REVERSES OF THE SCHWARZ INEQUALITY GENERALISING A KLAMKIN-MCLENAGHAN RESULT

SEVER S. DRAGOMIR

New reverses of the Schwarz inequality in inner product spaces that incorporate the classical Klamkin-McLenaghan result for the case of positive *n*-tuples are given. Applications for Lebesgue integrals are also provided.

1. Introduction

In 2004, the author [1] (see also [3]) proved the following reverse of the Schwarz inequality:

THEOREM 1. Let $(H; \langle \cdot, \cdot \rangle)$ be an inner product space over the real or complex number field \mathbb{K} and $x, a \in H$, r > 0 such that

$$||x - a|| \leqslant r < ||a||.$$

Then

(1.2)
$$||x|| (||a||^2 - r^2)^{1/2} \le \text{Re}\langle x, a \rangle$$

or, equivalently,

(1.3)
$$||x||^2 ||a||^2 - \left[\operatorname{Re}\langle x, a \rangle \right]^2 \leqslant r^2 ||x||^2.$$

The case of equality holds in (1.2) or (1.3) if and only if

(1.4)
$$||x-a|| = r$$
 and $||x||^2 + r^2 = ||a||^2$.

If above one chooses

$$a = \frac{\Gamma + \gamma}{2} \cdot y$$
 and $r = \frac{1}{2} |\Gamma - \gamma| ||y||$

then the condition (1.1) is equivalent to

(1.5)
$$\left\| x - \frac{\Gamma + \gamma}{2} \cdot y \right\| \leqslant \frac{1}{2} \left| \Gamma - \gamma \right| \|y\| \quad \text{and} \quad \text{Re}(\Gamma \overline{\gamma}) > 0.$$

Therefore, we can state the following particular result as well:

Received 12th September, 2005

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/06 \$A2.00+0.00.

COROLLARY 1. Let $(H; \langle \cdot, \cdot \rangle)$ be as above, $x, y \in H$ and $\gamma, \Gamma \in \mathbb{K}$ with $\text{Re}(\Gamma \overline{\gamma}) > 0$. If

(1.6)
$$\left\| x - \frac{\Gamma + \gamma}{2} \cdot y \right\| \leqslant \frac{1}{2} \left| \Gamma - \gamma \right| \|y\|$$

or, equivalently,

(1.7)
$$\operatorname{Re}\langle \Gamma y - x, x - \gamma y \rangle \geqslant 0,$$

then

(1.8)
$$||x|| ||y|| \leq \frac{\operatorname{Re}[(\overline{\Gamma} + \overline{\gamma})\langle x, y \rangle]}{2\sqrt{\operatorname{Re}(\Gamma \overline{\gamma})}}$$

$$= \frac{\operatorname{Re}(\Gamma + \gamma) \operatorname{Re}\langle x, y \rangle + \operatorname{Im}(\Gamma + \gamma) \operatorname{Im}\langle x, y \rangle}{2\sqrt{\operatorname{Re}(\Gamma \overline{\gamma})}}$$

$$\left(\leq \frac{|\Gamma + \gamma|}{\sqrt{\operatorname{Re}(\Gamma \overline{\gamma})}} |\langle x, y \rangle| \right).$$

The case of equality holds in (1.8) if and only if the equality case holds in (1.6) (or (1.7)) and

(1.9)
$$||x|| = \sqrt{\operatorname{Re}(\Gamma \overline{\gamma})} ||y||.$$

If the restriction ||a|| > r is removed from Theorem 1, then a different reverse of the Schwarz inequality may be stated [2] (see also [3]):

THEOREM 2. Let $(H; \langle \cdot, \cdot \rangle)$ be an inner product space over \mathbb{K} and $x, a \in H, r > 0$ such that

$$(1.10) ||x-a|| \leqslant r.$$

Then

(1.11)
$$||x|| \, ||a|| - \operatorname{Re}\langle x, a \rangle \leqslant \frac{1}{2} r^2.$$

The equality holds in (1.11) if and only if the equality case is realised in (1.10) and ||x|| = ||a||.

As a corollary of the above, we can state:

COROLLARY 2. Let $(H; \langle \cdot, \cdot \rangle)$ be as above, $x, y \in H$ and $\gamma, \Gamma \in \mathbb{K}$ with $\Gamma \neq -\gamma$. If either (1.6) or, equivalently, (1.7) hold true, then

$$(1.12) ||x|| ||y|| - \frac{\operatorname{Re}(\Gamma + \gamma) \operatorname{Re}(x, y) + \operatorname{Im}(\Gamma + \gamma) \operatorname{Im}(x, y)}{|\Gamma + \gamma|} \leqslant \frac{1}{4} \cdot \frac{|\Gamma - \gamma|^2}{|\Gamma + \gamma|} ||y||^2.$$

The equality holds in (1.12) if and only if the equality case is realised in either (1.6) or (1.7) and

(1.13)
$$||x|| = \frac{1}{2} |\Gamma + \gamma| ||y||.$$

As pointed out in [4], the above results are motivated by the fact that they generalise to the case of real or complex inner product spaces some classical reverses of the Cauchy-Bunyakovsky-Schwarz inequality for positive *n*-tuples due to Polya and Szegö [8], Cassels [10], Shisha and Mond [9] and Greub and Rheinboldt [6].

The main aim of this paper is to establish a new reverse of Schwarz's inequality similar to the ones in Theorems 1 and 2 which will reduce, for the particular case of positive n-tuples, to the Klamkin and McLenaghan result from [7].

2. The Results

The following result may be stated.

THEOREM 3. Let $(H; \langle \cdot, \cdot \rangle)$ be an inner product space over the real or complex number field \mathbb{K} and $x, a \in H$, r > 0 with $\langle x, a \rangle \neq 0$ and

$$||x - a|| \leqslant r < ||a||.$$

Then

(2.2)
$$\frac{\|x\|^2}{|\langle x, a \rangle|} - \frac{|\langle x, a \rangle|}{\|a\|^2} \leqslant \frac{2r^2}{\|a\|(\|a\| + \sqrt{\|a\|^2 - r^2})},$$

with equality if and only if the equality case holds in (2.1) and

(2.3)
$$\operatorname{Re}\langle x, a \rangle = |\langle x, a \rangle| = ||a|| (||a||^2 - r^2)^{1/2}.$$

The constant 2 is best possible in (2.2) in the sense that it cannot be replaced by a smaller quantity.

PROOF: The first condition in (2.1) is obviously equivalent with

(2.4)
$$\frac{\|x\|^2}{|\langle x, a \rangle|} \le \frac{2 \operatorname{Re}\langle x, a \rangle}{|\langle x, a \rangle|} - \frac{\|a\|^2 - r^2}{|\langle x, a \rangle|}$$

with equality if and only if ||x - a|| = r.

Subtracting from both sides of (2.4) the same quantity $|\langle x, a \rangle| / ||a||^2$ and performing some elementary calculations, we get the equivalent inequality:

$$(2.5) \frac{\|x\|^2}{|\langle x,a\rangle|} - \frac{|\langle x,a\rangle|}{\|a\|^2} \leqslant 2 \cdot \frac{\operatorname{Re}\langle x,a\rangle}{|\langle x,a\rangle|} - \left(\frac{|\langle x,a\rangle|^{1/2}}{\|a\|} - \frac{(\|a\|^2 - r^2)^{1/2}}{|\langle x,a\rangle|^{1/2}}\right)^2 - \frac{2\sqrt{\|a\|^2 - r^2}}{\|a\|}.$$

Since, obviously

$$\operatorname{Re}\langle x,a\rangle\leqslant \left|\langle x,a\rangle\right|\quad\text{and}\quad \Big(\frac{\left|\langle x,a\rangle\right|^{1/2}}{\|a\|}-\frac{(\|a\|^2-r^2)^{1/2}}{|\langle x,a\rangle|^{1/2}}\Big)^2\geqslant 0,$$

hence, by (2.5) we get

(2.6)
$$\frac{\|x\|^2}{|\langle x, a \rangle|} - \frac{|\langle x, a \rangle|}{\|a\|^2} \leqslant 2\left(1 - \frac{\sqrt{\|a\|^2 - r^2}}{\|a\|}\right)$$

with equality if and only if

(2.7)
$$||x-a|| = r$$
, $\operatorname{Re}\langle x, a \rangle = |\langle x, a \rangle|$ and $|\langle x, a \rangle| = ||a|| (||a||^2 - r^2)^{1/2}$.

Observe that (2.6) is equivalent with (2.2) and the first part of the theorem is proved.

To prove the sharpness of the constant, let us assume that there is a C>0 such that

(2.8)
$$\frac{\|x\|^2}{|\langle x, a \rangle|} - \frac{|\langle x, a \rangle|}{\|a\|^2} \leqslant \frac{Cr^2}{\|a\|(\|a\| + \sqrt{\|a\|^2 - r^2})},$$

provided $||x-a|| \leqslant r < ||a||$.

Now, consider $\varepsilon \in (0,1)$ and let $r = \sqrt{\varepsilon}$, $a, e \in H$, ||a|| = ||e|| = 1 and $a \perp e$. Define $x := a + \sqrt{\varepsilon}e$. We observe that $||x - a|| = \sqrt{\varepsilon} = r < 1 = ||a||$, which shows that the condition (2.1) of the theorem is satisfied. We also observe that

$$||x||^2 = ||a||^2 + \varepsilon ||e||^2 = 1 + \varepsilon, \quad \langle x, a \rangle = ||a||^2 = 1$$

and utilising (2.8) we get

$$1 + \varepsilon - 1 \leqslant \frac{C\varepsilon}{(1 + \sqrt{1 - \varepsilon})},$$

giving $1 + \sqrt{1 - \varepsilon} \le C$ for any $\varepsilon \in (0, 1)$. Letting $\varepsilon \to 0+$, we get $C \ge 2$, which shows that the constant 2 in (2.2) is best possible.

REMARK 1. In a similar manner, one can prove that if $\text{Re}\langle x, a \rangle \neq 0$ and if (2.1) holds true, then:

(2.9)
$$\frac{\|x\|^2}{|\operatorname{Re}\langle x, a \rangle|} - \frac{|\operatorname{Re}\langle x, a \rangle|}{\|a\|^2} \leqslant \frac{2r^2}{\|a\|(\|a\| + \sqrt{\|a\|^2 - r^2})}$$

with equality if and only if ||x - a|| = r and

(2.10)
$$\operatorname{Re}\langle x, a \rangle = ||a|| \left(||a||^2 - r^2 \right)^{1/2}.$$

The constant 2 is best possible in (2.9).

REMARK 2. Since (2.2) is equivalent with

and (2.9) is equivalent to

$$(2.12) ||x||^2 ||a||^2 - \left[\operatorname{Re}\langle x, a \rangle \right]^2 \leqslant \frac{2r^2 ||a||^2}{||a||(||a|| + \sqrt{||a||^2 - r^2})} |\operatorname{Re}\langle x, a \rangle |$$

hence (2.12) is a tighter inequality than (2.11), because in complex spaces, in general $|\langle x,a\rangle| > |\text{Re}\langle x,a\rangle|$.

The following corollary is of interest.

COROLLARY 3. Let $(H; \langle \cdot, \cdot \rangle)$ be a real or complex inner product space and $x, y \in H$ with $\langle x, y \rangle \neq 0$, $\gamma, \Gamma \in \mathbb{K}$ with $\text{Re}(\Gamma \overline{\gamma}) > 0$. If either (1.6) or, equivalently (1.7) holds true, then

(2.13)
$$\frac{\|x\|^2}{|\langle x, y \rangle|} - \frac{|\langle x, y \rangle|}{\|y\|^2} \leqslant |\Gamma + \gamma| - 2\sqrt{\operatorname{Re}(\Gamma \overline{\gamma})}.$$

The equality holds in (2.13) if and only if the equality case holds in (1.6) (or in (1.7)) and

(2.14)
$$\operatorname{Re}\left[(\Gamma + \gamma)\langle x, y\rangle\right] = |\Gamma + \gamma|\left|\langle x, y\rangle\right| = |\Gamma + \gamma|\sqrt{\operatorname{Re}(\Gamma\overline{\gamma})}||y||^{2}.$$

PROOF: We use the inequality (2.2) in its equivalent form

$$\frac{||x||^2}{|\langle x,a\rangle|} - \frac{|\langle x,a\rangle|}{||a||^2} \leqslant \frac{2(||a|| - \sqrt{||a||^2 - r^2})}{||a||}.$$

Choosing $a = (\Gamma + \gamma/2) \cdot y$ and $r = |\Gamma - \gamma|/2||y||$, we have

$$\frac{||x||^{2}}{|(\Gamma + \gamma)/2||\langle x, y \rangle|} - \frac{|(\Gamma + \gamma)/2||\langle x, y \rangle|}{|(\Gamma + \gamma)/2|^{2}||y||^{2}} \\ \leqslant \frac{2(|\frac{\Gamma + \gamma}{2}|||y|| - \sqrt{|(\Gamma + \gamma)/2|^{2}||y||^{2} - (1/4)|\Gamma - \gamma|^{2}||y||^{2}})}{|(\Gamma - \gamma)/2|||y||}$$

which is equivalent to (2.13).

REMARK 3. The inequality (2.13) has been obtained in a different way in [5, Theorem 2]. However, in [5] the authors did not consider the equality case which may be of interest for applications.

REMARK 4. If we assume that $\Gamma=M\geqslant m=\gamma>0$, which is very convenient in applications, then

$$\frac{\|x\|^2}{|\langle x,y\rangle|} - \frac{|\langle x,y\rangle|}{\|y\|^2} \leqslant (\sqrt{M} - \sqrt{m})^2,$$

provided that either

(2.16)
$$\operatorname{Re}\langle My - x, x - my \rangle \geqslant 0$$

or, equivalently,

(2.17)
$$||x - \frac{m+M}{2}y|| \leq \frac{1}{2}(M-m)||y||$$

holds true.

The equality holds in (2.15) if and only if the equality case holds in (2.16) (or in (2.17)) and

(2.18)
$$\operatorname{Re}\langle x, y \rangle = \left| \langle x, y \rangle \right| = \sqrt{Mm} \|y\|^2.$$

The multiplicative constant C = 1 in front of $(\sqrt{M} - \sqrt{m})^2$ cannot be replaced in general with a smaller positive quantity.

Now for a non-zero complex number z, we define sgn(z) := z/|z|.

The following result may be stated:

PROPOSITION 1. Let $(H; \langle \cdot, \cdot \rangle)$ be a real or complex inner product space and $x, y \in H$ with $\text{Re}(x, y) \neq 0$ and $\gamma, \Gamma \in \mathbb{K}$ with $\text{Re}(\Gamma \overline{\gamma}) > 0$. If either (2.6) or, equivalently, (2.7) hold true, then

$$(2.19) \quad \left(0 \leqslant \|x\|^2 \|y\|^2 - \left|\langle x, y \rangle\right|^2 \leqslant \right) \|x\|^2 \|y\|^2 - \left[\operatorname{Re}\left(\operatorname{sgn}\left(\frac{\Gamma + \gamma}{2}\right) \cdot \langle x, y \rangle\right) \right]^2$$

$$\leqslant \left(|\Gamma + \gamma| - 2\sqrt{\operatorname{Re}(\Gamma \overline{\gamma})} \right) \left| \operatorname{Re}\left(\operatorname{sgn}\left(\frac{\Gamma + \gamma}{2}\right) \cdot \langle x, y \rangle\right) \right| \|y\|^2$$

$$\left(\leqslant \left(|\Gamma + \gamma| - 2\sqrt{\operatorname{Re}(\Gamma \overline{\gamma})} \right) \left|\langle x, y \rangle\right| \|y\|^2 \right).$$

The equality holds in (2.19) if and only if the equality case holds in (2.6) (or in (2.7)) and

$$\operatorname{Re}\left[\operatorname{sgn}\left(\frac{\Gamma+\gamma}{2}\right)\cdot\langle x,y\rangle\right] = \sqrt{\operatorname{Re}(\Gamma\overline{\gamma})}\left\|y\right\|^{2}.$$

PROOF: The inequality (2.9) is equivalent with:

$$\left\|x\right\|^{2}\left\|a\right\|^{2}-\left[\operatorname{Re}\langle x,a\rangle\right]^{2}\leqslant2\left(\left\|a\right\|-\sqrt{\left\|a\right\|^{2}-r^{2}}\right)\cdot\left|\operatorname{Re}\langle x,a\rangle\right|\left\|a\right\|.$$

If in this inequality we choose $a = (\Gamma + \gamma)/2 \cdot y$ and $r = |\Gamma - \gamma|/2 | y$, we have

$$\begin{split} \left\| \left\| x \right\|^2 \left| \frac{\Gamma + \gamma}{2} \right|^2 \left\| y \right\|^2 - \left(\operatorname{Re} \left[\left(\frac{\Gamma + \gamma}{2} \right) \cdot \left\langle x, y \right\rangle \right] \right)^2 \\ & \leq 2 \left(\left| \frac{\Gamma + \gamma}{2} \right| \left\| y \right\| - \sqrt{\left| \frac{\Gamma + \gamma}{2} \right|^2 \left\| y \right\|^2 - \frac{1}{4} \left| \Gamma - \gamma \right|^2 \left\| y \right\|^2} \right) \\ & \times \left| \operatorname{Re} \left[\left(\frac{\Gamma + \gamma}{2} \right) \cdot \left\langle x, y \right\rangle \right] \right| \left| \frac{\Gamma + \gamma}{2} \right| \left\| y \right\| \,, \end{split}$$

which, on dividing by $|(\Gamma + \gamma)/2|^2 \neq 0$ (since $\text{Re}(\Gamma \overline{\gamma}) > 0$), is clearly equivalent to (2.19).

REMARK 5. If we assume that x, y, m, M satisfy either (2.16) or, equivalently (2.17), then

$$\frac{\|x\|^2}{|\operatorname{Re}\langle x,y\rangle|} - \frac{|\operatorname{Re}\langle x,y\rangle|}{\|y\|^2} \leqslant \left(\sqrt{M} - \sqrt{m}\right)^2$$

or, equivalently

$$(2.21) ||x||^2 ||y||^2 - \left[\operatorname{Re}(x,y) \right]^2 \leqslant (\sqrt{M} - \sqrt{m})^2 \left| \operatorname{Re}(x,y) \right| ||y||^2.$$

The equality holds in (2.20) (or (2.21)) if and only if the case of equality is valid in (2.16) (or (2.17)) and

(2.22)
$$\operatorname{Re}\langle x, y \rangle = \sqrt{Mm} \|y\|^2.$$

3. Applications for Integrals

Let (Ω, Σ, μ) be a measure space consisting of a set Ω , a σ -algebra of parts Σ and a countably additive and positive measure μ on Σ with values in $\mathbb{R} \cup \{\infty\}$.

Denote by $L^2_{\rho}(\Omega,\mathbb{K})$ the Hilbert space of all \mathbb{K} -valued functions f defined on Ω that are $2-\rho$ -integrable on Ω , that is, $\int_{\Omega} \rho(t) \big|f(s)\big|^2 d\mu(s) < \infty$, where $\rho:\Omega\to [0,\infty)$ is a measurable function on Ω .

The following proposition contains a reverse of the Cauchy-Bunyakovsky-Schwarz integral inequality:

PROPOSITION 2. Let $f, g \in L^2_o(\Omega, \mathbb{K})$, r > 0 be such that

(3.1)
$$\int_{\Omega} \rho(t) |f(t) - g(t)|^2 d\mu(t) \leqslant r^2 < \int_{\Omega} \rho(t) |g(t)|^2 d\mu(t).$$

Then

$$(3.2) \int_{\Omega} \rho(t) |f(t)|^{2} d\mu(t) \int_{\Omega} \rho(t) |g(t)|^{2} d\mu(t) - \left| \int_{\Omega} \rho(t) f(t) \overline{g(t)} d\mu(t) \right|^{2}$$

$$\leq 2 \left(\int_{\Omega} \rho(t) |g(t)|^{2} d\mu(t) \right)^{1/2} \left| \int_{\Omega} \rho(t) f(t) \overline{g(t)} d\mu(t) \right|$$

$$\times \left[\left(\int_{\Omega} \rho(t) |g(t)|^{2} d\mu(t) \right)^{1/2} - \left(\int_{\Omega} \rho(t) |g(t)|^{2} d\mu(t) - r^{2} \right)^{1/2} \right].$$

The constant 2 is sharp in (3.2).

The proof follows from Theorem 3 applied for the Hilbert space $(L^2_{\rho}(\Omega, \mathbb{K}), \langle \cdot, \cdot \rangle_{\rho})$ where

 $\langle f,g \rangle_{
ho} := \int_{\Omega} \rho(t) f(t) \overline{g(t)} d\mu(t).$

REMARK 6. We observe that if $\int_{\Omega} \rho(t)d\mu(t) = 1$, then a simple sufficient condition for (3.1) to hold is

(3.3)
$$|f(t) - g(t)| \le r < |g(t)|$$
 for μ - almost every $t \in \Omega$.

The second general integral inequality is incorporated in:

PROPOSITION 3. Let $f, g \in L^2_\rho(\Omega, \mathbb{K})$ and $\Gamma, \gamma \in \mathbb{K}$ with $\text{Re}(\Gamma \overline{\gamma}) > 0$. If either

(3.4)
$$\int_{\Omega} \operatorname{Re}\left[\left(\Gamma g(t) - f(t)\right)\left(\overline{f(t)} - \overline{\gamma}\overline{g(t)}\right)\right] \rho(t) d\mu(t) \geqslant 0$$

or, equivalently,

$$(3.5) \qquad \left(\int_{\Omega} \rho(t) \left| f(t) - \frac{\Gamma + \gamma}{2} g(t) \right|^2 d\mu(t) \right)^{1/2} \leqslant \frac{1}{2} \left| \Gamma - \gamma \right| \left(\int_{\Omega} \rho(t) \left| g(t) \right|^2 d\mu(t) \right)^{1/2}$$

holds, then

$$(3.6) \int_{\Omega} \rho(t) |f(t)|^{2} d\mu(t) \int_{\Omega} \rho(t) |g(t)|^{2} d\mu(t) - \left| \int_{\Omega} \rho(t) f(t) \overline{g(t)} d\mu(t) \right|^{2}$$

$$\leq \left[|\Gamma + \gamma| - 2\sqrt{\operatorname{Re}(\Gamma \overline{\gamma})} \right] \left| \int_{\Omega} \rho(t) f(t) \overline{g(t)} d\mu(t) \right| \int_{\Omega} \rho(t) |g(t)|^{2} d\mu(t).$$

The proof is obvious by Corollary 3.

REMARK 7. A simple sufficient condition for the inequality (3.4) to hold is:

(3.7)
$$\operatorname{Re}\left[\left(\Gamma g(t) - f(t)\right)\left(\overline{f(t)} - \overline{\gamma}\overline{g(t)}\right)\right] \geqslant 0,$$

for μ -almost every $t \in \Omega$.

A more convenient result that may be useful in applications is:

COROLLARY 4. If $f,g\in L^2_{\rho}(\Omega,\mathbb{K})$ and $M\geqslant m>0$ such that either

(3.8)
$$\int_{\Omega} \operatorname{Re}\left[\left(Mg(t) - f(t)\right)\left(\overline{f(t)} - m\overline{g(t)}\right)\right] f(t)d\mu(t) \geq 0$$

or, equivalently,

$$(3.9) \qquad \left(\int_{\Omega} \rho(t) \left| f(t) - \frac{M+m}{2} g(t) \right|^2 d\mu(t) \right)^{1/2} \leqslant \frac{1}{2} (M-m) \left(\int_{\Omega} \rho(t) \left| g(t) \right|^2 d\mu(t) \right)^{1/2},$$

holds, then

$$(3.10) \int_{\Omega} \rho(t) |f(t)|^{2} d\mu(t) \int_{\Omega} \rho(t) |g(t)|^{2} d\mu(t) - \left| \int_{\Omega} \rho(t) f(t) \overline{g(t)} d\mu(t) \right|^{2} \\ \leq \left(\sqrt{M} - \sqrt{m} \right)^{2} \left| \int_{\Omega} \rho(t) f(t) \overline{g(t)} d\mu(t) \right| \int_{\Omega} \rho(t) |g(t)|^{2} d\mu(t).$$

REMARK 8. Since, obviously,

$$\operatorname{Re}\left[\left(Mg(t) - f(t)\right)\left(\overline{f(t)} - m\overline{g(t)}\right)\right] = \left(M\operatorname{Re}g(t) - \operatorname{Re}f(t)\right)\left(\operatorname{Re}f(t) - m\operatorname{Re}g(t)\right) + \left(M\operatorname{Im}g(t) - \operatorname{Im}f(t)\right)\left(\operatorname{Im}f(t) - m\operatorname{Im}g(t)\right)$$

for any $t \in \Omega$, hence a very simple sufficient condition that can be useful in practical applications for (3.8) to hold is:

$$M \operatorname{Re} g(t) \geqslant \operatorname{Re} f(t) \geqslant m \operatorname{Re} g(t)$$

and

$$M \operatorname{Im} g(t) \geqslant \operatorname{Im} f(t) \geqslant m \operatorname{Im} g(t)$$

for μ -almost every $t \in \Omega$.

If the functions are in $L^2_{\rho}(\Omega, \mathbb{R})$ (here $\mathbb{K} = \mathbb{R}$), and $f, g \ge 0$, $g(t) \ne 0$ for μ -almost every $t \in \Omega$, then one can state the result:

$$(3.11) \int_{\Omega} \rho(t) f^{2}(t) d\mu(t) \int_{\Omega} \rho(t) g^{2}(t) d\mu(t) - \left(\int_{\Omega} \rho(t) f(t) g(t) d\mu(t) \right)^{2}$$

$$\leq \left(\sqrt{M} - \sqrt{m} \right)^{2} \int_{\Omega} \rho(t) f(t) g(t) d\mu(t) \int_{\Omega} \rho(t) g^{2}(t) d\mu(t),$$

provided

$$(3.12) 0 \leqslant m \leqslant \frac{f(t)}{g(t)} \leqslant M < \infty \text{for } \mu - \text{almost every } t \in \Omega.$$

REMARK 9. We notice that (3.11) is a generalisation for the abstract Lebesgue integral of the Klamkin-McLenaghan inequality [7]

$$(3.13) \qquad \frac{\sum_{k=1}^{n} w_k x_k^2}{\sum_{k=1}^{n} w_k x_k y_k} - \frac{\sum_{k=1}^{n} w_k x_k y_k}{\sum_{k=1}^{n} w_k y_k^2} \leqslant \left(\sqrt{M} - \sqrt{m}\right)^2,$$

provided the nonnegative real numbers x_k, y_k $(k \in \{1, \ldots, n\})$ satisfy the assumption

$$(3.14) 0 \leqslant m \leqslant \frac{x_k}{y_k} \leqslant M < \infty \text{for each } k \in \{1, \dots, n\}$$

and $w_k \geqslant 0, k \in \{1, \ldots, n\}.$

We also remark that Klamkin-McLenaghan inequality (3.13) is a generalisation in its turn of the Shisha-Mond inequality obtained earlier in [9]:

$$\frac{\sum_{k=1}^{n} a_k^2}{\sum_{k=1}^{n} a_k b_k} - \frac{\sum_{k=1}^{n} a_k b_k}{\sum_{k=1}^{n} b_k^2} \leqslant \left(\sqrt{\frac{A}{b}} - \sqrt{\frac{a}{B}}\right)^2$$

provided

$$0 < a \le a_k \le A$$
, $0 < b \le b_k \le B$

for each $k \in \{1, \ldots, n\}$.

REFERENCES

- [1] S.S. Dragomir, 'Reverse of Schwarz, triangle and Bessel inequalities in inner product spaces', JIPAM J. Inequal. Pure Appl. Math. 5 (2004), Art. 76. Online: http://jipam.vu.edu.au/article.php?sid=432.
- [2] S.S. Dragomir, 'New reverses of Schwarz, triangle and Bessel inequalities in inner product spaces', Aust. J. Math. Anal. Appl. 1 (2004), Art. 1. Online: http://ajmaa.org/cgibin/paper.pl?string=nrstbiips.tex.
- [3] S.S. Dragomir, Advances in inequalities of the Schwarz, Grüss and Bessel type in inner product spaces (Nova Science Publishers Inc., New York, 2005).
- [4] S.S. Dragomir, 'Reverses of the Cauchy-Bunyakovsky-Schwarz inequality for n-tuples of complex numbers', Bull. Austral. Math. Soc. 69 (2004), 465-480.
- [5] N. Elezović, L. Marangunić and J. Pečarić, 'Unified treatment of complemented Schwarz and Gruss inequalities in inner product spaces', Math. Ineqal. Appl. 8 (2005), 223-232.
- [6] W. Greub and W. Rheinboldt, 'On a generalisation of an inequality of L.V. Kantorovich', Proc. Amer. Math. Soc. 10 (1959), 407-415.
- [7] M.S. Klamkin and K.G. McLenaghan, 'An ellipse inequality,', Math. Mag. 50 (1977), 261-263.
- [8] G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis 1 (Springer-Verlag, Berlin, 1925).
- [9] O. Shisha and B. Mond, 'Bounds on differences of means', in *Inequalities I* (Academic Press, New York-London, 1967), pp. 293-308.
- [10] G.S. Watson, 'Serial correlation in regression analysis I', Biometrika 42 (1955), 327-342.

School of Computer Science and Mathematics Victoria University PO Box 14428 Melbourne City, VIC 8001 Australia e-mail: sever.dragomir@vu.edu.au