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ON SOME TWISTED CHEVALLEY GROUPS OVER
LAURENT POLYNOMIAL RINGS

JUN MORITA

0. Introduction. We let Z denote the ring of rational integers, Q the
field of rational numbers, R the field of real numbers, and C the field of
complex numbers.

For elements e and f of a Lie algebra, [e, f] denotes the bracket of e and f.

A generalized Cartan matrix C = (c¢y;) is a square matrix of integers
satisfying ¢;; = 2,¢;; £ 0if 7 £ 7, ¢;; = 0if and only if ¢;; = 0. For any
generalized Cartan matrix C = (c;;) of size / X I and for any field F of
characteristic zero, ¥ »(C) denotes the Lie algebra over F generated by 3!

generators ey, ..., €y, h1, ..., by, f1, ..., fi with the defining relations
(hi, byl = 0, [es, f5] = 0104 (i, e5] = cjiej [hey 3] = —cyif;
for all 7, 7,

(ad e;)=ciitle; = 0, (ad fy) = itlf; = 0

for distinct ¢, j. Let 4 be the Cartan matrix arising from a choice of
ordered simple roots of a finite dimensional complex semisimple Lie
algebra g¢ with respect to a Cartan subalgebra hc. Then fc(4) is iso-
morphic to g¢ (cf. [3, p. 99]). Such a matrix 4 is called a finite Cartan

matrix.
Let & = &z(C) be the subgroup of Aut (%x(C)) generated by exp
(ad te;) and exp (ad #f;) forallt € Fandz =1, ..., 1. Then ® has a

BN-pair structure, i.e., a Tits system (cf. [10]).

A generalized Cartan matrix C is called a Euclidean Cartan matrix if
C is singular and possesses the property that removal of any row and the
corresponding column leaves a finite Cartan matrix. Euclidean Cartan
matrices are classified (cf. [8]).

From now on we assume that C is a Euclidean Cartan matrix. The
algebra ¥7(C) has a one dimensional center, denoted by 3. Let € =
¢r(C)/ B, called a Euclidean Lie algebra. Any Euclidean Lie algebra &
owns the constant » associated with the structure of its root system, which
is named the tier number and is dependent only on C. It is known that »
equals one of 1, 2, or 3 (cf. [8]). We suppose that F has a primitive cubic
root of unity if the tier number 7 of € is 3. Let F[T, T7!] be the ring of
Laurent polynomials in 7 and 7! with coefficients in F. Then the algebra
& is isomorphic to the subalgebra of fixed points of F[T, T-1] & » L»(4)
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under 7 @ o for some finite Cartan matrix 4, where 7 is a Galois auto-
morphism of F[T, T—] over F[T7, T-"] and ¢ is a diagram automorphism
of z(4), and both are of order . The canonical Lie algebra homomor-
phism of 5(C) onto € induces a group homomorphism ¢ of Aut (87(C))
into Aut (). Then we can view ¢(®) as the twisted subgroup, associated
with 7 and ¢, of the elementary subgroup of a Chevalley group of adjoint
type over F[T, T-']. We note that & and ¢(®) are isomorphic. In this
paper, we will consider not only the group ¢(®) of adjoint type but
non-adjoint types as follows.

Let ® be a reduced irreducible root system (cf. {2]). Let G be a Chevalley
group over K[T, T71] of type &, and E the elementary subgroup of G
(cf. [11]), where K[T', 7] is the ring of Laurent polynomials in 7" and
T-! with coefficients in a field K and the characteristic of K does not need
to be zero. We fix a diagram automorphism o of ® (cf. [2], [3]). We say
a pair (®, o) is of r-type if ¢ is of order . We assume that K has a primi-
tive rth root of unity when (&, ¢) is of r-type. Let 7 be a Galois auto-
morphism (with the same order as ¢) of K[, T-!] over K[T7, T-7].
Then we can construct the twisted subgroup E’ of E associated with 7
and ¢. Of course, if r = 1, i.e., ¢ is trivial, then E = E’.

Our assertion is that E’ has a BN-pair structure (cf. Theorem 3.1/3.4).
In [11], it is confirmed that E has a BN-pair structure, therefore we will
assume 7 = 2or 3, i.e., ®isof type 4, (n = 2), D, (n = 4) or Es, and ¢
is not trivial (cf. Table 1). In Section 1 we introduce the twisted roat
system &, defined by (®, o) and argue about the connection between
twisted root systems and affine Weyl groups of type B,, C,, sy and G..
We will construct twisted Lie algebras in Section 2 and twisted Chevalley
groups in Section 3 respectively. Our assertion can be reduced to the case
of rank 1, which is essential and considered in Section 4. In Section 5 we
complete the proof of our assertion.

Let x and y be elements of a group, then [x, ¥] denotes the commutator
xyx~1y~! of x and y. For two subgroups G: and G; of a group G, let
[G2, G3] be the subgroup of G; generated by [x, y] for all x € G, and
y € Gj3. We shall write Gy = G, - G; when a group G; is a semidirect
product of two groups G; and Gj3, and G; normalizes Go.

The author wishes to express his sincere gratitude to Professor Eiichi
Abe for his guidance.

1. Twisted root systems. Let & be a reduced irreducible root system
in a Euclidean space V (over R) of dimension #» with an inner product
(,),and I = {ay, ..., a,} a simple system of & (cf. [2], [3]). For any
nonzero element « in V, let w, be the orthogonal transformation of V
defined by w.(v) = v — (v, a)a for all v € V, where (v, ) = 2(v, @)/
(a, ). Let ® be of type 4, (n = 2), D, (n = 4) or E¢. We fix a nontrivial
diagram automorphism ¢ of ® (cf. Table 1). The automorphism induces
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TasLE 1.
O/ by I/, 4
am QAm_1 a2 [£3]
@ =====0——0
m+1,
A2m+l I I I I V(ai) = amt2-i
(m=1) 1gig2m+1
Am 42 am43 a2m a2m+1
Crti OO Oemmmme oO——0O a; = 3y + ammy2-;)
Am41 Qm Am-1 as a 1 é] <m+1)
am Om—1 A2 43 oy
"""" O——O
Asp } I I I I o(a) = amii-i
(mz1) (1<i<2m
am+1 QAm+2 QAm43 a2m-1 a2m
BC, a; = 3(a; + azmi1-;)
Ql=j=m
2am = anm + QAm 41
oai) = o
Q1=2i=m—2)
D, U(am—l) = anm
(m = 4) o(am) = am—
Bm—l (lj = aj
a 12} Am—3 Am—2 Ay ( Sj=m-—2)
Am—_1 = %(am—l +am)
az ay U(al) = as
oy a3 alaz) = as
Es I o(as) = as
o(as) = oy
as as o(as) = az
o'(as) = ay
F oO—a—0—o0 a1 = ¥(or + ae)
ay as az a; ax = %(012 + as)
a3 = a3, G4 = ay
az
ola1) = o
Dy oy a3 a(az) = a3
olas) = as
o) = a2
oy
Ge a—=0 o =a

az = 3(az + as + as)
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an automorphism of V, also denoted o. Let V, be the subspace of fixed
points of V under ¢ and ! = dim V,, and let II be the natural projection
of V onto V,. We let &, (resp. II,) denote the image of ® (resp. II) under
the projection 7. Then &, is an irreducible root system with a simple
system II, in V,, but it is not necessarily reduced (cf. Table 1). Let ®,* be
the positive system of ®, with respect to Il,, and &~ = & — &,7. We
note &+ = x(®*) and &~ = 7w (P~), where &* is the positive system of
& with respect toIl,and & = & — &+,

We shall identify the set of g-orbits in ® with the set ®,. Then we have
the following four types of roots in ®,. Let ¢ € &,.

(R-1) ¢ ={y}, v = oly)
R2)c={yuvedmi#Ere=0(v), i+ ¢ &
R3)c={y,v2hhm#Fre=0(v), 1+ 7126 &
(R-4) ¢ = {v1, v2 vsh, v1 # v2 # v3 # 71, 72 = (1),
vs = a(v2), v1 = o(vs).

For each ¢ € @,t, we fix an order of elements in ¢ according to the
action of o, so we sometimes view the set ¢ as an ordered pair (yi, v2)
(resp. an ordered triple (y1, vz, v3)) if ¢ is of type (R-2) or (R-3) (resp.
of type (R-4)). Then we let —¢c = (—v1, —v2) or (—v1, —7vs, —v3) if
¢ = (y1,72) or (v1, 72, vs) respectively.

If ®,is of type B, (I = 3), C;, (I =2 2), Fy, BC; or Gy, then &, has two
root lengths, and we distinguish long roots from short roots. If &, is of
type BC, (I = 2), then ®, has three root lengths, and we differentiate
long roots, middle roots and short roots (cf. Table 2).

TABLE 2.
\ 24 roots lengths
B, (1=3) (R —1) long
(@) G (z2)
Fy (R —2) short
(R—-1) long
(b) BC,
(R — 3) short
(R—=1) long
(c) BC (R —2) middle
(lz2)
(R —3) short
(R—-1) long
@) Gs
(R —4) short

https://doi.org/10.4153/CJM-1981-089-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1981-089-6

1186 JUN MORITA

Now we consider the subset @ = Q, U Q, of ®, X Z defined as follows.
Type (a):

Q= {(c,2n);cislong, n € Z}

Qs = {(c, n);cis short, n € Z}
Type (b):

Q= 1{(,2n+ 1);cislong, n € Z}

Qy = {(c,n);cisshort, n € Z}
Type (c):

Q = {(c,2n+1);cislong, n € Z}

Qs = {(c, n); ¢ is middle or short, n € Z}
Type (d):

Qy = {(c,3n); cis long, n € Z}

Qs = {(c,n);c1sshort, n € Z}.

We see that Q corresponds to an affine root system, denoted S(®,.)"
(cf. 11, Proposition 2.1/Theorem 5.2]), and that an element (¢, #) of Q
can be regarded as an element ¢ + #£ of the corresponding Fuclidean root
system (cf. [8, Table 2]).

For each (2, n) ¢ Q, let w, , be a permutation on Q defined by

w, (b, m) = (w,h, m — (b, a)n)

fo-all o, m) & Q. Let B(2) be the permutation group on & generated by
w, , for all (a, n) ¢ Q. We note that W(Q) acts on &, X Z similarly. For
each (a, n) € Q, set

h:l n T Wa Wy Um‘ lf 71'(1 ’f (Doy
. B f 2
and set
1 1
h(IJL = Wy n Wy, 0 ! lf b = 3a ( q’a-

Let I be the subgroup of W(Q) generated by &, , for all (¢, n) € @, and
let J be the subgroup of W(Q) generated by w, , for all « ¢ Red (&,),
where

Red (®,) = {b € ;%0 ¢ ®,}.
We see that J is isomorphic to the Weyl group W of &,.
Lemwma 1.1. (1) Let (a, n) and (b, m) be in Q. Then
hon(bym) = (b, m 4+ (b, a)n).
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(2) Suppose that ®, is of type BC,. Let a be in ®, and of type (R-3). Then
ha.l = (h2a,1)2'
(3) Let (a,n) and (b, m) bein Q, and set ¢ = wyb. Then

‘wa,nhb,m'wa,nﬁl = hc,m-
Let @ ; be the subset of Q defined below, where notation is as in Table 1:

Q= {(ay 1), (ans1,2);1 £ 17 £ m} if &, is of type Cpy1,
Q; = {(ay 1), 2w, 1);1 £1<m — 1} if &, is of type BCp,
Q; = {(ay 2), (@p-1,1);1 £ 1 = m — 2} if &, is of type B,,_i,
Q; = {(ay, 1), (as, 1), (as, 2), (as, 2)} if ®, is of type Fi,

= |

Q; (a1, 3), (as, 1)} if &, is of type Go.

Then I is the free abelian group generated by &, , for all (a, n) € Q,,
so W(Q) =1-1J.

LetII, = {ai, ..., a,} and let ¢, be as follows:

(1) ao is the highest short root in ®, with respect to II, if &, is of type
Bl, Cl, F4, or GQ,

(2) ay is the highest root in ®, with respect to II, if ®, is of type BC,.

Set A1 = —Qo.

Let A be the dual root system of Red (®,) and Ag = {61, ...,8,} bea
simple system of A. Let W* be the affine Weyl group of A, and let 6, be
the highest root in A with respect to Ao. Put 6,,1 = —d,. Let Ay =

A X Z, and an element of A is denoted by 6™, where § € Aand n ¢ Z.
For each 6™ € Ay, let w;™ be the permutation on A; defined by

wy™Wx(M = (wyx ) "—x:HM

for all x™ € A,. Let W, be the permutation group on A; generated by
w;™ for all 6™ € Ay, and W, the subgroup of W, generated by w;'® for
all 6 € A. Set

hs™ = qpy Mgy 0—1

and H; be the subgroup of W, generated by k;™ for all 6™ ¢ A,. Then
W, is isomorphic to the Weyl group of A, and H, is the free abelian group
generated by k(Y for all §; € Ay, hence W, = H,- Wyand W, >~ W*
(cf. [11, Lemma 1.1/Proposition 1.2]). Clearly I ~ H; ~ Z' and J ~
I/Vo ~ W.

We fix simple roots of ®, and A as follows, then we have a,;; and §,;,
as above. (We add the vertices of @,;; and 8,1, and the corresponding
edges.)
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(i) The case ®, = Byand A = C, (I 2 3):

0141 01 02 012 01 0y
(ii) The case ®, = BC,and A = 4;:

®,: =0

/2] ay
AN —0)
09 )

(iii) The case ®, = BC,and A = C, (I = 2):

¢, T—)O——0- - - - - - o——-(a—)0

Ary1 4 23] @2 (L2 S (]

0,411 01 02 L 011 Oy
(iv) The case ®, = Cyand A = B,:

d,: O—II—)O

ai A a3

A: ayolD

51 62 63

(v) The case &, = C,and A = B, (I = 3):

ay

®,: Z>O—O ------ O——o—D
P as a3 ;-2 a1 a;
oy

A Z>o—o ------ o—a—
5 o 03 LI 8,1 O
1+1
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(vi) The case ®, = Fyand A = Fy:
¢,: O—O0——o—D—0

as a (2 as ag

A O—O0—a0T—0—0
05 0y &o 03 04

(vii) The case ®, = Gy and A = Gs:

b, EE=0—0

(13 as asy

A o=—o0
01 ' 83
The map ¢ defined by

Y(ws, (V) = wa, 0

for1 £ 7 <! and
1 —
‘P(wal+]( )) = Way gy 1

induces an isomorphism, again called ¢, of W* onto W(Q). This fact is
easily verified by the next lemma and proposition.

LeEMMA 1.2. Let (a, m) be in Q@ and w in W(Q), and set (b, n) = w(a, m).
Then ww, 2w = w,, (cf. [11, Lemma 1.3]).
Set
Q = {(aop, 1), (—a;0);1 =7 =1} and
V' = {wy.; (a, n) € Qo}.

ProrositioN 1.3. Let W(Q) and Y’ be as above. Then W(Q) is generated
by Y’ (cf. [11, Proposition 1.4]).
Thus, the following result has been proved.

ProposITION 1.4. The group W(Q) is tsomorphic to the affine Weyl group
of type A as in the following table.

TABLE 3.
P° B; BC, C F, Go
A G C B, F4 G»
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When w € W(Q) is written as wyw, ... w; (w; € Y/, & minimal),
we write [(w) = k: this is the length of w. Set

Qt = QN (¢,+ X Z>0 ) ‘I’,_ X Z;o)

and
Q- =Q — Q.

For each w € W(Q), set

T'(w) = {(a,n) € QF;w(a, n) € O}
and

N(w) = Card T'(w).

The following two propositions hold (cf. [4, Lemma 2.1/2.2] and [11,
Proposition 1.5/1.8]).

ProrosITION 1.5. Let (a, n) be in Qo and win W(Q). Then:

(1) P(wa,n) = {(ar n)},

(2) wan(T(w) — {(a,n)}) = T(wwa,) — {(a, n)},

(3) (a,n) is in precisely one of T'(w) or T(w, w,.,),

4) Nwwe,) = Nw) — 114 (a,n) € T'(w), Nww,,) = Nw) + 1
if (a,n) ¢ T'(w).

PROPOSITION 1.6. Let wbein W(Q). Then N(w) = [(w).

2. Twisted Lie algebras. Let ® be a reduced irreducible root system
with a simple system II = {ay, . . ., @,} and g¢ a finite dimensional complex
simple Lie algebra of type &. Then there is a Chevalley basis
{hiyea; 1 1= n,a € &} of g¢ satisfying
(1) [hlr ea] = <0{, Cli>3a,

Na’36a+,3 if =+ ﬂ € ‘IJ,
(2) [eav 63] = (hoif a + B =0,
0 otherwise,

B) Nop = =(p +1)if B — pa, .., B, ..., 8+ ga is the a-string

through 8, Na,,s = —Nﬁ,a = —*N_a,_p,

(4) h,is a Z-linear combinations of k&;'s, ha; = h;, for any o, 8 € ® and
1 £17= n Weset

bz = ;zm and gz = bz + > Ze..

acd

Let K[7T, T7'] be the ring of Laurent polynomials in 7" and 7! with
coefficientsin a field K, i.e.,

K[T, T = { > tnT™ (finite sum); ¢, € K} ,

meZ

https://doi.org/10.4153/CJM-1981-089-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1981-089-6

CHEVALLEY GROUPS 1191

and set
L =KI[T,T71Qz0z and 0 = K[T, T ®zbz.

From now on we will assume that & is of type 4, (n = 2), D, (n = 4)
or E¢. We fix a nontrivial diagram automorphism o of ® (cf. Table 1).
Associated to ¢, we can find an automorphism of gz, again denoted o,
such that

0 (ha;) = hgiy 0(€srai) = €18
for all a; € I, where 8; = o(a;). We write
o(€x) = Rabo(a)
for each « € ®, where kb, € Z. Then we have k, = +1 for all « € &.

ProrosiTiON 2.1. Let (&, ) be of 2-type. Then we can choose a Chevalley
basis which satisfies the following condition:

(1) ko = —1if Pisoftype Aoy (n 2 1) and o () = «;

(2) ko = 1 otherwise (cf. [1, Proposition 3.1]).

ProposiTiON 2.2. Let (®, ) be of 3-type. Then we can choose a Chevalley
basis such that ky = 1 for alla € ®.

Proof. We have ky, = k_yas o(ha) = ho(a), SO We may assume « is posi-
tive. Suppose o(@) = «. Then (k,)® = 1 and k, = 1. Next suppose
o(a) # a,andsetB = o(a) and v = o?(a). Then k.kgk, = 1,and (ka, ks, ky)
=(1,1,1), 1, —1, —=1), (—1,1, —1), or (—1, —1, 1). To establish
this proposition, we may assume (ka, ks, ky) = (1, —1, —1). Replacing
ey by —e,, we have o(e.) = e5, d(eg) = e, and o(ey) = e,. Arrange the
bases for negative roots similarly, and k, = 1 foralla € &.

We shall fix a Chevalley basis of g¢ with the properties of Proposition
2.1 or 2.2. We assume that K has a primitive rth root of unity when
(®, o) is of r-type. Therefore, in particular, we have char K # r. If r = 3,

we let w denote a primitive cubic root of unity in K. Let 7 be the Galois
automorphism of K[T', 7] over K[T7, T-"] defined by

(1) r(T*) = —THif r = 2,
(2) r(TH) = (wT)*tif r = 3.
Let L’ (resp. }’) be the subalgebra of fixed points of L (resp. ) under

7 ® o. (For more general cases, see [5], [6]).
For each (¢, m) € Q, we define an element e, ,, of L’ as follows.

Type (a):

eem = IT™e, if ¢ = (v) is of type (R-1) and m = 0 (2)
T™e,, + T™e,, if ¢ = (v1,72) is of type (R-2) andm = 0 (2)
T™e,, — T™ey,if ¢ = (y1,72) isof type (R-2) andm =1 (2).

Il

€cm

€com
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Type (b):

eem = Ty if ¢ = (v) is of type (R-1) and m = 1 (2)
eem = Iy, + Ty, if ¢ = (71, v2) is of type (R-3) and

m=0(2)
eem = I"ey, — T™e,, if ¢ = (y1, v2) is of type (R-3) and
m =1 (2).

Type (c):
eem = Ty if ¢ = (v) is of type (R-1) and m = 1 (2)
eem = T™ey, + T™e,, if ¢ = (y1,v2) is of type (R-2) or
(R-3),and m = 0 (2)
eem = T™ey, — T™e,, if ¢ = (71, v2) is of type (R-2) or
(R-3),and m =1 (2).
Type (d):
eem = I™eif ¢ = (y) is of type (R-1) and m = 0 (3)
eem = T"ey + T™ey, + T7e, if ¢ = (v1, 72, v3) is of type
(R-4) and m = 0 (3)
eemn = 1"y, + wT™e,, + 0*T™ey, if ¢ = (y1, 72, v3) is of type
(R-4) and m = 1 (3)
eem = 17y + w*T"ey, + wT™e, if ¢ = (v1,v2, vs) is of type
(R-4) and m = 2 (3).
Then L' = i @ 2 (cmen Keew. For each ¢ € &, set he = hyif ¢ = (v)
is of type (R-1), he = hy, + hy, if ¢ = (71, v2) is of type (R-2) or (R-3),
and h, = hy, + hy, + hy if ¢ = (71,72, v3) is of type (R-4). Let

b =D cca, Khe

For each (¢, m) € Q, we have [k, e..n] = c(h)e.,, for all b € '/, where ¢
is regarded as an element of (§”)*, the dual of §”’.

ProrosiTiOoN 2.3. Let (¢, m) be itn Q. Then:

1) [hey €om) = 2€cmif cis of type (R-1), (R-2) or (R-4),
(2) [hcyec,m] = €com lfCiS Oftype (R-3),

(3) [ec,my e—c,—m] = hc-

Proof. The case when ¢ is of type (R-1), (R-2), or (R-4) is easy.
Assumec = (y1,7:) isof type (R-3). Thenh, = hy + h,,,ande., = T™e,,
+ T™ey, (resp. T"ey, — T™e,,) if m = 0 (2) (resp. m = 1 (2)). Hence,

(fy, + hy,, Ty, £ Ty, ] = 2T, — T7e, F T™e,, = 2T7e,,

= Ty, £ T,
and
[Ty, &= T™ey,, T""e_y, &= T ey, ] = hy + hy,.
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3. Twisted Chevalley groups. Let p be a finite dimensional complex
faithful representation of gc. We let G be a Chevalley group over K[T, T-!]
associated with g¢ and p. Set &, = & X Z. For each (a, n) € &, there
exists a group isomorphism

{2, ™ (1)

of the additive group K+ of K onto a subgroup X,™ of G (for the defini-
tion, see [11]). The elementary subgroup E of G is generated by X,™ for
all (a, n) € ®;. Let K* be the multiplicative group of K. For each
(a,n) € ®; and t € K*, we define

W, ™ (t) = %™ (t)xva(_n)(_t_l)xa(”) (lf),

he™ (8) = wa™ (£)w, O (1)L
Let N be the subgroup of E generated by w,™ (¢) for all (, n) € &, and
t € K*, and let H, be the subgroup of E generated by £, (¢) for all

a € Pandt € K* Let U be the subgroup of E generated by x,™ (¢) for
all (o, n) € ®&*and ¢ € K, where

(I)1+ = ((I)+ >< Z>0) U (CI)— X Zgo).
Let B be the subgroup of £ generated by U and H.

THEOREM 3.1. Notation is as above. Then:

(1) (E, B, N) 1s a Tits system,

(2) N/ (B M N) is isomorphic to the affine Weyl group of & (cf. [11,
Theorem 2.1]).

For any (¢, m) € Qand ¢ € K, we define x,,(¢) as follows.

Type (a):
Xem(t) = 2, (t) if ¢ = (y) is of type (R-1) and m = 0 (2)
Xom(t) = 20y, ™ (Dxy, ™ (2) if ¢ = (y1, 72) is of type (R-2)

and m = 0 (2)
Xem() = w0y, " ()2y, ™ (—=1) if ¢ = (71, 72) is of type (R-2)
and m = 1 (2).

Type (b):
Lom(t) = %, (1) if ¢ = (v) is of type (R-1) and m =1 (2)
Zem(t) = 257 (%0 (%437, BNy t)
if ¢ = (v1,v2) is of type (R-3) and m = 0 (2)
Xem(t) = 257 (O3, (= )25, (= 3Ny, t")

if ¢ = (y1,72) is of type (R-3) and m = 1 (2).

https://doi.org/10.4153/CJM-1981-089-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1981-089-6

1194 JUN MORITA

Type (c):
Xem(t) = 2, () if c = (y) is of type (R-1) and m = 1 (2)
Ko () = 2y, " ()25, ™ (¢) if ¢ = (71, 72) is of type (R-2)

and m = 0 (2)
Xem(t) = 2, ()%, "™ (—1) if ¢ = (y1, 72) is of type (R-2)
and m =1 (2)

Xem(t) = xf:f) (t)x'(;:) (t)xfrzﬁ—)n(%Nvg.ht?)
if ¢ = (y1,7v2) is of type (R-3) and m = 0 (2)

Tem(t) = 237 (O)%37 (= 0%, (= $Nyy )
if ¢ = (y1,v2) is of type (R-3) and m = 1 (2).

Type (d):
Xem(t) = 2,7 () if ¢ = (v) is of type (R-1) and m = 0 (3)
Xem(t) = x71<m>(t)x.,2(’”>(t)x73(’”)(t)
if ¢ = (v1, 72, v3) is of type (R-4) and m = 0 (3)
Rem(t) = 2,07 (0, ™ (), ™ (w1)
if ¢ = (1, v2, v3) is of type (R-4) and m =1 (3)
Xem(t) = xv,(m)(t)xvg(m><“-’2t)x73(m)<wt)

if ¢ = (v1, 72, v3) is of type (R-4) and m = 2 (3).

For each (¢,m) € Q, let X, be the subgroup of E generated by x. ,(¢)
for all t € K. Then X, is isomorphic to the additive group K* of K.
Let E’ be the subgroup of E generated by X, , for all (¢, m) € Q. For
each (¢,m) € Qand t € K* we define

Wen(t) = Xem(O)X—c,—n(— )% e m(t)
if ¢ is of type (R-1), (R-2) or (R-4),

Wem(t) = Xem(E)%—c,m(—267)% e m(t)
if ¢ is of type (R-3) and m = 0 (2),

Wen(t) = Xem()Xc—m(207) %0 m (8)

if ¢ is of type (R-3) and m = 1 (2).
Let N’ be the subgroup of E’ generated by w, ,,(¢) for all (¢, m) € Q
and t € K*.

LeEMMA 3.2. Let (¢, m) bein Qand tin K*. Then:
(1) wen(t) = wy,™ (1) tf ¢ = (y) is of type (R-1),

(2) Wem(t) = wy, ™ (Dwy, ™ (1) if ¢ = (v1, v2) 5 of type (R-2)
and m = 0 (2),
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(3)  wemt) = wy, ™ (Owy, " (—1) if ¢ = (v1, v2) is of Lype (R-2)
andm =1 (2),
@) wen(®) = k) (=Dt BNy, 0,1
if ¢ = (y1, v2) s of type (R-3) and m = 0 (2),
(5) We, m(t) = h(O)( 1) ;fﬂy?(_%Nn,htz)
ifc = (y1, v2) s of type (R-3) and m = 1 (2),

(6) Wen () = wy, ™ (E)wy, ™ (£)wy, ™ (1)

if ¢ = (y1, v2, v3) ts of type (R-4) and m = 0 (3),
() Wem(t) = wy, ™ (O)wy, ™ (0t)wy, ™ (0?)

if ¢ = (1, ve, v3) s of type (R-4) and m = 1 (3),
(8) Wen () = wy, ™ (H)wy, ™ (W) wy, ™ ()

if ¢ = (v1, v2, v3) 1s of type (R-4) and m = 2 (3).
Proof. (1), (2), (3), (6), (7), and (8) are easy. Here we shall establish
(4). By the Jacobi identity, we have

Nyiry =1 Nvy vy = Ny, 9, Ny, —, = 1 and
1V71+72.—72N73,71 = N—71—72,72N—~/._,,—71 = —1
Thus,
We m(t) = X m(t)x—c‘—m('—2t_l)xc,m(l)
= 2y ()25, (a5 Py, Gy 0,965 (=275 (=207
2m) [ ) (m) 2m) T
X x(—n?ﬁy (2N_yy -t )x i (t)x;:" (t)x;lzn(}hv M)
) (1)4 —1y, (m) 1 Cm 1A
= xvrln (i)x—*/'lw(‘% )va (l)x— ( 2t )x‘h’“?"h 1]\’7» )

(—2m) (2m)
X x5, 55, Nyt )x NN CI A’ )

( ) (m) —m) (— (2m)

» (t)xvr,n( ’)w—*r:n< ) A*y,,m( niva(w\/v b ')
- 2

"”’(t)xéj”( Hwy? (xS (=1 Dwyry, 3Ny, %)

= w‘yl)(t)Q Er2lm+)72(lN—rn vt “)
= hm)(t)h(_m) =t )’LU.,1+~,2(1N~,,71t )
(= 1, (V)

(5) is similarly shown.

By Lemma 3.2 and [11, Lemma 2.3 (2)], the next lemma can be
established.

LemMA 3.3. Let (a, n) and (b, m) be in Q, and t tn K*, and set (b', m’) =
Wy (b, m). Then

wa,n(t)Xb,mwa,n (t)_l = Xb’ m’e
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By Lemma 3.3, we see that there is a group homomorphism » of N’
onto W(Q) defined by »(w,,(t)) = w., for all (a, n) € Qand ¢t € K*,
Let Hy be the kernel of ». We sometimes identify an element of W (Q)
with a representative in N’ of N'/H,'. Let U’ be the subgroup of E’
generated by X, for all (¢, m) € QF, and let B’ be the subgroup of E’
generated by U’ and Hy'.

THEOREM 3.4. Let Y’ be as in Section 1. Then (E', B', N’, Y') is a Tits
system.

This theorem will be established in Section 5. For that purpose it is
necessary to prove the next proposition. Let s be in ¥’. For some (¢, n) €
Qo, we have s = w, ,. Set

Qt(s) = {(a,m) € Q%5 a € Qc}.
Let P, be the subgroup of U’ generated by X, ,, for all (a, m) € Q*(s).

ProrosITION 3.5. Let sbein YV'. Then

sP,s—1 C B'"\U B’sB’.

We shall show this proposition in Section 4.

4. Proof of proposition 3.5. Let s be in Y’, and write s = w,,, for
some (¢, n) € Q. Let

Q(s) = {(a,m) € Q;a € Qc}

and E'(s) be the subgroup of E’ generated by x, ,(¢) for all (a, m) € Q(s)
andt € K. If &, M Qc = {=c}, then we can view E’(s) as the elementary
subgroup of a Chevalley group of type 4, over K[T', 7], K[T?, T—?] or
K[T3, 1T3], therefore Proposition 3.5 can be shown using the result in
[11, Section 3]. Thus, to establish Proposition 3.5, we may assume that
® is of type A» and ®, is of type BCi. In this section, from now on we
assume G is a Chevalley group of type A, over K[T, T7'], so &, =
{Ea, 24},

ot = {(+a,n), (—a,m), (£2a, k) € Q;
n>0,m=0k>0k=1(2)}.
We simply write
Wo = W_g,0 = W_o(1)Wae1(2)wa, 1 (—1) and
W) = Wa,1 = w?a,l(l)'
Let Sy = B'\U B'w\B’, where A = 0, 1.

LeEmMA 4.1. The following statements hold.
(1) wo X o oo™ = X50. & B’ ifn
(2) We X;{:Za,nw()_l = X:F2a,n g B’ ifn

v v

1.
Ln=1(2).
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() wo X_o,0wo™ = Xo0 S So.

(4:) W1 Xa‘,,‘wl‘l = X—a,n——l g B’ ifn z 1.
(5) w1 X_a,nwl“l = Xa,n+l g B’ ’ifn é 0.
(6) wy X2a,nwl_1 = X—2a,n—2 _(; B i:fn é 3, n=1 (2)
M) w1 Xsgowr™ = Xoany2e € B ifnz=1,n=1(2).

(8) W1 X2a,1w1_1 = X—2a,—1 c Sy

Definition. Let x be in E'.
(1) x is called a (QS, 0)-element if x can be written as
X—a,0()%a,0(U) %0, m, (t1) « + + Koy my () %00 (),
where (b;, m;) € O — {(—a,0)},k 2 0,4, u, b1, ..., 4 € K,andv € K*.
(2) x is called a (QS, 1)-element if x can be written as
%20,1(8)X—2q,—1 (1) %Xy, m, (t1) + + « %o m, (tx) X 20,1 (),

where (b;, m;) € Ot — {(2a, 1)}, 2 0,¢, u, t1,...,4 € K, and v € K*.
(3) x is called an (S, 0)-element (resp. (S, 1)-element) if x is a (QS, 0)-
element (resp. (QS, 1)-element) with # = 0.

LEMMA 4.2, Let x be tn E' and N = 0, 1. If x is an (S, N\)-element, then
waxwy € S.

Proof. Set A = 0. We proceed by induction on k. If ¢t = 0, clearly
wexwo ! € Sy by Lemma 4.1. Assume ¢ #= 0.
Case 1: (b, m1) = (—a,m),m >0, m =1 (2).
WX~ = WoX—q,0(8)%_gm (11) X0y ms (£2) - . .
e Xy ()% 0 (D) W0 = WoX— 90 (£ 2881) Xy (£1) %00 (2)

X xbz,mz (tQ) o xbk,mk(tk)x*a,ﬂ(v)wo_l E X‘za,mXa,mw()x—a,O(t)

X Kb, m, (ta) . .. Xog my (t)X—a 0 (@)™ © B'Sy C Se.
Case 2: (b, m1) = (—a,m),m > 0,m =0 (2).

wWrwo ™! = Wok—q,0(E)%—a,m (1) X0, m, (F2) - -+ %o my (b)) X 0 (¥) W0 ™!

= WoX—q,m(£1)%—a,0(B) %0, m, (t2) -+ - Ko, my (br)X—a,0(0) W™
€ XomWoX—a,0(t) %0, my, (t2) + - Xy, m, ()% 0(v) W0
C B'Sy = So.
Case 3: (b, m1) = (—2a,m),m > 0,m =1 (2).
WXWo™' = WX —a,0(E)X—20,m (£1) X0, my (£2) + - + Xy ,my (k)% —g,0 (V) W0
= WX _q,m (F1)X—a,0(8)Xp, my (12) + -+ oy my, (te)X—q,0 (V) W0o ™!
€ XoamWoX—a,0(8) %0, m, (t2) - - - Ko my (b)X—a,0(0) W ™!
C B'Sy = S
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Case 4: (by, m1) = (¢, m), m > 0,

WX W™t = WoX—q,0(E)Xa,m (E1) %0, m, (£2) - -+ Koy ()% —a,0(V) W5~}
= X, 0(—8)%—gm(—t1)xs . . . XxXq,0(—2)
= X a,0(= 27 )w_q,0(267 )% 0(— 27 )% m(—11)
X X2 oo XX q,0(—207)wW_g,0(207 )%y, 0(—207")
€ Bwox—q,0(—20 ) %_qm(—t1)%2 . . . x3%_q,0(—20")wo 1B’

C B'SB’ = .5
(x]‘ = w()xa]',mj(tj)wﬁ_ly 2 é] é k)
Case 5: (by, m;) = (2a,m),m > 0,m =1 (2).
’wox‘wo_l = w0x—a,0(t)x2a,m(tl)xb2,m2 (tQ) L xbk,mk<tk)x—a,0(v)w0_l

= Xg.0(— %20, m(t1)X2 . . . Xx%4 0(—)
= x_q0( =2 w_,0(27)x 0, 0(—2671) %20 m (81)
X Koo XX ,0(— 207wy 0 (207 )y, 0(—207")
€ B'wox—q,0(—2")%_20.m(t1)X2 . X3X—g.0(— 207w 1B’
C B'SyB' = S,
(x; = WXy, m; (w2 = 7 = k).
The case when N = 1 is similarly shown.
LEmMmA 4.3. Let x be in E'.
(1) If x s an (S, 0)-element, then
wexwo' € BwoX_y X 0wo™t
(2) If x is an (S, 1)-element, then
wixw, ! € B,w1X2a,1X—2a,—1w1-_1-

Proof. Proceed by induction on % as in Lemma 4.2. Then we have (1)
and (2).

LEMMA 4.4. Let x be in E' and N\ = 0, 1. If x 1s a (QS, \)-element, then
waxwn ! € S.

Proof. Lemma 4.2 implies this lemma as in [11, Lemma 3.6].

LEMMA 4.5. Let x be in E'.
(1) If x 75 a (QS, 0)-element, then

wexwo ™t € B'woX 40X, 0wo .
(2) If x is a (QS, 1)-element, then

wixw; ™t € B'wiXog 1 X _aq 1w
Proof. Lemma 4.3 implies this lemma.

These five lemmas lead to Proposition 3.5 as in [11, Section 3].
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5. Proof of theorem 3.4. Notation is as in Section 3. By using the
commutator relations in [11, Lemma 2.2], we can establish the following
proposition.

ProposiTION 5.1. Let (a, m) and (b, n) be in Q such thata + b # 0. Then
[Xa,mv an] c (Xc.k; (C, k) € Q,
c=1a~+jb,k =1m+ jn, 1,7 > 0).

Let s be in Y/, and let @+ (s)’ = @t — Q*(s). Let Q; be the subgroup of
U’ generated by X, , for all (¢, m) € Q+(s)’. Then, by Proposition 5.1,
we have

(5.2) P, normalizes Q;,
(5.3) U = PQ..

By the definition of Hy',
(5.4) H normalizes X ., for all (¢, m) € Q,
(5.5) B = U"Hy.

Clearly, B’ "\ N’ D Hy. Conversely let x be in B’ M\ N’. Then
x € W(Q), where x is the image of x under the canonical group homo-
morphism ~of N’ onto N’/H,'. Since x is in B’, we have 2+ C Q*, hence
N(x) = 0andx € Hy. Thus,
(5.6) B NN = Hy.

By Proposition 3.5, (5.3) and (5.5),

sB/s™! = s(P,QHy)s™! = (sPgs™1) (sQes7Y) (sHy's™)
C (B'U B'sB')B'Hy.

Hence,
(5.7) B’\J B’sB’ is a subgroup of E’.

We see that E acts on L via the adjoint representation (cf. [11, Section
4]). Then L' is stable under the action of E’. Let g be in U’ and (a, n) €
Qo, and set

Za,n = Z(b.m)éﬂ*—( (a,n)lKeb.m-

If a is of type (R-1), (R-2), or (R-4) (resp. of type (R-3)), then we can
write

86—a,—n = €—q,—n + g‘ha - §2ea,n + z

(resp. ge—,—n = €—g—n + (he — 3¢%4, + 2) forsome { € Kandz € Z,,
(cf. Proposition 2.3). Let 4, , be a map of U’ onto K defined by 6, ,(g) =
t. As

ghy = hy — 2¢€4, + 2’
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(resp. ghy = h, — (€, + 2') and ¢gZ,, € Z,,, the map 6, is a group
homomorphism of U’ onto the additive group K+ of K, where 2’ € Z, .
Let D, , be the kernel of the homomorphism 6, ,. By (5.7),

Wo n Do nWa ™t © B'\U B'w, B’
For any x € D, ,, we have
(Wa W™ )ean = €an + 2",
where 2" € Z, ., S0 Wy W, .~ can not be in B'w, ,B’. Thus,
(5.8)  WanDoaWant S B
Ifgisin U, (a,n) € Qand b, ,(g) = ¢, then
gan(—¢) € Do
Hence,
(5.9) U =Dy, Xon
Therefore, as in [11, Section 4], we have
(5.10) (B'wB')(B'sB’) C (B'wsB’)(B'wB’)
forany w € W(Q) and s € Y’. These facts imply Theorem 3.4.

Remark. If (®, o) is of r-type, then L’ has the structure of an r-tiered
Euclidean Lie algebra (cf. [5], [6], [8], [9], [13], Table 4 below). We
follow the classification in [8], so here we use the notation Djinstead of 4 ;.

TABLE 4.
2-type 3-type
(®, o) Aonga Ao D, Es A, Dy
nz2) ®=z2) (n 2 3)
L Cri1,2 BCy,» Bu_1,2 Fy Aie Ga,s
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