STRUCTURE OF SEMIGROUPS
HANS-JURGEN HOEHNKE

The treatment of semigroups given in a previous paper (3) is based upon
representations of a semigroup by means of transformations of a set (cf. also
12). In this paper we try to remove the assumption of the existence of a zero
element proposed in (3). In accordance with our general programme explained
at the beginning of (3) we utilize certain minimum conditions in order to gain
more information on the structure of semigroups.

Our main results are structure theorems on primitive semigroups which have
irreducible right ideals generated by idempotents (§§15-17). As we have shown
in (5), these theorems permit the explicit construction of primitive semigroups.
The form of these theorems corresponds to a similar statement on primitive
rings with minimal right ideals which arises if the density theorem of Chevalley—
Jacobson in Jacobson’s form (7, p. 75) is reformulated in an equivalent purely
algebraical manner. In the case of semigroups, we cannot expect a density
theorem but only a sequence of transitivity conditions (for a finite degree of
transitivity) whose limit would be the density condition equivalent to countable
transitivity).

In contrast to the main results mentioned above, the lemmas and theorems
of §§2-14 are preliminary in character. Nevertheless they are indispensable
for our more general purpose to build up a systematic theory of semigroups.
Thus these lemmas and theorems fall into three classes: Either they reformulate
our fundamental concepts, or they elucidate these concepts in some simple
cases, or they yield applications in subsequent sections (mainly §§15-17).
Especially, we point out Theorem 9.4, which shows that the analogue of
Schur’s Lemma for semigroups holds not only for totally irreducible S-systems.
The results, for instance, of §§15-17 depend upon this observation.

1. Terminology and notation. Let S be a semigroup with multiplication
as its binary operation. It is not assumed that .S contains a zero element. Let M
be a set on which the elements a € Sact as right multipliers inducing mappings

po:X—xps =xa  (x € M)
of M into M. Such a set M is called an S-system if
(xa)b = x(ab) for allx € Manda,bd € S.

It follows that the correspondence A : @ — p, is a homomorphism of S onto a
subsemigroup S, of the semigroup 7', of all transformations (single-valued
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mappings) of the set M into itself. Sy, is called the representation of S generated
by the S-system M. The representation Sy is said to be faithful if A is an
isomorphism into T,. Two S-systems M, (¢ = 1,2) are homomorphic,
My >~ M, [isomorphic, My~ M,], if there is a single-valued [and invertible]
mapping ¢ of M;onto M,such that

¢(xa) = (¢px)a forallx € Myanda € S.

If My~ M,, then Sy, ~ Sy, and Sy, Sy, are called equivalent. A homo-
morphism ¢ of M, onto M, is trivial if ¢ is an isomorphism or if M, has only
one element. An S-subsystem of M is a non-void subset L of M such that
LSCL.If ¢: Mi— M, is a homomorphism into, then ¢(M;) is an S-sub-
system of M,. Any non-void subset of the set

FM = {x|x € M,xa = xforalla € S}

of all elements of M invariant with respect to S is an S-subsystem of M. An
S-subsystem L C M istrivial if L = M orif |L| = 1(|L]is the cardinal number
of L).

A congruence in M is an equivalence relation A (regarded as a subset of
M X M) such that

(x1, x2) € A= (x1a,x2a) € N (a €9).

[x]n (shorter [x] if no misunderstanding is possible) denotes the congruence
class containing the element x € M, and M/ is the set of all congruence
classes of M with respect to A. Under the composition

[xha = [xal, x € M,a €S,

M/X becomes an S-system. Let L be an S-subsystem of M. The difference
system M /L = M/\is defined by means of the congruence

X1 = X2
(1, x2) €E XN & or
X1, X2 E L

Evidently, F(M/L) # @ as L ¢ F(M/L). If FM C L # @, then F(M/L) =
{L},ie., |F(M/L)| = 1.
An S-system M (a representation .S,,) is called irreducible if

(1.1) MS ¢ FM,

(1.2) M has no non-trivial S-subsystems.
Condition (1.1) yields FM = M;by (1.2)

(1.3) |[FM| < 1.

Further

(1.4) MS = M,
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for if |MS| =1, MS = {x}, then xa = x (for all a € S) and MS C FM
contrary to (1.1).
An S-system M (a representation Sy,) is totally irreducible if

(1.5) MS ¢ FM,
(1.6) M has no non-trivial homomorphisms.

Every totally irreducible S-system M is irreducible. For if M contains a
non-trivial S-subsystem L, then the canonical mapping of M onto M/L yields
a non-trivial homomorphism, contrary to (1.6).

If the representation .S, contains a zero element ¢ = p;, the elements of .S
that are mapped onto ¢ form an ideal (= two-sided ideal) A='{c¢} of S. This
ideal is the kernel of the representation S,. We note that FM = Mq. If S
itself contains a zero element 0, then M and S, are said to be O-fasthful if

A~ {po} = {0}.

2. The radical rad S. The representation S, defines a congruence
8y C S X Sin S through

(a1, @2) € 611 & par = Pas-
Let k C \ be two congruences in .S and let [a], be the congruence class with

respect to k containing ¢ € S. In the semigroup .S/« of all congruence classes
with respect to «, the congruence A/« is defined through

(la]w [0]0) € Nk = (a,b) €\

It satisfies (S/x)/(M\/x) =~ S/\. The following lemma is obvious.

2.1. LEMMA. Let \ be any congruence in S.

(@) If
(2.2) A Cou(S),
then the S-system M becomes an S/ \-system under the rule

xlaly =xa (x € M,a € °.5)

and we have
(2.3) 83 (S/N) = 8,(S)/A.

(b) Conversely, an S/\-system M becomes an S-system satisfying (2.2) and
(2.3) if we define xa = x[a).

(c) Amny congruence in the S-system M remains a congruence in M regarded as
an S/ \-system and vice versa.

(d) Amn element of M is invariant with respect to S if and only if it 1s invariant
with respect to S/ \.

The congruence
rad § = f\MEI 6M
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where I is the set of all irreducible S-systems is the radical of S. By convention,
rad S = 1 (where 1 is the universal relation) if I = @. If rad S = 0 (where 0
is the identical relation), S is said to be radical-free. If rad S = 1, then S is
called a radical semigroup.

2.4 TueorEM.rad (S/rad S) = 0.

Proof. Applying Lemma 2.1 with rad S C 6, (M € I), we see that every
irreducible S-system M remains irreducible as an (S/rad S)-system and vice
versa. Therefore

rad (S/rad S) = N yer 8 (S/rad S) = Nyrer (04(S)/rad S)
(M e 6(S))/rad S = (rad S)/rad S = 0.

3. The 0-radical rad’S. With each S-system M we associate the set
M° = M°(S) = {ala € Sand every equation xab = x wherex € M and b € St
impliesx € FM}.

Here S! is the semigroup obtained from S by adjoining an identity-element 1.
M?is void or an ideal in .S.
Let K and L be subsets of M, K # @. Define

KL = {ala € S, Ka C L}.
3.1. LEMMA. Let M be an irreducible S-system. Then M° = M—1FM.
Proof. (1) Supposea € M= FMandxab = x(x € M, b € S'). Thenxa € FM
and x = xab € (FM)b C FM.

(2) Leta € M°%x € M. Assume xa ¢ FM. This would imply that xaS* = M
and xab = x with suitable b € S'. Hence x € FM and xa € FM.

3.2. CorOLLARY. Let M be an irreducible S-system, M°® £ @. Then MO is the
kernel of the representation S ;.

With every element @ € .S we associate the congruence «(a) defined in S by
means of S/k(a) = .5/S'aS'. Here S/S'aS! is the difference semigroup of .S in
the sense of Rees with respect to the principal ideal S'aS!.

3.3. LEMMA. Leta € S, M € I. Then
K(a) C 6M<=>a 6 MO.

Proof. (1) Let x(a) Cdy and xadb =x (x € M,b € S'). From ¢ € S,
(@b, abc) € k(a), we infer that yab = yabc for every y € M. In particular we
obtain x = xab = xabc = xc for every ¢ € S and hence x € FM.

(2) Let @ € M°; hence S'aS* C M°. By Corollary 3.2, M° is a congruence
class with respect to d,,; whence k(a) C 8y.

An element @ € S such that

as = aforeverys € S
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is a left zero of S. The set O(S) of all left zeros of S is either void or an ideal in S.
The difference semigroup S/0(S) then contains zero. The wnilradical
nil rad (S/0(S)) (i.e., the sum of all nil right ideals or equivalently the sum of
all nil ideals of S/0(S)) defines an ideal N(S) in S through

N(S)/0(S) = nil rad (S/0(S)), N(S) D O(S) = @.

If O(S) = 0, put N(S) = 0. For any S-system M, we have MO(S) C FM,
hence O(S) C M'FM = M? for an irreducible M.

3.4. LEMMA. Let O(S) %= 0. Then every irreducible S-system M is an irreducible
S/0(S)-system and vice versa. Moreover,

(3.5) M° (S/0(S)) = M°(S)/0(S).

Proof. O(S) C M° implies M°® # @. Hence M? is a congruence class with
respect to 8. Since O(S) C M Lemma 2.1 can be applied. The relation (3.5)
follows from Lemma 2.1(d) and Lemma 3.1.

3.6. THEOREM. Let
3.7) rad®S = M yey M
(by convention rad®S = Sif I = @). Then N(S) C rad®S.

Remark. Obviously rad®S may be void. If S contains zero, then rad®.S is
the O-radical in the sense of (3). In general rad®.S is called the generalized

0-radical.
Proof of Theorem 3.6. If N(S) # @and M € I, then asin (3)
(3.8) N(S)/0(S) = nil rad (S/0(S))
C Nuer M(S/0(S)) = Niaer M°(S)/0(S)
= (rad?® S)/0(S).

The following theorem is a special consequence of a surprising characteriza-
tion of our congruence rad S (6; 11). It is stronger than Theorem 3.6. We state
it without proof.

3.9. THEOREM. N(S) = rad®S.

4. Primitive semigroups. A semigroup S is called (right) primaitive
(0-primative, totally primitive) if it has a faithful irreducible (0-faithful irreduc-
ible, faithful totally irreducible) S-system. Since the regular representation of
a group G is transitive, every group (distinct from identity) is a primitive
semigroup. Obviously every primitive permutation group is a totally primitive
semigroup. The semigroup 7"y is primitive but not left primitive. If a completely
simple semigroup S is faithfully represented by a regular matrix semigroup
(over a group or group with zero) with the defining matrix P, then S is primi-
tive if no two different columns of P have a common right multiple (12).
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A congruence 7 in a semigroup S is primitive (totally primitive) if S/ is a
primitive (totally primitive) semigroup. This definition implies

4.1. LeMMA. The congruence w in S is primitive (totally primitive) if and only
if T = 0 where M is an irreducible (totally irreducible) S-system.

4.2. LEMMA. Primitive semigroups are radical free.
4.3. THEOREM. 4 radical-free semigroup S satisfies
S = Nyer S/ou
Thus 1t is subdirectly decomposable into primitive semigroups S/8 .

Proof. By Lemma 2.1, every irreducible S-system M is an irreducible
S/8-system. Hence S/8,, is primitive if M € I. Since M ye; 8, = 0, the
Theorem follows immediately from a theorem of Birkhoff (1, p. 92, Theorem 9).

It is natural to introduce the following notion. A semigroup S with zero 0
is weakly free of zero-divisorsif forallaand b € S:

(4.4) aSh = {0} =a =0o0rbd = 0.
This condition is equivalent to
4.5) aSh = {0} =a =00rb=0.

Obviously (4.5) implies (4.4). Conversely, if (4.4) is trueand aS6 = {0}, b = 0,
then asS'd = {0} (foralls € S);henceas = 0,1i.e.,aS = {0} and in particular
ab = 0. Hence aS'6 = {0} and (4.4) impliesa = 0.

A semigroup S is weakly left cancelling if for all a, by, and b, € S the following
statement is true:

(4.6) If asbs = asbafor all s € S* and if b; 5 bs, then S contains left zeros and
a € 0(S).

4.7. LEMMA. Every weakly left cancelling semigroup with zero is weakly free of
zero-divisors.

Proof. aS'b = {0} implies asb1 b = asbs b = 0 for all by, bs, s € S'; hence
=0 or b1b = b2 b. Choose by =1, b = 0. Then the second case yields
b=0b0=0.

The congruence = in a semigroup S is a (right) prime congruence if S/m is
weakly left cancelling (in commutative semigroups with identity this concept
of a prime congruence is equivalent to a definition due to K. Drbohlav). As
usual, an ideal P in S is a prime ideal if AB C P, B P implies 4 C P
whenever 4 and B are ideals in .S.

4.8. LEMMA. The ideal P C S is a prime ideal of S if and only if S/P is
weakly free of zero-divisors.

https://doi.org/10.4153/CJM-1966-048-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1966-048-1

STRUCTURE OF SEMIGROUPS 455

Proof. (1) Let S/P be weakly free of zero-divisors and 4B C P, B  P.
Foralla € 4 and b € B we have aS'6 C AB C P. Since b may be chosen such
that & ¢ P, we deduce thata € P.

(2) Let P be a prime ideal and aS'» C P. Then (S§'aS!)(S%S!) C P and
a €SSt C Porb € SWuSt CP.

4.9. THEOREM. Let P be an ideal of the semigroup S and let w be the correspond-
ing congruence in S such that S/m = S/P. If w is a prime congruence, then P is a
prime ideal.

Proof. Cf. Lemmas 4.7 and 4.8.

4.10. THEOREM. Every primitive congruence in a semigroup S is a prime
congruence.

Proof. Let 7 be a primitive congruence in S. Then S/ has a faithful irreduc-
ible S-system M. If asby = asbpfor all s € S?, then xasb: = xasbsforall x € M.
If @ ¢ O(S), then M contains at least one element x such that xaS! = M
For if xaS* C FM = {x,} holds for every x € M, then xas = xa forall x € M,
i.e., as = a for all s € S, whence a € O(S), a contradiction. From xaS! = M,
it follows that yb; = ybsforall y € M; hence b; = bs.

5. Cyclic S-systems. An S-system Z is cyclic (strictly cyclic) if Z contains
an element z such that Z = {2} U 2S (Z = 2S). The element z is a generator
(strict gemerator) for Z. If Z is strictly cyclic, then every generator for Z is
strict. The set Z of all the non-generators of the cyclic S-system Z is void or
an S-subsystem of Z distinct from Z. If Z contains at least two different
elements, then

(5.1) FZCZ#2Z.
Indeed x € FZ implies that xS = {x} # Z and x € Z.
5.2. THEOREM. (a) An irreducible S-system M is strictly cyclic with FM = M.

(b) Let Z be a strictly cyclic S-system containing at least two elements. If
Z = @, then Z is irreducible. If Z 5 @, then the difference system Z /Z is irreducible.

Proof. (a) xS = M holds for every x € M — FM. For otherwise xS C FM,
i.e.,
L= {3y € M,yS C FM} ¢ FM;

hence L = M (note that L is an S-subsystem of M). The property LS C FM
of L implies MS C FM, a contradiction. At the same time, it follows that
M C FM. By (5.1), FM C M; thus FM = M.
(b) Z = 2Syields ZS = Z and, by (5.1),

(5.3) ZS¢7 Z, ZS{ FZ.

Let W be an S-subsystem of Z; W ¢ Z. Then W contains an element w such
that wS = Z; therefore Z C WS C W, and hence Z = W. From (5.3), we
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deduce that Z is irreducible if Z = @. Let Z # 0. Then F(Z/Z) = {Z}, by
(5.1). On account of (5.3), we have

(Z/Z)S ¢ F(Z/Z).

Since every S-subsystem of Z/Z is expressible as a quotient W/Z where W
is an S-subsystem of Z such that Z C W, we obtain (1.2) for M = Z/Z, i.e.
M is irreducible.

6. Some characterizations of rad S. Interpreting the semigroup S as an
S-system with respect to right multiplication, we have O(S) = FS. A right
congruence u of the semigroup S then is identical with a congruence in the
S-system S. The S-system .S/u is defined as in §1. We call a right congruence u
in S modular if there is an element e € S such that [e]a = [a] € S/u for all
a € S.Thefollowing Lemma is due to Tully (12).

6.1. LEMMA. The S-system Z is strictly cyclic if and only if Z ~ S/u, where p
denotes a modular right congruence in the semigroup S.

For the sake of completeness we give a short proof. Let Z = 2S be strictly
cyclic. ¢ : @ — za is a homomorphism of the S-system S onto Z and

(a,0) € ueya = yYb

yields a right congruence in the semigroup S such that S/u~ Z. Choosing
e € S such that ze = 2, we have zea = za, i.e., [e]la = [ea] = [a] forall a € S.
The converse is obvious.

Let M be an irreducible S-system. Since M is strictly cyclic, there exists a
modular right congruence u in S such that M ~S/u. This remark immediately
yields

6.2. THEOREM. An S-system M is totally irreducible if and only if M ~ .S/u,
where u is a maximal modular right congruence in S.

6.3. THEOREM. For every maximal right congruence u in S the following two
conditions are equivalent:

(a) S/u s a totally irreducible S-system.

(b) At most one of the right congruence classes of S with respect to u is a right
ideal R of S and, if this is the case, then S*  R.

Proof. A right congruence class of .S with respect to u belongs to F(S/u) if
and only if it is a right ideal R of .S.

ReEMARK. Comparing Theorems 6.2 and 6.3, the following question arises,
which corresponds to a question on rings due to Kertész and solved by Leavitt
(9, p. 84): Let u be a maximal right congruence in the semigroup S satisfying
condition (b). If S has a left identity or if S is commutative, then u is modular.
(This is obvious if a left identity exists. If .S is commutative, the assertion is
easy to verify.) Is this true in general? As the following example shows, the
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answer is negative (in analogy with the situation in rings). Let K be the free
semigroup generated by two non-commuting symbols @ and 4. Set S = K/«
where « is the congruence in S generated by the two pairs (a, a?) and (a, ab).
Then S consists of the elements [a], [6]*[a], [6]™ (m, n = 1,2, ...). Let R be the
maximal right ideal of .S containing all elements of S but [e]. Obviously, the
right congruence uin S defined by S/u = S/Ris maximal. Since [a]? = [a] € S?,
we have S?  R. We can easily verify directly that there is no element [e¢] € S
such that ([e] [x], [x]) € ufor all [x] € S.

From (3, Theorems 16 and 17), we readily obtain a necessary and sufficient
condition for a maximal right congruence to be modular.

6.4. LEMMA. Let « be a right congruence in the semigroup S. Let A be a right
congruence class of S with respect to a. Let & denote the complete lattice of all right
congruences in S. Then

pa = supafulu € &, 4 is a right congruence class with respect to u}

1s the unique maximal right congruence relative to A (i.e., relative to the property
of having A as a class). u4 is modular if and only if S contains an element e such
that

ea € A=ac 4 foralla € S.
Proof. Let B be the equivalence relation

B=(AXA)U(S—4) X (S—4)).

Set
Bx = supgiulu € R, u C B}
and
(6.5) BC = {(a, b)|(as, bs) € Bforalls € St}.

Then p4 = B« = BC, as can be seen by arguments similar to those given in the
proof of (3, Theorem 15). Since

QCB*=BCC6,

A is a class with respect to u4. By (6.5), p4 is modular if and only if S contains
an element e such that (eas, as) € Bforalle € Sand s € S

6.6. THEOREM. The maximal right congruence u in S is modular if and only
if at least one right congruence class A of S with respect to p satisfies the condition

(6.7) ea CA=ac A foralla € S
with a suitable e € S.

Proof. Since u is maximal, we have u = p,. Hence by Lemma 6.4, the
assertion (6.7) is obvious.
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ReMARK. Contrary to the situation in rings (cf. the theorem in (9, p. 84)),
condition (6.7) is not equivalent to

(6.8) e(S—4)CS—-4 for suitable e € S.

Indeed, let S be the semigroup S = {a, b}, where a? = ab = a, b? = ba =
The identical relation 0 is maximal in S and (6.8) is satisfied, e.g., 4 = {a
¢ = b. But 0 is not modular.

b.
b,

6.9. LEMMA. Let u be a modular right congruence in S. Suppose S contains an
ideal Q with the following property: If w denotes the congruence in S defined by
S/w = S/Q, then the right congruence u, = supgfw, u} i S is distinct from 1.
Then w is contained in a maximal (necessarily modular) right congruence in S.

Proof. The modular right congruence u, determines a modular right con-
gruence uo/w # 1 in S/w. Since the class @ is the zero-element of S/w, (3,
Theorem 14) implies that wo/w is contained in a maximal right congruence
w*/win S/w. Hence p* is a maximal right congruence in Sand p C uo C p*.

Choose @ = O(S) # 0. Then po 5 1. This yields

6.10. THEOREM. Let O(S) % 0. Then every modular right congruence p # 1
wn S is contained 1n a maximal one.

6.11. THEOREM. Let u be a modular right congruence in S. If M = S/u is an
irreducible S-system and M° = @, then u is contained in a maximal modular
right congruence in S.

Proof. Let @ = M°. Then uo # 1, for the ideal
M= M'FM = S7'R (FM = {R})

is a congruence class with respect to 8 ,,. This implies w C 6,,. Hence by Lemma
2.1, M is an irreducible S/w-system. Because u is modular, there exists e € S
such that [e], e = [e], (€ M) for all @ € S. Going back to our definition, we
obtain [a], [8], = [a], b for [b], € S/w (b € S). The relation

([(Z]w, [b]w) € /~"l0/w = [e]u [a]w = [e]u [b]w
A [a]u = [b]u = (a: b) € u

defines a right congruence p'o/w in S/w, p'o being the corresponding right
congruence in S. By our construction, u’o = w o p 0w (0 being the usual
product of relations), hence u'o = po = supg{w, u}. Furthermore,

M~ (S/w)/ (no/w)
relative to.S/w; hence uo = 1.
Let M be an S-system and x € M. Then
(a,b) € p = xa = xb

defines a right congruence u, in S.
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6.12. LEMMA. Let M be any S-system. Then
O = MNaear po
Ifx € FM,or more generally |xS| = 1, then p, = 1.
Proof.
(a,0) €Edyye= (Wx € M)xa = xb= (Mx € M)(a, b) € u,.
6.13. LEMMA. If eis a modular right congruence in S, then
ds/e C e
Proof. Suppose e € S satisfies [¢]ca = [a]. for all @ € S. Then
Brele = €
hence, by Lemma 6.12, 6 5;¢ C .
6.14. THEOREM. Let M be an irreducible S-system. Let

Ey = {€ele € R, emodular, S/e ~ M}.
Then
6M = f\egEM €.

Proof. If S/e~ M, then 65/ = 8i; hence, by Lemma 6.13, §,; C € for
e € E,. On the other hand, every u, of

O = Naer—ra bs
belongs to E;; hence
meGEM € C b,
and therefore equality holds. In particular, we can verify that

Ey = {ulx € M — FM}.

6.15. COROLLARY. Let E be the set of all those modular right congruences
ein S for which S/ e is irreducible. Then

rad S = mgeg €.
Similar to rad .S we may consider the congruence

rad S = Nuer Our

def

where I is the set of all the totally irreducible S-systems. We note that
rad (S/rad S) = 0.

6.16. COROLLARY. Let E be the set of all the maximal modular right congruences
nS. Then

rad S = Neeze (Drad S).
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6.17. THEOREM. Let M be an irreductble S-system. Put
Ky = {ele € R,S/e~ M}.
Then
Kar d’:‘f N €K,y €
s @ congruence in S contained in & .
Proof. Let (a,b) € ky and (xa, xd) € k5 for a suitable x € S. Then
(xa, xb) € e for a suitable ¢ € K. Hence [x]..S = S/e and

S/hts, = S/~ M.
This yields
by, € Kyrand (e, 0) € pr,

ie., [x],a = [x], b and [xa], = [xb],, respectively, a contradiction.

6.18. COROLLARY. Let K be the set of all those right congruences e in S for
which S/ e is wrreducible. Then M ecx € is a congruence in S contained in rad S.

6.19. COROLLARY. Let K denote the set of all those right congruences e in S for
which S/ e1s totally trreducible. Then
Mecx €
is a congruence in S contained in rad S.
An S-system M is 2-minimal if
(6.20) M| > 2,
(6.21) M contains no non-trivial S-subsystems.

Every irreducible S-system is 2-minimal. If the right congruence u in S is
maximal, then .S/ is 2-minimal.

6.22. LEMMA. If u is a right congruence in S such that S/u is reducible and
2-minimal, then uis a congruence in S.

Proof. Let (a, d) € u. If S contains an element x such that (xa, xb) € u,
then [x],S = S/u and (S/w)S  F(S/u). Hence S/u is irreducible, a con-
tradiction.

6.23. THEOREM. T'he intersection of all maximal right congruences in S is a
congruence in S contained in rad S.

REMARK. In an oral communication, A. Kertész pointed out to me that an
analogous statement holds for the intersection of all the maximal right ideals
of a ring; cf. A. Kertész, Vorlesungen tiber Artinsche Ringe (in preparation).

Proof. If p is a maximal right congruence in S, then S/u is either totally
irreducible or 2-minimal reducible. Thus our theorem follows from Corollary
6.19 and Lemma 6.22.
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Kertész (8) stated a connection between the Frattini-subgroup of a group
and the Jacobson-radical of a general ring. An analogous characterization of
the O-radical of a semigroup with zero was given in (5). We now proceed to
characterize the congruence rad Sin a similar manner.

Let ®&(S) be the set of all the pairs (a, d) € S X S such that (sa, sb) for
every s € S may be omitted from every right generating relation of 1 in S
(containing it); thus if a is any relation in S, then

(6.24) {{(sa,sb)} Ual, =1= {a}, = 1.

Here {a}, denotes the right congruence in S generated by «, i.e. the inter-
section of all ¥ € & such thata C v.

6.25. THEOREM.rad S = &(S).

Proof. 1. Let (a,d) € S X Sand (a, d) ¢ ®(S). Then there exist x € S and
B C S X Ssuch that

(6.26) {{(xa,x0)} UB}, =1
and {B}, # 1. Choose p € ® maximal such that
B8 C u, (xa, xb) ¢ p.
By (6.26), u is maximal in ®. Hence S/u is totally irreducible. Suppose that
(a, b) € NiareT 01

Then [ylua = [y]s b for all y € S; in particular (xa, xb) € u, a contradiction.
Hence (a, b) ¢ rad S.

2. Conversely, if (a, ) € .S X Sand (a, b) ¢ rad S, then by definition there
exists M € I such that yua = yub does not hold for all y € M and u € S.
Hence, zva # zvb for some 2 € M and v € S; i.e. (va, vd) € u,. On the other
hand, u, is a maximal right congruence in S, whence {{(va, vb)} \U u,}, = 1,
w, # 1. Thus (a,d) ¢ ®(S).

REMARK. Consider the set ®*(S) of all the pairs (a, 8) € S X S that may be
omitted from every right generating relation of 1 in S (containing (a, 3)).
Then, by a general principle, ®* (S) will be the intersection of all maximal right
congruences in S (therefore ®*(S) C &(S)). Indeed, let A be any set. Let
&7 be a class of subsets of 4 with the intersection property, i.e., & C .«
implies

NpcF B €A
If Z = @, define
mBe '@ B = A.

In addition, assume that Uz @ B € & for every & C & that is simply
ordered with respect to set inclusion. It is natural to regard the subsets of 4
belonging to &7 as the &7-substructures of A. Let X be any subset of 4. Put

B =(BBecA,XCB), (X)of=NsePB.
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Obviously {X} o7 € &7 . The subset X is called a generating system for A4 if
(X} o7 = A. Let @ o7 (4) C A be the set of all those elements x € 4 that
may be omitted from every generating system for 4 (containing x). Zorn’s
Lemma implies that & o7 (4) is the intersection of all maximal elements of 7.
(An element B € &7 is called maximal if B # A and if, for every C € &,
B C C implies 4 = C or B = C.) Hence & o/ (4) is an &Z-substructure,
the Frattini- o/ -substructure of A. Note that, in contrast to (10, pp. 73786),
this definition of ® g7 (4) is independent of the special concepts of “A4-
substructures relative to a set of axioms A4’ and ‘‘substructures of the same

kind.” In our case take 4 = S X Sand.%Z = R. Then *(S) = ®(S X .5).

7. The socle of an S-system. In this section we investigate the concept
of a socle for S-systems corresponding to the socle of a module (7, p. 63).

7.1. LEMMA. Every 2-minimal S-system M 1is either irreducible or 1t satisfies
MS = FM; in the latter case we have either

|[FM| = 1, |M| = 2,
or
|FM| = 2, M = FM.

Proof. If M is reducible, then MS C FM. Because M is 2-minimal, we have
|MS| = 1or MS = M = FM. The first case yields |[FM| = 1,and MS = FM.
For FM = M would imply MS = M, |MS| > 1, a contradiction. The set
{x,y} (where x € M — FM and y € FM) is an S-subsystem of M, con-
sequently {x,y} = M.

In the case MS = M = FM, every non-void subset of M is an S-subsystem;
hence M| = 2.

7.2. LEMMA. Let ¢ : My — M. be a homomorphism of the irreducible (of the
2-minimal) S-system M, into the S-system M. Either ¢ (M) is an irreducible
(a 2-minimal) S-subsystem of My or [¢p(M,1)| = 1, (M) C FM,.

Proof. Let M, be irreducible. The pre-image ¢—'L of any non-trivial S-
subsystem L C ¢ (M) is a non-trivial S-subsystem of M;. Thus ¢ (M) contains
only trivial S-subsystems, whence |F¢(M1)| < 1. For otherwise

(*) Fo(My) = ¢(My).
Every subset of F¢ (M) is an S-subsystem and (*) would imply
d(M1) = {x1, %2}, %17 xs, ¢ a1} N xs} =

;
hence, by the irreducibility of Mj, either ¢~!{x1} = M or ¢~'{x2} = M, a
contradiction. We therefore have

¢(M1)S = ¢(M1S) = ¢(My)  Fo(My)

if ¢(My) # 1; while for |¢(M1)| = 1, the S-system ¢ (M) consists of only one
fixed element of M,.
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Let J be the set of all the irreducible S-subsystems of an S-system M. The
sum
(7.3) © =V, LIUFM

is called the socle of M. If H, is the set of all the irreducible S-subsystems of M
isomorphic to a given irreducible S-subsystem K of M, then

@« = ULEHELU FM

is called the homogeneous component of the socle determined by K.
If H, # @and Hg # @, then

D\ O = FM for a # 8.

Otherwise, there would exist L, € H, and Lg € Hgsuch that L, N\ Lg C FM,
whence L, = Lgand H, = Hg, a = B.

Given two S-subsystems X and Y of M, we write X ~ Y if there is a finite
number of S-subsystems M, C M(i =1,2,...,n) with M; = X, M, = 7,
such that

Mi~ M 1or My M,

for every 2 = 1,2,...,n — 1. Obviously this relation is an equivalence that
induces a decomposition of the set J = \UJ, into mutually disjoint classes J,.
The S-subsystems

S,, = ULeJ’LUFM

are called the semi-homogeneous components of the socle &. If J, % @ and
J. # 0, then

NS, = FM for o # 7.

M is said to be completely reducible (semi-homogeneous, homogeneous) if
M=S(M =3 M = ).

Lemma 7.2 implies the following

7.4. THEOREM. (a) Let M, be an S-system with the socle S, #= 0§ (1 = 1, 2).
Every homomorphism ¢ of My into M, induces a homomorphism of S, into Ss.

(b) Every homomorphic image of a completely reducible S-system is completely
reducible.

7.5. THEOREM. Every S-subsystem M’ of a completely reducible S-system M is
completely reducible.

Proof. Choosing ©@ = M in (7.3), we obtain
M=MNM=\g,(MNL)J (M NFM)
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where M’ M\ FM = FM'and
MNL=0 or MNLCFM o M NL=L.
Hence
M = \Uyiopes L\U FM'.

8. The socle of a semigroup. A right ideal R of a semigroup S is called
irreducible (2-minimal) if it is irreducible (2-minimal) as an S-system. Con-
sidering S as an S-system, its socle &, its homogeneous components £,, and
its semi-homogeneous components S, are called the (right) socle of the semi-
group S, its (right) homogeneous, and its (right) semi-homogeneous components
respectively. Every element « € .S induces an endomorphism a — ua (¢ € .S)
of the S-system S. Therefore by Theorem 7.4, & is either void or an ideal of
the semigroup S such that O(S) C &. By Lemma 7.2, every non-void J, is
an ideal of S. Through & = U$,, the socle & is decomposed into the ideals
3, such that

SN S, = 0(S) if o 5# 7.
This implies that
S 3 = 0(S) if ¢ 5 7.
Thus & has at most one semi-homogeneous component, © = &, (or © = @)

if O(S) is void.

8.1. LEMMA. (a) An irreducible S-system M is irreducible as a T-system for every
ideal T of S for which MT ¢ FM holds.

(b) Every 2-minimal reducible S-system M is 2-minimal relative to each sub-
semigroup of S.

Proof. (a) Let M be an irreducible S-system;x € M — FM. Then xT = M,
for xT"= FM would imply that the S-subsystem {x|x € M,xT C FM}

contains at least two distinct elements; hence it would be equal to M while
MT  FM.
(b) Cf. Lemma 7.1.

8.2. THEOREM. Suppose the semigroup S satisfies the following condition:
Eather O(S) = @, or S/O(S) is a semigroup without nilpotent ideals distinct
from zero.

Under this condition we have either © = @ or S is completely reducible.

Proof. Let R be an irreducible right ideal of S. If RS ( FR, then R is an
irreducible &-system by Lemma 8.1(a). If RS C FR, we obtain

R? C FR = RN O(S).
Hence R C 0(S) and RS C FR, a contradiction.
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8.3. THEOREM. Let .S be a completely reducible semigroup.
(@) An S-system M satisfying MS = M is completely reducible.
(b) Every irreducible S-system is the homomorphic image of a right ideal of S.

Proof. Let S = U R U O(S) where R ranges over the set of irreducible right
ideals of S.
(a) Observing MO(S) C FM, we obtain

M=MS=\UgMR\JFM = Ug\U,ecpy xR\J FM.

The mapping r — x7 (r € R) defines a homomorphism of R onto xR (x € M).
Hence, by Lemma 7.2, xR is either irreducible or contained in FM.

(b) If M is an irreducible S-system, then MS  FM. Thus there exists an
irreducible right ideal R C S such that MR  FM. Hence xR  FM for
somex € M,i.e.,xR = Mand R~ Mbyr —xr (r € R).

9. An analogue of Schur’s Lemma. Let Hom (M, M) denote the set
of all the homomorphisms ¢ : M; — M, of the S-system M; into the S-system
M,. We write ¢x for the image of x € My. Then Hom (M, M) = T, is the
centralizer of M if M, = M, = M (3).

9.1. THEOREM. The centralizer of a cyclic (of a strictly cyclic) S-system is a
homomorphic image of a suitable subsemigroup of S* (of S).

Proof. Let M = xS* (Let M = xS (x € M)). If ¥ € Ty, then S* (then S)
contains an element ¢ such that yx = xc. Thus v(xa) = (yx)a = xca, a being
any element of S (of S). Since v is a mapping we have

9.2) xa = xb = xca = xcb for all ¢, bin S! (in .S).

Conversely if C is the set of all the elements of S* (of .S) which satisfy (9.2),
then C is non-void (T, contains the identical mapping); moreover C is a
subsemigroup of S. If d € C, then xa = xb implies xda = xdb. This yields
xcda = xcdb for every ¢ € C; hence cd € C. Each element ¢ € C induces an
endomorphism v, € T, through v.(xa) = xca. The correspondence ¢ — v,
yields a homomorphism of C onto T'y,.

REMARK. The mapping ¢ — v, induces a homomorphism gCg ~ I'y; for
every element g of the pre-image of the identity of I'y. In our two cases these
pre-images are the semigroups

{glg € S, xg = x} and {g|g € S, xga = xa foralla € S}.

9.3. LEMMA. Let e be an idempotent of S and let M be an S-system. Then
Hom (&S, M) = Me; in particular T,s = eSe.

Proof. If ¢ € Hom (eS, M) and a € S, then
¢(ea) = ¢(eea) = (¢e)ea.
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This implies that ¢e = (¢e)e € Me. Conversely, each y € Me determines a
homomorphism ¢, : &S — M through ¢,(ea) = ya = yea; thus ¢, = y. The
correspondence y — ¢, is one—one. If M = ¢S, x = ¢, it is an isomorphism.
Thus vy and ¢, may be identified.

9.4. THEOREM. Let e be an idempotent of S.
(@) Iftherightideal M = eS1isirreducible, then

9.5) either eSe is a group, or it is a group with zero and e ¢ O(S),
also, eSe = {e} or O(eSe) = eSe M O(S).

(b) Assume that either O(S) s void or that S/O(S) has no nilpotent ideals but
zero. Then (9.5), conversely, implies the irreducibility of eS.

Proof. (@) Let T be arightideal of eSe. Then I'S = ¢7.S C eS. If T.S C F(eS),
then T = Te C F(eS)and |T| = 1. If I'S ¢ F(eS), we conclude that TS = eS
and T C eSe = TeSe C T, i.e., T = eSe. Hence the only right ideals of eSe
are eSe and (if F(eS) # 0, i.e., |[F(eS)| = 1) F(eS). In particular, we obtain
O(eSe) = eSeor O(eSe) = F(eS) C O(S);in the former case we have eSe = {e}.
Let a be any element of eSe. From aeSe C F(eS), it follows that a is the zero-
element of eSe. For on the one hand, we have a € F(eS), i.e., as = a for all
s € S. On the other hand, let b € eSe. Then bas = ba for all s € .S where
ba € eSe C eS; hence ba € F(eS) = {a} and ba = a. Now let aeSe ( F(eS).
Then (@S = eS and) aeSe = eSe, i.e., for every y € eSe the equation ax = y
has a solution x € eSe. Thus eSe is a group or a group with zero.

(b) Conversely, assume that eSe satisfies (9.5). If eSe is a group with zero,
then O(eSe) contains only this zero-element. If eSe is a group, then O(eSe) = @
or O(eSe) = eSe = {e}.Observing thate ¢ O(S), wededuce thate ¢ F(eS) and
(eS)S & F(eS). Let ea be any element of &S — F(eS). Then eaS ¢ O(S). For
otherwise ea € Q = O(S)S~1. From QS C 0(S) it follows that Q2 C 0(S) C 0.
Hence Q/0(S) is a nilpotent ideal of S/0(S), i.e., Q = O(S). This would
imply that ea € O(S), while ea ¢ F(eS).

Now eaS  O(S) implies that (eaS)?  O(S); therefore eaSe Z O(S);
hence by (9.5), either eSe = {e} or eaSe ¢Z O(eSe). In the latter case, there
exists & € Ssuch that eabe ¢ O(eSe). Since eSe is a group or a group with zero,
the equation eabc = e has a solution ¢ € eSe. Hence the equation eau = ed
has a solution u € .S for every ed € eS. This is true even if eSe = {e}. Thus
eS is irreducible.

9.6. COROLLARY. Let S be a semigroup satisfying at least one of the following
two conditions: ‘

(@) S contains no one-sided zero-elements.

(b) S contains zero but no nilpotent ideals except {0}.

Let e be an idempotent of S. Then eS is irreducible if and only if Se is left
srreducible.
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An idempotent e € Sis called (right) primitive if
e =ue=u=u=e
for every idempotent u# ¢ O(S).
9.7. LEMMA. Let e be an idempotent of S. If €S is irreducible, then e is primaitive.

Proof. Assume that eu = ue = u where #? = u ¢ O(S). Then uS = &S.
Hence ¢ = uv for some v and thus # = ue = u% = uv = e.

9.8. LEMMA. Let eS and fS be two irreducible right ideals of S generated by the
idempotents e and f. Then

@) eS~fS < eSf Z O(S).

(b) &S ~ 1S = eSe ~ fSf.

(c) Every homomorphism of £S into eS s trivial.

Proof. Lemma 9.3 yields Hom (fS, eS) = eSf.

(a) If eS~fS, there is ¢ € eSf such that ¢fS = &S. Since S Z 0(S), we
have ¢ = ¢f ¢ O(S).

Conversely, eSf @ O(S) implies that eSf  F(eS), eSfS = &S, and hence
eSffSe = eSe  O(S). We can, therefore, find elements a € eSf and b € fSe
such that ab = e. Obviously, ba is idempotent and a(ba)b = e ¢ O(S) implies
that da ¢ O(S). Moreover, fba = baf = ba. Since f is primitive, we obtain
ba = f. Hence ab = e implies that & induces an isomorphism of &S onto fS.

(b) The mapping s — bsa (s € eSe) is an isomorphism of the semigroup eSe
onto fSf.

(c) If eSf C O(S), then every homomorphism of fS into &S is the trivial
mapping onto the fixed element of eS. We may therefore assume that
eSf ¢ 0(S).

Let a be an element of eSf not contained in O(S). Then aS = eS; hence
afSe = eSe and repeating the argument in the proof of (a), we conclude that
a induces an isomorphism of £S5 onto eS.

10. Vector sets. Let A be a group or a group with 0, the identity of A being 1.
Put

_Az{A—— {0} if0ec 4,

A otherwise.

A left A-system M is called a (left) vector set over A if M is unital (i.e., 1x = x
for all x € M) and the following four conditions are fulfilled:

(10.1), |FM| < 1or FM = M.
(10.2), FM = M=|A| = 1.
(10.3), @5 FM = M= (A(M — FM)) N\ FM 5 .

(10.4), Forally,d € A,x € M, yx = dximpliesy = dorx € FM.
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10.5. LEMMA. Let M be a vector set over A satisfying @ #= FM # M. Then
|FM| = 1, 0 € A, FM = 0M.

Proof. Choose x € M — FM and 6 € A according to (10.3); such that
éx € FM. Then v6x = 6x and, by (10.4),,v6 = 6. Hence 6 =0 € Aory =1
forally € A.But A = {1} and FM 5 M are inconsistent.

Relative to the group —A the set M decomposes according to

(10.6) M = U,y —Ax

into domains of transitivity “Ax where x ranges over a set of representants N
of these domains. The dimension of M is defined by

IN| =1 if [M] > |[FM]| =1,

dim M = {|N] otherwise.

For each x € M — FM, the set Ax is an irreducible left A-system. On
the one hand if A(Ax) C F(Ax) C FM, then |FM| =1, |Ax| =1, |A] =1,
and FM = M while M — FM # @. On the other hand from éx ¢ F(Ax) we
deduce § # 0and Adx = A~ lox = Ax, l.e., 0x ¢ Ax.

Since either

M = UZGM—FM Ax or M = FM = UIEFM Ax

and since éx — 0y(8 € A) for x,y € M — FM is an isomorphism of Ax onto
Ay, we see that M is homogeneous.

Let M be a vector set over A. Every homomorphism of M into the (left)
vector set A = A-1 over A is called a linear form on M. The set M* of all
linear forms on M is a (right) A-system relative to the composition

x(f8) = (xf)s  (x € M,f € M* 8 € A).
10.7. LEMMA. If |A| £ 1, then
|[FM*| # 0 & |[FM*| =1, 0€ 4,  FM*= M*.

Proof. Let f € FM*, x € M, and & € A. Then (xf)é = x(fs) = xf. Since
|A] ¥ 1, wehavexf = 0 € A, |FM*| = 1.
Note that

(10.8) || = |Afem 2,

Indeed, if x ranges over N, then there exists one and only one linear form
f € M* such that xf takes given values in A under the restriction that
(FM)f = {0} when |M| > |FM| = 1.

In particular, it follows from (10.8) that M* = (). We prove that M* is a
right vector set over A.

Obviously (10.1), (the analogue of (10.1); with ‘‘left’’ and ‘‘right’ inter-
changed) is true in M*,
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(10.2),: Let FM* = M* and |A| > 1. By Lemma 10.7, |[M* = 1. Since
dim M > 1, (10.8) implies that |[M*| > |A| > 1, a contradiction.
(10.3),: From Lemma 10.7, it follows that |A| = 1 implies that

|FM*| = | M = 1.

(10.4),: If fy = f6, v # 6, and f € M* — FM* = @, then |A| 5= 1. For all
x € M, (xf(y = (xf)d, and hence xf = 0 € A,andso f € FM*,

We call M* the (algebraic) conjugate (vector) set of M. If the cardinals of A
and M are finite,

w_:l iflM[>|FMl=1
dim M* = Al — 1 ’
|A[am Mt otherwise.
Indeed, if |M|> |FM| =1, we have 0 € A, Then M* is isomorphically
represented by the system of all ordered sets (0, 8y, ..., 0am ») Where
01y - - ., Oaim ar are arbitrary elements of A. A set of representatives of the
domains of transitivity relative to —A is given by
(Oyly 621---16dlm M)y (0,0,1, Y3+« «y Ydim M)y ce ey
(0,0,0,...,0,1), (0,0,...,0),
where v, §;, . .. run over A. We can argue similarly in the second case.

10.9. THEOREM. Let M be an irreducible S-system with the centralizer T.
Fs M (Fr M) denotes the set of all the fixed elements of M with respect to S (to T).

(@) If|Fs M| = 1,then0 € T and Fr M = OM.

(b) If |T| =~ 1, then Fr M = Fg M.

(c) Let T be a group or a group with zero. Then M is a vector set over T.

Proof. (a) Let Fs M = {y} and Ox = yforallx € M. Then
O(xa) =y = yva = (0x)a
foralla € S. Thus0 € T. Forvy € T'and x € M we have
0y)x = 0(yx) = y = Ox;
hence 0y = 0. On the other hand, we have (yy)a = y(ya) = vy if a € S;
therefore yy € Fg M and vy = y. Thus
(v0)x = v(0x) = vy =y = Ox

for all x € M, i.e,, ¥0 = 0. |[M]| £ 1 implies that 0 # 1. Therefore 0 is the
zero-element of T'.

(b) Let x € Fr M, v € T, and a € S. Then yxa = xa. If x ¢ Fg M, then
xS = M and v = 1 for all vy € T, contrary to |[T| 1. Hence Fr M C Fs M
and in virtue of |Fg M| < 1 equality holds. On the other hand, |Fs M| =1
in connection with (a) implies that 0 € T and Fr M = OM = @. Therefore,
Fr M = @and Fg M # @ are inconsistent.
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(c) From (b) it follows that (10.1); and (10.2), hold with A = T. (10.3);:
Let § # Fr M # M. Obviously |T| # 1. Then (b) implies Fg M # @ and
(a) yields 0 € T"and Fr M = OM. Since |Fr M| = 1, we have also

Fr M =0(M — Fr M).

(10.4),: Let vx = 6x where v, 6 € T, vy # 4, and x € M — Fr M. Then
IT| #1, Fr M = FsM and x ¢ Fs M. Hence xS = M. Therefore, from
yxa = éxa (a € S) we obtain v = §, a contradiction.

Suppose that T'y, the centralizer of an irreducible S-system M, is a group or
a group with zero. Then the representation Sy of S, generated by M, can be
regarded as a semigroup of certain monomial matrices over T, ; cf. (3). More
generally the following theorem holds.

10.10. THEOREM. Suppose M is both an S-system and a vector set over the
group or group with zero A such that

(10.11) (6x)a = é6(xa) foralls € A,x € M,a € S,
and
(10.12) FaM C FsMif |M| > |Fa M| = 1.

Then Sy, the representation of S generated by M, can be interpreted as a monomial
representation of S over A.

Proof. In virtue of (10.6), each @ € S determines a mapping », of NV into N
and a mapping v, of Vinto A such that

xa = (xv,)(¥va)  (x € N).
Here we set xy, = 0 and xv, = yif xa € Fa M = {y} and |M| > |Fa M| = 1.

From
xab = (xva) (wvar) = ((x7a) (%74 715)) (¥v4 7)),
we have
(10.13) *Yar = (¥7a) (%v4 7»)
and
(10.14) XVep = XVq Vp.

We need only consider the case |M| > |Fa M| = 1. If xab # y, then
Xvap % Y, Xvg vy #Z ¥, and (10.13), (10.14) are true. Next let xab = y. Then
XYap = 0, xvgp = y. If xa = v, then xv, = 0, xv, = ¥, and (10.13) is valid.

(10.14):

xva b = (xvgvp) (Xvavy) = yb =y

implies that xv, v, = y. Now let xa # y; then xv, # 0 and xv, # y. From
xab =y = (xvq) ((xv,)b), we deduce (xv,)b =y, xv,v, = 0, and xv, v, = V.
Thus (10.13) and (10.14) are again true.
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The relations (10.13) and (10.14) ensure that the mapping

Pa — (XYa 0zv4,y)

(where §,,, denotes the Kronecker symbol) is an isomorphism of S, onto a
semigroup of monomial matrices; cf. (3).

11. The ideal SeS. The intersection M of all the (two-sided) ideals of a
semigroup S is either void or the kernel of S. If O(S) # @, then M = O(S) is
the intersection of all the left ideals of S. An element or a subset of .S is said
to be N-potent if some power of it is contained in N. Every N-potent right
(left) ideal of S is contained in an N-potent ideal of S (2, p. 841, Lemma 5.2).

Let R be an irreducible right ideal of .S. Either R is O(S)-potent and hence
R2 C O(S) or R is not O(S)-potent and R? = R. In the latter case, there
exists an ¥ € R such that xR = R.

The sum P of all the O(S)-potent ideals of .S is either void or an ideal of S
containing O(S).

11.1. LEMMA. Let R be any non-O(S)-potent trreducible vight ideal of S;
¥ = SR.

(a) R s contained in the minimal non-0O(S)-potent ideal ¥ of S.

(b) If O(S) = 0, then J M P is O(S)-potent.

(c) Either & itself (if O(S) =0) or F =/ (3N P) (&f O(S) = 0) is a

simple semigroup with irreducible right ideals.

Proof. (a) Since R?* = R, we have R C . The ideal & is minimal non-
0(S)-potent. For if B is an ideal of .S contained in &, then RB C R, hence
RB = R or RBC FR = RN O(S). In the latter case, B* C 3B C 0(S)
and B is O(S)-potent. In the former case, we have R C B and & C SB C B.
Therefore & = B.

(b) & M Pis an ideal of S contained in J. Suppose that F M P = J. Then
R C & C . Since R  O(S), there exists an O(S)-potent ideal P of S such
that RN P ¢ O(S). Since RN P C R and the irreducibility of R implies
RNP =R, we ind RC P, i.e.,, R is O(S)-potent, a contradiction. Hence
NP = JFand, by (a), I M Pis O(S)-potent.

(c) Since B is an ideal of &, there exists an ideal B of & such that
SNPCBCSY and B = B/(FN P). Consider the ideal IBF of S.
Obviously, B C B C 3. By (a), either FBY = & or IBY is O(S)-potent.
In the former case, § C B and thus B = & and B = &. In the latter case, we
have B C PB; hence (FB)2C IN P and (B2 C 3 M PB. Therefore,
by (b), 3B \U BY C PB. Since the ideal SBS of S lies in SIS C & we have
SBS = & or SBS C P. In either event, (SB)? = SBS-B C 3N P and, by
(b), SB C § M P C B. Similarly, BS C B so that B is an ideal of S. Hence
B =8orB=38MN%P.

Since Sis a domain of right operators,

R=RUEGENP))/ QNP =R/ (RNINP) = R/FR~R if O(S) = 8.
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Therefore R ~ R with respect to both § and § because
RN P) C (RI) N (RP) CRN P = FR.

This implies that [R(3 N P)| = 1. Let 7 € F§ R (r € R); then ra = r for all
a € &, and |r3| = 1. Hence » € rS C FR, and Fi R = FR. The assumption
R%¥ C F3 R yields R C FR and R = R® C RSR C FR, contrary to the
irreducibility of R. Clearly, the irreducibility of R is proved if it is shown that
R contains only trivial right ideals of & or, equivalently, that R contains only
trivial $-subsystems. Let U be an E_}-subsystem of R. From U C U C R,
it follows that either US = R or U C FR. The first alternative implies
that U = R. The second alternative implies that
UC V:r {x|x € R, 3 C FR}.

The right ideal V of S is contained in R. Hence either V = FR and U = FR,
or V= Rand R = R?* C RSR C FR, a contradiction.

Note that the irreducibility of R, regarded as a right ideal of &, can also
be obtained by Lemma 8.1 (a).

11.2. THEOREM. Let R be any non-O(S)-potent irreducible right ideal of S.

Suppose that I = SR contains at least one minimal non-O(S)-potent left ideal
of S. Then § is completely simple.

Proof. A right ideal R of .S is said to be [0-]minimal if either S contains
zero, R # {0} and R contains no right ideals of S except {0} and R, or S has
no zero-element and R contains no right ideals of .S except R. This notion will
also be used later in the paper.

Let L be any minimal non-O(S)-potent left ideal of S contained in &. The
corresponding left ideal of & is L. Set L = L and & = J if O(S) = @. Then
L is [0-]minimal. For if K is a left ideal of ¥ contained in L where K is the
corresponding left ideal of & such that

SNPCKCLY FINP) CIJ,
then

JKCLUGEMNP) and JK = (FKNL) U (FK N P).

Since 3K M L is either void or a left ideal of .S contained in L, we obtain
either SKNL C 3N Por IKMNL = L. In the former case,

K2C3IKCINP,

and by Lemma 11.1(b) K C SN P C K, i.e.,, K = I M P. The latter case
yields

LU@NP) =QENL)VQFNP)=IKYU@EINP) CK;

hence K = L\J (3N B). Thus K = Loor |K| =1, K = {§ N PB}. Moreover
|L| > 1if & contains zero. Indeed, consider first the case O(S) = 0. If |L| = 1,
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then L = {§ M P}, since & N P is the zero-element of §. Hence L C § N P;
thus by Lemma 11.1 (b), L is O(S)-potent, contrary to the hypothesis. Now
let O(S) = @. Then § = & contains no zero-element. For otherwise, § would
contain an ideal distinct from &. But in the proof of Lemma 11.1 (¢) we have
seen that & = & contains no ideals except & and possibly {§ N P} Gf
0(S) # 0). Since & contains [0-]minimal right ideals and [0-]minimal left
ideals, & is completely simple.

11.3. THEOREM. Let R be any non-O(S)-potent irreducible right ideal of S.
Suppose the minimal non-0(S)-potent ideal § = SR of S has at least one minimal
non-0 (S)-potent left ideal of S. Then R contains an idempotent ¢ ¢ O(S) such
that R = eS.

Proof. By Theorem 11.2, § is completely simple. Thus R contains an idem-
potent & (e being an element of R) such that B = &3. If ¢ € § N B, then
R would be the zero-ideal of &; this contradicts the irreducibility of R stated
in the proof of Lemma 11.1 (c).

11.4. LEMMA. Let R = &S be an irreducible right ideal of S where e is an
idempotent of S.
(@) Theideal & = SR is equal to

R = Upgeg QU OS)

where Q ranges over the set of all the irreducible right ideals of S homomorphic to R.
(b) If Qi1s any trreducible right ideal of S contained in I, then R ~ Q.
(©) M P is the sum R of all the O(S)-potent irreducible right ideals of S
homomorphic to R and of O(S).

Proof. (a) If s is any element of .S, the correspondence » — sr where r ranges
over R is a homomorphism of R onto sR. By Lemma 7.2, sR is either irreducible
or contained in O(S). Hence sR C R’ and & C R’. Conversely, let Q be an
irreducible right ideal of .S homomorphic to R. Then Q% is a right ideal of S
such that Q% C Q M §. Hence either QF = & or Q% C FQ. In the latter
case, Lemma 9.3 would imply that

Hom (eS, Q) = Qe C 0(S)

and eS = R ~ Q would yield Q C 0(S), a contradiction. Hence Q = Q0% C &.
On the other hand, the ideal & contains O(S). Therefore R’ C & and equality
holds.

(b) Since Q1 C &, thereexistsa Qsuchthat R~ Qand @ = Q1N Q Z O(S).
The irreducibility of Q and Q; implies Q N Q; = Q = Q1 and R ~ Q.

(c) Let Q be an O(S)-potent irreducible right ideal and R ~ Q. Then
Q C N Pyields R C & M P. Conversely, the relations

3ﬂ5B=URmQ(SBﬂQ)UO(S)
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and
C 0(S) or
$“Q{=chm€3

imply & M P C N; thus equality holds.

12. Further properties of the socle. In the following discussion we have
to keep in mind that P = O(S) equivalently means either O(S) = 0, or
S/0(S) contains no nilpotent ideals except zero. Note also that O(S) is either
void or the intersection of all the left ideals of S. We further adopt the con-
vention that 7°/@ = T for any subsemigroup 7" of S.

12.1. THEOREM. Let & be the socle of any semigroup S; © ¢ P.
(a) We have the decomposition

e=g/(@N%P) =U.3,
where &, is a certain ideal of S and also a simple semigroup with irreducible
right ideals.
(b) If O(S) # 0, then distinct §, annihilate one another.

() If OGS) = 0, then © = , is a simple semigroup with irreducible right
tdeals.

Proof. Let © Z B. Then & = U R U (&N PB), where R runs over the
set of all the non-O(S)-potent irreducible right ideals of S. By Lemma 11.1 (a),
R is contained in a minimal non-O(S)-potent ideal &, of S. Since R C @M &,
where &, is minimal non-O(S)-potent and since R is non-0(S)-potent, we have
NG, = F,ie,J, CS. From the relation

$H=GY@NP/(GNP) ~J/( GNP =3.

and Lemma 11.1 (c), we see that &, is a simple semigroup with irreducible
right ideals. Since $, &, C &\ N &, and since &, and &, are simple, we have
[S5aN S, =1or

g)\mgv:g)\:i}n A=

When O(S) # @, this implies that 3\ &, must be zero for A\ # ». When
O(S) = 0 (where B = @and &, = &, for all »v), [Sh N I,| = 1 is impossible;
for otherwise S contains zero, contrary to O(S) = @. Hence in this case A = »

and & = §,.
The ideals &, are called the simple constituents of &.

12.2. COROLLARY. Let S be a completely reducible semigroup and suppose that
S# 0(@S) =PB. Then 8 = S/0(S) decomposes into ideals that are simple
semigroups with irreducible right ideals. Any two distinct simple constituents
annihilate each other. If O(S) = @, then S is itself a simple semigroup with
wrreductble right ideals.
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The following lemma is well known.

12.3. LEMMA. Let S be a semigroup with [0-|minimal right ideals. Then the
sum T = Uy R of all the [0-]minimal right ideals R of S is an ideal of S.

12.4. THEOREM. Every simple semigroup S with [0-lminimal right ideals is
semi-homogeneous.

Proof. Let T = \U R be the sum of all the [0-]Jminimal right ideals R of S.
If S contains zero, then [S| > 1 and [T > 1; thus T = S. If S contains no
zero-element, then either (i) |S| = 1and S = 7, or (ii) |S| > 1, [T| > 1, and
again S = 7. If S = 0(S), S is homogeneous by definition. Therefore, let
S # O(S). Then |S| > 1 and |0(S)| < 1. If R is [0-]minimal and |R| = 1,
then R C O(S), and hence |O(S)| = 1,1.e., S contains zero 0. But then R = {0}
contrary to the hypothesis that it is not [0-]Jminimal. Thus |R| > 1. By
definition, each R contains no right ideals distinct from R and possibly {0}
(if 0 € S). Suppose RS C FR (CO(S)). Then RS = {0}, i.e., R C 4 where

A4 = {ala € S,aS = {0}}

is an ideal of S which is necessarily equal to S. Hence S? = {0}, contrary to
the definition of simplicity. Therefore, RS ¢Z FR. Thus R is irreducible.
R is not nilpotent. For otherwise, R would belong to the ideal

B = {8l € S, Rb = {0}}

of S because of R? = {0}. This would lead to RS = {0}, a contradiction.
Since R C SR, we have

S =S8R = UsessR

where R >~ sR and either sR = {0} or it is irreducible. Therefore S is semi-
homogeneous.

REMARK. By the hypothesis of Theorem 12.4, any. two irreducible right
ideals R; and R of S satisfy R;i~ R, and R~ R;, but not necessarily
R1 ~ Rz.

13. Primitive semigroups with minimal ideals. Let S be any [0-]
primitive semigroup (i.e., either a primitive or O-primitive semigroup) with
or without a zero. Then |S| > 1 and [rad®S| < 1. Indeed if S is 0-primitive,
then rad®S = {0}. If S is primitive and rad®.S # @, then, by (3.7) and
Corollary 3.2, rad®S is a congruence class with respect to rad S = 0. Since

0(S) C B C N(S) Crad® s,

the relation

(13.1) 0(S) = P = N(S) = rad®S = {{0} if0 ¢S,

0 ifoeg S
is true for every [0-]primitive semigroup.
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13.2. LEMMA. Suppose that S is a [0-]primitive semigroup with [0-minimal
right ideals.

(a) Every [0-lminimal right ideal R of S s irreducible and [0-]faithful
(i.e., fatthful and O-faithful respectively).

(b) Ewvery [0-]faithful irreducible S-system M 1is homomorphic to each
irreducible right ideal of S.

Proof. Let R be any [0-]minimal right ideal. Assume that |R| = 1. Then
R C O(S), ie, |0(S)] =1. Since [S|>1, it follows that 0 € .S and
R = 0(S) = {0}, contrary to R # {0}. Thus, |R| > 1.

Let M be any [0-]faithful irreducible S-system; then MR ¢ FM. For
otherwise, we would have |FM| = 1 and, since M is [0-]faithful, |[R| =1, a
contradiction. M being irreducible, it follows that MR = M. Hence there is
an element x € M such that xR = M. The mapping ¢:7 —xar (r € R)
yields a homomorphism of R onto M. Hence R is a [0-]faithful S-system.
Indeed, suppose .S is 0-primitive. From Ra = {0}, a € S, it follows that

FM = ¢({0}) = ¢(Ra) = ¢(R)a = Ma,

whence ¢ = 0. On the other hand, if S is primitive and ra = rb for all r € R
and fixed a, b € S, then

¢(r)a = ¢(ra) = ¢(r)b,
i.e., ya = yb for all y € M. Therefore a = b. Moreover, RS (Z FR, for other-

wise FR = {0} (observe that |R| > 1) and RS = {0}; hence R would not be
0-faithful. Thus R is irreducible.

13.3. THEOREM. Let S be any [0-1primitive semigroup with [0-lminimal right
ideals. Then the socle © of S is a simple semigroup with irreducible right ideals.

Proof. By Lemma 13.2, |&| > 1 and hence & ¢ $. By Theorem 12.1, we
have © = U &, where the ideals &, are simple semigroups having irreducible
rightideals. If0 ¢ S,then © = ;.

If 0¢S, then 33, = {0} (\ # »). Every [0-]primitive semigroup with
zero is obviously O-primitive. In every O-primitive semigroup, {0} proves to
be a prime ideal. Hence &\ = {0} or &, = {0}, contrary to the hypothesis.
Thus © = &, alsoif 0 € S.

13.4. THEOREM. For every semigroup S with zero the following three conditions
are equivalent:

(a) S is 0-primitive and has 0-minimal right ideals.

(b) S is weakly free of zero-divisors and has 0-minimal right 1deals.

(c) S is weakly free of zero-divisors and contains an ideal that is a simple
semigroup having O-minimal right ideals.

Proof. (b) = (a). Let R be any 0-minimal right ideal. Assume RS = {0}.
Then »Sb = {0} for every r € R and b € S. Choose b # 0. Then by (4.5),
r =0 for all » € R, i.e.,, R = {0}, a contradiction. Hence, RS  FR, i.e., R
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is irreducible and R = aS (¢ # 0). If Rb = {0}, then aSb = {0}. Hence by
(4.5), b = 0 and R is O-faithful.

(a) = (c). This follows from Lemma 13.3.

(c) = (b). Let U be any ideal of S which is a simple semigroup with 0-
minimal right ideals. As the proof of Theorem 12.4 shows, U is the sum
U = U Q of the irreducible right ideals Q of U. We first prove that Q is a
right ideal of S. Consider QU it is a right ideal of .S contained in Q. Thus
QU = Qor QU = {0}. In the latter case, ¢Su = {0} forallg € Qand u € U,
hence Q = {0} or U = {0} contrary to the hypothesis. Therefore, the right
ideal Q of Sis irreducible with respect to U C S and thus also with respect to S.

13.5. THEOREM. For any semigroup S, the following three conditions are
equivalent:

(a) S s primitive and contains [0-1minimal right ideals.

(b) S is weakly left cancelling, contains [0-1minimal right ideals, and satisfies
the condition | S| > 1.

(c) Sisweaklyleft cancelling and contains an ideal which is a simple semigroup
with [0-1minimal right ideals; further the condition |S| > 1 holds.

Proof. We first note that if .S is weakly left cancelling, |S| > 1 and asx = asy
for a € 0(S), s € S', and x # y, imply ¢ = 0 € S and O(S) = {0}.

(b) = (a). Let R be any 0-minimal right ideal. To prove that R is an
irreducible S-system, we first assume that |R| = 1. Then R C O(S), 0 € S,
and R = O(S) = {0}, contrary to R # {0}. Therefore |R| > 1. From
|0(S)| < 1, we have R # FR; hence |FR| < 1. If RS C FR, then |FR| =1,
0 € S, and RS = {0}, which by Lemma 4.7 and (4.5) would yield R = {0},
contrary to |R| > 1. Hence, R is irreducible and R = xS = x5! (x # 0).
Moreover, R is faithful. Indeed if xsa = xsb for all s € S! and fixed a, b € S,
then since S is weakly left cancelling and since x # 0, it follows that ¢ = .

(a) = (c). This follows from Theorem 13.3.

(c) = (b). This can be verified by using an argument analogous to that used
to prove the assertion (c) = (b) in Theorem 13.4.

(Note that, because |0(S)| < 1, every irreducible right ideal of S is also a
[0-]minimal right ideal. For (a) & (b) cf. also (12).)

13.6. THEOREM. (a) Every semigroup S with zero and without zero-divisors
1s 0-primaitive.

(b) If Sis a commutative semigroup with zero, then S is 0-primitive if and only
if 1t contains no zero-divisors.

Proof. (a) Since S is free of zero-divisors, let M = {m, 0} where m is any
symbol distinct from 0. Define

I ifa €S — {0},
T0eM  ifa=0cS,
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and assume that 0S = {0} for 0¢€ M. Then M is a O-faithful irreducible
S-system, i.e., S is O-primitive.

(b) If Sis O-primitive, then {0} is prime, i.e., S contains no divisors of zero
(except 0).

13.7. THEOREM. Let S be any commutative semigroup with zero. For S to be
a 0-primitive semigroup and to have O-minimal ideals it is necessary and sufficient
that S be of the form S = H \J {0} where H is any commutative homogroup.

Proof. For every commutative O-primitive semigroup .S, theset H = S — {0}
is multiplicatively closed. If .S contains 0-minimal ideals, then, by Theorem
13.3, the socle & of S is a simple commutative semigroup. It has therefore the
form & = G \U {0} where G is both a group and an ideal of H. Thus H is a
homogroup. Conversely, if H is an arbitrary commutative homogroup, then
by Theorem 13.4, S = H U {0} (where H0O = 0H = {0}) is a commutative
0-primitive semigroup with 0-minimal ideals.

13.8. THEOREM. T he commutative semigroup S is primitive and has [0-|minimal
ideals if and only if it is either an abelian group which contains at least two
elements or an abelian group with zero added.

Proof. The socle & of any commutative primitive semigroup .S with [0-]mini-
mal ideals must be either a group containing at least two elements or a group
with zero. Let a be any element of .S and e be the identity of ©. By (4.6),
the conditions ea = e(ea) and e % 0 imply that @ = ea € Sa C © and
S C &. Thus equality holds.

14. Property A. We say that a semigroup S has the property A if the
following three conditions are fulfilled:

(14.1) $ = 0(S).
(14.2) SD0E), ©=0(S).

(14.3) Every O(S)-minimal ideal of S (i.e., minimal with respect to the property
of being an ideal of .S that is different from O(S)) contains an O(S)-minimal
left ideal of S.

14.4. THEOREM. Let S be a semigroup with the property A.

(a) Every semi-homogeneous component ¥, of the socle © of S is homogeneous
and Y, = Dqfor some a.

(b) Da/0(S) s completely simple.

(c) &/0(S) 1s the sum

B/0(S) = Y (£./0(5))

of the ideals $./0(S).
(d) If O(S) = @, then any two different Ha/O(S) annihilate each other.
(e) IfO(S) = 0, then © = 9, is completely simple.

https://doi.org/10.4153/CJM-1966-048-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1966-048-1

STRUCTURE OF SEMIGROUPS 479

Proof. By (14.2), S possesses an irreducible right ideal R. By (14.1), R is
non-0(S)-potent. Hence by Theorem 11.3 and (14.3), the O(S)-minimal
ideal & = SR contains an idempotent e ¢ O(S) such that R = eS. By Lemma
9.8 (c), every irreducible right ideal of .S homomorphic to R is clearly iso-
morphic to R. Hence (a) is true. Lemma 11.4 implies & = §, for a suitable a.
From Theorem 11.2, we also obtain (b). Now (c) is evident, and (d) and (e)
follow from Theorem 12.1.

14.5. THEOREM. Let S be a semigroup with the property A. In addition suppose
that S either contains a zero-element or has neither right nor left zeros.

(@) The socle © = \J D, of S is contained in the left socle S of S.

(b) Every homogeneous component O, of © is both an ideal of S and a com-
pletely simple semigroup equal to some homogeneous left component &g of S,.

(¢) If S contains neither right nor left zeros, then @ = &, = G = D, s
completely simple.

Proof. Let R be an irreducible right ideal. As we have seen in the proof of
Theorem 14.4, R has the form R = &S where ¢ is an idempotent. By Corollary
9.6, Se is irreducible, i.e., Se C &,. Since P is the sum of all the nilpotent ideals
of S (hence ‘‘self-dual” relative to the interchange of ‘‘right”’ and ‘‘left’’)
and since |B| < 1, it follows that &, ¢ B, i.e., the assumption of Theorem
12.1 is fulfilled, whence &, = U &, where the &, are ideals of &, which are
simple semigroups with irreducible left ideals. Different ®, annihilate each
other. Furthermore, & = U $, where each 9, is of the form , = SR = SeS.
Since ¢ € Se C &,, there exists &, such that e € &, and thus $, C &,. Since
R, is simple, equality holds. Let [ be any irreducible left ideal of .S homo-
morphic to Se. Since &, = LS, L = Se, Lemma 11.4 implies that [ C &,.
Since &, = 9. is completely simple, there exists an irreducible left ideal
[ = R, ¢ generated by an idempotent ¢ (#0) € &, such that [N\’ 0.
Hence INY =1, 1e., ¢ €' C L. Since | is irreducible and Se’ C [, we see
that [ = Se’. Thus every irreducible left ideal of S homomorphic to Se is
generated by an idempotent. By Lemma 9.8, every irreducible left ideal
homomorphic to Se is also isomorphic to Se. By Lemma 11.4, &, = LS (L = Se)
is equal to the sum g of all those irreducible left ideals of S that are isomorphic
to L. Since different &, annihilate each other, we conclude that

S =R, = 9. = Gy
when 0 ¢ S.

14.6. CoROLLARY. Let S be a completely reducible semigroup with the property
A. Further suppose that S contains either a zero-element or has neither right nor
left zeros.

(@) S is completely left reducible.

(b) The semi-homogeneous left components of S are equal to the semi-homo-
geneous components as well as to the homogeneous left components and also to the
homogeneous components of S and therefore they are completely simple.
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(c) If S contains neither right nor left zeros, then it is homogeneous as well as
left homogeneous, and completely simple.

14.7. CoroLLARY. Let S be any semigroup satisfying the conditions of Theorem
14.5. Further let S satisfy the dual condition of (14.3):

(14.8) Every [0-1minimal ideal of S contains a [0-1minimal right ideal of S.

(@) The socle © of S is equal to the left socle S, of S.

(b) The semi-homogeneous left components of S are equal to the semi-homo-
geneous components as well as to the homogeneous left components and to the
homogeneous components; thus they are completely simple.

(¢) If S has neither right nor left zeros, then it has only one homogeneous
component.

14.9. THEOREM. The socle of every [0-]primitive semigroup S with both [0-mini-
mal right ideals and [0-lminimal left ideals is equal to the left socle ©, of S;
moreover it 1s completely simple.

Proof. By Theorem 13.3, the socle & is a simple semigroup containing
irreducible right ideals. Let 7" = \U L be the sum of all the [0-]minimal left
ideals of S. By Lemma 12.4, T is an ideal of S. Then |SL| > 1. For otherwise,
S would contain a right zero and hence a zero-element 0. Since |SL| = {0},
L is contained in the ideal

T = {x[x € S,Sx = {0}}.

T satisfies T = {0}. Since {0} is prime in .S and & {0}, we find that
T = {0}, a contradiction to {0} = L C <.

|SL| > 1 and &L C L, together with the fact that L is a [0-]minimal left
ideal, yield &L = L. Therefore, L is an irreducible left ideal of S and
L = &L C ©. Hence, @, = T' C &. The simplicity of @ implies that &, = &.
Since &, contains at least one irreducible left ideal of S, @ is a simple semigroup
containing both [0-]minimal right and left ideals; hence & is completely simple.

15. Dual vector sets. In this section we study concepts analogous to
those occurring in the theory of dual vector spaces (7, pp. 68-74). In this way
we develop a structure theorem for primitive semigroups with irreducible
right ideals that are generated by an idempotent.

Let M’ be a right vector set over A. A mapping f of the product set M X M’
into A is called a bilinear form on M and M’ if

flax, x") = of (x,x') and [f(x, ¥’a) = f(x, x")a
forallx € M,x’ € M’, and @ € A. The bilinear form f is said to be non-degen-

erate if

(15.1) fle,x") = fv, ") forallx’ € M/ =x =1y
and

(15.2) flx, %) = f(x, ") forallx € M =« =y
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We further consider the following conditions:
(15.3) If0 € Aand f(x,x') = Oforallx’ € M, thenx € FM,
(15.4) If0 € Aand f(x,x’) = Oforallx € M, thenx’ € FM'.

(M, M) is called a pair of dual vector sets over A if there exists a bilinear
form f on M and M’ that satisfies the conditions (15.3) and (15.4). For
instance, every non-degenerate bilinear form f satisfies (15.3) and (15.4).
If there exists a non-degenerate bilinear form on M and M’, the pair (M, M’)
is said to be nmon-degenerate. It is convenient to use the symbol (x, x’) for a
fixed bilinear form on M and M’.

Let (M, M) be a pair of dual vector sets over A. Let (M) be the semigroup
of all endomorphisms of M (i.e., the set of all homomorphisms of the A-system
M into itself). A mapping s’ of M’ into itself is called an adjoint in M’ of the
element s € (M) relative to the bilinear form (x, x') if

(xs, %) = (x, x's")
for all x € M and x’ € M'. If (x,x’) satisfies condition (15.2), then s’ is

uniquely determined by s and belongs to £(4/’). The following lemma can be
verified directly.

15.5. LEMMA. If s; € (M) has the adjoint s'; (¢ = 1,2), then s'ss'1 is an
adjoint of s1S2.

If (M, M’) is a pair of dual vector sets over A, then by Lemma 15.5 the set
Qu (M) of all those elements of £(M) that have an adjoint in M is a subsemi-
group of {(M).

Note that every A-subsystem of a vector set over A is either again a vector set
over A or it contains only one element (which then is the unique fixed ‘‘zero”
of M). Let F(M) denote the set of all the endomorphisms s € (M) such
that the image Ms is either a vector subset of dimension 1 or contains only
the zero-element. Let

%M’(M) = %(M) N 531&4'(]‘/—")-
The set F i (M) is an ideal of Ly (M).
15.6. LEMMA. Let (M, M") be a pair of dual vector sets over A. An element s of

L(M) belongs to Far (M) if and only if it has the form x — (x, ¥')u wherey’ € M’
and u € M.

Proof. Let s € F(M); then for every x € M, we have xs = o(x)u with a
suitableu € M. 1f0 € Aandu € FM = OM, weset ¢(x) = 0. Then s(x) € A
is uniquely determined by x. Evidently, x — o(x) is a linear form on M. If
u € FM, then obviously o(x)u = (x,9y )u = uforeachy’ € M'.Letu ¢ FM.
If s has an adjoint s’, then (xs,x") = (x, x’s”). This implies that

o(x)(u,x') = (x,x's’).
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Choose x' € M’ such that (u,x") = a # 0. (Obviously this condition only
occurs in the case of 0 € A.) Then ¢(x) = (x,y’) and ¥’ = x's'a”!. Conversely,
if s € Q(M) hastheformx — (x, ¥ )u(u € M,y € M'),definex’s’ = v (u, x').
Then

(ws, x') = (x, 5") (u, &) = (x, x's").
Thus s’ is an adjoint of s.

15.7. THEOREM. The following two conditions are equivalent:

(@) S s a primitive semigroup with an irreducible right ideal generated by an
idempotent.

(b) There exists a pair of dual vector sets (M, M') (where | M| 5= 1) over A
such that S is isomorphic to a subsemigroup of Ly (M) containing Fr (M).

If S is isomorphically represented as in (b), then its socle is § p (M).

Proof. (b) = (a). Let S be a subsemigroup of L, (M) containing § - (M).
Let ' be any element of M’ and let R, be the set of all the mappings of M
into itself of the form r: x — xr = (x, ¥ )u, u € M. Since x(rs) = (x, ¥ )us,
R, is a right ideal. Let #; be any element of M. Suppose that u; ¢ FM(=0M)
if 0 € A. Choose y'1 € M’ either arbitrarily (if 0 ¢ A) or such that

a= (u1,91) #0 Gf 0 € A).
Define

ri:x—xr1 = (x,y)us and s:x—xs = (x,y1)atu

where u is any element of M. Then u;s = u and xr1s = (x, ¥ )u = xr, ie.,
r1S = R,. Suppose that y' ¢ FM’ (=M'0) if 0 € A. Then in any case R,
has at least two elements. The only element of R, that does not strictly
generate R, is 7o:x — xro = (x,y )uo where uo € FM (=0M). This can
occur only when 0 € A. (If 7o does not strictly generate R, then ry € Fg R, ;
for if 7¢.S # {r¢} and r € (S, r & 7y, then

Ry =rSCroSSCreSCR/,
i.e., 7¢.S = Ry, a contradiction.) Hence R, is an irreducible right ideal of .S.

Let rs = 7t (s,t € .S) for all » € R, or equivalently (x, y" )us = (x, v )ut
for all x, u € M. Then us = ut for all u € M, i.e., s = ¢. Therefore S is a
primitive semigroup with irreducible right ideals. Choose v € M such that
(v,%") = B # 0. Put

e:x—xe = (x,v9) ().
Then e is an idempotent of R, not contained in Fg R,. Thus R,, = eS. Since
S is a primitive semigroup with irreducible right ideals, Lemma 11.4 (a) and
Lemma 13.2 imply that SeS is the socle of S. Therefore §,. (M) is contained
in SeS. On the other hand, since s7 is an element of SeS = SR, we find that
x> xsr = (x5,y)u = (x,y's)u

where s’ is an adjoint of s in M’. Hence equality holds.
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(a) = (b). We translate to semigroups an idea that I. Kaplansky has
applied to prove the analogous statement on rings; cf. (7, pp. 77). Let M = &S
be an irreducible right ideal of S generated by an idempotent e. Then by
Lemma 13.2, M is a faithful irreducible S-system. The centralizer A = eSe
of M is a group or a group with zero (cf. Theorem 9.4) and M is a vector set
over A (cf. Theorem 10.9 (c)). Interpret M’ = Se as a A-system relative to
the right multiplication as A-multiplication. M’ is a right vector set over A.
This is trivial if [A] = 1. In order to prove it if |A] # 1, we need the following
lemma.

15.8. LEMMA. Let S be a semigroup and let O,(S) be the set of the right zeros of S.
If |0:(S)| > 1, then O.(S) is an irreducible right ideal of S and the centralizer
To.(s) consists of a single element.

Proof. O.(S) is either void or the intersection of all the right ideals of S. Let
e € 0.(S). Then e = e and 0,(S) C &S C 0.(S). Hence 0.(S) = eS and

I‘O,(S) = eSe = {6}.

We now proceed to prove (a) = (b). If |A] & 1, then .S contains either a
zero-element, or it has neither right nor left zeros. Indeed, assume that
[0:(S)] > 1. Then O(S) =@. If 0.(S) =fs and f = f?, then obviously
eSf Z O(S). Hence by Lemma 9.8 (a), eS~/fS, and by Lemma 9.8 (b),
eSe ~ fSf; this contradicts Lemma 15.8. Thus we can apply Corollary 9.6 to
show that Se = M’ is an irreducible left ideal of S. By Theorem 10.9 (c),
M’ is a right vector set over A. We define a bilinear form on M and M’ by
(ex, y'e) = exy’e for x, ¥’ € S. The equation

((ex)a) (y'e) = (ex)(a(y'e))

shows that the right multiplication p, in M has the left multiplication A, in
M’ as an adjoint, whence p, € L, (M). Finally, we have to show that each
element of § (M) is of the form p, for some a € S. The mapping

ex — (ex, y'e)ey = exy'ey = exp, (a = y'ey)
indicates that this is the case.

ReMARK. The S-system R, used in the proof of (b) = (a) of Theorem 15.7
is isomorphic to M under the mapping u — 7, (¢ € M) where

Tut X = xry, = (x, y)u.

The mapping # — 7, is also an isomorphism with respect to A if we define
01y = rsy for all & € A.

15.9. THEOREM. The following two conditions are equivalent:
(@) S is a primitive semigroup that has an irreducible right ideal generated by
an idempotent, in addition, S is left primitive.
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(b) There exists a non-degenerate pair of dual vector sets (M, M') over A
where |A| # 1 such that S is isomorphic to a subsemigroup of Lp (M) which
contains § e (M).

Proof. (b) = (a). Since |A| # 1, (10.2), and (10.2), imply that |M]| # 1
and |M'| # 1. Let S be a subsemigroup of &, (M) containing § - (M). Then,
by Theorem 15.7, S is a primitive semigroup with an irreducible right ideal
generated by an idempotent. If we regard M as a right vector set over A’ and
M’ as a left vector set over A’, such that A’ is anti-isomorphic to A, then
(M', M) is a non-degenerate pair of dual vector sets over A’ relative to the
bilinear form (x’, x)’ = (x, x’). Since (x, x’) is non-degenerate, the mapping
s — s’ (where s’ is the adjoint of s € &, (M) in M) is an anti-isomorphism of
Qi (M) onto & (M’). This anti-isomorphism maps § (M) onto Fa(M').
Indeed, if s € Fir (M), i.e.,

stx— (%, )u = u(y, x),
then
six' =y (u,x) = &, u)y.

Hence s’ € §x (M), and conversely. The anti-isomorphism of . (M) onto
Ly (M) induces an anti-isomorphism of .S onto a subsemigroup .S’ of ,,(M").
Since Fu (M) C S, we have Fp(M') CS'. Thus S’ is a primitive semigroup
that contains an irreducible right ideal generated by an idempotent. Hence S
is a left primitive semigroup with an irreducible left ideal generated by an
idempotent.

(a) = (b). Let S be a primitive semigroup with an irreducible right ideal &S
generated by the idempotent e. In addition, let .S be left primitive. Then
|0.(S)] < 1. Hence S either contains a zero-element or has neither right nor
left zeros. Consequently Se is left irreducible. As in the proof of (a) = (b) of
Theorem 15.7, set M = eS and M’ = Se. By Lemma 13.2 (a), M and M’ are
faithful. Hence the bilinear form (ex, y’¢) = exy’e is non-degenerate. Therefore
(M, M’") is a non-degenerate dual pair over A = eSe. Moreover, |A| # 1. By
Theorem 9.4 (a), this is clear if 0 € S. In the general case, let xe and ye be any
two different elements of Se. Since &S is faithful, esxe = esye fails to hold for
all s € S.

16. Choice of special dual pairs. As we shall see in this section, the
investigation of ¥4 (M) and § » (M) can be reduced to the study of dual pairs
of a special kind. Let M* be the conjugate set of the vector set M over A.
A vector subset M’ of M* is called total if
(16.1) 0€ A,x € M,andxf = Oforall f € M’ impliesx € FM
and non-degenerately total if

(16.2) %,y € Mand xf = yfforallf € M'=x = y.

1f 0 ¢ A, in particular if |A| = 1, then by definition, M* as well as each vector
subset of M* is total. If [A| 5 1, then M* itself is non-degenerately total. Any
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vector subset of M* that contains a [non-degenerately] total vector subset of
M* is again [non-degenerately] total.
Let M’ be a vector subset of M*. Then

o f) =« (€ MfeM)

is a bilinear form on M and M’. If M’ is [non-degenerately] total, then (M, M")
is a [non-degenerate] pair of dual vector sets over A. Conversely, if (M, M’)
is an arbitrary pair of dual vector sets over A, then there is a natural homo-
morphism (with the kernel zero if 0 € A) of M’ onto a total vector subset

M’ C M*,
Indeed, if ¥’ is any element of M’, then
Y ix— (@)
is a linear form on M and
, -7

y =Yy
is the stated homomorphism of M’ (with kernel FM’ = M'0if 0 € A). If the
pair (M, M’) is non-degenerate, then the natural homomorphism of M’ is an
isomorphism onto the non-degenerately total vector subset M'. Hence if
(M, M) is a dual [non-degenerate] pair, then the same is true for (M, M’).

For any vector set M over A, the pair (M, M*) is dual with respect to
(x,f) = xf (x € M, f e M*.

If s € (M), then for each f € M*, x — xsf is a linear form f* on M, and the
mapping f — f* is the adjoint of s in M* which is uniquely determined by s.
Hence, Ly« (M) = {(M). More generally the following theorem holds.

16.3. THEOREM. Let (M, M') be a pair of dual vector sets over A, and let M’
be the image of M’ under the natural homomorphism. Then an element s € (M)
belongs to &3 (M) if and only if its adjoint in M* maps M’ into itself.

Proof. s € (M) means that there is a mapping s’ of M’ into itself such
that (xs,x’) = (x,x's’) for x € M and x’ € M’. By setting
& ix— (x, %),
we can write this condition as
(xs)x’ = xx's’ for x € M and %’ € M".
If s* is the adjoint of s in M*, then by definition, x(fs*) = (xs)f for x € M
and f € M*. If ' exists, then

x(x's*) = xx's (x € M),
1.€.,

-7 =77
*=x's

x's for all x’ € M.
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Hence s* maps M’ into itself. Conversely, if
M's* C M,

then we define the mapping s’ to be the restriction of s* to M’. Then s’ as a
mapping of M’ into itself (even when

x'—x
is no isomorphism of M’ onto M) can be chosen such that
x's = x5
16.4. CorROLLARY. Let (M, M') be a pair of dual vector sets over A, and let M’
be the image of M' under the natural homomorphism. Then L3 (M) = G (M)
and Fur (M) = Far (M).

REMARK. If (M, M’) is a dual pair over A satisfying (15.1), then the corres-
ponding dual pair (M, M’) over A is non-degenerate. Hence by Corollary
16.4, Condition (b) of Theorem 15.9 is equivalent to the following condition:

(c) There exists a dual pair (M, M') over A, where |A| # 1, that satisfies
(15.1) and S is 1somorphic to a subsemigroup of Lar (M) containing §a (M).

17. Isomorphism theorems. Theorem 15.7 associates with every primitive
semigroup S containing irreducible right ideals generated by idempotents a
pair of dual vector sets (M, M’) such that S is isomorphic to a subsemigroup
of ¥4 (M) containing - (M). This raises the question: How is (M, M’)
determined by S.? As we shall see below, there exist conditions under which
the corresponding isomorphism theorem of (7, p. 79) and its corollaries 1, 2,
and 3 become immediately valid for semigroups.

A mapping s of a vector set M; over A;into a vector set M, over A, is called
a semi-linear transformation if there exists an isomorphism o : §; — 6,7 of A;
onto A such that for all x; € M;and 6; € Ay,

(61 x1)s = 81°(x1 5).

When the isomorphism ¢ is indicated explicitly, the semi-linear transformation
s is written as (s, ¢). The isomorphism ¢ is uniquely determined by s unless
0 € Az and s is the ‘“‘zero-mapping’’ of M; onto the fixed element of M, with
respect to A;. When (s, o) is a 1-1 semi-linear transformation of M; onto My,
the inverse mapping is the semi-linear transformation (s, ¢—1).

For ¢ = 1,2, let (M;, M',) be a pair of dual vector sets over A; and let
(x: ¥ i) be the associated bilinear forms. We generalize the definition of
adjoint given in §15. A mapping s’ of M’z into M'y, as well as the pair (s/, o7 1),
is called an adjoint of the semi-linear transformation (s, o) relative to the
bilinear forms (x; ¥':) 4,7 = 1, 2,if

(x15,9"2)2 = (x1, 525
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for all x; € M, and ¥’y € M’,. If condition (15.2) is valid for (x1, ¥';)1, then
s’ is uniquely determined by s and is a semi-linear transformation of M’; over
Ap into M’y over A; with the associated isomorphism ¢~!. The following
lemma is obvious.

17.1. LEMMA. Let (M, M',;) be a pair of dual vector sets over Ay, 1 = 1, 2, 3.
If (s, o) is a semi-linear transformation of M, into M, with the adjoint (s', o=1)
and (t, 7) 1s a semi-linear transformation of M, into M; with the adjoint (', 1),
then (t's’', 7= ¢71) is an adjoint of the semi-linear transformation (st, ot) of M,
into Ma.

The dual pairs (M, M'y) and (M, M’s) are said to be (algebraically)
equivalent if there exists a 1-1 semi-linear transformation (s, ¢) of M; onto M,
with the following property:

(s, ¢) has an adjoint (s’, ¢~1) and
(s71, ¢71) has an adjoint (s”, o).

(17.2)

Fori = 1, 2,let (M,;, M’;) be a pair of dual vector sets over A, let s be any
1-1 semi-linear transformation of M; onto M, and let a; € ¥(M;). Then
s7lays € Q(M,). If ay € F(M,y), then s~lais € F(M,). Hence if s and s—!
have adjoints, then the mapping a; — s~la; s is an isomorphism of £,, (M)
onto Ly, (Ms) which maps § i, (M1) onto § i, (Mo).

To every §; € A, there corresponds the scalar multiplication

(61)1 X 0%,

in M;, and 6; — (8;); is an anti-isomorphism of A;. Hence A; can be regarded
as a subset of the centralizer of the S;-system M, for any subsemigroup S; of

LM,).

17.3. THEOREM. Let (M, M';) be a pair of dual vector sets over A; and
let S; be a subsemigroup of Lu;(M;) containing Fu,(M;), 7 = 1,2. If the
centralizer of the Si-system M, is equal to Ay, 1+ = 1,2, then every isomorphism
v:ar— ayt of Sy onto Sy has the form a.* = s~la1 s where ay runs over S and
(s, o) is a 1-1 semi-linear transformation of My onto M, with the property (17.2).

Proof. Let S be an abstract semigroup such that ¢ — @, is an isomorphism
of S onto S;. Then a — a,* is an isomorphism of .S onto S,, and we may regard
M, as well as M as a faithful irreducible S-system. We noted in the Remark
after the proof of Theorem 15.7 that the S;-system M, is isomorphic to an
irreducible right ideal of S; generated by an idempotent e,. Hence the S-system
M, is isomorphic to an irreducible right ideal e;.S of S. Since S is primitive,
e1.S ~ ey S. Hence there is an isomorphism s of the S-system M; onto the
S-system M. The relation

x1(a1s) = (x1a1)s = (x1a)s = (x15)a = (x15)a:* = x1(sa1')

https://doi.org/10.4153/CJM-1966-048-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1966-048-1

488 HANS-JURGEN HOEHNKE

holds for all x; € M; and @, € Sy. It implies that a;* = s7%a;s. The scalar
multiplication (81); (61 € A1) commutes with every element a; € S. Hence
s71(8;), s commutes with every element s~la; s = a;* € S,. Since the centralizer
of the Se-system M, coincides with A,, there is a scalar multiplication

(617)1 1 22— 81°%2

for 6;° € A, such that s71(81); s = (6:°),. We verify directly that ¢:6 — §°
is an isomorphism of A; into A,. If 85 is any element of A,, then in a similar
manner we deduce that s(82); s~ = (1), for some 8; € Ay. Thus 8, = §,” and
o is an isomorphism onto A,. Since (81); 5 = s(8:°), we obtain

(61x1)s = x1(61)15 = x15(6:7)1 = 617 (%1 9),
whence (s, ¢) is a semi-linear transformation.
We next show that (s, ¢) and (s7!, ¢~1) have adjoints. Let
r1:x1— (1, ¥'1)1 U1
be any element of §ar,(M1) such that uy ¢ FM;(=0M;) when 0 € A;. The
mapping
fixa— (X257 y'1)1°
is a linear form on M. Since s~ lr; s € €4,(Ms) and
x2(s7lr1s) = (2 f) (urs) € As(urs),

wehave s™lr1 s € . (M2). Hence

(x2f) (w1 s) = (x2, ¥'2)2 s
for suitable ¥’y € M’s and us, € M,. This relation, together with
urs ¢ FM, (=0M,)
in the case of 0 € A,, yields the equation
wof = (w2578 311" = (w2, 2'2)
for a certain 2's € M’s. Therefore y'1 — 2’5 is an adjoint of (s71, ¢71). By
symmetry, (s, o) also has an adjoint.

17.4. CoROLLARY. Let (M, M'.) be a pair of dual vector sets over Ay 1 = 1, 2.
If (M1, M'1) and (Mq, M'2) are equivalent, then
Rarry (M) > Ly, (M),

Conversely, let S; be a subsemigroup of Ly, (M) containing Fa, (M) such that
the centralizer of the S;-system M ; coincides with Ay, 1 = 1,2, and let Sy be
isomorphic to Se. Then (M1, M'1) and (M,, M's) are equivalent.

17.5. CorOLLARY. Let (M, M) be a pair of dual vector sets over A. If (s, o)
is a 1-1 semi-linear transformation of M that satisfies (17.2), then a — s~las
is an automorphism of Ry (M) and of § s (M). Conversely, if S is a subsemigroup
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of L (M) containing §r (M) such that the centralizer of the S-system M coin-
cides with A, then every automorphism of S has the form a — s~'as where s is a
1-1 semi-linear transformation of M onto itself that satisfies (17.2).

17.6. COROLLARY. For 1 = 1,2 let (M, M';) be a pair of dual vector sets
over Ay If S, is a subsemigroup of R, (M) containing F i, (M) such that the
centralizer of the Si-system M, cotncides with A, then every isomorphism of Si
onto Sa can be extended to an isomorphism of Ly (My) onto Ly, (Ms).

This result raises the question: When does the centralizer of the S;-system
M, coincide with A;? A sufficient condition is contained in the following
theorem.

17.7. THEOREM. Let M be a vector set over A, and let S be any subsemigroup of
(M) that satisfies the following two properties:

(a) M is an irreducible S-system.

() If u and v are any two elements of M such that u ¢ Fs M and v ¢ Au,
then there exist two elements a and b of S for which

ua = ub and va # vb.
Then the centralizer of the S-system M coincides with A.

Proof. Let ¢ be a mapping of M into itself such that ac = ca for all a € S.
Let u be any element of M — Fg M where F g M either consists of the fixed
element of M with respect to S or is void. Then uc € Au. For otherwise, S
would contain elements ¢ and & such that ua = ub and uca # ucb, contrary to

uca = uac = ubc = uch.

Thus uc = éu for some § € A. If x = ua(a € S) is an arbitrary element of M,
then

xc = (ua)c = (uc)a = (bu)a = 6(ua) = dx,
i.e., ¢ coincides with the left multiplication (8);: x — éx.

17.8. THEOREM. Let (M, M') be a pair of dual vector sets over A. Then the
centralizer of the Q3 (M)-system M coincides with A.

Proof. Put S = L (M). Take u, v € M such that u ¢ Fg M and v € Au.
If 0 € A, then clearly # ¢ Fa M = 0M. For otherwise,
u = Ou, ua = (Ou)a = 0(ua) € 01, and |0M| =1

would imply that ua = u for all @ € S, a contradiction. Let ¢ be an element
of T (M) such that ua = u and let b be the identical mapping of M. Then
ua = ub = u, va € Au, vb = v, and hence va # v. Therefore, we can apply
Theorem 17.7.

17.9. THEOREM. Let (M, M') be a pair of dual vector sets over A and let S be
any subsemigroup of L (M) containing §p (M). If the associated bilinear form
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(x,x") of (M, M) satisfies (15.1), the centralizer of the S-system M coincides
with A.

Proof. The centralizer of the § - (M)-system M is equal to A if and only if
this is also true for every S with Fu- (M) C S C &(M). Thus it is sufficient
to consider the case S = i (M). We know that M is an irreducible S-system.
Take u,v € M such that w = ub ¢ Fa M(=0M) if 0 € A. Then vb = éw for
some § € A, By (15.1), there is an element y’ € M’ for which (v, y") # (ou, y').
Assume first that (%, y’) £ 0if 0 € A. Setting

a:x— (x,9)(uy)'w,
we obtain

ua = ub = w, va = (v,9)(u, y)w # dw = vb.

Next let 0 € A and (u,y’) = 0. Set a1:x— (x,y)w and b;: M — OM.
Then ua; = ub; and, since (v, y') 5 0, va: ¥ vb;. Hence Theorem 17.7 can be
applied in either case.

REMARK. Let S be a primitive semigroup with an irreducible right ideal
eS (e? = ¢). As the proof of Theorem 15.7 shows, we can associate with S a
dual pair (M, M’) over A such that (i) S is isomorphic to a subsemigroup of
L (M) containing § - (M) and (ii) the centralizer of the S-system M coincides
with A (e.g., put M = &S, M’ = Se, A = eSe). By Corollary 17.4, any such
pair (M, M’) is uniquely determined by S up to equivalence. In particular,
A is uniquely determined by .S up to isomorphism. Therefore, it is very natural
to call A the group, with or without zero, of S.

A primitive semigroup S with an irreducible right ideal eS (¢? = ¢) is said
to be maximal if S is not properly contained in a second primitive semigroup
with the same socle & = SeS.

17.10. THEOREM. A primitive semigroup S with an irreducible right ideal
eS (e = ¢) 1s maximal if and only if it is isomorphic to a semigroup L, (M).

Proof. Clearly, we may assume that
& = %M’(M) CcSC QM'(M)

for a suitable dual pair (M, M"). If Sis maximal, then necessarily S = ;. (M).
Conversely, assume that S = , (M). If Sis properly contained in a primitive
semigroup I with the same socle & = SeS, then, since eS is an irreducible
right ideal of 7', there is a dual pair (M3, M) over A;such that T is isomorphic
to a subsemigroup T of R, (M;) that contains &, (M1) = Si. The iso-
morphism 7"~ 7"y induces an isomorphism & ~ &; and an isomorphism
S ~ S; of S onto a subsemigroup .S of T'1 that contains § -, (M1).

By Theorem 17.8 the centralizer of the S-system M coincides with A. We
wish to show that the centralizer of the Si-system M coincides with A;. Since
S ~S;, the semigroup S; has an identity e;. More generally, let S; be any
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semigroup of (M) that contains both §,, (M) and an identity e;. Since M,
is an irreducible §a,(My)-system, it is also an irreducible Si-system. Any
element y; € M; can be written in the form y; = x;¢1 where x; € M, and
ay € S1. From

yier = (x1a1)er = x1(a1€1) = %181 = Y1

it follows that e; is the identity mapping of M;. Hence, the proof of Theorem
17.8 can be applied to verify that the centralizer of the Si-system M is equal
to A In our former special situation where S~ S, this implies that the
isomorphism of .S onto S; can be extended to an isomorphism

S = (M) >, (M),
contrary to Si # Uy, (My).

REFERENCES

G. Birkhoff, Lattice theory (New York, 1948).

A. H. Clifford, Semigroups without nilpotent ideals, Amer. J. Math., 71 (1949), 834-844.

H.-J. Hoehnke, Zur Strukturtheorie der Halbgruppen, Math. Nachr., 26 (1963), 1-13.

——— Eine Charakterisierung des O-Radikals einer Halbgruppe, Publ. Math. Debrecen,

11 (1964), 72-73.

5. ——— Uber antiautomor phe und involutorische primitive Halbgruppen, Czechoslovak Math.
J., 15 (90) (1965), 50-63.

6. ——— Uber das untere und obere Radikal einer Halbgruppe, Math. Z., 89 (1965), 300-311.

7. N. Jacobson, Structure of rings (Providence, 1956).

8. A. Kertész, A characterization of the Jacobson radical, Proc. Amer. Math. Soc., 14 (1963),
595-597.

9. W. G. Leavitt, Note on two problems of A. Kertész, Publ. Math. Debrecen, 6 (1959), 83-85.

10. L. Rédei, Algebra, I (Leipzig, 1959).

11. H. Seidel, Uber das Radikal einer Halbgruppe, Math. Nachr., 29 (1965), 255-263.

12. E. J. Tully, Jr., Representation of a semigroup by transformations acting transitively on a

set, Amer. J. Math., 83 (1961), 533-541.

1.
2.
3.
4.

Deutsche Akademie der Wissenschaften zu Berlin,
Forschungsgemeinschafft,
Institut fiir Reine Mathematik

https://doi.org/10.4153/CJM-1966-048-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1966-048-1

