough that for y € U,(x) and ¢’ € U,(x) we have B(¢, y) # 0. Since
X is compact, there are Z,,..., & € X such that X = U,(z;) U ... U U,(x,). Let
U,= U,(x) N ... N Uy(x). This is a neighbourhood of ¢ in @. It suffices to
show that U, € ¥ Let ¢’ € U,. For every x € X we have x € U,(z,) for at least
one i, but also ¢’ € U,(z,). By our choice of U,(x;), U,(x;) we have B(¢’, 1) #
0. Therefore ¢" € ¥. We have shown that ¥ is open in @.

(v) We now show that ¥(1) N U lies dense in U We actually prove
that ¥(1) is dense in @ (this is stronger). Suppose ¢ &€ ¥(1). Then by definition,
B(¢, y) = 0 for at least one y € Z(1). This means ¢ € E(y). Since y € Z(1),
the intersection (¢ + W) N E(y) has exactly one point. There is thus a surjec-
tive map

ZQ) = (¢ + W\ ¥(1)
y= (o + W) N E®.

Since B is piecewise differentiable, this map is also piecewise differentiable . Since
@ is Hausdorff, W, + ¢ has the usual topology as an #-dimensional real topologic-
al vector space. Since Z(1) has dimension less than #, (¢, W,)\ ¥(1) contains no
open subset of ¢ + W,. There is thus in every neighbourhood of ¢ in ¢ + W,, and
therefore in every neighbourhood of ¢ in @, a ¢" € ¥. This finishes the proof.

4.2. Admissible paths

As before, L is a Z[{]-lattice in K and D is its ring of multipliers, i.e. O, =
{o € K|aL C L}. From now on we require a, 8 and ¢ to be pairwise coprime
elements of 9, such that = 8= 1mod (1 — p)¢°.

We are interested in the values of our various fundamental functions on the
subset

aLBL\L: {ze K, |aBz<s Lbutz €L}

of K, or the subset
{re L\K_|aBr = 0but = + 0}

of the quotient space L\Km. These two sets will be referred to as the critical sets
in L\ K, and K. We shall write them as

SaB e Km and prL(Saﬁ) c L\Km.

Since &, B and g are pairwise coprime, it follows from §2.7.2 and §2.2, that the
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points of the critical sets have trivial stabilizers. It is important that our functions
are fundamental on these sets. The functions which we constructed in §3 are fun-
damental outside the boundaries of the modified parallelotopes used in their con-
struction. We shall therefore try to modify our parallelotopes in such a way that
their boundaries avoid the critical sets.

We call a path [0.1] from O to 1 in K, admissible, iff

|09 | N S,y = 0.

This means that the function f’ is fundamental on the critical set S,g.

4.3. Lemma (Existence of admissible paths)
For every neighbourhood U of zero in K, there is a differentiable, admissible path
[0.1]" from O to 1 in K., with
4 ([011'@ - 0,11@) e U
az , x 1l (x
and [0.11'() — [0,1]1(2) € U.

And if we define

. [0, %]1(21') < %
[0,11%() := [1 ]1 1
o 1 Czx—1) =2 0}
[0, l] 1(2x) x < 1
0.1 @ = P, 2
[—B—, 1] @z—1 z25,
o, 5}3] 4  z<y
wsoy . )1 170 o1 1
é, 1]1(2x- 1) xz%,
17 1
0, a_ﬁ] (42) z< g
1
[0,11°% () := 3 [aiﬂ -[1;] (4 — 1) % <z< %
[/9’ 1]1(21'—1) xz%,

https://doi.org/10.1017/50027763000005080 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005080

GEOMETRIC PROOF OF A RECIPROCITY LAW 121

[0,11°@) :=

then the paths [0,11%, [0,11%, [0,11**, 10,11, [0,1]$ are also all admissible.

Proof. (i) Let @ be the real vector space of functions ¢ : I— K, satisfying
the conditions

8 =92 () =,

2

-1 1
vo<zr< 4 one has ¢<x+—2>=¢(x).
q

2

q

@ becomes a topological vector space with the following norm:
=sleol [20]
Il:=in {| o) |, | £ @ .

With this topology @ is Hausdorff.

To each face # < % we define X to be the disjoint union of six copies of
I"™". We call these copies Xg, X2, X5, X2°, X2 and XJ. Let X be the disjoint
union over all F < # of the sets Xg. Then X is a compact, (# — 1)-dimensional
polyhedron.

To each z € S,; we shall define a map B,: X X @— K_ to which we shall
apply the technical lemma §4.1.

(ii) Let ¢ € @. We define paths.

[0,11"*(2) := [0,11(2) + ¢(2),

» [0, %] 1"b(Z;L‘) r< %
[0,1]1%(x) := 1 1
[E’ 1] @Cxr—1) 125

o [0, % 1Y¢(2:t7) r< %—
[0,1]" () := 1 s 1
[E’ 1] @2z—1) x=2 5
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MR 1
0, aﬁ] (42) Ty
a,B,¢ . (1 1 L¢ 1 1
[0,1]""(x) := o E] (4x — 1) s <zx< 5
) Lo
%J](m~1) xz%
( 1 . 1
B.a.¢ . M1 1 L¢ 1 1
[0,1] (1')~—4 a_ﬁ E] (41‘—1) ngég
[1 L¢ 1
5 1] @2x—1) z2= o
170 1
S0, N . [O’ @] (22) <3
[0,11"" () : 1 i 1
[—E’ 1] @2x—1) =+ 5

(iii) Let z = (zy,...,
forx € S

aps

z,_) € X5, where F = 0,(v;) [0, a;,]. We define

B,(x, ¢):=F"(@) —z2=v, + ’g [0, a1 (x) — 2.

The point x is degenerate (in the sense of §4.1) precisely when for all y =1,...

1
n—l,xJE{O,—

PERIEE)

1}. If that is the case, then vy + 2o, [0, @y, M) is

a (1-— p)qz—division point, and is therefore not in S,, Therefore, if x € X; is
degenerate, then B,(z, ¢) # 0.

(iv) Let £ = (z,..., z,_,) € X,. We define
n—1

B, (x, §) :=F (@) —z2=v, + = [0, a;,1"(x) — =
j=1

. 1

The point x is degenerate precisely when forallj=1,...,n— 1, x; € [0 57,
q

, 1]. We want to show that in that case, B,(z, #) # 0. Let x be degenerate.

We shall compute a(v,; + 372 [0,

fact that @ = 1 mod (1 — p)¢°. One

ag,j]a'¢(xj)) modulo L. We shall often use the

has
n—1

alvs + ' 10, 25,17 ())
j=1

n-1
E%+£mﬂ%r%pmML
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1
Suppose x; > 5 Then

[0, aa, )" (x) = lag,;, aaz ]@x, — 1)
= dg,j + ((X - l)ag’j(zxj - 1)

=agz; modL

[0, aag;] ""%é).

1
We can thus assume xr; < o We then have

a(vg + "211 [0, ag,,]a'¢(x,)> vy + nZ‘; 2x;a5; mod L.
1= j=
This is a (1 — p)¢°-division point and can only be in L if for all j, z; = 0. Thus
vy + 272000, a; 1**(x)) can only be an aB-division point, if for all jx, = 0. If
that is the case, then vy + 27110, az 1%*(z) = vy & S,4. It follows that for de-
generate £ € X, B,(z, ¢) # 0.
(v) We define further for x € X;, z2E€ Sy

B,(z, ¢) = F"(2) — 2,

and so on. As in (iv), we show that if x is degenerate, then for all ¢ € @,
B,(z, ¢) # 0. We can now apply §4.1.
(vi) We define for z € S,

U,:={p € ®| Yr € Xone has B,(x, ¢) # 0}.
From §4.1, ¥, is a dense, open subset of @. If ¢ € ¥, then by definition of B,,

z&| 09| U o™ | U ... U|a?*’|.

(vii) Let S::;me be the set of all elements of S,,, in a large compact subset of
K. This is a finite set, but if z € SaB\S;Zme, then ¥, contains a neighbourhood
U’ of 0 in @, which is independent of z. Let ¥ := N . ¥, Then ¥ N U':=
N zegme &,. This is also dense and open in U’. We can therefore choose a ¢ € ¥
arbitrarily close to 0. Let [0,11'(z) := [0,11(z) + ¢(x). Then [0,1]" satisfies the

conditions of the lemma.

4.4. Admissible homotopies

In Theorem §3.11 we obtained a formula for the skew product {f', f "4 =
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Zlesaﬂf’(z) 6”(z), where [0,1]” and [0,1]” are two admissible paths. Our formula
depends on the choice of a homotopy 5 : I’ = K_ from [0,1] to [0,1]”, where A
satisfies the following condition:

Ses N Wgeop|Ohg ) = 0,

with h~g as is §3.10. We shall call a homotopy which satisfies this condition
admissible. To be able to apply Theorem §3.11 we must show that admissible

homotopies exist. The following statements are easily proved (so we won't prove

them). .

« If [0,1)/, [0,1]” and [0,1]” are three admissible paths, and 4’ and A" are
admissible homotopies from [0,1]” to [0,1]” and from [0,1]” to [0,1]”,
then the composition (in the category of paths).

W(x, 2D t<
Wn) @, B 1=
W, 2t—1) t=

[T ST

is an admissible homotopy from [0,1]” to [0,1]”.

* If & is an admissible homotopy from [0,1]1” to [0,1]” and of A’ is pointwise
close to h and also a homotopy from [0,1]” to [0,1]”, then A’ is also
admissible.

We now show that close to any homotopy, there is always an admissible
homotopy.

4.5. Lemma (Existence of admissible homotopies)

Let [0,1) and [0,1]” be two admissible paths from O to 1 in K, and let h, be
any homotopy from [0,11" to [0,1]1”. Then for any neighbourhood of zevo 0 € U C K,
there is an admissible homotopy h: I° — K., from [0,11 to [0,11", with the property
that for all (x, 1) € I,

hz, ) — h(x, hE U.

If the functions [0,1]1", [0,1]1” and h, ave differentiable, then we may also require
that h is differentiable, and in addition that

% (h(x, D) — hylx, ) €U

andg—t (h(x, t) — hy(x, D)) € U.
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Proof. (i) We first prove the lemma in the case that [0,1]’, [0,1]” and &, are
differentiable.

For each F < P let X, be the set 81", and let X be the disjoint union of all
Xg4. Then X is a compact, (n — 1)-dimensional polyhedron. We shall write points
of Xy as (x, O, wherex = (z,,...,x,) €EI"  and t € L.

(i1) Let @ be the real vector space of differentiable functions

¢:I"> K,
oI’ — 0,

whose restrictions to dI” are zero. We give @ the topology, induced by the follow-
ing norm:

loli= sup {lo 0] | L@ 0] |% a0l

(x,ner?
For every z € S,; we define a function B, : X X @— K_. If (z, #) € X, then we
define

Bz, B, §) = v, + zi ag oz, D + ¢z, D) — 2.

Since h, and ¢ are differentiable, B, is also differentiable.

(iii) A point (z, ) € X is degenerate precisely when either ¢ € {0,1}, or &
is a vertex of I"™",

o If t = 0 then B,((z, 1), ¢) = F (x) — 2. Since [0, 11’ is admissible,

B, ((z, B, ¢) #F 0.
« If ¢t = 1 then since [0,1]” is admissible, B,((z, 1), ¢) # 0.
o If zis a vertex of I, then B,((z, §, ¢) + z is a vertex of a parallelotope
#,. Therefore B,((z, £), ¢) + 0.
The function B, thus satisfies the conditions of §4.1.

(iv) Let T,:= {¢p € ®| Yz € X one has B,(x, ¢) # 0}. By §4.1, T, is de-
nse and open in @. Let & := N 5 ¥, As in the proof of §4.3, ¥ is also a dense,
open subset of @. We choose ¢ € ¥ close to 0. Since ¢ € ¥, one has for all z €
S, and all F < 2,

2 €| oh% |,

where B’ (z, D 1= hy(x, t) + ¢(x, h). The homotopy h’ is therefore admmissible.
Since ¢ close to O, h® is close to hy. The proof in the differentiable case is
finished.
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The non-differentiable case
Now consider continuous functions

[0,1V:I— K,
[0,11": I— K,
hy:I*— K,
with the conditions

[0,117(0) = [0,1]7(0) = h,(0, t) = 0,
[0,11(1) = [0,1]"(1) = h,(1, t) =1,
ho(z, 0) = [0,1]"(2),
hy(z, 1) = [0,1]"(x),
and with [0,1]” and [0,1]” admissible. There are differentiable functions
[0,11“ : I— K.,
[0,11° : I- K.,
my:I°— K.,
which are pointwise close to [0,1]’, [0,1]” and A, and which satisfy the same con-
ditions. Since [0,1]” and [0,1]” are admissible, and [0,1]1% and [0,11*" are close

to them, [0,1]1% and [0,1]1%" are also admissible. From what we have already
proved, there is an admissible homotopy h? close to hg. We define

Wiz, »=1- 00,11 + o, 1]
and h"(x, ® = (1 — H[0,11"(x) + #o0, 11*".

The two homotopies A" and A" are admissible. Now let
t

#(z. ) tse

h(z, t) = hg(x,ﬁ(t—e» e<t<1l—¢

h”(x, ls_t) t=>1—ce.

The function % is an admissible homotopy from [0,1]” to [0,1]1”, and for small ¢, &
is close to A,
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5. Proof of Theorem 1

As before let K be an algebraic number field with integers ©. The field K
contains a primitive qth root of unity {, where ¢ is a power of a prime p. We set
0 =1C"" so p a primitive ¢" root of unity. We fix a basis {b,,..., by} of K as a
vector space over Q({) such that the lattice L, generated by {b,, ..., by} over
Z[{] contains the ring . We choose a ® € N such that bL € O € L. Let O, be
the ring of the maltipliers of L.

In this chapter we prove the following

Let ¢, B € O, with the following conditions:

e, B and q are pairwise coprime in Oy
ca, F=mod 1 — p)¢*;
e a and B are totally positive. This means, that for every real place v : K —
R of K we have v(a), v(B) > 0.
Then

DecL% = Dec, g.

With the help of the Gauss-Schering Lemma (§2.11) and Lemma §2.9.2 this im-

plies the first theorem of the introduction:

THEOREM 1. Let a, B € O with the following conditions:
s a, B, b and q are pairwise coprime in O ;
ea, B=1modd(1 — p)g*;
e o and B are totally positive.
Then

(5),= @)
‘B q a ‘I'
We now give a summary of the proof. We begin with the statement of §2.12. With
our conditions on « and S, this says:
o

DecL% - Dech = DecLE‘B— — Dec, ai,B'

The proof then consists of four lemmas. In §5.3 we show that

> 420 (az) =0,

ZESyp

a

where [0,1]1 and [0,1]% are the admissible paths constructed in §4 and f1 and f
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are the corresponding fundamental functions. For the same reasons, we also have

> 226" (B2) = 0.

2E€Sqp
We use these two statements in §5.4 together with the arithmetic results of §2, to
. a
express the difference DecLEE - DecLa—B as a sum of four skew products. In

§3.11 we proved a formula for these products. We apply this an §5.5 to reduce
the four products down to one product. We finally show in §5.6, again using

. . . . a .
§3.11, that this last product is zero. This gives us Dec,_E = Dech. Since we
o
shall use the decidents Dec, B and Dec, aB it is important that our

fundamental functions f ', %, etc. are also fundamental in points of L. We thus de-
fine £10) =f“0)=...=1and f'(@ =f%@) =...=0 for z€ L\0. At
other aB-division points, the functions are already defined and fundamental.

5.1. Proportional equivalence classes

We can embed the multiplicative group R’ in K. by the map 7~ ».1. We
write the quotient group K. /R as K. We call the cosets of R™’ (the elements
of K.:) proportional equivalence classes. We write z: for the proportional equiva-
lence class of z. If z;°= z,: then we say, that z; and 2z, are proportionally equivalent.

n
If ¢ # 2 then K, is a direct sum of 5 copies of C. Therefore K: is a direct
n X
sum of 5 copies of C*, and is thus connected. Being a quotient of K., the group

K. : is also connected. We shall assume that @: and B: are both in a small neigh-
bourhood of 1: in K, : This implies in particular that a and B8 are totally
positive®. It also implies that the paths [0,11%, [0,11%, [0,11%? and [0,1]%“ are
nearly straight, and that die maps #§, #°, 2% and #7%: I" — K., are injective.

5.2. Remark

If [a, b]' X 7 is an element of zn<Kw, Km\aL‘BL> such that b —a € ai,BL'

then one has in Z/qZ:

“totally positive means that for every embedding v : K— R of the field K in the
real numbers, v{a) > 0 and v(B8) > 0.
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{{;}EL| [a, 8" x 7}} =0.

We will often use this fact.
The next lemmas are similar to lemmas due to Habicht in the case K =

QW—3).

5.3. Lemma.
Ifa,BE€ D, witha=1mod (1 — p)q and a: is close to 1:, then

> fYm6'(ar) =1 modg.

afr=0,71#0

(This however is not the reciprocity law.)

Proof. We have P* = X, P for some set of parallelotopes #,. Correspon-
dingly we have f% = 2 Iyz,x, We first consider sums of the form

> Igg(n)ﬁl(an).

afr=0,r+0

For each parallelotope there is an expression

==

7=

]

[O) ai,j] ay
1

L. By definition (§4.3) of [0, ai'j]a, this is the equivalent to

B (o, %] + [ a]).

Expanding the brackets we obtain:

where a;; € 1—o

n

a 1!
II [ , #] + parallelotopes, at least one of whose edges is a vector in %L.
1=1

The first term is equal to
o (a P

On summing again over the parallelotopes we obtain

P* = g,(a”")P" + parallelotopes, at least one of whose edges is a vector in %L.
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The function 6'(z) is periodic with respect to L. Thus 6'(an) is periodic with

1 1
period lattice EL' The set OTBL is also invariant under translations by
1
elements of EL' Therefore the sum of 6'(ar) over a parallelotope with at least

one edge in %L vanishes modulo ¢. Since «: is close to 1:, the base set of one of

these parallelotopes cannot contain 0. We therefore have:

> L@ 6'(an) = DI L ¢)) 0'(az).

aBr=0 w#0 ze(aB)™IL z#0

Either a has positive norm or ¢ = 2. Thus in Z/qZ one has
L a5 (2) = Igp(az).

Our sum is therefore

Y L2 0" (a2),

ze(aB)"IL z#0

or more simply

S 1,07,

z2€B7L z#0

1
Since this expression is identical to DeCLE' we know (for example by the

additivity properties §2.10), that it vanishes in Z/qZ.

5.4. Arithmetical calculations

In this paragraph let & and 8 be totally positive elements of ©; with ¢ = § =
1mod (1 — p)g and a: and B: in a small neighbourhood of 1: - small enough,
that is, for the previous lemma (§5.3) to apply.

We use Lemma §5.3 together with some results from Chapter §2. It is first
clear that

Dec;”’ 7g= % (f'm ~f®) 0'am.

The variable 7 here is in L\ K,. The function fl(mr) L\K—Z/qZ is 1 at
7 = 0 and zero at all other a-division points. At points other than a-division
point, the function is fundamental. The sum is thus by §2.8.2
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X (f'm) — fYm) 6 ().

aBr=0,aw+0

We rewrite this as follows:

5 @ -ff@em—- X (fm-f'mom.

aBn=0,r#0 an=0,r+0

1 1
Since DecLa—B and Dec,_g are both zero (this holds for example by §2.10), this
is equal to

- 3 @+ = ) 6'xn).

afn=0,T#0 an=0,T#0
This is a sum of skew products:

- <fa, fl>aﬂ + <fa’ f1>a'
a B .
Thus from Lemma §2.12 we know that Dec, B DecLE is equal to

— Dt e+ D= O D

5.5. Lemma

Ifa,B=1mod (1 — p)q2 in O, and «, B and q are pairwise coprime in Oy,
and if & and B: ave close to 1: in K, :, then

DecL% - Dech = fP% D g

Proof. (i) The proof is quite long but the idea is simple. In the one dimen-
sional case (K = Q) this is all trivial because the fundamental functions are inde-
pendent of the paths. The lemma can be easily understood for fields of degree 2.
In higher dimensions some new phenomena arise and the two-dimensional picture
becomes inaccurate. A full impression of the proof can be gained by considering
three-dimensional cases, in which everything goes wrong that can go wrong.

Our calculations will be mainly in the homology group #,(K., K.\ S,s). We
shall first show that

a — Ba B
(1) SfDa= 2D e
1
This follows because the difference between [0,11%% and [0,1]° is essentially B

times the difference between [0,11% and [0,1]" (this can be seen by drawing a pic-
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ture). On the other hand the sum on the right is over af-division points, whereas
that on the left is only over a-division points. OQur proof of (1) will use the skew
product formula §3.11. After proving this, the lemma follows from §5.4 using only
the elementary properties of the skew-product.

(ii) To apply §3.11, we need admissible homotopies from [0,11% to [0,1]" and
from [0,11%% to [0,1]°. We now construct these homotopies. Let U be a neigh-
bourhood of 0 in K. We define

ho(x, D = t[0,11'(@) + (1 — [0,1]*(@).

The function 4, is a homotopy from [0,1]" to [0,1]1%. We choose using §4.5 an
admissible homotopy 4' from [0,1]" to [0,11°% which is uniformly close to A, (it is
not so important which admissible homotopy we choose). We therefore have a con-
tinuous function &': [*— K satisfying the following:

Bz, 0) = [0,11'@), h'(x, 1) =1[0,11%),

RO, =0, A, D=1,
V(x,t) €I’ one has h'(x, ©) — hy(x, ) € U, h'is admissible.

We compress this by 87", and obtain a homotopy from [0, 871" to [0, 871%
which we shall denote 4°:
1

5 hi(z, .

Wz, t):=

. 17
Finally we extend W by a constant homotopy from [E’ 1] to itself, thus obtaining

a homotopy A° from [0,11° to [0,11%%.

[u—

W@z, D ifx<

E’
3 . —_
h(-ry t)' l
2.

[E’ 1]1 @Cxr—1) ifzx=

The admissibility of h® follows from that of h'. We construct as described in
§3.10 the homotopies n, ;2 and ;zé
(iii) From Theorem §3.11 we have

S D= S wlFUS, | 1)),
[#]
P e = 2 wlF){Ses | 151
[F]

To show that <f % f, = <%, fB>aB, it is clearly sufficient to prove for each
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face F < P that

(S, | B ) = (S, | 7)),
We shall prove this.
(iv) Let # be a general face of a parallelotope of . Then there is an express-
ion of the form

n-1
F = 0'2(2)9) IT [0, ag,z],
1=1

1 - -1 . .
where vy, az, € 1—_BL. We cut the #n-cube Ay into 2" pieces. This cutting

process corresponds to cutting ¥ into 2" pieces, each half as big as #. We thus
have in #, (K., K.\ S,p):

U .
hg = % h; ,
Tci1,2,. .n—-1}
where
A z z;+ 1
Wy &, Ty Ty, ) =05+ 2 "whz(fj' t) + 2 “9,1h3< P t).
jell,2,..n—=1\T jeT

We first see that the boundary of ﬁsgr has no intersection with S,,. This follows
because the boundary can be covered by translations of the boundary of 539 by
aB-division points, and h’ is admissible. We therefore have

(S| By = = US| BN
1}

Tcfl,2,..,n—

We now compute the terms in this sum.
(v) First suppose T is empty. We then have

~ n—1 X
hng(l'p Ly ooy Tyt = Vg + 2 ag'ih:s(?!’ t)

1=1

n—-1

1=1

1 72l 1

= vy + B 2 agh (x;, t)
j=1

= % (vg + jé azh'(x, t)) + ‘BE L Vg

Thus

By = a(%, !%1 vg)ﬁ;,
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and therefore

(Ses | BT1 = {[S.6

0(%, B_glvg); 9”
= {[Za 2\ 0 | o5, B 05)))

F
= {10\ 0 ] 0,8 - Doi,)].

We now distinguish two cases. First suppose vz = 0. We then have immediately
. 1 ~
(US| DY = {{z 2\ 100 | L)),

In the other case vy # 0. Then there is a neighbourhood of | # |, which is disjoint
from L. We therefore have for a: and B: sufficiently close to 1: and [0,1]" suffi-
ciently close to [0,1], L N |ﬁ19| = @. Therefore (since (8— v, € L)
| 0,((8 — l)ug)hlgl N L = @. We thus have as in the first case

(S, | = {{T 2\ 0 | 7).

(vi) Now suppose T is non-empty. Without loss of generality, assume 1 € T.
Then

N xr +1
By, 2y Tyey, ) = agylh3< ! 5 t) + g(x,,. . 2y, D

x +1 1 !
with a suitable function g. However h3< ! 5 t) = [E’ 1] (x,). We therefore
have
ﬁsr _ |8z ! %
s = '8 » G g

Since T is non-empty, | ﬁ; | contains no point of L. Therefore by Remark §5.2,
(S, | BT = 0.
(vii) We have shown in (iv), (v) and (vi) that for every face ¥ < 2,
(S, | B3 = (S, || hl 3.
Therefore by Theorem §3.11,

SFfDa= PP e
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Of course we have for the same reasons:
L= D e
Substituting this into the formula at the end of §5.4 we obtain:
a B _
Dec, B Dec, «=
+ <fl9y fl>a5 + <fﬁra! fﬁ>a‘9 - <farf1>aﬁ - <fa’ﬁr fa>a8'

From the skew-symmetry of the product we have:

DecL% — Dech =
8 1 8 B, a 1 a a,B
+<fvf>aﬁ_<f rf >a8_<f ff>aﬂ+<f 7f >a5‘
From the bilinearity we have:

DecL% - Dech =+ S = s = S =D

The third property of the product gives us

DecL% - Dec,_g =+ P D= LD e

Again by bilinearity it follows that
g é — B, a,B 1
DecLB—DecLa—-i—(f = D e

and by the third property:

DecL% - Dech =4+ 1Y

5.6. The reciprocity law (first form)

We now prove the following:
If
(1 —0)q" forodd q ;

a, B = 1mod [ ,
4q for even q

n Oy,

and if &, B and q arve pairwise coprime in O and if a: and B: ave sufficiently
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close to 1: in K_.:, then

DecL% = Dec, g.

Using the Gauss-Schering Lemma (§2.11) and Lemma §2.9.2 this gives us the fol-
lowing:

If
a- p)qzb for odd q

" n O,
497 for even q

a,,BElmod{

and if @, 3,0 and q are coprime in O, and if a: and B: ave sufficiently close to 1:

m K_:, then
ay _ (8
(5),= ().
(Here D is chosen so that 0L, < 0 C L)

Proof. (i) We first consider the case that ¢ is odd. The minor changes re-
quired for the case that q is even will be described at the end of the proof. The
conditions of the previous lemma are satisfied. We therefore have

B

DecL% — Dec, = P

From the properties of the skew product (§2.13) we obtain,

gz <fﬁ,a _fa.B’ f$>aﬂ

= s = D

We shall show that {f*?, f$>mg = (. Since our conditions on & and B are sym-
metric, we obtain in the same way (f'g'a f$>a3 = 0 and therefore as required

DecL% — Dec,

Dech = Dec, ﬁ If v and B are coprime to D, then by §2.9.2 Dec, g - Dec 2
B a B °B

a
and Dech = Decg g. We thus have in this case DeCDF = Decgg and by the

Gauss-Schering Lemma (82.11).
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It is therefore sufficient to prove that {f **, f$>a,9 = (.

(i) We recall that the functions f$ and fa'ﬂ are defined using the paths
[0,11° and [0,11*, where

[ 0, aB] 2x) $£§’

[0,1°@ = . )

From this we see that the difference between [0,1]$ and [0,11%? is essentially a
1 1 1—-0)q
triangle whose vertices <CTB’ — and 1) are congruent modulo (—aBQq—L. We

shall exploit this congruence to show that {f **, f$>a,g =
(iii) We shall construct a special admissible homotopy h from [0,1]$
[0,1]1%®. Then by the skew product formula (§3.11),

= . = zw[gt]{{saﬁm 1.

For every face # < % we shall show that
{{S,s | hg)) =0.

From this it follows that <f **, f$>aﬂ = 0. The difficult thing is to find the right
homotopy A.
(iv) We now begin to construct the homotopy #. The two paths [0,11° and

1
[0,1]B’a are the same from O to a—B. We call this part of the paths the singular
1
part. In the singular part, whose preimage in [ is [O, E]’ we define Az, #) to be

1
independent of £. Thus for x < 5 we have
he, 0 = [0, o] @2.

1
The rest of . depends on f, since [0,1]$ and [0,11% are not the same between B
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and 1. We call this part of % the non-singular part. If the face ¥ is given by the
product

n—1
0,(vy) 11 [0, agz ],
i=1

then we have

- QAo ;11
ho(@y, ...,y ) = v+ 2 [0, ag‘é’] @2zx) + 2 ag, hz, D.

ze[0d] zefol]
To make this more readable, we define for every subset 7C {1,2,...,%n — 1} a
function
a1t x, +1
gry s 2y =05+ T [0, 2% ] @) + T ag, n(F5— )
jerT ier

The function g, is a singular #-cube in K, We have an equivalence in #,(K,,

K.\ S.p:

hy = > g5

Tcil1,2,..,n—1}
We shall construct the non-singular part of % such that for every T one has
{S,, | g3} = .

If Tis empty then g, is degenerate and the equation follows immediately. Thus
the totally singular part of I';g vanishes. Now suppose T is non-empty. Since « :
and B: are close to 1: we can (and shall) choose h is such a way that for
non-empty 7T the sets | gr | and L are disjoint. It is then sufficient to show that

(a5

(v) We would now like to construct the non-singular part of A. For this pur-

gT” = 0.

pose we define

WK,
(x, D~ h(%, t).

This function is a homotopy between the non-singular parts of [O,l]a'ﬁ and
[0,1]$. We can now express g, more easily:
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£ 3y D= 5+ 2 [0, 5] @) + 4, 1, 0.

jeT

1
(vi) We first construct a sequence of paths between a—B and 1:

WO’ Wl’ I/Ilz,. “ ey qu
a,B 1 !
where W, is the non-singular part of [0,1]°" and W is [a_ﬁ’ 1] . Between W,
. . . . 1 1
and Wp there is a modified triangle, whose vertices are @’E and 1. The

, 1-0q _ :
vertices are congruent modulo —# ;. We cut this triangle into qz smaller,

(1 —p)qD
— ;.

similar triangles, whose vertices are congruent modulo aB

NN
13 10 7 14 11/15\2/16\[

We number the triangles as shown in the diagram. Thus the path W, runs

above all triangles in the Diagram. We now construct the path W] to run below of
the first triangle but above every other triangle

S
5 /N
A /\/\l

Correspondingly W, runs below the first two triangles, and so on.
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R~

We choose the paths W,_; and W; so that they are equal outside the subinter-
val [¢;, d;] of I, which is mapped to the boundary of the i™ triangle. Thus
W,_ (x) = W,(x) for x € (c,, d). We shall choose homotopies &; (z, #) from
W,_, to W, in such a way that they are independent of ¢ for x & (¢;, d,). Thus for
x & (c;, d).

h:ls(l', t) = W,(x) = I/I/i_l(-r)-

We now choose by §4.5 k)" and k, for x in (c;, d;) and (c,, d,) such that k, and
h, are admissible. If ¢ > 2 then the i™ triangle is a translation either of the first

. 1-p0
or of the second triangle by an element v, of _aB()_q £,. We can now construct

1 (x, D) for x € (c;, d;) as follows:

h(c, + (d,— c)z, 1)

(e, + (d, — =+ '
hl(cz (dt (,‘,)l', t) Ui {hz((,'z + (dz - C2)$’ t)

We define the non-singular part, & of h:
1—1

<i<-t
2 2
q q

Wz, O =k (x, Ft—i+1), for

We also define

Az,
a

] @) + 3 4, @, .

g;‘(‘rv- vy Lpoys f) = Vg + Z [0’
jeT
There is an equivalence in #,(K,, K.\ S,):
q2 ;
gr = Zl Er-
=

(viil) We now consider the functions h',-zs and g; in more detail. We have
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i agz ;1"
g Xy, . T, D =0+ 2 [0, g”] (x) + 2 agz, Wi(x)

jer a jeT.x,e(c,d)

+ X ag,hi(z;, D).

jeT.x;e(c,dy)

If T and T7 are two subsets of {1,2,...,n— 1}, such that T, T' and T? are

pairwise disjoint, then we define

. 11!
l’Tl,Tz('Z.l"""rn—l’ t) = vg + Z [O’ C:X'%J] (x]) + Z a.%/ W;(c'x])

jeT jer!
+ X ay, W —d)r, + d)
jeT?
+ Z Ag ; h,’(ci + (d, - C,).Z'j, t).
j€TuTluT?

We then have an equivalence in &, (K., Kw\SaB):

g} = 2 l;xyrz.
T, 72c{1,2,...0— I\ T, TN T2=g
We shall compute the terms of this sum.
(viii) If T is non-empty, then I 2 is a product of 6,(az ) W, |[0,q] with other
things. We know however that o,(az ) W, I[O,c(l is a sum of modified line segments,

whose lengths are in a'LBL' Therefore by Remark 85.2,

{{C%BL ‘ These terms” = 0 modulo q.

The terms in which 77 is non-empty vanish in the same way. We are therefore
only interested in the term, for which T' and T° are empty. First suppose the i
triangle is a translation by v, of the first triangle. We then have

i Ao ns
loa @ sy 0 = 05+ 2|0, 5] @) + 0, e+ @, = )z,

JjET
a

=0, + 2 [0, %] @) + Say, (0, + K6, + @~ ez, )
JET (XB jeT
= 2 Az, Y; + l;,ﬁ('rv e Tyoqy t) .

jE€T

1 1-—-
The a4; are in 1= L. Since v, € LTBQQDL, we must have 2 op g 0; €

91 14 particular this translation is in — L. Theref
a‘B . In particular 1S transiation 1S 1n aB . erelore
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({as 2 5a)) = e[ wl)

Analogously, if the i triangle is a translation of the second triangle,

[zl nd) = ([l ad).
qglg +1)

The number of the triangles which are translation of the first triangle is 2

The number of the triangles which are translations of the second triangle is

-1
%. We therefore have

(gl e} = 245 P g ) + = (g 2]

Since both these numbers are divisible by ¢, the theorem is proved in the case
that ¢ is odd.
(ix) We now consider the case that g is even. The whole proof would be the

+ -1
same, but at the end one doesn’t have the result, that q(qz D and q(qz ) are

divisible by ¢. Instead we require at the beginning that &, 8 = 1 mod 2(1 — p)q2
= 4q2. We cut the large triangle into 4(12 instead of q2 pieces. At the end we have

+ —_—
for the two numbers 2q(2q2 1) and 2q(2(12 1), which are obviously divisible

by q.

5.7. Corollary (Theorem 1)

We now prove the result stated at the beginning of the chapter:
Let a, B € O with the following conditions:
* &, B and q are pasrwise coprime in Oy ;
ea,B=1mod 1 — p)¢°;
e a and B are totally positive.
Then

B

DecL% = Dec, e

With the help of the Gauss-Schering Lemma (§2.11) and of Lemma §2.9.2 this im-
plies the following:
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Let a, B € O with the following conditions:
e, B, b and q are pairwise coprime in O ;
ea, B=1modd( — p)¢*;

s« and B are totally positive.

Then

2

Proof. First let a: be close to 1: in K. :, and let @, 8= 1mod (1 — p)gq
and a and B totally positive. The set {b™ 8’| b€ N and B’ € O, 8’ = 1 mod
(1 — p)¢g" is dense in K... Since B is totally positive, it is in the connected com-
ponent of 1 in K. We can therefore find a 8" such that (8”8) : is close to 1: and
B = 1mod (1 — p)g°. We have from the previous paragraph

B"B
Dec, —— = Dec, p
1
By §2.10.1 we have Deqﬁ = Dec, %, and by §2.10.5, Dec, ‘Ba‘B = Dech.

Therefore

B

DecL% = Dec, e

With the same trick we can remove the condition that «: is close to 1:.

REFERENCES

[1] J. W.S. Cassels, Op Kummer Sums, Proc. London Math. Soc, (3), 21 (1970), 19-27.
2] Ph. Furtwiangler, Uber die Reziprozititsgesetz zwischen [ ten Potenzreste in algeb-
raischen Zahlkorpern, wenn [ eine ungerade Primzahl bedeutet, Math. Annalen, 58.

[3] , Die Reziprozititsgesetze fiir Potenzreste mit Primzahlexponenten in algebrais-
chen Zahlkorpern, I, Math. Annalen, 67 (1909), 1-31.

[4] ——, Die Reziprozititsgesetze fiir Potenzreste mit Primzahlexponenten in algebrais-
chen Zahlkorpern, II, Math. Annalen, 72 (1912), 346—386.

[5] ——, Die Reziprozititsgesetze fiir Potenzreste mit Primzahlexponenten in algebrais-

chen Zahlkorpern, III, Math. Annalen, 74 (1913), 413—-429.

[6] C.F.GauB, Zur Theorie der biquadratischen Reste, Werke, Band 2, 313-385.

[ 7] ——, Disquisitiones Arithmeticae, Art. 133, Werke Band I, S. 101.

[ 8] Habicht, Ein elementarer Beweis des kubischen Reziprozititsgesetzes, Math.
Annalen, 139 (1959-60), 343—-365.

[9] D. Hilbert, Die Theorie der algebraischen Zahlkorper, Jahresbericht der Deutschen
Mathematiker-Vereinigung, Band 4, (1894—95).

https://doi.org/10.1017/50027763000005080 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005080

144
(10]
[11]
112]
{13l
(14]
[15]
[16]
(17]
[18]
[19]
[20]
(21}
[22]
[23]

(24]

RICHARD HILL

Uber die Theorie des relativquadratischen Zahlkérpers, Math. Annalen Bd. 51
(1898), 1-127.

Hiroshi Ito, On a property of elliptic Dedekind sums, J. Number Theory, 27 (1987)
17-21.

——, Dedekind sums and quadratic residue symbols, Nagoya Math. J., 118 (1990)
35—43.

——, A note on Dedekind sums, in Number Theory, Proc. 1st Conf. Canadian Num-
ber Theory Association, Banff/Alberta (Canada) 1988, (1990), 239-248.

T. Kubota, Geometry of Numbers and Class Field Theory, Japan. J. Math., 13, No.2
(1987), 235—-275.

——, Geometric Foundation of Class Field Theory, (in Japanese) Sugaka 44, 1
(1992), 1-12.

Massey, Singular Homology Theory, Graduate Texts in Mathematics, Springer-
Verlag.

C. R. Matthews, Gauss Sums and Elliptic Functions I, The Kummer Sum, Invent.
Math., 52 (1979), 163—185.

——, Gauss Sums and Elliptic Functions II. The Quartic Sum, Invent. Math., 54
(1979), 23-52.

Schering, Verallgemeinerung des GaubBischen Criterium fir den quadratischen
Rest-charakter einer Zahl in Bezug auf eine andere, Werke Band I, 285—-286.
Rademacher und Grosswald, Dedekind sums, Carus Mathematical Monographs, No
16, Mathematical Assoc. America, Washington D. C., (1972).

Szech, Dedekindsummen mit elliptischen Funktionen, Invent. Math., 76 (1984),
523-551.

——, Dedekind sums and power residue symbols, Compositio. Math., 59 (1986),
89-112.

——, Theta functions on the hyperbolic three space, Kokyuroku RIMS, Kyoto
Univ., No. 603 (1987), 9-20.

A. Weil, Basic Number Theory, Grundlehren der Math. Wissenschaften in Einzel-
darstellung Band 144, Springer-Verlag (1967).

Mathematisches Institut der Georg August Universitit,
Gottingen

Current address

Max-Planck- Institut fity Mathematik
Gottfried-Claven-StraBe 26

53225 Bonn

Germany

https://doi.org/10.1017/50027763000005080 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005080



