
R. Hill
Nagoya Math. J.
Vol. 137 (1995), 77-144

A GEOMETRIC PROOF OF A RECIPROCITY LAW

RICHARD HILL

1. Introduction

In this paper we prove the reciprocity law for a Kummer extension of an

algebraic number field K. The proof is similar to the proof of the same theorem by

Kubota [14, 15]. Such methods were applied by Gauss [6, 7] to the cases K — Q,

QW~ 1) and by Habicht [8] to the case K — Q(/—~3). We now discuss infor-

mally the structure of the proof. All definitions and statements made at this stage

are only approximations to the truth, and shouldn't be used as references for the

later chapters.

In the following K will always be a fixed algebraic number field containing all

the q roots of unity, where q is some fixed natural number. We shall write D for

the ring of algebraic integers in K. A Kummer extension of if is a field extension

of the form K(\[a) 3 Ky where a is an element of K. The reciprocity law for such

an extension is a description of how prime ideals b c D split in the ring of algeb-

raic integers of the extension field. This statement can be rephrased as a

statement about the Legendre symbols (-H . The proof given here is a calculation

of the Legendre symbol by way of a generalization of the Gauss lemma, which ex-

presses the Legendre symbol in terms of a finite sum. Following Gauss [7] we

shall refer to the finite sums which arise in this way as decidents.

We shall investigate these sums in §2 using purely arithmetical methods.

Actually we prove more there than we later need in proving the reciprocity law.

In particular it is unnecessary to consider ideals b since we will only use the re-

sults for elements (i.e. principal ideals).

A decident is a sum of the form

(1) Decf =Σjf(ζJπ)f(aπ),

where TΓ runs through a set of b-division points of the lattice D and j runs from 1
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to q. The number ζ is a fixed primitive q root of unity. The function/ : £)\K—»

Z/qZ belongs to a class of functions which we shall call the fundamental func-

tions. A fundamental function is like the characteristic function of a fundamental

domain for a certain group. The value of the decident is independent of/

Decidents look like Dedekind sums, and they are in the case K — Q virtually

the same thing. This connection is described in [20] in the case K — Q, and is in-

vestigated in [21, 22, 23, 11, 12, 13] in other cases. We shall say nothing more

about this here.

The Gauss lemma says that the Legendre symbol \~r\ is equal to ζ
\ U / q

where ζ the primitive q root of unity. We are therefore only interested in the

congruency class of the decident modulo q.

We shall also investigate modulo q sums of the form:

(2) <f\f*> = Σjf\ζ'π)f\π),
π,j

where / and / are both fundamental functions. These sums can be thought of a

skew products of/ and/ . They are bilinear and skew-symmetric, and satisfy in

addition the following cocycle relation:

</\/3> = </\/2> + </2,/3>

There is a strong connection between these skew products and decidents. In a

certain sense one has Dec -r = (f,f°a}. A very similar kind of sum has been

related in [1, 17, 18] to the signs of cubic and biquadratic Gauss sums.

To find out more about decidents than we know from §2, it becomes neces-

sary to construct explicit examples of fundamental functions. We do this in §3.

Our construction is essentially a map from the set of paths from 0 to 1 (in

if (£)QR) to the set of fundamental functions. If one takes a straight path from 0 to

1, then the corresponding fundamental function will be the characteristic function

of a finite union of parallelotopes. If on the other hand the path is not straight,

then the corresponding function could look like the characteristic function of a

twisted parallelotope. The fundamental function could however take on other

values than just zero and one, if the corresponding path is too far from being

straight.

Also in §3 we derive a formula for the skew products (2) in the case t h a t /

and / are constructed from paths. The formula is given in terms of a homotopy

between the two paths, which can be chosen more or less arbitrarily. The sum (2)

is expressed as a linear combination of numbers of lattice points inside certain
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sets, the sets being constructed from the chosen homotopy.

In §4 we obtain analytic results which solve some difficulties arising from the

constructions of §3. These difficulties occur when a lattice point lies on the

boundary of a certain set. It is then not easy to decide whether the point should be

counted or not. In general we shall show that we have enough freedom in choosing

our paths and homotopies, that we can always move the boundaries away from the

relevant points. The results of §4 enable us to apply those of §3.

In §5 use the results of §2 and §3 to prove the following theorem.

THEOREM 1. Let K be an algebraic number field with ring of integers D. If K

contains all q root of unity then there is an ideal f of D such that for all coprime ele-

ments α, β €= D with a = β = 1 mod f and a and β totally positive one has:

(?) = (£\
\β/q \a)q

m

(The left and right hand sides here are Legendre symbols.)

The proof in §5 is similar to that given by Habicht [8] in the case K = Q(\/— 3).

Using this we will prove in 1.4 the theorem proved by Kubota [14]:

THEOREM 2. If K is an algebraic number field with ring of integers D and if K

contains all q root of unity, then there is an ideal f c D such that for all a ^ D and

all totally positive β €= D with β = 1 mod αf one has:

Together Theorems 1 and 2 imply immediately:

THEOREM 3. If K is an algebraic number field with ring of integers D containing

all q roots of unity, then there is an ideal f C D such that for all totally positive a €Ξ

D with a = mod f one has for all β ^ D coprime to αf:

\β), ~ W,

These theorems were first proved by FurtwSngler [2, 3, 4, 5] using ideas

from the work of Hubert [9, 10].
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1.1. Theorem 1 implies Theorem 2

We shall now assume Theorem 1, and use it to prove Theorem 2. We will do

this in a sequence of lemmas. Suppose that Theorem 1 holds with the ideal f1?

which we may assume to be principal. We now fix an a ^ D. Depending on the

real signs of a (for which there are only finitely many possibilities) we modify \x

to make ά\x totally positive.

LEMMA. For any ε e D and all β = 1 mod fx with (β, as) — 1 and β totally

positive, one has

β β + aε\

Proof. Let γ = β + aεq\v Then γ = 1 mod fL and is totally positive so by

Theorem 1 we have [η^) = (—) . Since γ = α ε ^ m o d β and β = — oteq\l mod γ

(aεq\Λ /-aεq\Λ
we have I—o—) = I ~ ) . Our conditions on β imply by Euler's criterion

\ P ' q ^ / ' q

that ( ) = 1. We therefore have as required (~~D~) = ( )
^ / ' q \ P ' q \ T ' q

LEMMA. There is an ideal f 2 c D such that every element j of f2 can be expressed

as a finite sum

Σ q

where the ε ^ D are all congruent to 1 modulo fx and totally positive and the a{ are in

Z

Proof. If this were not the case then all the ε for ε = 1 mod \1 and totally

positive would lie in some proper subspace V of the real vector space K ® Q R.

This would imply that all (ε/n)q would also be in V for n ^ N. This cannot hap-

pen because these elements are dense in a neighbourhood of 1 in K ® Q R .

LEMMA. For all β = β' mod a\γ\2 with β = 1 mod \l9 (α, β) = 1 and both β

and βf totally positive, one has

β),-\β')9
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Proof. By the previous lemma one can write β — βr as a sum of elements

± εQd\v By induction one can assume that β — βr — εQa\ι with ε = 1 mod \ι and ε

totally positive. If (β, ε) — 1 then the lemma then follows by the first lemma. If

this is not the case then we may decompose ε as a product of ideals ε = ε/S ε/ with

(ε\ β) = 1 and εβ divisible only by primes which divide β. We choose a φ ^ D

such that 0 = 1 mod jSjS'ε̂  and φ = 0 mod ε'. This gives us (φ, β) = (0, β θ = 1

and also

03 + a\,φ\ ε) = (0 + a\,φ\ εβ) (β + a^φ9, εθ = 1.

Now applying the first lemma three times we get as before

αfΛ \ = / aft \ = /afj_\

This now gives us:

THEOREM. Theorem 2 holds with f = f J 2 .

2. Global notation, definitions and general lemmas

In this chapter we define in paragraphs §2.2 to §2.6 the terms fundamental

function and decident, which we will investigate in the rest of the paper. In para-

graph §2.7 we prove some unsurprising facts about division points of lattices,

which we will use later. In paragraphs §2.8 to §2.10 we prove elementary, arith-

metical facts about fundamental functions and decidents. Paragraph §2.11 is the

Gauss-Schering lemma. In paragraph §2.12 we prove a lemma, which often occurs

in proofs of the quadratic reciprocity law. The lemma was also used by Habicht

[8] in the case K = Q(V~ 3). It hasn't however appeared before in this general-

ity. Finally we introduce in §2.13 the skew product of two fundamental functions.

This will be useful in simplifying certain calculations in chaper §5.

2.1. Notation

From now on K will be an algebraic number field of degree n over Q. The

ring of the integers in K will be written D. μq c D will be the multiplicative

group of q roots of unity, where q is a power of a prime p. We choose a primi-

tive q root of unity ζ ^ μq and a primitive q root of unity p ^ μq. The notation

iCo will mean the ring if ® Q R . This is isomorphic to the direct sum of all infinite

completions of K, and the diagonal embedding of K in K^ makes K a dense
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subring of K^. This is summarized in the diagram:

μp a μq a & <z K a !(„

|| II U U U (degree [K : Q] = n)

<p> <ζ> Z Q R

2.2. The cyclotomic crystallographic group

In this paragraph we define a group Γ of transformations of K (or of i ζ j . We

also describe the fixed points of Γ. Following Kubota [14] we call the group a cyc-

lotomic cry'stalkgraphic group.

The group Γ is important for us because our 'fundamental functions' will be

fundamental with respect to this group, similarly to the way in which a fun-

damental domain is fundamental for a given group.

Let r and t be elements of K. We define affine functions

σ(r, t)

σ.ir)

σ2it)

: K
z

: K

z
: K

z

-* K
>-> rz + t,

-* K

>-* rz,

-» K

i - 2 + t.

Thus σ is a map from K* X K to the set of affine bijections of K.

Now let L be a Z[ζ]-submodule of K, which is in addition a lattice in KM. For

any such L we define a cyclotomic crystallographic group,

ΠL, q) : = {σ(r, t) \ r e μq and t e L}.

Since L is ^^-invariant, it follows that this is a group with composition of func-

tions as the group law. It will sometimes be abbreviated Γ(L) or simply Γ. We can

think of L and μq as subgroups of Γ(L, q) by identifying them with their images

under σ2 and σ2. With this identification, Γ is a semi-direct product of L and μq, L

being the normal subgroup and μq acting on L by the usual multiplication in K.

Γ ( L , q) = L . μ q = μ q . L , L Π μ q = { i d } .

The action of Γon K can be extended to an action on KO0'-= K®QII. Since L is a

lattice in K^, and L has finite index q in Γ(L, q), we conclude that Γ(L, q) is dis-

crete and cocompact. The points of i C which are fixed by non-trivial elements of

Γ(L) are exactly the points in -. _ L.
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This can be seen as follows: let z e K^ and σ(r, t) e L(L, q) such that

(σ(r, t))(z) : = rz + t = z. We then have rz = z mod L Since μp is a minimal

subgroup of μq, we have pz = z mod L or in other words, there is an element t'

in L such that pz = z + t'. From this we have z = ^ - ^ — f and therefore 2: ^

L

On the other hand if z = y ^ — ί, where t ^ L, then 2 = pz + ί =

2.3. Quotient spaces and projections

We shall often be interested in the quotient spaces LXK^ and ΓXK^. The

projection maps between these spaces will be written as follows:

Now let φ be a function (to any set), defined on LXK^ (resp. /Λ-JO We then de-

fine as usual

pr*(0) : = 0°pr£

(resp. prγ*(0) : = 0opr^.

and pr>(0) : = 0°pr r ) .

If 0 is a function with compact support into an additive, abelian group A, and de-

fined for example on Kw then we define

\» -A

π *-+ ΣPΪLiz)=πφ(z)

Since 0 has compact support, these sums have only finitely many non-zeto terms.

In general we shall try to refer to elements of K or K^ as z elements of

as 7Γ and elements of ΓXK^ as ΠT.
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2.4. Fundamental functions

We now define the term fundamental function. The idea of generalizing the

concept of a fundamental domain in this way, is due to Kubota.

A function / : K^-^Z/qZ with compact support will be called fundamental

for Γ at a point t u G f \ Kw iff

Σ f(z) = (prv*/) (tu) = 1 moάq.

From this condition follows immediately

Σ f(σz) = #StabΓ0z) mod q,

where prr(z) = πr. Since / has compact support, all these sums have only finitely

many non-zero terms. We shall say that / is fundamental for Γ, if it satisfies this

condition for every TΠ e Γ\K. For example, the characteristic function of a sys-

tem of representatives for Γ-orbits in K^ is always fundamental.

Now let/ : LXK^—* Z/qZ be a function defined on the quotient space. Ana-

logously we call / fundamental for μq at tπ, iff

Σ f(π) = (pr>*/) (txr) = 1 mod q.

/ is called fundamental for μq if it is fundamental for μq at every τπ

If f : K^-^Z/qZ is fundamental for Γ(L, ^), then obviously (prl5ji/) :

—• Z/qZ will be fundamental for μ̂ .

2.5. The periodic functions 0/

Let / be fundamental for Γ(L). To such an / we define a corresponding

periodic function

θ= θf:K~*Z/qZ

Σ

Sometimes we will have to deal with many different fundamental function /, f,

f", etc. simultaneously. The corresponding periodic functions will be written with

the same superscripts:

θ':= θn

θ"' = θr, etc.
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The function θ is periodic with lattice oί periods L. By abuse of notation we shall

often write

θ\ K/L — Z/qZ

z + L ^θ(z)

and also (by a less trivial abuse of notation)

/ : K/L -+Z/qZ

z + L ~ΣteLf(z + f)

or in the language of § 2 . 3 , / = pτcL^(f). The following easily proved equation will

be continually used without further clarification.

2.5.1 Lemma. Let z be an element of K, and let π — prL(^), the projection of z

in L\K. Then

# S tab r α > ί ) (z) —

Proof Let σ(r, t) e Γ(q, L) with (σ(r, t)) (z) = z. We then have rz + t =

z, thus rz = z modulo L or in other words rrc — π. This means that r E

Stab^(τr).

Now let r be any element of Stab^ (π). We have rπ — π. There is thus a

t ^ L such that rz + t = 2, or in other words σ(r, 0 E StabΓ{gL)(z). Since the

translation ί is obviously unique, we know that #Stab Γ (z) = # Stab^ (7r).

2.6. The decident

As above let I be a Z[ζ]-lattice. Let (S)L-= {z ^ K\zLc: L) be the order

associated to the lattice L. We now define the decident. This is a function of four

variables: a lattice L a function / which is fundamental for Γ(L, q) an element

a E QL and an ideal b cz D£. Later we shall see that the value of the decident is to

a certain extent independent of L and /

Let a E DL and b be an ideal of £)L. Let b be the fractional DL-ideal

{a <^ K\ ab a D J . We define the decident of a with respect to b as follows:

DecL ~ : = Σ /(*) 0/αz) mod (7

= Σ f(π) θf(aπ) mod ^,
π(ΞK/L\L{0} I bπ=O

where/ is fundamental for Γ(L). We shall see, that the decident is independent of
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the choice of / as long as aq and b are coprime in DL. Occasionally the notation

ΌecL -7-, will be used to stress the choice of fundamental function /

It is usually the case that arithmetical investigation of the decident can be

carried out more easily in the quotient space ZAϋί*,. The reason for this is that

the action of μq on L\KM commutes with the action of a, whereas the action of Γ

on ϋL does not.

2.7. Division points of L

Arithmetical properties of rings such as £)L are often disregarded in books on

algebraic number theory. For this reason we collect here the results on this sub-

ject which we need, rather than citing results from literature. A fuller treatment of

these rings can be found in Hubert's Zahlbericht [9].

Let α and b be ideals of OL. We shall say that α and b are coprime in DL iff

If a or β are elements rather than ideals, then they will be called coprime if the

principle ideals which they generate are coprime. An element z of K is an

α-division point of L, iff for every a ^ α one has

az e L.

We shall write Sα for the set of all α-division points of L. This is an additive

group. Furthermore let Sa — Sα\{0).

2.7.1 Lemma. The ring Z[ζ] is contained in the ring DL, and there is a natu-

ral number b with the property that bD c DL.

Proof. The first statement is obvious, since I is a Z[ζ]-module. For the

second, we can suppose without loss of generality that D is contained in the lattice

L. We choose b e N with the property that bL <z £). Now let a be any element of

D. We must show that ab ^ £)L. This is however equivalent to saying that at)L c

L, which follows from the following reasoning.

abLc: aD CD c L.

2.7.2 Lemma. If α and b are coprime in D£, and if z is both an a-division

point and also a b- division point, then z is in L. If on the other hand a and b are
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arbitrary DL-ideals with the property that every α- and b-division point of L is an ele-

ment of L, then a and b are coprime in £)L.

Proof We only prove the first statement; the argument can be easily re-

versed. We have az c L and bz c L. Since L is additively closed, we also have

(α + ί))z c [, However α and b are coprime, so £)Lz is contatined in L. The lemma

follows because £)L has a unit element.

2.7.3 Lemma. Let b be as in §2.7.1 and let a and b be ideals of DL. If aD,

b£) and b£) are pairwise coprime as £)-ideals, then a and b are coprime as £)L-ideals.

If on the other hand a and b are coprime £)L-ideals, then a£) and b£) are coprime in D.

Proof We prove the first statement first. Let a£), b£) and bD be coprime in

D. Again we suppose that bL c D c L. Let z be both an α-division point and a

b-division point of L. Then bz is also an α- and b-dίvision point of D. We thus

have bz €Ξ D. Since D is contained in L, we must have bz ^ L. If α and b were

coprime in DL, then we could deduce from §2.7.2 that z ^ L, and therefore that α

and b are coprime in DL. Thus it remains only to show that α and b are coprime in

DL. Since b e N, we know that N(a£)) and b are coprime in D. This implies that

N(aD) and b are coprime in Z, so

a£)L + bD£ 3 JV(o)Z + bZ = Z 3 1.

We therefore have αDjr + b£)L = DL.

Now let α and b be coprime in DL. That means a + b = £)L and therefore 1 €=

a + b. From this follows 1 £ Q D + b£), and therefore αD + bD = D.

2.7.4 Lemma. L#ί α fr# an element of DL. Then Sa has exactly N(a) elements1

If a and q are coprime then

N(ά) = 1 mod q.

Letb be an ideal of DL, which is coprime in DL to q. Then

# Sh = 1 mod q.

Proof The automorphism K^-* K^, z^ az has module N(a) (see eg. [24]).

Since LXK^ is compact, the endomorphism

here N(ά) is the cardinality of the quotient D /aD.
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π •">• aπ

must have degree N(ά). Now let b and q be coprime. Let TΓ be a non-zero element

of Sb. Then by §2.7.2 π cannot be a ^-division point. From this and §2.2 it fol-

lows that π has trivial stabilizer in μq. The μ^-orbit of π thus has q element, all of

which lie in Sh. The lemma now follows from the observation that Sh is a disjoint

union of μρ-orbits.

2.7.5 Lemma. Let a and β coprime elements of DL. Then

Proof. Let τcι be an element of Sa and π2 an element of Sβ. Then aβ(7Γι +

τr2) = aβπγ + aβπ2 = 0 + 0 = 0. We therefore have πγ + π2 e S aβ. There is

thus a homomorphism

Φ:Sa@Sβ-Saβ .

(πlt π2) ̂ πι + π2.

Let (πlf — τr2) be in the kernel of the map Φ. That means πx = τr2. By §2.7.2, ^

and τr2 must both be zero. Therefore Φ is injective. In addition we know from

§2.7.4 that

# Saβ = Mαβ) = N(a)N(β) = # (5β x 5,),

so the map Φ is an isomorphism.

2.8. Some small lemmas

We now begin investigating the functions / , θ and Dec. Our methods in this

chapter are arithmetical.

If one had a different group Γ acting on a different space X, then one could

define corresponding fundamental functions and decidents for this action. One

would then be able to prove similar statements to those in §2.8, 2.9, 2.10, 2.12.

On the other hand there is no Gauss-Schering lemma to make such a generaliza-

tion worthwhile.

Let L be a lattice and L(L, q) the corresponding cyclotonic crystallographic

group.

Let/, / ' , f \ ffr be fundamental for Γ(L)

https://doi.org/10.1017/S0027763000005080 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000005080


GEOMETRIC PROOF OF A RECIPROCITY LAW 8 9

n n
ϋ — Όf,

θ' = θf, etc.

S c K/L fonite /^-invariant subset.

Then the following identities hold in Z / # Z : -

1. The function θ'.K^-^Z/qZ has the following transformation behaviour

with respect to the group Γ(L, q) :

θ(σ(z)) = θ(z) + /c#Stab m > ί ) ω,

where σ(z) = ζ z + t and t ^ L.

We have similarly for the functions θ : L \ K^ —• Z /qZ :

0(ζ*τr) = θ(π) + k # Stab. (TΓ).

2.

Σ (/(TΓ) -f'(π)){θ"(π) - &"{π)) = 0.

3.

Σ f(π) θ'(π) = — Σ /'(TΓ) θ(π).

{ 0 i/ ^ t5 odd,

Here SUq is the set if elements of S which are fixed by every element of μq. In

applications of this formula this set will always be empty.

4. If a is an element of DL and b an ideal of QL, which is coprime to aq in DL,

then the decident ΌecL τ~ is independent of the choice of fundamental

function f.

5. If a is an element of £)L and b an ideal of €)L, which is coprime to aq in DL,

then

T= Σ f(π)(θ'(aπ)-θ'(π)).

Here the sum is over those it ^ L\K which correspond to non-zero

b-division points of L.
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Proofs.

1. By definition of θ we have

0(ζ"jr) = Σjry(ζ~yζ*Jr) = Σ (j + *)/(ζ" 'π) = 0(JΓ) + ft Σ/<ζ~'jr) mod q
; = 0 ; = 0 ; = 0

= θ(π) + /c#Stab^(τr) modtf, because/ is fundamental.

2. From (1) we know that θ" — d'" is constant modulo q on μ9-orbits in

K/L. Let [TΓ] be such an orbit. Then

Έπ'G[π]f(π') = 1 mod q, because / is fundamental

= Sjr'etei/'OrO, because / ' is fundamental

One therefore has

Σ (/OrO -f'tfMΘ'tf) - Γ(πO) = ( Σ /(πθ -f'WHΘ'iπ) - θ"'{π)) = 0.

Since S is a disjoint union of μ^-orbits, the result follows.

3. By definition of θ it follows that

πeS τre5,y=l...?-l

We now replace π by ζ~;τr. Here we use the fact that S is invariant

under the action of μq. The sum is then

Σ V

We now replace j by q — j . Since j still takes the same values, we have

We split the ̂  and the — j and obtain two sums

+ q Σ /(ζ'π)/'0r)- Σ θ(π)f'(π).
πeS,j=l...q ?reS

The result follows from this.

4. We shall show, that Decz -r ~ Dec/ -r is congruent to 0 modulo q.

This is equal to

Σ(/(jr)0(απ) -f'(π)θ'(aπ)),
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where π runs through the set Sh = {π ^ L\K\ bπ = 0 but π Φ 0}. Mul-

tiplication by a induces a permutation of Sh and this action commutes

with the action of μq on Sb. The above sum is equal to

Σ (f(π)(θ(aπ) - θ'iaπ)) + (/(π) -/ 'Or))0 ' (απ)) .

In the second term we replace π by ocκ. We then have

Σ (f(π)(θ(aπ) - θ'(aπ)) + (f(aπ) - f'{aπ))θ'(aπ)).

By (3.) this is congruent to

Σ (f(π)(θ(aπ) - θ'iaπ)) - f'(a2π)(θ(aπ) - θ'iaπ))).

And this is equal to

Σ (/(JΓ) -f'(aπ))(θ(aπ) - θ'iaπ)).

It now follows from (2.) that this is congruent to 0 modulo q.

5. We begin with the definition of the decident.

where π runs through Sb = {π e L\K\ bπ = 0 but π Φ 0}. From (4.)

we easily have

Σ/'Gr)0' = O.
π

This gives us

ΌecLj= Σf'(π)(θ'(aπ) - θ'iπ)).

We now use the fact that f°a :L\K^,—* Z/qZ is fundamental at

b-division points. It then follows from (2.) that

Σ (/(TΓ) -f'(π))(θ'iaπ) - θ'iπ)) = 0.

We thus have

%τ= Σ f(π)iθ"iaτt')-
bπ=O,πΦO
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2.9. Lemma (Independence of L)

In the previous paragraph we showed that if a and b are coprime in £)L and if

b is coprime to q, then ΌecL T- is independent of /. We now describe the

behaviour of ΌecL ~τ~ as one changes the lattice L, under the condition that aq and

b remain coprime in £)L. We shall prove three statements; the most important of

these for us is the second.

Let L and L be two Z[ζ] -lattices in K.

1. If there is an element J ^ K with jL — L, then the rings £)L and ΩL, are

the same, and one has

DecL -7- = ΌecL, -τ- mod q

for all a e £)L and all ideals b of £)L, which are coprime to aq.

2. To any two Z[ζ] - lattices L, L c K, there is a "conductor" b, such that for

all a> β ^ QL Π DL, with β and bqa coprime, one has

a a
DecL -g = D e c r -g mod ^.

3. If the lattice L is a fractional ideal of D, then the ring £)L is the whole of D,

/or all a ^ D and a// ideals b of D which are coprime to aq, one has

D

1. It is clear that the rings DL and £)L are the same. Let / : K-* Z/'qZ be

~Xzfundamental for Γ(L,q). Then / ' (z) •= f(γ~Xz) is fundamental for
7, (7), and one has

^ = Σ f(z)θ(az) = Σ f(γz)θ(raz)
zeb~ιL\L z&γ~ιb-ιL\r-χL

= Σ f
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Here b~ιL\L is the set {z e K| bz c L but z <έL}.

2. We can assume that L c L. If this were not the case then we could re-

place U by its intersection with L since L and L are both contained in

K, their intersection is also a lattice in ifTO. We choose b e £) with bL c

ZΛ Let /? be coprime to b. Then multiplication by b induces an isomorph-

ism of (DL Π D^) -modules

{TΓ e L\K\βπ = 0} -> {TΓ e L\K\βπ = 0}.

If (j8, α^) = 1, then the decident is independent of the chosen fun-

damental function. It thus depends only on the actions of μq and a on this

module. The lemma follows from the isomorphism.

3. If L is an ideal of D, then the D-modules b~ L/L and b" D/D are

isomorphic. We therefore have as in (2.), Dec^TΓ = Dec D τ~.

2.10. Lemma (Additivity with respect to a and b)

We now describe the behaviour of Dec£ ~τ on changing a and b, L remaining

fixed. One could say that DecLτ~ is almost additive in a and b. The fourth

statement is due to Schering [19], who stated it in the case K = Q, L = Z.

1. /fβ and /Γ are elements of£)Lf which are both coprime to aq in £)L, then

OL

L -wήϊ = DecL -Q + DecL "o7.
PP P P

2. Ifb and br are ideals of£)L, which are both coprime to aq in QL, then

ΌeCrTTT =

3. If b and b' are ideals of DL, which are both coprime to aq in DL, and which

are coprime to one another, then

^ W Ξ ΌeCι ¥ + D e c ^ ¥'
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4. Ifb and br are ideals ofD, which are both coprime to aq in £>, then

a a a

w = Decc j + Decc y.

5. If a and ar are elements of DL, which are both coprime to b in £)L, where b is

an ideal of £)L coprime to q, then

aaf a a!

DecL -y = ΌecL j + ΌecL -y.

Proofs.

Part 1 follows from part 2 and §2.9.1. Part 3 follows from part 2 and §2.9.2.

Part 4 follows from part 2 and §2.9.3. It is therefore sufficient to prove part 2

and part 5.

2. We have a projection map

We define two sets

π = 0}, Sh

hT
L : = iπ e {b~ιL\K) |b 'τr = O}.

The projection map induces an DL-module homomorphism from Srbbr to Sbr . This

homomorphism is surjective. Its kernel is the set

5£:= {ττ€Ξ L\K\bπ = 0).

By §2.7.4 the cardinality of this set is congruent to 1 modulo q.

Let the function / : (b^ZΛiO ->Z/zZ be fundamental for Γ(b~ιL, q) at all

points apart from 0, and let/(O) = 0. We define

fι\L\K->Z/qZ

Then / is fundamental for Γ(L, q) away from the b-division points of L, where it

is always zero. L e t / :L\K~*Z/qZ be fundamental for Γ(L, q) at b-division

points of L and zero everywhere else. Then the function / : = / + / is fun-

damental for Γ(L, q) on the set S^b,.

One has

L~F= Σ f\π)θ\aπ).

https://doi.org/10.1017/S0027763000005080 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000005080


GEOMETRIC PROOF OF A RECIPROCITY LAW 9 5

Multiplication by a permutes by §2.7.2 the sets o w and oh. Therefore a also per-

mutes the set S£b, \ S£. We thus have

*W = Σ f*(π>θ\aπ)+ Σ f\π)θ3(aπ),

and this is equal to

Σ fι{τt)θ\aπ) + Σ f\π)θ\aπ).

This is however the same as

#(S£) Σ f(π)θ(aπ) + Σ f\π)θ\aπ).

Modulo q this is congruent to

Part 2 is proved.

OίOί

5. We now consider Dec^—T—-. From §2.8.5 we know that

^ = Σ f{π)(θ(aafπ) -
bπ=0,πΦ0We can write θ{aa'π) — θ(π) as θ(aa'π) — θ(aπ) + θ(aπ) ~ θ(π). The above

sum then becomes

Σ f(π)(θ(aa'π) - θ(aπ)) + Σ f(π)(θ(aπ) - θ(π)).
bπ=0,πΦ0 bπ=0,π*0

The second sum here is Decτ~. It only remains to show that the first sum is

Dec-jΓ-. To see this, it is sufficient to observe that f° a is fundamental on

b-division points and then to apply §2.8.5.

2.11. The Gauss-Schering Lemma

This lemma is the reason for studying decidents. If aq and b are coprime in D,

then

https://doi.org/10.1017/S0027763000005080 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000005080


9 6 RICHARD HILL

where the left hand side is the q power Legendre symbol in the field K.

Proof. By §2.10.4 it is sufficient to prove this in the case that b is a prime

ideal. By §2.9.3 we have ΌecD^ = D e c b ^ . By §2.8.4 we may let / be the

characteristic function of a fundamental domain D for μq in K/b. Let M be the in-

tersection of D with the set

Sh = {π e K/b | bπ = 0, π Φ 0} = (D/b)\

We therefore have

£)/b = {0}LJ U ζM.

The union is disjoint because μq has no fixed points in Sb (by §2.2, 2.7.2, 2.5.1).

Since D/b has cardinality N(b), M must have elements. Therefore we

have from Euler's criterium:

(-7-J = Π a modb.

We now rearrange this as Gauss did:

(a\ aπ ζ{aπ)πr{aπ) . ,( _i
^ J = Π — = Π = Π ζ(αττ) Π πr{aπ) Π 7Γ modb

where ζ(ατr) is the unique element of μq with α7Γ ̂  ζ(aπ)M and πf(aπ) =

ζ(aπ)aπ GΞ M Since α is coprime to b, multiplication with a permutes the set Sb.

Since this permutation commutes with the action of μq on Sb, the map

π ^ πr{aπ) is a permutation of M. We therefore have

'£) = Π ζ(αττ) Π 7Γ Π π~ι= Π ζ(αττ)modb.
πeM

Now notice that if π e M then 6>(ζrτr) = r, so ζ*(7Γ) = ζ(ττ) for all π e Sb. We

therefore have

b/
= rΣ

https://doi.org/10.1017/S0027763000005080 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000005080


GEOMETRIC PROOF OF A RECIPROCITY LAW 9 7

2.12. Lemma

Theorem 1, which we will prove in §5, is a statement about the quotient

/a\ ίβy1

\~β) Vσ) ' Using the Gauss-Schering lemma this can be rephrased as a statement
a β

about the difference DecD-ττ — Dec D —. This is however the difference of two

sums over different sets, and is therefore difficult to handle. In this paragraph we

show that the two sums can be taken over the same set. This lemma was proved

by Habicht [8] in the case K = QίV— 3), and by various authors in the case K —

Q. The idea probably appears first in Eisenstein's proofs of the reciprocity laws

in Q(V~ 1) and QW~ 1) using elliptic functions. There is perhaps also a con-

nection with Furtwangler's idea of studying the extensions K(\fa , /β) >̂

K(yfaβ) rather than K(yfa) ^ K. This is useful because the former extension is

unramified.

If a, β and q are pairwise coprime elements in DL, then

Dec, f - Dec, 1-DecΓ l - D e c ? ; |

+ + ^

where both decidents in the right hand side are calculated with respect to the same fun-

damental function. Here N(ά) is the cardinality of the quotient a~ L/L. In particular,

if a and β are totally positive and a = β = 1 mod q then:

Dec, f - Dec, I - D e c - ^ " Dec-4

Proof We begin with the identity Saβ = Sβ@ Sa given in Lemma 2.7.5. This

implies the following expression for 5 ^ as a disjoint union:

where S' = iπ e L\K\ aβπ = 0 but aπ Φ 0, βπ Φ 0}. This leads to an identity

of the sums over these sets:

Dec/' Λ - Decf ~o= Σ f(π) (θ(aπ) - θ(βπ))

= Σ f(π)(θ(aπ) - θ{βπ)) + Σ f(π){θ(aπ) - θ(βπ))
π<=SR πeSn
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+ Σf(π)(θ(aπ)-Θ(βπ)).

Now using the simple fact that 0(0) = ^ , we have

^ a _ (/) β „ £ί Jnί Λ q(q-l)\ ^ / q(q—l)
Dec/ —o - Dec/ - ^ = Σ /(TΓ) e(ατr) - ^ ^ - Σ f(π)' Λ ^ ^ - -̂ -̂

Σ/(π)(θ(aπ)-θ(βπ))

^ + ̂ ^ (N(a) - N(β))

+ Σ f(π)(θ(aπ) - θ(βπ)).
πeS'

It remains to calculate the sum. By 2.8.2 together with the fact t h a t / ° α is fun-

damental on S\ we have

Σ f(π)(θ(aπ) - θiβπ)) = Σ f(aπ)(θ(aπ) - θ(βπ)).

By 2.8.3, we have Σ f(aπ)θ(aπ) = 0, so

Σ f(π)(θ(aπ) - θiβπ)) = - Σ fiaπ)θ(βπ)
7ΓGS' T Γ G S '

= - Σ Σ / ( α ί ^ + π2))θ{β(πx + π2))

= - Σ βCSffi) x Σ f(aπ2)

= - Σ θiπj x Σ

The last line follows from the identity Σ ζ /(ζ7r) = 1 for r ^ Sa or 5^, together

with 2.7.4.

2.13. A skew product

In order to study decidents we introduce a skew product. Let L be a fixed lat-

tice and let Γ= Γ(L, q). We define χ :Γ~+Z/qZ by χ ( σ ( ζ α , b)) = a. For two

Z/tfZ-linear combinations g and £ of /^-fundamental functions and an ideal b c

D£ we define
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<gι,g*>b = Σ χ(σ)gι(σz)g2(z).

Here Sh is the set {z e K \ bz e L but 2 ^L}. If fι and / 2 are two fundamental

functions, then

</\/2>b= Σ / W ω

= Σ f\π)θ\π).

The skew product has for fundamental functions / , / and / the following three

properties:

The first property needs no proof and the second is just a special case of §2.8.3.

We now verify the third property. It follows from §2.8.2, that for every four fun-

damental functions / , / , / and / , we have </ — / , / — / >b = 0. Thus

</ — / , / >b is independent of/ , and we have in particular

= <f\fX-<f\fX
= </\/2>b.

3. Geometric constructions of some fundamental functions

We shall think of K^ as a real vector space of dimension n'-— [K : Q]. Our

next aim is to define the singular homology groups of a topological space. For our

purposes, the definitions given in [16] are most convenient. Later in the chapter

we shall construct using the homology groups a class of fundamental functions. At

the end of the chapter we shall find a formula for the skew product < / , / > =

Σ / (7r)# (7r), where / and / are from the class of fundamental functions

which we shall construct.

The connection with the homology groups is the following we define / (z) to

be the degree of a map & : V —* K^ at the point z e K^, where In is a hypercube.

3.1. Singular homology groups

1. Let / be the closed interval [0, 1] in R. We shall write V for the carte-
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sian product of r copies of / . / will be a topological space with exactly

one point.

2. Let X be a topological space. A continuous map

SΓ-.Γ-+X

will be called a singular r-cube in X. We shall write &r(X) for the

Z/^Z-module generated by the set of singular r-cube in X, and with re-

lations

SΓ + J<ij) = 0 1 < i <j< r,

where

\ίj) \Xι, . . . , Xr) ' \X\j > Xf-it Xj* %i+lf ' ' >%j-l> %i> Xj+1' ' >3Cr'

Therefore one always has in Άr(X) the identity

7 Φ = sign(Φ), ZΓ,

where Φ is an element of the symmetry group Sr, acting on Γ by per-

mutation of the coordinates.

3. A singular r-cube ZΓ is called degenerate, if the function ΣΓ(xv . . . ,xr) is

independent of at least one of the coordinates x{. We shall write

®r(X) for the submodule of 2 r Q 0 generated by the degenerate r-cubes.

The quotient

will be called the Z/qZ-rnodule ofr-chains in X.

4. Let 3~ be a singular r-cube. We now define the i front face ofSΓ,

\Xlf . . . , Xγ—\) ^ J \Xlf . . . y X{ — \) U, Xjy .

and the i back face of Of,

\Xl, . . . , £r-l' ^

The faces of an r-cubes are (r — 1)-cubes.
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5. The boundary of an r-cube ΣΓ is defined to be the element of

Qr^iX) given by the following formula

r

β?j~ 1= V* ( i Y (g{ 2Γ S5 FT)

This definition can be extended by Z/^Z-linearity to &r(X).

This induces a homomorphism of the chain modules
d , (S) ( γ\ v (/? ( V\

, Xp \j\) Jo Y I V-̂ *- /

We define the r-cycles to be the kernel of the boundary map

2frCX) : = K e r ( 9 r ) c <gr{X),

and the r-boundaries to be its image

Sr(X) :=Im(9 r + 1 ) c « r U ) .

One can check that every boundary is a cycle

We can thus define the r singular homology group of X to be the quotient

of the cycles by the boundaries:

6. Now let Fbe a subspace of X. Clearly there is an inclusion

£r(Y) C 2 r ( l ) .

This induces an inclusion of chain modules

%r(Y) c <βr{X),

and we define the relative chain modules of X w.r.t. Y to be the quotient:

<€r{X, Y):='ir(X)/%r{Y).

The boundary map induces a homomorphism of relative chain modules

dr Λr{X, W —ff^CX, Y),

and we define as before the relative cycles to be the kernel; the relative

boundaries to be the image; and the relative homology groups to be the
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quotient of the relative cycles by the relative boundaries.

r c β r U f , F),

1 <=#,(*, y),

7. The base set | 3~ | of a singular r-cube 5" is defined to be the image of ΰ',

if ζf is non-degenerate, and the empty set, if ?Γ is degenerate. The base

set of an element of ^r(X) is defined to be the union of all base-sets of

singular r-cubes in its support.

8. Let X be an abelian topological group (whose group law we shall write

additively) and let 5" be a singular r-cube and °U a singular s-cube in X.

We can define a product (r + s)-cube:

(xίf . . . , χ r , y ι , . . . , y s ) * - * S Γ { x v . . . , χ r )

This product operation can be extended by bilinearity

Άr(X) x2 s U0->2 r + s O),

and this induces a product operation on the chain modules:

#rCX) x ^ U ) - + ^ + 5 Q 0 .

9. Let M be a manifold. If x e M then

Wn(M,Ά\{χ}) = Z/qZ.

(This is a non-canonical isomorphism of Z/^Z-modules.) The manifold M

is called orientable w.r.t. Z/^Z, if one can associate to each point x €=
Z/qZ an isomorphism

lsox: ^ U , i ί \{χ}) — Z/qZ

with the property that for every x ^ M there is a neighbourhood £/ of x,

such that for every y e {/ the diagram commutes
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Z/qZ

Such a set of isomorphisms is called an orientation. Every manifold is

orientable over Z/2Z, and if a manifold is orientable over Z then it is

orientable over Z/qZ for every natural number q. An ^-dimensional,

differentiable manifold, which posesses a global, non-vanishing differen-

tial n-form, is orientable over Z.

Assume that M is orientable over Z/qZ, and fix an orientation Iso. Let

*J G %n(M). Then dfΓ is a singular n — 1 chain. Suppose that x ^ M

does not lie in the base set | dίT | of d&'. Then 5" represents a homology

class in $ΐn(My M \{χ}). We define the degree of ΐf at the point x to be

From our condition on Iso, we have a locally constant function

^Γ\ — Z\qZ.

10. The spaces K^ and LXK^ are orientable over Z/qZ (the first is a vector

space and the second is a torus). If q is odd, then the q roots of unity

have positive norms. In that case ΓXK^ is orientable over Z. Suppose

that q and n '= [K : Q] are both even. Then again the q roots of unity

have positive norm. If on other hand n is odd, then K has no subfield

whose degree over Q is even. In particular, K doesn't contain Q(A/~ 1).

From this it follows that q — 2, and thus Γ\KOO is orientable over

Z/qZ2

11. The group Γ acts on ί ί r ( i θ by composition of functions. The projection

If q = 2, then Γ\K^ is unfortunately not a manifold. It is however apart from at
the 2-division points a manifold.
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maps prΓ, prL and pr Γ induce maps between the chain complexes

and we have canonical isomorphisms

<er<τ\κj-+r\<grUQ,

<βr{Γ\KJ-+μq\<€r(Γ\KJ.

We can choose orientations on ϋΓ«,, L\Km and Γ\Km, which are compati-

ble with the projection maps. We then have in the notation of §2.3

12. If S is a discrete subset of an ̂ -dimensional orientable manifold M, and

if SΓ is an n-chain in M with S Π | d?Γ | = 0, then we define

Since | 5" | is compact, the sum has finite support If σ : M—> M is an

orientation preserving transformation, then

The transformations σ(r, t) of Kw with r in the multiplicative group K*

and t ^ K^ are all orientation preserving with respect to Z/qZ.

13. The singular 0-cubes in a topological space X correspond to the points x

of X. We shall write [x] for the singular 0-cube corresponding to x. The

singular 1-cubes in X are paths between points x and z/ in X. If X is a

real vector space then we shall write the straight path from x to y as

ίx, y\

and a general path from x to y in ̂ f as

[x, yY.
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Let X be an Abelian topological group and let J be a singular r-cube in

X. Then

[x] x ΣΓ

is a translation of ΣΓ by x, and one has (because 0 is an even number)

[x] x ΣΓ = ΣΓ x [x].

This equality is at the level of singular r-cubes.

3.2. Remarks

1. The boundary of a product of paths is given by

d(h [0, an = Σ (~ Ό'^ttα,] - [0]) Π [0, a,]',

where [0, at] is any path from 0 to a{ in K^, and the products are taken

in ascending order.

2. V α E Γ(L), d{σ(ώ)) =

V translations σ2 e L, σ 2 ( J ) x ΣΓ = (72(J x ^ )

V rotations σx e ^ , σ^sS) x ^(^Γ) = σ ^ J x ^ )

3. Let ^ : / —+ X be a singular n-cube in the topological space X, and let Y

be a subspace of the space X with

I 9^1 c Y.

Then 2^ represents a homology class in Xn(X, Y). We cut ΣT into two

pieces:

3Γι:I
n-+X

(r r )
\O/^, . . . ,U/W/

and

(xίf.. .,xw) ^ ^ ( ~ i ~ 2 — , x 2 , . . . , xn).

If in addition

ΣΓ2:Γ->X
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I d SΓXI c Y

and I dJ2 | c F ,

then we have in Mn{Xy Y) the equation

4. Let Jί be a manifold with an orientation Iso. and let Σf be a singular

/2-cube in <iί. Then we may define as in §3.1.9 a function 1̂ -. Let z ^ M

lie outside the base set of 5Γ Then we always have

vω - o.
We shall now use the homology groups to construct fundamemtal

functions. We shall define the function /:/£«,—• Z/qZ to be Î >, where 9

is a sum of singular w-cubes. The construction works for every action of

a group Γ o n a real vector space V, if the pair CΓ, V) has the Kubota

property. We define this property in the next paragraph. The content of

the next 5 paragraphs can be found in Kubota [14].

3.3. The Kubota property

For the moment we shall forget fundamental functions. Instead we shall use

the simpler idea of a fundamental domain. For our purposes, the following defini-

tion is most convenient:

Let Γ be a group acting on a finite dimensional, real vector space V. A

fundamental domain for Γ in V is a subset U c: V, satisfying the following

three conditions:

(i) every T^-orbit has at least one point in U

(ii) U is closed in V

(iii) if z is in the interior of U, then no other point of the .Γ-orbit of z

lies in U.

By the word pamllelotope we shall mean an expression of the form

Π [ai9 b,] €= Cr(V),
ί = l

where the vectors a{ — b{ are linearly independent. The point
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will be called the origin of the parallelotope. We shall say that two parallelotopes

are properly touching, if their intersection is either empty or a mutual face of both

parallelotopes, having the same origin as a face of each parallelotope.

Now assume Γ has discrete orbits and a compact fundamental domain. We

shall say that the pair (Γ, V) has the Kubota property, if Fcan be tiled by proper-

ly touching parallelotopes, which are permuted by the action of Γ, without a para-

llelotope being mapped to itself by a non-trivial group element. The Kubota prop-

erty is equivalent to saying that Γ has a fundamental domain consisting of finitely

many parallelotopes, whose images under Γ are properly touching. We shall show

that (Γ, i θ has the Kubota property. This statement is not trivial; for example if

q is not a power of a prime, then CΓ(D, q), KM) does not always have the Kubota

property. The following observations will be useful:

(i) If (Γ, V) has the Kubota property, and Γf is a subgroup of Γ with finite

index, then CΓ", V) also has the Kubota property.

(ii) If (Γ, V) has the Kubota property, then (Γr, Vr) also has the Kubota

property, the action of Γ on V being defined componentwise.

3.4. The Kubota property in Q(p)

We first consider the case that K is the cyclotomic field Q,(p), where p is a

primitive p root of unity for any prime p (even 2).

Define

This is a singular p ~ 1-cube in Kw and represents a p — 1-chain. By choosing

an orientation on K^ we may define the function 1^ as in §3.1.9. We shall choose

the orientation so that lώ takes only the values 0 and 1. This is possible since ώ

is a linear map. We then have:

3.5. Lemma (Kubota)

The base set \ s3 | ofsS is a fundamental domain for Γ(Z[p], p) in Qip)^, and it

touches its images under elements of Γ(Z [p], p) properly. If p Φ 2 then the

(p — l)-cube pr Γ H ί ^ has zero boundary in ^_2(^\Q(/θ)oo) cmd represents a generator

J . / / m e ΓXQip)^ satisfies the condition m £ pr Γ | dsS \, then 1^
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is fundamental for Γ at tπr, and one has inZ/qZ:

Proof, (i) The structure of the proof

If p = 2 then this is all trivial. From now on, assume p to be an odd prime.

We first show that d(prΓ*(s3)) is zero in (6n_ι(Γ\KJ). Since I P Γ Γ J | ( (^ is locally

constant on the complement of | d(pxΓ*(s&)) |, we can deduce that Iprrsle(^) is locally

constant on Γ\ K^. The space Γ\ K^ is however a quotient of the connected space

K^, and is itself therefore connected. Thus, we know that I p r / > ω ) is a constant

function. We check that this constant is 1 by integrating the function and compar-

ing the answer with the volume of ΓXK^. The lemma follows from this, since for

every txr G ΓXK^ not lying in pr Γ | dsl |, the following holds:

(ii) Calculation of d(picΓ*(s3))

First we apply the statement §3.2.1 to the definition of ώ. This gives us:

dώ = Σ ( - lΓ 1 δfo, y^-1 π [o, j ^ — \ .

From our assumption that p is an odd prime, it follows that — ^ — * s a whole

number. We can therefore split the sum in two halves as follows:

π

} Π
1 - Pi ,-i .,-1, L ' I - P

Again since p is odd, we have (— 1) P~' ~l — — (— 1)' \ which gives us

/ r Λ' η π f o > τ f iL-l-a[o,Λ π

We now apply the elementary fact that pJ — 1 is divisible by 1 ~ p in Z[p] for

every j . We therefore have proί-. _ = p r o ( -. __ ). Replacing 9lO, γ 3 — I by

^-Z—J ~ [0], we obtain
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We substitute this into the above formula.

prm(dΛ) = prD,( Σ ( - I)'"1 ψ . J~\ (_t Π ι [θ, y ^ ] - ^ Π i [o, y^r

We shall now reorder the second product in the inner bracket. Since p is odd, this

product has an odd number of terms. Therefore every cyclic reordering is an even

permutation, requiring no change of sign. We thus have

By renumbering things we obtain

Γ β* I p-l-(p-j)

ι=i,...,ί>-i, L 1 ~~ P* i=i
iΦp-j

= π

0 π [o ) T 4-l .
i=l,...,p-l, L -1 r J

We therefore have in

prΓ*( Π [ θ > Γ ^ - ] - Π [ 0 > Γ ^
ij i p j/ , ,,/
iΦj iΦp-j

Thus

= 0.

From this we deduce as described above that I p r r + (A5) is a constant function.

(ii) Computation of the constant

From this we d

Its value is given by

vol(Γ\/U
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From §3.1.11 this is equal to

1

voiOΛiU JKm *'

which is just — \ ( r \ v ) Since p is the index of Z[p] in Γ(Z[p], p) , we know

that

= p-\o\(Z[p]\Q(p)J.

On the other hand, the set | ffjQ — p) .fcS | is a well known fundamental domain for

Z[p] in Q(p)n. We thus have

voKσ^l - p)Λ) = voKZW \Q(p)J.

When 5̂ is magnified by multiplication with 1 — p, its volume is multiplied by

N(l — p) — p. From this we deduce that

3.6. The Kubota property in Q(ζ)

The previous lemma shows that s£ is a fundamental domain for Γ(Z[p], p) in

„. This implies that QCp)^ is tiled by the images of s£ under elements of

Γ(Z[p],p). We now apply §3.3 (ii). The field Q(ζ) is a vector space over

Q((θ) with basis jζ* | i'. — 1 , . . . , ~τ\. Thus Q(ζ)oo is tiled by the images of

^ : = ΓI ^ ( ζ 1 ) ^

under elements of the direct sum of — copies of Γ(Z[p], p) (acting componentwise

with respect to this basis). Since the basis is contained in Z[ζ], we know that the

action of Z[ζ] permutes these images of ST. Clearly the action of μq also permutes

the images of !T. We thus know that /XZ[ζ], q) permutes the images of !T. To

verify the Kubota property for (/XZ[ζ], q), Q(ζ)«>), we need only show that none

of the images of ΐf is mapped to itself by a non-trivial element of Γ(Z[ζ], q).

Suppose σ(r, t) maps one of the images OF of ?Γ under Γ(Z[p], p)J to itself.

Then σ(r, t) cannot be simply a translation, so r Φ 1. Therefore, the projection of

3~' in Z[ζ] XQίOoo is fixed be a non-trivial subgroup of μq. Every such subgroup

contains μp, so prL(ΣΓf) is mapped to itself by p. It follows that pΣfr is a transla-
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tion of ^ by an element of Z[ζ] . In other words, ?Γ' is fixed by <τ(p, f) for a suit-

able t ^ Z[ζ] . This leads to a contradiction with §3.5, by projecting ΣFf and t onto

one of the Qίp)*, components. We have shown that (Γ, Q(ζ)) has the Kubota

property with the tiling described above.

3.7. The Kubota property in any number field

We now drop all conditions on K. As before, let ζ be a primitive q root of

unity in K. We fix a basis bv b2,. . ., bN for K as a vector space over Q(ζ). We

then have

£ . = θ *,(*,) Q(ζL.
ί = l

Let L be the free lattice over Z[ζ], generated by bv b2,..., bN. As before, we have

a componentwise action on K^ by the direct sum of N copies of /XZ(ζ], q). By

§3.3 (ii), (iCo, /XZ[ζ], #) ) has the Kubota property. It follows however from the

construction of L, that Γ(L, q) is a subgroup of /XZ[ζ], q) , so from §3.3 (i) we

know that CK ,̂ Γ(L, φ) has the Kubota property. Although it is not necessary,

we could choose our basis so that the lattice L contains the ring D. This implies

that JΓ(D, q) is a subgroup of Γ(L, q), and we deduce by §3.3 (i), that

Γ(D, q) also has the Kubota property.

3.8. Modified parallelotopes

In the previous three lemmas we have shown, that (Γ(L, q), KJ) has the

Kubota property, where L is free over Z[ζ]. We now exploit this fact to construct

fundamental functions.

Notation. Let 9 = Σ 9{ e %n(Kj be a fundamental domain for Γ(L, q) in

i C where every 9{ is a parallelotope:-

9% = Π [0, α ^ ] .
y=i

(It is clear from our construction, that every ^ can be chosen to have origin 0.)

We fix an orientation on K^. Then each parallelotope 9{ gives rise to a function

Ig>t as discribed in §3.1.9. By reordering the aitj if necessary, we ensure that the

function 1^ takes only the values 0 and 1. Since the intersection of any two para-

lellotopes is contained in their boundaries, it follows that I*> takes only the values
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0 and 1. The boundary of each paralellotope can be expressed in ^ ^ ( i O as a

sum of faces:-

d9{ = Σ

Each face ?F has an expression as an (n — l)-cube:-

SF = "ll [0, % y ] .

We shall write 9 < 9{ to mean that 9 is a face of 9^ The function 1^ is fun-

damental at all points z ^ Kw whose Γ-orbit does not intersect the boundary of

9.

Now let [0, 1]' be any path from 0 to 1 in K^, that is a continuous function

[0, If: / - * # „ , with [0, If (0) = 0 and [0, 1]'(1) = 1. We shall use the following

notation:

[a, b]':=σ(b-a, a) [0,1]',

9\ := Π [0, auY, 9\ := "π [0, % ; ] r

and

Thus 9f

i is an element of ^ ( i ζ j We shall call 9\ a modified parallelotope. The fol-

lowing lemma was known to Kubota. It says that if we modify all our parallelo-

topes with the same path, then their sum is still fundamental.

3.9. Lemma (Kubota)

Let z £= ifoo be chosen such that its orbit Γz has empty intersection with the base

set I d9/ |. Then f •= lg>, is fundamental for Γ at z. In other words Σzr^Γzf
f{zf) —

1.

Proof. Since 9 is fundamental for Γ and the images of 9 are properly

touching, we have in ^n^1(Γ\ KJ) 3

prΓ*(d9) = 0.

3 If K = Q then this only holds in ^ n - 1 ί r \ ί R - ~κZjV In that case the lemma is

however trivial, since f' — f.
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One has

dθ>= Σ wt(SF)2F,

where wt{9) '= Σ wt<&, i). If O ] is the Γ-orbit of the face ^ , then we have

from the first formula

Σ wtCS) = 0.

If however $ = σ^, then we also have W — σ?F\ and thus

p r Γ * ( 3 r ) = 0.

From this it follows as in the proof of §3.5 that Ip Γ / >(^') is constant. We must now

show that

It suffices to show that prΓ*ί!P and p r ^ ί F are homotopic. We shall construct in

§3.10 a homotopy between p r Γ ^ and

3.10. The difference of two modified parallelotopes

We now depart from Kubota's proof. What follows is based on a technique

used in Habicht's paper [8]. We investigate the difference fr~~f" of two of the

functions, which we constructed in §3.8. The basic idea is to express Ψ — Ψr as

a sum of pieces, each piece being associated to a face 9 of a parallelotope of 9.

Actually these pieces will be homotopies from Ψ to W. This method will lead to a

formula for the skew product

</',/"> := Σf'(π)θ"(π) = Σ (/'Or) -f"(π))θ(π),

Notation. Let d be a homotopy from [0,1 ]' to [0,1]" in K^. This means

h\I2-+ i L with h \{0UI = 0, h | { 1 } x / = 1 and dh = [0,l] 7 ~ [0,1]^ modulo

©^/SLJ. Then for any parallelotope #>, = Π"=1[0, aitj] we define

hf(xl9..., xn, A) : = Σ auh{Xj, f).

Similarly for any face 2F = o2{υ^) Πy=1 [0, % ; ] we define

A ^ r ^ , . . . , xn_v t) : = % + Σ a^jhixj, t).
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Then ht is a homotopy from 3>f

i to 9"% and h^ is a homotopy from 3?' to 5F", and

one has in ^ ( i ζ j :-

dh{ = Σ (~~ D'Oίjί/ϋ,-) — Sβjihi))

Letting h = Σ h{ in C^+^iί^) one then has

If z is a point of K^ which is not contained in | dh^ \ for any ?F then one has in

XnUL,IL\z)

ψ - ψ = (- Dn
 Σ

and therefore (in the notation of §3.8)

f'iz) -fiz) = (~ D" Σ wtmrh?(z).

We now consider the equivalence classes of faces of 9 under the action of Γ.

We shall refer to the class of 2F as [^]. We split the above sum over OF < 9 into

sums over the classes:-

f(z) -f"{z) = (- \)n Σ Σ

Note that since prΓ:{; d9 = 0 in Ή^tΓXKJ we have

Σ wtm = 0.

The set Sα^ = {z <ϊ K\ aβz <Ξ L, z <έL) is Γ(L)-stable, so for σ e Γ(L) and

y T (2) = F T fz)

We have analogously by §2.8.1, if σ = σ(ζ , t),

Σ 1^(2)^(2) = Σ \σoj-(z) (θ(z) — j).

Therefore

(-1)" Σ Σ wt(<§) l-Az) θ(z) = Σ wmUΛz),
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where

and

We can rewrite this as follows:

( - l)n Σ Σ wt(9) Iτ (z) θ(z) = wm {{S,<aβ ^ J

After summing this over the set of classes W\ of faces, we obtain:

3.11. Theorem (Formula for the skew product)

Let [0,1]' and [0,1]" be two paths from 0 to 1 in Kw and let h : I2 -* K^ be a

homotopy from [0,1]' to [0,1 ]". For a face 2F — σ 2(%) Π ; = 1 [0, u^β we define an

n-cube

n-l

hp{xv.. .,xn~v t) = % + Σ dgrjhiXj, t), xr t G /.

///or ^^ry face 2F < HP

saβn 13*^1= 0,

aβ = Σ a β ^

Here the constants w[2F] ^ Z/qZ depend only on 9.

3.12. Summary of notation and results

For reference purposes we fix our notation for the remaining chapters and

state the main results in this notation. This will hopefully avoid confusion.

We fix a basis

for K as a vector space over Q ( ζ ) . We write L for the free lattice generated by

ibv. . . , bN} over Z [ ζ ] . We then have an n-chain 9 e ^ ( i ζ j with the following
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properties:

1.

2. For every point tu e ΓXK^ we have

3. There is a (finite) decomposition

i

where each 9>

t is a parallelotope. More precisely

n

<φ — π Γf) a 1

where each au is of the form

4. We have a decomposition of d?P as a sum of faces,

where 2F < ^ means that 3^ is a face of at least one of the parallelotopes

f̂  . We write the /^-equivalence class of SF as [SΠ. Then for every class

Σ wt(9) = 0 i n Z / ϊ Z .

For every face ^ < ^ there is an expression

n-l
(% τ=z rt (η) \ W ϊ() n^ 1

where the % > y and % are (1 — p) -division points of L.
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4. Admissible paths and admissible homotopies

Let 9*: In -+ K^ be a singular ft-cube. If z G | d?P | then I$>(z) is not defined.

Thus if we write formulae involving lp(z), we must be certain that z £ | d?P |.

This is the purpose of this chapter. The proofs here are quite technical For those

just interested in the applications, it is only necessary to understand §4.2, §4.4

and the statement of §4.3. We first prove a technical lemma, which we shall need

for the other proofs in the chapter.

4.1. A technical lemma

2 Let Φ be a Hausdorff, real, topological vector space and V an n-dimensional, real

vector space. Let X be a compact polyhedron of dimension less than n. Let B : Φ X X

—* V be a map with following properties:

• B is continuous and piecewise differentiable.

• V i e j , B{ —, x) : Φ—> V is an affine map.

• V j e X where B( — ,x):Φ-^>V is not surjective, one has 0 £ B(Φ, x).

We define a subset

ψ : = φ e φ\ V i e X one has B(φ, x) Φ 0}.

Then Ψ is a dense, open subset of Φ.

Proof (i) Let φ0 ^ Φ. We shall show that Ψ is dense in a neighbourhood of

0o and that Ψ is open in Φ. We call a point x ^ X degenerate if B(—, x) is not

surjective. The degenerate points form a closed and therefore compact set. For ev-

ery degenerate point x we choose neighbourhoods D(x) of x in X and U(x) of φ0

in Φ, small enough that for all φ e [/(.r) and # e DCr) one has B{y, φ) Φ 0.

There are finitely many points xlf. . ., xs such that every degenerate point lies in

the union D(xJ U . . . U D(xs). We set D = D{xx) U . . . U D(xs) and U =

{/Cr^ Π . . . Π U(xs). Thus [/ is a neighbourhood of φ0 in Φ and D a neighbour-

hood of the set of degenerate points. For every x €= D and φ ^ t/, we have by

construction £ ( 0 , .r) Φ 0. We shall show that Ψ Π {/ is dense in C/.

(ii) Let Y '•= X\D. This is closed in X and is therefore compact. To every

y E: Y we define

E(y):= {0e Φ\B(φ,y) =0).

Since y is not degenerate, E(y) has codimension w in Φ. Let FT be an

w-dimensional subspace of Φ. We define a subset of F :
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Y(W) := {y €Ξ Y\ # (W Π E(y)) = 1}.

If 0 X , . . . , 0W is a basis of PF, then

Y(W) = iy ^ Y\ B(φv y),..., B(φn, y) are linearly independent}.

One sees from this that the subsets Y(W) are open in Y. Now let y be any element

of Y. Since y is non-degenerate, the map B{— , y) is surjective. There are thus

vectors φlf. . . , φn €= Φ such that B(φλ1 y),. . ., B(φn, y) form a basis of V. That

implies z/ e F(R0! Θ . . . Θ R0W). Therefore the subsets Y(W) form an open cov-

er of Y. Since F i s compact, there is a finite subcover:

Y= Y(Wγ) U . . . U Y(Wr).

For each i'• = 1,. . ., r we choose a compact subset Z(0 c F(W^) large enough so

that

Y= Z{\) U . . . U Z(r).

(iίi) For every i— 1,..., r, define

5Γ(i) : = {0 e φ | Vi e Z(0, B(0, x) # 0}.

We then have

wn u = (ψ(i) n ... n ψ(r)) n u = (ψ(i) n t/) n ... n (?rw n t/).

We want to show that Ψ Π [/ is a dense subset of [/, and that W is an open sub-

set of Φ. For this we shall need the following lemma:

LEMMA. If Rλ is a topological space and if R2 and R3 are dense, open subsets of

Rlf then their intersection R2 Π i?3 is also dense and open in Rv

Proof Since R2 and R3 are open, R2 Π R3 is also open. Let i?4 be a

non-empty, open subset of Rv Then R4 Π R2 is non-empty, because R2 is dense.

The set i?4 Π i?2 is also open, because R2 and i?4 are both open. Therefore R4 Π

R2 Π i?3 is non-empty, because R3 is dense. This implies that R2 Π i?3 is also de-

nse in Rv

It thus suffices to show, that for any i the subset W(i) Π U is dense in ί/,

and Ψ is open in Φ.

(iv) We first show that Ψ is open in Φ. Let 0 ^ ?F. We shall construct a

neighbourhood of φ in ?P*. Since φ ^ Ψ, we have for every x €= X , 5 ( 0 , x) ^ 0.

We choose for every x G X neighbourhoods ί/2(x) of x in ^ί and ί/3(x) of 0 in
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Φ small enough that for y e U2(x) and φf e [/3Cz) we have B(φ'', 2/) =£ 0. Since

Z is compact, there are j ^ , . . . , xt e X such that X = E/2(#i) U . . . U U2(x2). Let

U3 = U3(x^) Γ\ . . . (\ U3(xt). This is a neighbourhood of 0 in Φ. It suffices to

show that U3 c: ?P*. Let 0" G ί/3. For every x e X we have .r G U2(xt) for at least

one i, but also 0" G U3(x). By our choice of U2(xi), U3(x) we have -6(0", x) ^

0. Therefore φr G ?F. We have shown that Ψ is open in Φ.

(v) We now show that Ψ{\) Π ί/ lies dense in U. We actually prove

that Ψ(l) is dense in Φ (this is stronger). Suppose 0 ^ ?PXl). Then by definition,

5 ( 0 , z/) — 0 for at least one y ^ Z ( l ) . This means 0 ^ £(ί/). Since z/ ^ Z ( l ) ,

the intersection (0 + Wλ) Π E'Ce/) has exactly one point There is thus a surjec-

tive map

(φ

Since B is piecewise differentiable, this map is also piecewise differentiable . Since

Φ is Hausdorff, W1 + 0 has the usual topology as an ^-dimensional real topologic-

al vector space. Since Z( l ) has dimension less than n, (0, Wx)\ Ψ(l) contains no

open subset of 0 + Wv There is thus in every neighbourhood of 0 in 0 + Wv and

therefore in every neighbourhood of 0 in Φ, a φf ^ 3Γ This finishes the proof.

4.2. Admissible paths

As before, L is a Z[ζ]-lattice in if and £)L is its ring of multipliers, i.e. DL =

{α e if I αL c: £}. From now on we require α, /3 and ^ to be pairwise coprime

elements of £)L such that a = β = 1 mod (1 — p)q2.

We are interested in the values of our various fundamental functions on the

subset

~^oL\L = {z e A^l α^z e L but z ^ L }

of K^, or the subset

{TΓ G L X ^ I α̂ TΓ = 0 but TΓ ^ 0}

of the quotient space LXK^. These two sets will be referred to as the critical sets

in L\ϋΌo and K^. We shall write them as

Saβ c i C and

Since α, 8̂ and q are pairwise coprime, it follows from §2.7.2 and §2.2, that the
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points of the critical sets have trivial stabilizers. It is important that our functions

are fundamental on these sets. The functions which we constructed in §3 are fun-

damental outside the boundaries of the modified parallelotopes used in their con-

struction. We shall therefore try to modify our parallelotopes in such a way that

their boundaries avoid the critical sets.

We call a path [0.1]' from 0 to 1 in K^ admissible, iff

I dr\ n saβ = 0.

This means that the function / ' is fundamental on the critical set Saβ.

4.3. Lemma (Existence of admissible paths)

For every neighbourhood U of zero in K^ there is a differentiable, admissible path

[O.I]1 from 0 to 1 in K^ with

^ ( [ O . l ^ ω - [0,11 Or)) e U

and [OΛΫ(x) - [0,1] (x) e U.

And if we define

to.irω :=

[0,lf (x) : =

\, l]l(2x-D x>\,

[0,1]
a,β/

x>\,

[0,1]
β,a /

aβ>
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[O,lfCr): =

then the paths [O,lΓ, [O,lΓ, [0,1] , [0,1] , [O,1Γ are also all admissible.

Proof, (i) Let Φ be the real vector space of functions φ:I—+Koo satisfying

the conditions

1 one has φ( \(x + -\) = 0θr).

Φ becomes a topological vector space with the following norm:

| 0 | | : = inf
IS/ dx

With this topology Φ is Hausdorff.

To each face 2F < 9 we define X^ to be the disjoint union of six copies of

In~ι. We call these copies X^f X£, Xp, X&β, X&" and X&. Let X be the disjoint

union over all $F < 9 of the sets Xp. Then X is a compact, (n — 1)-dimensional

polyhedron.

To each z e 5α i 3 we shall define a map BZ:X X Φ-^K^ to which we shall

apply the technical lemma §4.1.

(ii) Let φ ^ Φ. We define paths.

l l . 0 ,
: = [0,1] (x) -f

[θ,^'\2x)

^ J <2x)
1F*l 1 1F* 1

^, l j (2x - 1) x > g-,
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fj_ 11 w

1 ii.*

- < < -

^ 1

l j ί >

(2x -

- < < -

. 1

[<ur*ω :=

(iii) Let x =

iaβ' Ί

fjr, where ^ = σ 2(%) ΠjΓ^O, % > 7 ] . We define

for x

(x, 0) :=
K - l

Σ [0, a, - z.

The point x is degenerate (in the sense of §4.1) precisely when for all j = 1,. . .,

n — 1, Xj e | θ , — , . . ., If. If that is the case, then % + Σ ^ 1 [0, % y] ̂  (ry) is

2 Q

a (1 — p)^ -division point, and is therefore not in Saβ. Therefore, if x ^

degenerate, then 5 2 (x, φ) Φ 0.

(iv) Let x = ( ^ , . . . , ^w_i) e X£. We define

is

, 0) := - z = Σ [0, %

The point .r is degenerate precisely when for all / = 1,. . ., w — 1, .r,- €= | θ , — - ,

. . . , l j . We want to show that in that case, Bz(x, φ) Φ 0. Let x be degenerate.

We shall compute α ( % + Σ y = 1 [0, %.,] ' (x)) modulo L. We shall often use the

fact that a = 1 mod (1 — p)q2. One has

( w - l \ w - l

% + Σ [0, % ]α ' (x)j = v& + Σ [0,
; = 1 ' 7 ; = 1

modL.
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Suppose Xj > y. Then

[0, aa^jV^ixj) = [%,,, aa^j](2Xj — 1)

= dcr + (a —

= a^j mod L

= Γ0 aa 1

We can thus assume xs < ~κ. We then have

α ( % + Σ [0, a^jV^iXj)) = % + Σ 2xja^tj modL.

This is a (1 ~ p)q -division point and can only be in L if for all j , Xj — 0. Thus

% + ΣjΓ^tO, a^j]a'Φ(Xj) can only be an α/3-division point, if for all j Xj = 0. If

that is the case, then % + ΣyΓx [0, % , / ] " ' (Xj) — % ^ Sα^. It follows that for de-

generate x ^ X^, Bz(x, 0) ^ 0.

(v) We define further for x ^ X^, z €= 5 α i S :

and so on. As in (iv), we show that if x is degenerate, then for all 0 e φ,

iB^Cx, 0) =5̂  0. We can now apply §4.1.

(vi) We define for z ^ SΛ/5,

?/;:= {0 <Ξ φ\ V ^ e Z o n e has Bz(x, φ) Φ 0}.

From §4.1, Ψz is a dense, open subset of Φ. If φ ̂  2^, then by definition of i?z,

2: ̂  I dϋP1^ I U I dίPa'φ I U . . . U I 3 ^ |.

(vii) Let Sχβl e be the set of all elements of Saβ, in a large compact subset of

K^. This is a finite set, but if z ^ Sα/3 \ S α ^ e, then ?P*2 contains a neighbourhood

U' of 0 in Φ, which is independent of z. Let f* : = Π 2 e 5 ^ f2. Then ?Γ Π U'' =

ΠZeSfinite 2^. This is also dense and open in t/7. We can therefore choose Ά φ ̂  Ψ

arbitrarily close to 0. Let [OJ^Cz) : = [0,1] (J:) + φ{x). Then [ O J ] 1 satisfies the

conditions of the lemma.

4.4. Admissible homotopies

In Theorem §3.11 we obtained a formula for the skew product </', / " ) α i 5 =
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z), where [0,1]' and [0,1]" are two admissible paths. Our formula

depends on the choice of a homotopy h : I —• K«, from [0,1]' to [0,1]", where h

satisfies the following condition:

ς n fi j I ΆU \) — a

with Â  as is §3.10. We shall call a homotopy which satisfies this condition

admissible. To be able to apply Theorem §3.11 we must show that admissible

homotopies exist. The following statements are easily proved (so we won't prove

them).

• If [0,1]', [0,1]" and [0,1]"' are three admissible paths, and h' and h" are

admissible homotopies from [0,1]' to [0,1]" and from [0,1]" to [0,1]"',

then the composition (in the category of paths).

h'(x,2t) t<\

h"(x,2t- 1) t>j

is an admissible homotopy from [0,1]' to [0,1]"'.

• If h is an admissible homotopy from [0,1]' to [0,1]" and of h' is pointwise

close to h and also a homotopy from [0,1]' to [0,1]", then h! is also

admissible.

We now show that close to any homotopy, there is always an admissible

homotopy.

4.5. Lemma (Existence of admissible homotopies)

Let [0,1]' and [0,1]" be two admissible paths from 0 to 1 in K^, and let h0 be

any homotopy from [0,1]' to [0,1]". Then for any neighbourhood of zero 0 G U a K^

there is an admissible homotopy h : / —* K^ from [0,1]' to [0,1]", with the property

that for all (x, t) ^ /2,

h(x, t) - hQ(x, ί ) e U.

If the functions [0,1]', [0,1]" and h0 are differentiable, then we may also require

that h is differentiable, and in addition that

, t) - ho(x, t)) €= U

γt(h(xanάγt(h(x, t) - ho(x, t)) e U.
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Proof, (i) We first prove the lemma in the case that [0,1]', [0,1]" and h0 are

differentiable.

For each 9 < 9 let X^ be the set dl , and let X be the disjoint union of all

Xgr. Then X is a compact, (n — 1)-dimensional polyhedron. We shall write points

of Xp as Cr, ί), where x = (xl9..., xn_λ) e /"- 1 and ί e /.

(ii) Let Φ be the real vector space of differentiable functions

9 / 2 ^ 0 ,

whose restrictions to dl are zero. We give Φ the topology, induced by the follow-

ing norm:

:= sup { φ(x, t) , , t) , , ί) ].

For every z £ Saβ we define a function Bz : X x Φ —* iζ^. If Cr, ί) ^ X r̂ then we

define

i^(Cz, f), φ) : = % + Σ %fj(ft0Cry, β + 0(xy, £)) — z.

Since Λo and 0 are differentiable, i?2 is also differentiable.

(iii) A point Cr, 0 e ^ is degenerate precisely when either t ^ {0,1}, or x

is a vertex of /

• If t = 0 then £2(Cr, t), φ) = $r(x) - z. Since [0, I ] 7 is admissible,

^ ( C z , t)t φ) Φ 0.

• If f = 1 then since [0,1]" is admissible, ^(Cz, t), φ) Φ 0.

• If j? is a vertex of / , then Bz((x, f), φ) + z is a vertex of a parallelotope

#V Therefore Bz((x, t), φ) Φ 0.

The function β z thus satisfies the conditions of §4.1.

(iv) Let Ψz : = {0 e φ | V i G l o n e has £ 2Cr, 0) ^ 0}. By §4.1, Ψz is de-

nse and open in Φ. Let Ψ •= Π z e S ? .̂ As in the proof of §4.3, ΪΠs also a dense,

open subset of Φ. We choose φ ^ ?Γ close to 0. Since φ ^ W, one has for all z ^

SΛ and all ^ < ^ ,

where h Cr, t) '-— ho(x, t) + φ(xy h). The homotopy h is therefore admmissible.

Since φ close to 0, h is close to h0. The proof in the differentiable case is

finished.
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The non-differentiable case

Now consider continuous functions

[0,1] ' :/—A.

[0,1]" : / - » £ .

with the conditions

[o,ii'(o) = [o,ir(o) = AO(O, t) = o,

[0,l]'(l) = [0,l]^(D =ho(l,t) = 1,

ho(x, 0) = [0,1]'(x),

ho(x, 1) = [0,l]r/(x),

and with [0,l] r and [0,1]r/ admissible. There are differentiable functions

[0,1]*':I->ILf

[ 0 , 1 ] ^ : / - ^ ,

which are pointwise close to [0,1]', [0,1]^ and h0 and which satisfy the same con-

ditions. Since [0,lΓ and [0,1]" are admissible, and [0,1] and [0,1] are close

to them, [0,1] and [0,1] are also admissible. From what we have already

proved, there is an admissible homotopy h close to h0. We define

h'(x, t) = (1 - t)[0,ϊ]'(x) + t[0, \Yr

and h"{x, t) = (1 - t)[0,lV(x) + t[09 IΫ".

The two homotopies hf and hrr are admissible. Now let

h(x, t) = •

h"[x, 1 -t

— ε

t> 1 - ε .

The function h is an admissible homotopy from [0,1]' to [0,1]", and for small ε, h

is close to h0.
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5. Proof of Theorem 1

As before let K be an algebraic number field with integers D. The field K

contains a primitive q root of unity ζ, where q is a power of a prime ^. We set

p — ζ , s o p a primitive # root of unity. We fix a basis ί^,. . ., bN) of if as a

vector space over Q(ζ) such that the lattice L, generated by {bv . . . , bN] over

Z[ζ] contains the ring £). We choose a b ^ N such that b l c D c L. Let $DL be

the ring of the maltipliers of L.

In this chapter we prove the following

Let a, β G= £)L with the following conditions:

• oc, β and q are pairwise coprime in £)L:

• a, β = mod (1 — p)q2

• a and β are totally positive. This means, that for every real place υ : if—•

R ofK we have v(a), v(β) > 0.

Then

With the help of the Gauss-Schering Lemma (§2.11) and Lemma §2.9.2 this im-

plies the first theorem of the introduction:

THEOREM 1. Let a, β ^ D with the following conditions:

• α, βy b and q are pairwise coprime in D

• a, β= 1 mod b(l — p)q

• a and β are totally positive.

Then

\β

We now give a summary of the proof. We begin with the statement of §2.12. With

our conditions on a and β, this says:

The proof then consists of four lemmas. In §5.3 we show that

Σ fa(z)θ\az) =0,
zeSaβ

where [0,1] and [ 0 , l ] α are the admissible paths constructed in §4 a n d / a n d /
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are the corresponding fundamental functions. For the same reasons, we also have

Σ f\z)θ\βz) =0.
z<=Saβ

We use these two statements in §5.4 together with the arithmetic results of §2, to

a β
express the difference DecL —n ~~ DecL —-Q as a sum of four skew products. In

§3.11 we proved a formula for these products. We apply this an §5.5 to reduce

the four products down to one product. We finally show in §5.6, again using

§3.11, that this last product is zero. This gives us ΌecL~n — Dec L —. Since we

Oί β

—and Dec —
Oί β

shall use the decidents ΌecL —g and Dec^ —n , it is important that our

fundamental functions/ , / α , etc. are also fundamental in points of L. We thus de-

fine f\θ) =fa(0) = . . . = 1 and f\z) = fa(z) = . . . = 0 for z ^ L\0. At

other αβ-division points, the functions are already defined and fundamental.

5.1. Proportional equivalence classes

We can embed the multiplicative group R in KM by the map r >-* r.l. We

write the quotient group Kw / R as K^ :. We call the cosets of R (the elements

of K^ :) proportional equivalence classes. We write z: for the proportional equiva-

lence class of z. If z1'
= z2: then we say, that z1 and z2 are proportionally equivalent.

If q Φ 2 then K^ is a direct sum of ~κ copies of C. Therefore K* is a direct

sum of -ήΓ copies of C x , and is thus connected. Being a quotient of K*, the group

K^ : is also connected. We shall assume that a: and β: are both in a small neigh-

bourhood of 1: in K^ :. This implies in particular that a and /3 are totally

positive4. It also implies that the paths [0, lΓ, [0,1]*, [0,lΓ'^ and [0,1]** are

nearly straight, and that die maps #>*, ̂ , 2P"' and 9{a : / w —• i C are injective.

5.2. Remark

( 1 \ /Ύ

iί^, if^ \ —Q L) such that b — a ^ —o L,
then one has in Z / ^ Z :

totally positive means that for every embedding v:K—*Ί& of the field K in the
real numbers, v(a) > 0 and v(β) > 0.

https://doi.org/10.1017/S0027763000005080 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000005080


GEOMETRIC PROOF OF A RECIPROCITY LAW 1 2 9

aβ

We will often use this fact.

The next lemmas are similar to lemmas due to Habicht in the case K =

5.3. Lemma.

If a, β e DL with a = 1 mod (1 — p)q and a: is close to 1:, then

Σ fa(π)θι{aπ) = 1 modi.
aβπ=0,πΦ0

(This however is not the reciprocity law.)

Proof. We have ^a — Σ , ^ for some set of parallelotopes 9^ Correspon-

dingly we h a v e / α = Σ , I#». We first consider sums of the form

Σ Ip,(π)θι(aπ).
aβπ=0,πΦ0

For each parallelotope there is an expression

0? = Π [0, aj",

;=i

where au ^ y - 3 — L . By definition (§4.3) of [0, #,-,/]α, this is the equivalent to

ft ([o ΐ M * <>..,]•)•
Expanding the brackets we obtain:

« r α , ' ] 1 q
Π 0, — - + parallelotopes, at least one of whose edges is a vector in — L.
; = 1 L Oί J Cl

The first term is equal to

On summing again over the parallelotopes we obtain

2Pa = a : (a~ )<9> + parallelotopes, at least one of whose edges is a vector in — L.
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The function θ (z) is periodic with respect to L. Thus θ (aπ) is periodic with

period lattice — L. The set —n L is also invariant under translations by

elements of — L. Therefore the sum of Θ1(aπ) over a parallelotope with at least

one edge in — L vanishes modulo q. Since a: is close to 1:, the base set of one of

these parallelotopes cannot contain 0. We therefore have:

Σ l^a(π)θ\aπ) = Σ I σ{a-ι)θ>ι(z) θ\az).
aβπ=0πΦ0 z^{aβΓιL zΦO

Either a has positive norm or q — 2. Thus in Z/qZ one has

Our sum is therefore

Σ

or more simply

Σ
zΦO

1

additivity properties §2.10), that it vanishes in Z/qZ.

Since this expression is identical to D e c ^ , we know (for example by the

5.4. Arithmetical calculations

In this paragraph let a and β be totally positive elements of £)L with a = β =

1 mod (1 — p)q and a: and β: in a small neighbourhood of 1: - small enough,

that is, for the previous lemma (§5.3) to apply.

We use Lemma §5.3 together with some results from Chapter §2. It is first

clear that

τ^= Σ if\π)-fa{π)) θ\aπ).
α P aβπ=0,πΦ0

The variable π here is in Z Λ / C The function fι(aπ) :L\K~+Z/qZ is 1 at

7Γ = 0 and zero at all other α-division points. At points other than α-division

point, the function is fundamental. The sum is thus by §2.8.2
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Σ {f\π)-ftt{π))θ\π).
aβπ=0,aπΦ0

We rewrite this as follows:

Σ (f\π) - fa(π)) θ\π) - Σ (f\π) - fa(π)) θ\π).
aβπ=0,πΦ0 aπ=0,πΦ0

1 1
Since Dec^—n and ΌecL— are both zero (this holds for example by §2.10), this
is equal to

- Σ fa(π) θ\π) + Σ fa(π)θ\π).
aβπ=0,πΦ0 aπ=0,πΦ0

This is a sum of skew products:

- < / " . / 1 > α , + <

Thus from Lemma §2.12 we know that Dec^-^ ~~ ΌecL— is equal to

- </",/1>αfl + <r,f1>a + <fe,f1>ae - </β,/V

5.5. Lemma

If a, β = 1 mod (1 — p)q in £)L and af β and q are pairwise coprime in DL,

and if a: and β: are close to 1: in K^ :, then

Proof (i) The proof is quite long but the idea is simple. In the one dimen-

sional case (K = Q) this is all trivial because the fundamental functions are inde-

pendent of the paths. The lemma can be easily understood for fields of degree 2.

In higher dimensions some new phenomena arise and the two-dimensional picture

becomes inaccurate. A full impression of the proof can be gained by considering

three-dimensional cases, in which everything goes wrong that can go wrong.

Our calculations will be mainly in the homology group ^ ( / C K^XS^). We

shall first show that

(i) < / α , / x > β = < / A β , .

This follows because the difference between [0

times the difference between [0,1] and [0,1] (this can be seen by drawing a pic-

This follows because the difference between [0,l]^'α and [0,1]^ is essentially ~n
p
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ture). On the other hand the sum on the right is over α/3-division points, whereas

that on the left is only over α-division points. Our proof of (1) will use the skew

product formula §3.11. After proving this, the lemma follows from §5.4 using only

the elementary properties of the skew-product.

(ii) To apply §3.11, we need admissible homotopies from [0,1] to [0,1] and

from [0,l]^' α to [0,1]^. We now construct these homotopies. Let U be a neigh-

bourhood of 0 in K^. We define

ho(x, f) := t[0,l]l(x) + (1 - t)[0,l]a(x).

The function h0 is a homotopy from [0,1] to [0,1]a. We choose using §4.5 an

admissible homotopy h from [0,1] to [0,1]a, which is uniformly close to h0 (it is

not so important which admissible homotopy we choose). We therefore have a con-

tinuous function h1:I2 —• K^ satisfying the following:

ti{χ, o) = [oα^ω, h\x, l) = [o,irω,

h\0, t) = 0, hι(l, t) = 1,

V (x, t) G I2 one has hι(x, t) — hQ{x, t) e U, h1 is admissible.

We compress this by β , and obtain a homotopy from [0, β ] to [0, β ] α ,

2bt):=hι(pct)

which we shall denote h2:

2 [1 V

Finally we extend h by a constant homotopy from \-κ, 1 to itself, thus obtaining

a homotopy h3 from [0,1]* to [0,l]*'α.
h2(2x, t)

h\x, t) : =
π l 1 i
•£, 1J (2x - 1) if x > 2".

The admissibility of h follows from that of h . We construct as described in

§3.10 the homotopies ft1, h and h .

(iii) From Theorem §3.11 we have

Π 11

To show that ifa,fl}a — (f$a,f0yaβ> ^ ^s clearly sufficient to prove for each
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face 9 < 9 that

We shall prove this.

(iv) Let SF be a general face of a parallelotope of 9. Then there is an express-

ion of the form

where % , % , e -r—=— L. We cut the w-cube h% into 2W~ pieces. This cutting

process corresponds to cutting SF into 2n pieces, each half as big as SF. We thus

have in $tn(K^ K^XS^):

/&= Σ iζ,

where

Vj + 1
lf X2" .>Xn-li t) = Vp+ Σ % ; ^ 3 ( ^ ί) + Σ

We first see that the boundary of h^ has no intersection with Sαβ. This follows

because the boundary can be covered by translations of the boundary of h $ by

α/3-division points, and h is admissible. We therefore have

{{SαB\ί?^}}= Σ ί{SαS\fζ}}.
Γc{l,2 n-1)

We now compute the terms in this sum.

(v) First suppose T is empty. We then have

fζ{xl9 x2,...,xn-l9 t) = % + Σ % > 3 ( y , t)

n-l

= f + Σ a h (x, t)

1 / n - 1 ! \ β — 1

[%+ Σ αh (X f)J H
-L / , W Ί 1 / .v \ ,

— — I 7) - L > /7 h ( T t)\-\-

Thus

Γ3Γ_ Π j8 1 \~!
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h?}} = {{sae

= [{^L\{0)\σ2((β - Dv?)??}}.

We now distinguish two cases. First suppose υ^ — 0. We then have immediately

In the other case υ& Φ 0. Then there is a neighbourhood of \2F\, which is disjoint

from L. We therefore have for a: and β: sufficiently close to 1: and [0,1] suffi-

ciently close to [0,1], L Π | A1^ | = 0 . Therefore (since (β - I k e L)
,Γi<τ2((>S — ϊ)vp)h p\ Π L = 0 . We thus have as in the first case

(vi) Now suppose T is non-empty. Without loss of generality, assume

Then

^ , tj +.g(x2,...,xn-lf t)

( ^ _ |_ 1 \ M - ι l

~^~9—' v = Γfl1 "H (χi) ^ e thereforehave

Since T is non-empty, | h^ \ contains no point of L Therefore by Remark §5.2,

{{Saβ I h3^}} = 0.

(vii) We have shown in (iv), (v) and (vi) that for every face 2F < S>,

{{saβ i ̂ y } =

Therefore by Theorem §3.11,
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Of course we have for the same reasons:

Substituting this into the formula at the end of §5.4 we obtain:

+ / r β r 1\ i / r βyOί r β\ / r Oί r 1\ / r CX>β ι

< / , / yaβ + </ > / yaβ - </ > f yaβ - </ »y

From the skew-symmetry of the product we have:

r. a n &ΌecLj-ΌecL-c( =

From the bilinearity we have:

D e c , - £ - D e c L — = + < / , / - / >aB - </ , / - .

The third property of the product gives us

/ r$,a rl\ / rOC,β /• 1\

^ </ , f > a β ~ < f ,/ >

Again by bilinearity it follows that

τ\ ^ r\ P i / rβ,a ra,β r 1\

DecL ^ - DeCi - = + </ - / , / > β f l ,

and by the third property:

5.6. The reciprocity law (first form)

We now prove the following:

o Λ Λ \{l—p)q2 for odd q . _.
α, β = 1 mod j 2 ιn£)L,

^4q for even q

and if a, β and q are pairwise coprime in £)L and if a: and β: are sufficiently
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close to 1: in K^:, then

ΌecLj = ΌecL-.

Using the Gauss-Schering Lemma (§2.11) and Lemma §2.9.2 this gives us the fol-

lowing:

a Λ Λ f (1 PΪQ^ f°r o d d Q oα, β = 1 mod j 2 w D,
ί ^ b /or βf en q

and ifa, β,b and q are coprime in D, and if a: and β: are sufficiently close to 1:

in K^:, then

(«) - (I)
\β)q \a)q

(Here b is chosen so that b l c D c L.)

Proof, (i) We first consider the case that q is odd. The minor changes re-

quired for the case that q is even will be described at the end of the proof. The

conditions of the previous lemma are satisfied. We therefore have

From the properties of the skew product (§2.13) we obtain,

DecL!-DecLf = < / * ' * - r * . / \ ,

We shall show that </ α ' , / }aβ = 0. Since our conditions on a and β are sym-

metric, we obtain in the same way (fβ'af ) a $ = 0 and therefore as required

ΌecL -n — DecL — If a and β are coprime to b, then by §2.9.2 ΌecL ~κ — Dec D -g-

and D e c L — = D e c D — . We thus have in this case Dec D -ς = D e c D — and by the

Gauss-Schering Lemma (§2.11).

(a\ _(β\

https://doi.org/10.1017/S0027763000005080 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000005080


GEOMETRIC PROOF OF A RECIPROCITY LAW 137

It is therefore sufficient to prove that (f , f }aβ = 0.
r(X,β

(ii) We recall that the functions / and / ' are defined using the paths

[0,l] $ and [0,1]^, where

[o,ifω =
^ , l j ( 2 χ - l ) x>2,

L I 1 1
— (?r) r < —
ίpJ Z

[̂ , l]1(4α;-3) x > | .

From this we see that the difference between [0,1] and [0,1] ' is essentially a

triangle whose vertices (7Γ0, ~ and l j are congruent modulo —5 L. We

shall exploit this congruence to show that </ α ' ^ , / ) a β = 0.

(iii) We shall construct a special admissible homotopy h from [0,1] to
-ι(X,β

[0,1] . Then by the skew product formula (§3.11),

For every face 3" < ^ we shall show that

aβ\hp}} =0.

From this it follows that (f ' , / }aβ = 0. The difficult thing is to find the right

homotopy h.

(iv) We now begin to construct the homotopy h. The two paths [0,1] and

[0,1] >a are the same from 0 to —-Q. We call this part of the paths the singular

part. In the singular part, whose preimage in / is 0, ΊJ , we define h(x, f) to be

independent of t Thus for x < y we have

Hx, f) = [o, Λ ]

The rest of h depends on /, since [0,1] and [0,1] '" are not the same between —x
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and 1. We call this part of h the non-singular part. If the face 2P is given by the

product

n-\

σ2(vp) Π [0, % ; ] ,
ί = l

then we have

[ a Λ1

0, — / (2xt) + Σ apjh(xi9 t).

To make this more readable, we define for every subset Γ c { l , 2 , . . . , w - 1} a

function

[ a 1 *•
0, -&Γ\ (Xj)0 &\ (X) + Σ % M

The function gτ is a singular n-cube in iί^. We have an equivalence in 2^ (

^ - Σ ^Γ.
Γc(l,2,...,»-1}

We shall construct the non-singular part of h such that for every T one has

If T is empty then gτ is degenerate and the equation follows immediately. Thus

the totally singular part of h^ vanishes. Now suppose T is non-empty. Since a:

and β: are close to 1:, we can (and shall) choose h is such a way that for

non-empty T the sets | gτ | and L are disjoint. It is then sufficient to show that

(v) We would now like to construct the non-singular part of h. For this pur-

pose we define

This function is a homotopy between the non-singular parts of [0,1]a> and

[0,1] . We can now express gτ more easily:
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(vi) We first construct a sequence of paths between —TJ and 1:

[ 1 1x

—g, l j . Between Wo

and Ŵ 2 there is a modified triangle, whose vertices are —β , — and 1. The

vertices are congruent modulo aβ
DL. We cut this triangle into q smaller,

similar triangles, whose vertices are congruent modulo
(1 ~ p)q

aβ

We number the triangles as shown in the diagram. Thus the path Wo runs

above all triangles in the Diagram. We now construct the path Wx to run below of

the first triangle but above every other triangle

Correspondingly W2 runs below the first two triangles, and so on.
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We choose the paths Wt_1 and W{ so that they are equal outside the subinter-

val [ci9 di\ of /, which is mapped to the boundary of the i t h triangle. Thus

W^x) = W{(x) for x& (ct, di). We shall choose homotopies h"s(x, t) from

W{_γ to W{ in such a way that they are independent of t for x £ (cif dt). Thus for

x έ (ci9 dt).

hTix, t) = W{(x) = W^ix).

We now choose by §4.5 h"s and h™ for x in (clf dj and (c2, d2) such that hλ and
• th

h2 are admissible. If / > 2 then the ί triangle is a translation either of the first

or of the second triangle by an element vt of —5 £)L. We can now construct

hn

t

s{xy f) for x e (c f , rff) as follows:

ίίc; + (di — ct)x, t) = Vf
Aiίq + Wx - cjx, f)

h2(c2 + (d2 — c2)x, t)'

We define the non-singular part, h of h:

h Or, t) = ht, {x, q t — i -r 1), for -

We also define

gτ(xly..., xn_ly t)'-= Vp+ Σ [o, ^A\xj)

There is an equivalence in ^ ( / C K^S^):

gτ ~ 2-t gτ-

-^~ <t<\
Q 9

.

(vii) We now consider the functions h!f and ̂  in more detail. We have
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g'τ(xl9..., xn_lf t)=Vp+ Σ [o, ^\\xj) + Σ d %,, Wt{x)

+ Σ a h (x, t).

If T and T are two subsets of {1,2, . . . , n — 1}, such that 7\ T and JΠ are

pairwise disjoint, then we define

Iγl^ix^. . ., Xn_lf t) = Vp + Σ 10, 7=Γ te;) + Σ % J WjiCjXj)

-|- ^ j /y H ίc ~\~ (d — c}x• f)

We then have an equivalence in ̂ t K * , , K^XS^):

Tί,T2<z{l,2,...,n-l}\T,T1ΠT2=0

We shall compute the terms of this sum.

(viii) If T is non-empty, then lι

τιT2 is a product of oι{a^])Wi |[0>c.] with other

things. We know however that σγ{a^J) W{ | [OfC] is a sum of modified line segments,

whose lengths are in ~ZδL. Therefore by Remark §5.2,

I j—n L These termsjj = 0 modulo q.
iaβ

The terms in which T is non-empty vanish in the same way. We are therefore

only interested in the term, for which T and T are empty. First suppose the i

triangle is a translation by vt of the first triangle. We then have

Σ %,; AΓ(^ + W, - ^)^, β

= % + Σ k % 1 (x.) + Σ a?* (v, + h"s(c, + (d, - φ., t))

— Z J ί?^r; Vi ~r /g^VXi,. . . , «^w_i, t) .

The a&j are in γ~^—L. Since v{ ^ p £)L, we must have Σj^rd^jVi

—-β L. In particular this translation is in ~o L. Therefore
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•••JJ ~ \\aβL
β

Analogously, if the i triangle is a translation of the second triangle,

MJ
q(q

isThe number of the triangles which are translation of the first triangle i s ^

The number of the triangles which are translations of the second triangle is

q(q - 1)
o . We therefore have

Since both these numbers are divisible by q, the theorem is proved in the case

that q is odd.

(ix) We now consider the case that q is even. The whole proof would be the

q(q + 1) q(q - 1)
same, but at the end one doesn't have the result, that ^ and x are

divisible by q. Instead we require at the beginning that α, β = 1 mod 2(1 — p)q
2 2 2

= iq . We cut the large triangle into 4# instead of q pieces. At the end we have
2q(2q + 1) 2q(2q - 1)

for the two numbers ^ and o , which are obviously divisible

by q.

5.7. Corollary (Theorem 1)

We now prove the result stated at the beginning of the chapter:

Let α, β ^ ΌL with the following conditions:

• α, β and q are pairwise coprime in £)L

• α, β = 1 mod (1 — p) q

• a and β are totally positive.

Then

~.

With the help of the Gauss-Schering Lemma (§2.11) and of Lemma §2.9.2 this im-

plies the following:
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Let a, β e D with the following conditions:

• a, β, b and q are pairwise coprime in D

• α, β = lmodbd - p)q2\

• a and β are totally positive.

Then

Proof. First let a: be close to 1: in K* :, and let α, /? = 1 mod (1 — p)q

and a and β totally positive. The set {b~ι βr \ b e N and 0 ' e DL, 0 ' = 1 m o d

(1 — p)q } is dense in K^. Since β is totally positive, it is in the connected com-

ponent of 1 in K^. We can therefore find a βr such that (βr β) : is close to 1: and

β' = 1 mod (1 — p)q . We have from the previous paragraph

By §2.10.1 we have ΌecL~^-= ΐ>ecLj, and by §2.10.5,

Therefore

With the same trick we can remove the condition that a: is close to 1:.
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