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AN UNCERTAINTY PRINCIPLE FOR THE DUNKL TRANSFORM

MARGIT ROSLER

This note presents an analogue of the classical Heisenberg-Weyl uncertainty principle
for the Dunkl transform on WLN. Its proof is based on expansions with respect to
generalised Hermite functions.

1. INTRODUCTION

The Dunkl transform is an integral transform on R" which generalises the classical
Fourier transform. On suitable function spaces, it establishes a natural correspondence
between the action of multiplication operators on one hand and so-called Dunkl oper-
ators on the other. These are differential-difference operators, generalising the usual
partial derivatives, which are associated with a finite reflection group on some Euclidean
space. They play, for example, a useful role in the algebraic description of exactly solv-
able quantum many body systems of Calogero-Moser-Sutherland type; among the broad
literature in this context, we refer to [1], [9], and [11]. In his paper [8], de Jeu proved a
quite general uncertainty principle for integral operators with bounded kernel which ap-
plies to the Dunkl transform; this result has the form of an e — ^-concentration principle
as first stated in [4] for the Fourier transform. Analogues of the classical variance-based
Weyl-Heisenberg uncertainty principle for the Dunkl transform have up to now only been
given in the one-dimensional case ([14] and [15]). It is the aim of this note to present
an extension to general Dunkl transforms in arbitrary dimensions. Our setting, which
is described in more detail in section 2, is as follows: Let R be a finite (reduced) root
system on R" and k : R -> [0, oo] a nonnegative multiplicity function on R. Let wk

denote the weight function

on RN, where (.,.) is the Euclidean scalar product on RN, and put 7 := J2 k{a)/2.
a€R

We shall prove the following uncertainty principle for the associated Dunkl transform
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THEOREM 1 . 1 . Let f e L2(RN,wk{x)dx). Then

(1-1) l l N / I L . - l I U
Moreover, equality holds if and only if f(x) — ce~d^ for some constants c € C and
d > 0 .

If the multiplicity function k is identically 0, then the corresponding Dunkl transform
coincides with the usual Fourier transform (independently of the underlying root system),
and the above result coincides with the classical Weyl-Heisenberg inequality on L2(RN).

Our proof of Theorem 1.1 is based on expansions in terms of generalised Hermite
functions, which were introduced in [12]. This generalises a well-known method for
the (one-dimensional) classical situation, see for example, [2]. Our method needs not
much more effort than in the classical case, but requires a zero-centred situation. This
restriction cannot easily be removed. For the one-dimensional case, the result of Theorem
1.1 was already obtained in [15], by a very similar method. In contrast, the version given
in [14] is uncentred. It is based on commutator methods which become difficult to handle
in higher dimensions. However, the lower bound in [14] is not uniform, and coincides
with the one above for even functions only.

2. DUNKL OPERATORS AND THE DUNKL TRANSFORM

In this section, we collect some basic facts from Dunkl's theory which will be needed
later on. General references here are [7, 5, 6].

For a € M.N \ {0} we denote by aa the reflection in the hyperplane orthogonal to a,
given by aQ(x) - x - (2(a,x)/\a\2) a. Let R be a (reduced) root system in R^, that
is, a finite subset of RN \ {0} with R n K • a = {±a} and aQ(R) = R for all a € R.
We assume that the root system R is normalised, that is, |a|2 = 2 for all a 6 R. The
reflections aa , a 6 R generate a finite group G, the reflection group associated with R.
A function k : R —> C is called a multiplicity function on R if it is invariant under the
natural action of G on R. Now fix a reflection group G on R" and a multiplicity function
k ^ 0 on its root system R. The Dunkl operators T* (i = 1,. . . , N) on M.N associated
with G and k are defined by

Tif(x) := dJix) + \ E *(a) a, • / ( x ) " f{°°X) , feC\R»);

here d{ denotes the i-th partial derivative. In the case k = 0, the 7i reduce to the usual
partial derivatives. In this paper, we assume that all values of k are nonnegative, for
short, k ~£ 0. The most important basic properties of the operators Tj are as follows: Let
V = Cf i i , . . . ,xN) denote the algebra of polynomial functions on R" and Vn (n € Z+ =
{0 ,1 , . . . }) the subspace of homogeneous polynomials of degree n. Then
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(1.1) Each Ti is homogeneous of degree - 1 on V, that is, Ttp € Vn-X for p € Vn.

(1.2) The set {Tj, z = 1 , . . . , N} generates a commutative algebra of differential-
difference operators on V.

For a polynomial p € V, we denote by p(T) the linear operator derived from p(x) by
replacing xt by 7i. In particular, the generalised Laplacian is defined by A* := p{T) with
p[x) = |x|2. Note that Ak is homogeneous of degree - 2 , and hence for each c 6 C, the
exponential ecAt is a well-defined linear operator on V with inverse e~cA*.

The solution of the joint eigenfunction problem for the Dunkl operators {T{, i =
1 , . . . ,N} is given by the Dunkl kernel KG on RN xRN: for each fixed y £ RN, the
function x i-> KG(x,y) is characterised as the unique solution of the system T,/ =
2/i/ (i = 1 , . . . ,N) with /(0) = 1; see [10]. The kernel KG(x,y) is symmetric in its
arguments and has a unique holomorphic extension to CN x CN. It satisfies KG(z, 0) = 1
and KG(\z, w) = KG{z,^w) for all z,w € C N and all A e C. Moreover, the function
x i-> KG{ix,y). (y € K^ fixed) is positive definite on KN. See [13]. In particular,
\KG{ix,y)\ sS 1 for all a;,j/€ Rw.

The Dunkl transform associated with G and k is given by

with the Mehta-type constant

, - l

This transformation has many properties analogous to the Fourier transform on K^,
among which we shall in particular need the following:

PROPOSITION 2 . 1 . [7]

(1) The Dunkl transform f —¥ fk is a homeomorphism of the Schwartz space
§(RN) of rapidly decreasing functions on RN.

(2) f~f\0 = i£jp for all f € S(K") and j = 1,... , N.

(3) (Plancherel theorem) The Dunkl transform has a unique extension to an

isometric isomorphism ofL2(jS.N, Wk(x)dx), which is again denoted by f —>

/ * •

EXAMPLES 2.2. (1) If k = 0, then KG{z,w) = e{z-w) for all z,w € C*. Here the Dunkl
transform is the usual Fourier transform on RN.
(2) If AT = 1 and G = Z2, sending i € M t o —x, then the multiplicity function is a single
parameter k ^ 0, and the Dunkl kernel is given by

KZ2{z,w) = jk-i/2{izw) + 2k + 1Jk+i/2{izw) {z,w € C),
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where for a ^ - 1 / 2 , j a is the normalised spherical Bessel function

The corresponding Dunkl transform coincides with the Fourier transform on a certain
(signed) hypergroup structure on R; for details see [14] and the literature cited there.

3. GENERALISED HERMITE FUNCTIONS

Let G be a finite reflection group on M.N and k ^ 0 a fixed multiplicity function on its
root system R. In [12] we introduced complete systems of orthogonal polynomials with
respect to the weight function wk(x) e"'1'2 on R", called generalised Hermite polynomials.
The key to their definition is the following bilinear form on V, which was introduced in
[6]:

\p,q]k := (p(T)q)(0) for p,qeV.

The homogeneity of the Dunkl operators implies that Vn -L Vm for n ^ m. Moreover, if

p,qeVn, then

(3.1) \p] [
JRN

This is obtained from Theorem 3.10 of [6] by rescaling, see [12, Lemma 2.1]. So in
particular, [., .]* is a scalar product on the vector space VR = R [ i j , . . . , x^].

Now let {ipv, v € Z^f} be an (arbitrary) orthonormal basis of PR with respect to
[., .]fc such that ipv 6 V\u\- (For details concerning the construction and canonical choices
of such a basis, we refer to [12]). Then the generalised Hermite polynomials {Ev , i> e Z+}
and the (normalised) generalised Hermite functions {hu, v € Z^f} associated with G, k
and {<pu} are denned by

Hu(x) := 2'"le-A*/V(s) and hv{x) := JFk2-MI2e-W2Hv{x) (x e RN).

Note that Hu is a polynomial of degree \u\, with real coefficients. This implies (3iV-
term) recurrencies of the following form: For^ € Z^, let Iv = { / i £ Z^ : ||/i| —|i/|| ^ 1}.
Then

(3.2) XjHv = Y^ 4 , ^ and Xjhv = ^ c^/ip for j = 1,... , N,
iieiv pel*

with coefficients c^ A € R. In general, there are many possible choices of generalised
Hermite systems. However, in the one-dimensional case N = 1 (with fixed parameter
k ^ 0), the basis {<£>„,n € Z+} is uniquely determined. The associated generalised
Hermite polynomials are orthogonal with respect to the weight function |x|2*e~ll|i! on R
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and can be written explicitly in terms of Laguerre polynomials; for details, see [12] or
[3, Chapter V].

We collect some further properties of the generalised Hermite functions {hv ,u € Z+}
which will be essential for the proof of Theorem 1.1.

LEMMA 3 . 1 . [12]

(1) {hu,u £ 1*1} is an orthonormal basis of L2(RN ,Wk(x)dx).

(2) The hv axe eigenfunctions of the Dunkl transform on L2(M.N,Wk(x)dx),
with ft* = {-i)Mhv.

(3) The hu satisfy (\x\2 - Ak)hu = (2\u\ + 2 7 + N) hv.

4. P R O O F OF T H E UNCERTAINTY PRINCIPLE

From now on, {hv,i> € Z+} is an arbitrary fixed system of generalised Hermite
functions associated with G and k ~£ 0. We shall need the dual counterparts of the
recurrences (3.2):

(4.1) Tjhu = J2 il~l"i+M c>tll K U = 1. • • • . N, v e Zj[.)

These are easily obtained from (3.2) by use of Proposition 2.1.(2) and Lemma 3.1.(2).
We write (.,.)* for the scalar product in L2(RN ,wk(x)dx). The main part in the

proof of Theorem 1.1 is the following Parseval-type identity.

LEMMA 4 . 1 . Let f e L2(RN,wk(x)dx). Then

[ \x\2(\f{x)\2 + \fk(x)\2)wk{x)dx = Y/(2\v\ + 2y + N)-\(f,hv)k\
2.

P R O O F : Fix j G {!,... , TV}. In view of Lemma 3.1.(1), we can write

JRN

By use of (3.2), this becomes

E E <Ap-(f'h^TUph= E ( E <A

Here the last equality is justified by the facts that the involved index sets Iv are finite, and
that /x € /„ <£=> v € 1^ holds for all v, /j, e Z+. Exploiting Lemma 3.1.(2), Proposition
2.1.(2) and the Parseval identity for the Dunkl transform, one further obtains

L te/fc,M*|2= T
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With the recurrence (4.1), this becomes

/ , / , ' CI/,AI * cv,p
j . i t h \./f h \.
v,p \Jtnii/k\Jtnp/k

Combining the previous results, we arrive at

(4.2) J^\x\2(\f(x)\2 + \fk(x)\2)wk(x)dx =

where

N

On the other hand, a short calculation, using formulas (3.2) and (4.1), shows that

N

where for the last identity, we used the fact that the coefficients c^ ^ are symmetric in

their subscripts: cl = / Xjhu(x)hJx)wk(x)dx = c3
uv. But by Lemma 3.1.(3), the

JRN
left side of (4.3) is equal to (2\v\ + 2-y + N) hv. The linear independence of the hu now

implies that

A = | ° i f P * " .
| 2 | 2 / | + 2 7 + N \ip = u.

Together with (4.2), this yields the assertion. D
In view of Lemma 3.1.(1), and as h0 is a constant multiple of e~lTl2/2, we obtain as

an immediate consequence the following:

COROLLARY 4 . 2 . For / e L2(RN,wk{x)dx),

f \x\2(\f(x)\2+\fk(x)\2)wk(x)dx

Moreover, equality holds if and only if f(x) = ce'^l2 with some constant c € C.

P R O O F OF THEOREM 1.1 We may assume that ||/||2,u>t = 1- For s > 0 define
fs{x) := s~'1~N/2f(x/s). Since wk is homogeneous we easily see that

| | / . lk«k = 1 and fs
k(0 = s7 + w / 2 • /*(afl for all s > 0 and f e RN.
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The above corollary implies that

= f \xt
JRN

On the other hand, we can write

It is easily checked that s >-¥ $/(s) takes a minimum on (0, oo), namely

This implies (1.1). Further, equality in (1.1) holds exactly if min $/(s) = 2j+N. By
s€(0,oo)

the second part of the corollary, this condition is satisfied if and only if f(x) = ce~s2 | l | 2 /2

with some constants c € C and s > 0. This finishes the proof. D

REFERENCES

[1] T.H. Baker and P.J. Forrester, 'Non-symmetric Jack polynomials and integral kernels',
Duke Math. J. 95 (1998), 1-50.

[2] N.G de Bruijn, 'Uncertainty principles in Fourier analysis', in Inequalities, (O. Shisha,
Editor) (Academic Press, New York, 1967), pp. 57-71.

[3] T.S. Chihara, An introduction to orthogonal polynomials, Mathematics and its Applica-
tions (Gordon and Breach, New York, 1978).

[4] D.L. Donoho and P.B. Stark, 'Uncertainty principle and signal recovery', SIAM J. Appl.
Math. 49 (1989), 906-931.

[5] C.F. Dunkl, 'Differential-difference operators associated to reflection groups', Trans.
Amer. Math. Soc. 311 (1989), 167-183.

[6] C.F. Dunkl, 'Integral kernels with reflection group invariance', Canad. J. Math. 43 (1991),
1213-1227.

[7] M.F.E. de Jeu, 'The Dunkl transform.', Invent. Math. 113 (1993), 147-162.
[8] M.F.E. de Jeu, 'An uncertainty principle for integral operators', J. Fund. Anal. 122

(1994), 247-253.
[9] L. Lapointe and L. Vinet, 'Exact operator solution of the Calogero-Sutherland model',

Comm. Math. Phys. 178 (1996), 425-452.
[10] E.M. Opdam, 'Dunkl operators, Bessel functions and the discriminant of a finite Coxeter

group', Compositio Math. 85 (1993), 333-373.
[11] A.P. Polychronakos, 'Exchange operator formalism for integrable systems of particles',

Phys. Rev. Lett. 69 (1992), 703-705.
[12] M. Rosier, 'Generalized Hermite polynomials and the heat equation for Dunkl operators',

Comm. Math. Phys. 192 (1998), 519-542.
[13] M. Rosier, 'Positivity of Dunkl's intertwining operator', Duke Math. J. (to appear).
[14] M. Rosier and M. Voit, 'An uncertainty principle for Hankel transforms', Proc. Amer.

Math. Soc. 127 (1999), 183-194.

https://doi.org/10.1017/S0004972700033025 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033025


360 M. Rosier [8]

[15] C.T. Roosenraad, Inequalities with orthogonal polynomials, thesis (Univ. of Wisconsin,
1969).

Zentrum Mathematik
Technische Universitat Miinchen
Arcisstr. 21
D-80290 Miinchen
Germany
e-mail: roesler@mathematik.tu-muenchen.de

https://doi.org/10.1017/S0004972700033025 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033025

