@ CrossMark
Forum of Mathematics, Sigma (2022), Vol. 10:¢6 1-104
doi:10.1017/fms.2021.84 CAMBRIDGE
UNIVERSITY PRESS

RESEARCH ARTICLE

Lipschitz graphs and currents in Heisenberg groups

Davide Vittone

Universita di Padova, Dipartimento di Matematica ‘T. Levi-Civita’, via Trieste 63, 35121 Padova, Italy;
E-mail: davide.vittone @unipd.it.

Received: 5 December 2020; Revised: 3 September 2021; Accepted: 19 December 2021
2020 Mathematics Subject Classification: Primary —49Q15, 53C17, 26A16; Secondary — 53C65, 22E30, 58C35

Abstract

The main result of the present article is a Rademacher-type theorem for intrinsic Lipschitz graphs of codimension
k < n in sub-Riemannian Heisenberg groups H". For the purpose of proving such a result, we settle several related
questions pertaining both to the theory of intrinsic Lipschitz graphs and to the one of currents. First, we prove an
extension result for intrinsic Lipschitz graphs as well as a uniform approximation theorem by means of smooth
graphs: both of these results stem from a new definition (equivalent to the one introduced by B. Franchi, R. Serapioni
and F. Serra Cassano) of intrinsic Lipschitz graphs and are valid for a more general class of intrinsic Lipschitz
graphs in Carnot groups. Second, our proof of Rademacher’s theorem heavily uses the language of currents in
Heisenberg groups: one key result is, for us, a version of the celebrated constancy theorem. Inasmuch as Heisenberg
currents are defined in terms of Rumin’s complex of differential forms, we also provide a convenient basis of
Rumin’s spaces. Eventually, we provide some applications of Rademacher’s theorem including a Lusin-type result
for intrinsic Lipschitz graphs, the equivalence between H-rectifiability and ‘Lipschitz’ H-rectifiability and an area
formula for intrinsic Lipschitz graphs in Heisenberg groups.
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1. Introduction

The celebrated Rademacher’s theorem [82] states that a Lipschitz continuous function f : R" — Rk
is differentiable almost everywhere in R”; in particular, the graph of f in R"** has an h-dimensional
tangent plane at almost all of its points. One of the consequences of Rademacher’s theorem is the
following Lusin-type result, which stems from Whitney’s extension theorem [96]: for every & > 0, there
exists g € C'(R",R¥) that coincides with f out of a set of measure at most . From the viewpoint
of geometric measure theory, this means that Lipschitz-regular objects (functions, submanifolds, etc.)
are essentially as nice as C'-smooth ones and has profound implications; for instance, in the theory of
rectifiable sets and currents [42, 72, 90].

The present article aims to develop a similar theory for submanifolds with (intrinsic) Lipschitz
regularity in sub-Riemannian Heisenberg groups. Before introducing our results, we feel the need to list
them at least quickly. We believe that our main result is a Rademacher-type theorem for intrinsic Lipschitz
graphs, which was the main open problem since the beginning of this theory. Some applications —
namely, a Lusin-type result and an area formula for intrinsic Lipschitz graphs —are provided here as well;
however, we believe that further consequences are yet to come concerning, for instance, rectifiability
and minimal submanifolds in Heisenberg groups. Some of the tools we develop for proving our main
result are worth mentioning; in fact, we prove an extension result for intrinsic Lipschitz graphs as well as
the fact that they can be uniformly approximated by smooth graphs. Both results stem from what can be
considered as another contribution of the present article; that is, a new definition of intrinsic Lipschitz
graphs that is equivalent to the original one, introduced by B. Franchi, R. Serapioni and F. Serra Cassano
and now widely accepted. Recall, in fact, that intrinsic Lipschitz graphs in Heisenberg groups played a
fundamental role in the recent proof by A. Naor and R. Young [79] of the ‘vertical versus horizontal’
isoperimetric inequality in H" that settled the longstanding question of determining the approximation
ratio of the Goemans—Linial algorithm for the sparsest cut problem. Let us also say that our proof of
Rademacher’s theorem heavily uses the language of currents in Heisenberg groups; a key result is for us
(a version of) the celebrated constancy theorem [42, 90, 65]. From the technical point of view, the use
of currents constitutes the hardest part of the article; in fact, currents in Heisenberg groups are defined
in terms of the complex of differential forms introduced by M. Rumin in [85, 86], which is not easy to
handle. Among other things, we had to provide a convenient basis of Rumin’s covectors that could be
fruitfully employed in the computation of Rumin’s exterior derivatives. We were surprised by the fact
that the use of standard Young tableaux from combinatorics proved to be crucial in performing this task.

It is time to introduce and discuss our results more appropriately.
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1.1. Heisenberg groups and intrinsic graphs

For n > 1, the Heisenberg group H" is the connected, simply connected and nilpotent Lie group
associated with the Lie algebra ) with 2n + 1 generators Xi,...,X,,Y1,...,Y,,T; all Lie brackets
between these generators are null except for

[X;,Y;]=T foreveryj=1,...,n.

The algebra b is stratified, as it can be decomposed as ) = h; @b, with b := span{X;,Y; : j =1,...,n}
and by := span{T'}. The first layer b; in the stratification is called horizontal.
It will often be convenient to identify H” with R***! by exponential coordinates

R'XR"XR >3 (x,y,t) e« exp(x1 X1+ - +x, Xy + )1 Y1+ -+ y, ¥, +1T) € H",

where exp : h — H" is the exponential map and O is the group identity. The Heisenberg group is a
homogeneous group according to [43]; indeed, for 1 > 0 the maps 6, (x, y, 1) := (Ax, Ay, A%¢) determine
a one-parameter family of group automorphisms of H" called dilations. We endow H" with a left-
invariant and homogeneous distance d, so that

d(qp,qp’) =d(p,p’) and d(6ap.6aq) =Ad(p.q)  Vp,p'.qeH",1>0.

It will be convenient to assume that d is rotationally invariant; that is, that

Gy, Dl = 1",y D)lls - whenever |(x, y)| = |(x, y")],

where we set ||pl|lg := d(0, p) for every p € H". Relevant examples of rotationally invariant distances
are the well-known Carnot—Carathéodory and Kordnyi (or Cygan—Kordnyi) distances.

An intensive search for a robust intrinsic notion of C! or Lipschitz regularity for submanifolds was
conducted in the last two decades; in fact (see [3]), the Heisenberg group H!' is purely k-unrectifiable,
in the sense of [42], for k = 2, 3, 4. It can, however, be stated that the theory of H-regular submanifolds
(i.e., submanifolds with intrinsic C' regularity) is well-established; see, for instance, the beautiful paper
[51]. It turns out that H-regular submanifolds in H" of low dimension k € {1, ...,n} are k-dimensional
submanifolds of class C! (in the Euclidean sense) that are tangent to the horizontal bundle b;. On
the contrary, H-regular submanifolds of low codimension k € {1,...,n} are more complicated: they
are (locally) noncritical level sets of RF-valued maps on H" with continuous horizontal derivatives
(see Subsection 4.4 for precise definitions) and, as a matter of fact, they can have fractal Euclidean
dimension [63].

A key tool for the study of H-regular submanifolds is provided by intrinsic graphs. Assume that
V, W are homogeneous complementary subgroups of H"; that is, that they are invariant under dilations,
VNW={0}and H* = WV = VW, given A C W and amap ¢ : A — V, the intrinsic graph of ¢ is
gry, == {wg(w) : w € A} c H". Itis worth recalling that, if V, W are homogeneous and complementary
subgroups, then one of the two is necessarily horizontal (i.e., contained in exp(};)), abelian and of
dimension k& < n, while the other has dimension 2n + 1 — k > n + 1, is normal and contains the group
center exp(fp); see [51, Remark 3.12]. The first appearance of intrinsic graphs is most likely to be
attributed to the implicit function theorem of the fundamental paper [48], where the authors prove an
H-rectifiability result for (boundaries of) sets with finite perimeter in H". As a matter of fact, H-regular
submanifolds are locally intrinsic graphs whose properties have been studied in many papers (see, e.g.,
[4,5,6,9,17, 18, 29, 32, 33, 36, 35, 37, 51, 61, 70, 76]).

Intrinsic graphs also provide the language for introducing a theory of Lipschitz submanifolds in H".
Observe that, while for the case of low-dimensional submanifolds one could simply consider Euclidean
Lipschitz submanifolds that are almost everywhere (a.e.) tangent to the horizontal distribution, for
submanifolds of low codimension there is no immediate way of modifying the ‘level set definition’ of
H-regularity into a Lipschitz one. Intrinsic Lipschitz graphs in H" first appeared in [50]; their definition

https://doi.org/10.1017/fms.2021.84 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2021.84

4 Davide Vittone

is stated in terms of a suitable cone property. Given @ > 0, consider the homogeneous cone of axis V
and aperture «,

Co =weH :weW,veV,|wlg < a|v|a}.
We say that amap ¢ : A ¢ W — V is intrinsic Lipschitz if there exists @ > 0 such that

gry, N (p%e) = {p} forevery p € gr.

Intrinsic Lipschitz graphs can be introduced in the more general framework of Carnot groups: apart
from the elementary basics contained in Section 2, we refer to [53] for a beautiful introduction to the
topic and to [16, 27, 30, 37, 38, 41, 44, 45, 80, 87, 88] for several facets of the theory.

1.2. Rademacher’s theorem for intrinsic Lipschitz graphs and consequences

One of the main questions about intrinsic Lipschitz graphs concerns their almost everywhere ‘intrinsic’
differentiability. Consider an intrinsic Lipschitz map ¢ : A — V defined on some relatively open subset
A C W.IfW has low dimension k < n, then (see [8] or also [50, Remark 3.11], [53, Proposition 3.7]) gry
is a k-dimensional submanifold with Euclidean Lipschitz regularity that is a.e. tangent to the horizontal
bundle §;; therefore, the problem reduces to the case of H-regular graphs with low codimension
k =dimV < n. A positive answer ([52]) is known only for the case of codimension k = 1; in fact, in
this case gr P is (part of) the boundary of a set with finite H-perimeter ([25, 46]) in H" and one can use
the rectifiability result [48] available for such sets. A Rademacher-type theorem for intrinsic Lipschitz
functions of codimension 1 was proved in Carnot groups of type x; see [44]. After a preliminary version
of the present article was made public, it was found that the Rademacher theorem may dramatically fail
for intrinsic Lipschitz graphs of codimension 2 (or higher) even in certain Carnot groups of step 2; see
[60]. In this article, we provide a full solution to the problem in H", as stated in our main result.

Theorem 1.1. IfA c Wisopenand ¢ : A — Y isintrinsic Lipschitz, then ¢ is intrinsically differentiable
at almost every point of A.

In Theorem 1.1, ‘almost every’ must be understood with respect to a Haar measure on the subgroup
W; for instance, the Hausdorff measure of dimension 2n + 2 — k. Concerning the notion of intrinsic
differentiability (see Subsection 4.2), recall that left-translations and dilations of intrinsic Lipschitz
graphs are intrinsic Lipschitz graphs; in particular, for every w € A and every 4 > 0 there exists an
intrinsic Lipschitz ¢, : B — V, defined on some open subset B ¢ W, such that

Sa((we(w))'gry) = gryq -

One then says ([9, §3.3]) that ¢ is intrinsically differentiable at w if, as 1 — +co, the blow-ups ¢,
converge locally uniformly on W to an intrinsic linear map; that is, to amap ¢ : W — V such that gr, is
a homogeneous subgroup of H" with codimension k. This subgroup, which is necessarily vertical (i.e.,
it contains the center of H") and normal, is called tangent subgroup to gr, at wg(w) and is denoted by
Tanﬂg{r(ﬁ (wop(w)).

For the reader’s convenience, the proof of Theorem 1.1 is sketched at the end of the Introduction. We
are now going to introduce a few consequences of our main result: the first one is a Lusin-type theorem
for intrinsic Lipschitz graphs.

Theorem 1.2. Let A C W be an open set and ¢ : A — Y an intrinsic Lipschitz function. Then for every
€ > 0 there exists an intrinsic Lipschitz function  : A — V such that gt , is a H-regular submanifold
and

&Q_k((grq, Agr,)U{pegr,negr,: Tan]gr(/) (p) # Tan]grw (P} <e.
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As is customary, the integer Q := 21 + 2 denotes the homogeneous dimension of H" and $2~* is the
spherical Hausdorff measure of dimension Q —k; by AAB := (A\ B) U(B\ A) we denote the symmetric
difference of sets A, B. Theorem 1.2 is part of Theorem 7.2; the latter stems from the equivalent
definition of intrinsic Lipschitz graphs provided by Theorem [.4 and is proved by an adaptation of the
classical argument of Whitney’s extension theorem; see also [48, 49, 92, 94]. Theorem 1.2 implies that,
as in the Euclidean case, the notion of H-rectifiability (Definition 4.22) can be equivalently defined
in terms of either H-regular submanifolds or intrinsic Lipschitz graphs; see Corollary 7.4. We refer to
[7,19,27,28,31,37,41, 73, 74, 75] for more about rectifiability in Heisenberg groups.

We stress the fact that Rademacher’s Theorem 1.1 also allows defining a canonical current [gr, |
carried by the graph of an intrinsic Lipschitz map ¢ : W — V. This current turns out to have zero
boundary; see Proposition 7.5.

A further consequence of Theorem 1.2 is an area formula for intrinsic Lipschitz graphs of low
codimension. For H-regular submanifolds, area formulae are proved in [48, 51, 4] for submanifolds of
codimension 1 and in [33] for higher codimension (see also [71]). For intrinsic Lipschitz graphs of
low dimension, an area formula is proved in [8, Theorem 1.1]. Our area formula is stated in Theorem
1.3 and, once Lusin’s Theorem 1.2 is available, it is a quite simple consequence of [33, Theorem 1.2],
where a similar area formula is proved for intrinsic graphs that are also H-regular submanifolds. As
in [33], the symbol J?¢(w) denotes the intrinsic Jacobian of ¢ at w (see Definition 4.9), while C,, x
denotes a positive constant, depending only on n, k and the distance d, which will be introduced later in
Proposition 1.9.

Theorem 1.3. Assume that the subgroups W,V are orthogonal’ and let ¢ : A — V be an intrinsic
Lipschitz map defined on some Borel subset A C W then for every Borel function h : gr, — [0, +00),

there holds
J

Ty

hds2k = n,k/(h o ®)VJ?p dFP K,
A

where © denotes the graph map ®(w) := wo(w).

By abuse of notation, Z?"*1=% denotes the Haar measure on W associated with the canonical
identification of W with R>"*!=* induced by exponential coordinates. It is worth observing that Theorem
1.3 and Proposition 1.9 are the only points where we use the rotational invariance of the distance d.
In case of general distances, area formulae for intrinsic Lipschitz graphs can be easily deduced using
Theorem 1.2 and [33, Theorem 1.2], but they are slightly more complicated than ours, as they involve a
certain area factor that depends on the tangent plane to the graph.

1.3. Equivalent definition, extension and approximation of intrinsic Lipschitz graphs

We now introduce two of the ingredients needed in the proof of Theorem 1.1 that are of indepen-
dent interest: namely, an extension theorem for intrinsic Lipschitz graphs in the spirit of the classical
McShane—Whitney theorem and an approximation result by means of smooth graphs. They are stated
in Theorems 1.5 and 1.6 and are both based on a new, equivalent definition of intrinsic Lipschitz graphs
(Theorem 1.4), which can be regarded as another contribution of this article.

Our alternative definition of intrinsic Lipschitz graphs appeared in [93] for graphs of codimension
I; it can be seen as a generalisation of the original level-set definition of H-regular submanifolds.
Observe, however, that it is not immediate to give a level-set definition even for Lipschitz submanifolds
of codimension 1 in R”; in fact, every closed set S C R" is the level set of some Lipschitz function; for
instance, the distance from S. Anyway, we leave as an exercise to the reader the following observation,
which was actually the starting point of [93]: a set S ¢ R” = R"~! x R is (contained in) the graph of a

1By orthogonal we mean that W, V are orthogonal as linear subspaces of H'* = R2*1,
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Lipschitz function ¢ : R"~! — R if and only if there exist § > 0 and a Lipschitz function f : R” — R
such that S ¢ {x e R" : f(x) =0} and % >0 a.e. onR".

Since their proofs present no extra difficulty with respect to the Heisenberg case, Theorems 1.4,
1.5 and 1.6 are stated in the more general setting of a Carnot group G where two homogeneous
complementary subgroups W, V are fixed with V horizontal. This means that V c exp(g;), where g; is
the first layer in the stratification of the Lie algebra of G. When V is horizontal, we say that an intrinsic
Lipschitz graph ¢ : W — V is co-horizontal; see [6]. Observe that V is necessarily abelian and there
exists a homogeneous isomorphism according to which we can identify V with R¥; see (2.5). This
identification is understood in the scalar product appearing in (1.2).

Theorem 1.4. Assume that a splitting G = WYV is fixed in such a way that the subgroup V is horizontal;
set k :=dimV. If S C G is not empty, then the following statements are equivalent:

(a) there exist A C'W and an intrinsic Lipschitz map ¢ : A — V such that S = gr;
(b) there exist § > 0 and a Lipschitz map f : G — R¥ such that

Sc{xeG: f(x)=0} (1.

and (f(xv) — f(x),v) > S[v|? for everyv € Vandx € G. (1.2)

It is worth remarking that, if X;,...,Xx € g; are such that V = exp(span{Xi,...,Xx}), then
statement (1.2) is equivalent to the a.e. uniform ellipticity (a.k.a. coercivity) of the matrix col
[Xif(x)] ... | Xkf(x)];see Remark 2.7. In case k = 1, Theorem 1.4 was proved in [93, Theorem 3.2].

Let us underline two of the most interesting features of this alternative definition. First, it allows for
a definition of co-horizontal intrinsic Lipschitz submanifolds in the more general setting of Carnot—
Carathéodory spaces, as in [93]. Second, it gives gratis an extension result for intrinsic Lipschitz maps;
in fact (Remark 2.8), the level set {x € G : f(x) = 0} appearing in (1.1) is the graph of an intrinsic
Lipschitz map that is defined on the whole W and extends ¢. We can then state the following result.

Theorem 1.5. Let A c Wand ¢ : A — V be a co-horizontal intrinsic Lipschitz graph; then there exists
an intrinsic Lipschitz extension ¢ : W — V of ¢. Moreover, ¢ can be chosen in such a way that its
intrinsic Lipschitz constant is controlled in terms of the intrinsic Lipschitz constant of ¢.

Theorem 1.5 was proved in [93, Proposition 3.4] for the case of codimension k = 1; see also
[52, 53, 79, 84].

In Proposition 2.10 we use a standard approximation argument based on group convolutions (see,
e.g., [43, §1.B]) to show that the function f appearing in Theorem 1.4 can be chosen with the additional
property that f € C*({x € G: f(x) # 0}). This fact has the following consequence.

Theorem 1.6. Let A ¢ W and ¢ : A — V be a co-horizontal intrinsic Lipschitz graph. Then there
exists a sequence (¢;);en of C®-regular and intrinsic Lipschitz maps ¢; : W — V such that

¢; — ¢ uniformlyin Aasi — .

Moreover, the intrinsic Lipschitz constant of ¢; is bounded, uniformly in i, in terms of the intrinsic
Lipschitz constant of ¢.

A similar result has been proved in [30] for intrinsic Lipschitz graphs of codimension 1 in Heisenberg
groups; see also [4, 6, 76, 93].

1.4. Currents and the constancy theorem

As in the classical setting, currents in Heisenberg groups are defined in duality with spaces of smooth
forms with compact support; here, however, the De Rham complex must be replaced by the complex
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introduced by M. Rumin [85, 86] in the setting of contact manifolds. The construction of the spaces Qy
of Heisenberg differential m -forms is detailed in Subsection 3.2; here we only recall that, for 1 < k < n,
Heisenberg forms of codimension k are smooth functions on H" with values in a certain subspace
JnE=k of (2n + 1 — k)-covectors. We denote by Jo,+1-¢ the (formal) dual of JAnrl-k. clearly, every
(2n+1—k)-vector t canonically induces an element [¢] 7 € Jop+1-« defined by [¢] 7(1) := (¢ | 1), where
(- | -) is the standard pairing vectors-covectors. See Subsection 3.1 and Subsection 3.2 for more details.

The starting point of the theory of Heisenberg currents is the existence of a linear second-order
operator D : Qp — Q]'}’H“ such that the sequence

d d d D d d
0—>R—>Q%—>Qﬁ—>...—>9ﬁ—>ﬂﬁ”—>...—>QH2_I"+1—>0

is exact, where d is (the operator induced by) the standard exterior derivative. A Heisenberg m-current
T is by definition a continuous linear functional on the space Dy < Qf of Heisenberg m-forms
with compact support. The boundary dT of T is the Heisenberg (m — 1)-current defined, for every
weDE ! by

0T(w) =T(dw) ifm+n+1
0T(w) =T(Dw) ifm=n+1.

We say that T is locally normal if both T and T have locally finite mass; that is, if they have order 0 in
the sense of distributions. Recall that, if T has locally finite mass, then there exist a Radon measure u
on H" and a locally p-integrable function T with values in a suitable space of multivectors (which, for
m > n+ 1, is precisely J,,) such that T = Tu, where

@)= [ (o) [w(p))dulp)  forevery w € DL

One can also assume that |T] = 1 u-a.e., where | - | denotes some fixed norm on multivectors?; in this
case, we write T and ||T|| in place of 7 and u, respectively.

Relevant examples of currents will be for us those concentrated on H-rectifiable sets of low codi-
mension. Recall that a set R ¢ H" is locally H-rectifiable of codimension k € {1,...,n} if S KL R
is locally finite and R can be covered by countably many H-regular submanifolds of codimension k
plus a $C ¥ -negligible set. In this case, a (unit) approximate tangent (2n + 1 — k)-vector ta(p) to R
can be defined at 2 %-ae. p € R; see Subsection 4.4. We denote by [R] the Heisenberg current
[15] 7827 L R naturally associated with R.

A fundamental result in the classical theory of currents is the constancy theorem (see, e.g., [42,4.1.7]
and [90, Theorem 26.27]), which states that, if T is an n-dimensional current in R" such that 0T = 0,
then T is constant; that is, there exists ¢ € R such that T(w) = ¢ fRn w for every smooth n-form w with
compact support. A more general version of the constancy theorem can be proved for currents supported
on an m-dimensional plane & C R": if T is an m-current with support in & and such that T = 0, then
there exists ¢ € R such that T(w) = ¢ f@ w for every smooth m-form w with compact support. For this
statement, see, for example, [65, Proposition 7.3.5]. The following Theorem 1.7 can be considered as
the Heisenberg analogue of this more general constancy theorem; besides its importance for the present
article, Theorem 1.7 is a fundamental tool for the outcomes of the recent [62].

Theorem 1.7. Let k € {1,...,n} be fixed and let T be a Heisenberg (2n + 1 — k)-current supported
on a vertical plane & c H" of dimension 2n + 1 — k. Assume that 0T = O, then there exists a constant
c € Rsuchthat T = [ 2].

Using a procedure involving projection on planes (see [89, Theorem 4.2]; let us mention also [1, §5]
and [2] for some related results), the (version on planes of the) constancy theorem in R” has the following

2More precisely, when m > n + 1, one needs a norm on 7.
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consequence: if R ¢ R" is an m-rectifiable set and T = 7y is a normal m-current, where u is a Radon
measure and 7 is a locally u-integrable m-vectorfield with 7 # 0 u-a.e., then

(i) uL_R is absolutely continuous with respect to the Hausdorff measure "L R and
(ii) 7 istangent to R at u-almost every point of R.

A consequence of this fact, which might help explaining its geometric meaning, is the following one: if
T = 7u is a normal current concentrated® on a rectifiable set R, then u < Z"™ LR and 7 is necessarily
tangent to R p-almost everywhere.*

In our proof of Rademacher’s Theorem 1.1, we will utilise the following result, which is the Heisen-
berg counterpart of the ‘tangency’ property (ii) above; we were not able to deduce any ‘absolute con-
tinuity’ statement analogous to (i) because no good notion of projection on planes is available in H".
Notice, however, that, in the special case when T is concentrated on a vertical plane, Theorem 1.7 allows
deducing a complete result including absolute continuity.

Theorem 1.8. Let k € {1,...,n} and let a locally normal Heisenberg (2n + 1 — k)-current T and a
locally H-rectifiable set R ¢ H" of codimension k be fixed. Then

?F(p) is a multiple of [t]g(p)]j Jor ||T||q-a.e. p.

In Theorem 1.8 we decomposed ||T|| = ||T|la + ||Tlls as the sum of the absolutely continuous and
singular part of || T|| with respect to S~ L_ R. Observe that t}; is defined only 2 ~*-almost everywhere
on R; hence, it could be undefined on a set with positive ||T||;-measure. The geometric content of
Theorem 1.8 is again clear: for a current T concentrated on R to be normal, it is necessary that T is
almost everywhere tangent to R.

The proof of Theorem 1.8 follows a blow-up strategy according to which one can prove that, at 2%
a.e. p € R, the current T(p)S2* L Tan; (p) has zero boundary, where Tan(p) = exp(spantk(p))

is the approximate tangent plane to R at p. Proposition 5.3 shows that this is possible only if ?I'( p) is
a multiple of [tg(p)] 7. Proposition 5.3 is essentially a simpler version of Theorem 1.7; its classical
counterpart can be found, for instance, in [57, Lemma 1 in §3.3.2]. The proof of Proposition 5.3°
consists in feeding the given boundaryless current with (the differential of) enough test forms in order to
eventually deduce the desired ‘tangency’ property. Apart from the computational difficulties pertaining
to the second-order operator D (at least in case k = n), one demanding task we had to face was the
search for a convenient basis of f”“‘k; see Subsection 1.5.

We conclude this section with an important observation. Assume that § is an oriented submanifold
of codimension k that is (Euclidean) C'-regular; in particular, the tangent vector t? is defined except
at characteristic points of S, which, however, are Sk -negligible [15, 69]. Then, on the one side, S
induces the natural Heisenberg current [[S] = [t?] 7827KL_S:; on the other side, associated to S is also
the classical current (S)) defined by (S)(w) := fs w for every (2n+ 1 — k)-form w with compact support.
The following fact holds true provided the homogeneous distance d is rotationally invariant.

Proposition 1.9. Let k € {1, ..., n}, thenthere exists a positive constant Cy, i, depending on n, k and the
rotationally invariant distance d, such that for every C'-regular submanifold S ¢ H" of codimension k,

[ST(w) = Coi(S)(w)  forevery w € DA+, (1.3)

In particular, if S is a submanifold without boundary, then [ S] = 0 is a Heisenberg (2n — k)-current.

In other words, [ S]] and (S) coincide, as Heisenberg currents, up to a multiplicative constant. This
is remarkable. The first part of the statement of Proposition 1.9 is proved in Lemma 3.31, while the

3By concentrated we mean that u(H" \ R) = 0.

“Equivalently, there exists a %" L_ R-measurable function f : R — R such that T(w) = f R [ w-

sItis worth pointing out that we cannot deduce Proposition 5.3 from Theorem 1.7; in fact, Proposition 5.3 is needed for proving
Theorem 1.8, which in turn is needed for the proof of Theorem 1.7.
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second one is a consequence of the fact that the operator D is the composition of the differential d with
another operator; see Corollary 3.34. For the exact value of C, x, see Remark 4.21. Proposition 1.9 is
crucial in the proof of our main result Theorem 1.1.

1.5. A basis for Rumin’s spaces [J>"' 7%

We believe it is worth introducing, at least quickly, the basis of j2”+1_k that we use; we need some
preliminary notation. Assume that the elements of a finite subset M C N with cardinality |M| = m are
arranged (each element of M appearing exactly once) in a tableau with two rows, the first row displaying

€ > % elements R, ..., R} and the second one displaying m —¢ > O elements R?, ..., R? . as follows:
1] p1 1 1 1
R= Ri|Ry| | Ry | Ry | | Re
2| p2 2 ’
RYIRS| IR,

Such an R is called Young tableau (see, e.g., [55]). Clearly, R has to be read as a (2 X ) rectangular
tableau when ¢ = m/2 while, in case £ = m, we agree that the second row is empty. Given such an R,
define the 2¢-covector

aR = (dxyR{ - dxyR%) A (dxyR; - dxng) Ao A (dxyg LT dxygpe _{) A dxyp N A dxyR},

where for shortness we set dxy; := dx; A dy;; when € = m (i.e., when the second row of R is empty), we
agree that ag = dxy RIA A dxy Rl One key observation is the fact that

R A Z dxy; =0, (1.4)

ieEM

which is essentially a consequence of the equality (dxy; — dxy;) A (dxy; + dxy;) = 0.

Before stating Proposition 1.10, we need some further notation. First, we say that R is a standard
Young tableau when the elements in each row and each column of R are in increasing order; that is,
when Rj. < Rj.” and R]l. < R?. Second, given I = {i1,...,i;;;} € {1,...,n} withij <ir <--- <,
we write

dxy = dx,-] /\--~/\dxl-|1|, dyy = inl /\"'/\dyim.

Eventually, we denote by 6 := dr + % Z?:l (yidx; —x;dy;) the contact form on H", which is left-invariant
and then can be thought of as a covector in A'h. Observe that # vanishes on horizontal vectors.

Proposition 1.10. For every k € {1,...,n}, a basis of "*'=*% is provided by the elements of the form
dxy Ndyj A ag A0, where (1,J, R) ranges among those triples such that

olc{l,...,nh,Jc{l,...;n4L |[|+|J| < kand INJ = 0;
o R is a standard Young tableau containing the elements of {1, ...,n} \ (I U J) arranged in two rows
of length, respectively, 2n — k — |I| = |J|)/2 and (k = |I| = |J])/2.

Proposition 1.10 follows from Corollary 3.22. Observe that the tableaux R appearing in the statement
are rectangular exactly in case k = n. In this case, it might happen that I U J = {1, ..., n}; that is, that
R is the empty table. If so, we agree that ag = 1. It is also worth observing that the covectors A7 j g =
dx; Adyy Aag A6 appearing in Proposition 1.10 indeed belong to 72"*!=% because A1, 7, N8 =0 (by
definition) and A; j g Ad6 = 0, which comes as a consequence of (1.4) and the fact that d = — 3", dxy;
is, up to a sign, the standard symplectic form.

During the preparation of this article, we became aware that a basis of 72"*'7% is provided also in
the paper [11]: however, the basis in [11] is presented by induction on n, while ours is given directly
and is somewhat manageable in the computations we need.
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1.6. Sketch of the proof of Rademacher’s Theorem 1.1

For the reader’s convenience, we provide a sketch of the proof of our main result. Let¢p : AC W — V
be intrinsic Lipschitz; by Theorem 1.5 we can assume that A = W. We now use Theorem 1.6 to produce
a sequence of smooth maps ¢; : W — V converging uniformly to ¢: it can be easily proved that the
associated Heisenberg currents [[ gr ¢.-]] converge (possibly up to a subsequence) to a current T supported
on gry and, actually, that T = 7§27k I_gr¢7 for some bounded function 7 : gr, — Jan+1-k \ {0}.
Moreover, we have d[ gr ¢,l_]] = 0 for every i because of Proposition 1.9; therefore, also 0T = 0. As we
will see, this equality carries the relevant geometric information.

Our aim is to prove that, at a.e. w € W, the blow-up of ¢ at w (i.e., the limit as r — +co of
6,((w¢(w))_lgr¢)) is the graph of an intrinsic linear map; a priori, however, there could exist many
possible blow-up limits ¢ associated with different diverging scaling sequences (r;);. In Lemma 4.16
we prove the following: for a.e. w € W, all of the possible blow-ups ¢ of ¢ at w are t-invariant; that is,

Y(wexp(tT)) =¥ (w(0,0,1)) = (w) foreveryt e R,w € W.

The proof of Lemma 4.16 makes use of Rademacher’s theorem proved for the case of codimension 1
in [52].

Let then w be such a point and fix a f-invariant blow-up y of ¢ at w associated with a scaling
sequence (r;);. It is a good point to notice that, being both intrinsic Lipschitz (because it is the limit of
uniformly intrinsic Lipschitz maps) and #-invariant, ¢ is necessarily Euclidean Lipschitz; see Lemma
4.15. Consider now the current T, defined (up to passing to a subsequence) as the blow-up limit along
(rj); of Tat p := we¢(w) € gr,, namely,

Teo := lim (6,; 0 L-1)4T,
jooo

where L ;-1 denotes left-translation by p~! and the subscript # denotes push-forward. If one assumes
that p is also a Lebesgue point (in a suitable sense) of the function 7, then the following properties hold
for Teo:

0 T = fT(p)SLFL gr,, for some positive and bounded function f on gr,,;
o gry, is locally Euclidean rectifiable and, in particular, it is locally H-rectifiable;
o 0T =0, because T, is limit of boundaryless currents.

We can then apply Theorem 1.8 to deduce that [tg(p (p)]7 is a multiple of 7(p) for a.e. p € gr,. By

t-invariance, the unit tangent vector 7gr, (p) coincides with tgw (p). Summarising, we have a f-invariant
Euclidean Lipschitz submanifold gr,, whose unit tangent vector 7, is always vertical (i.e., of the form
ler, = 1" AT for a suitable multivector ") and has the property that, for a.e. point p, [fgr, (p)]7 is a
multiple of 7(p) € Jon+1-k \ {0}. If we could guarantee that there is a unique (up to a sign) unit simple
vector 7 that is vertical and such that [7]7 is a multiple of 7(p), then we would conclude that gr,, is
always tangent to that particular 7; that is, that gr, is a vertical plane 2. Since 7 (and then 9°) depends
only on p and not on the particular sequence (r;);, the blow-up & is unique and is the graph of an
intrinsic linear map y: this would conclude the proof.

Unluckily, this is not always the case; in fact, in the second Heisenberg group H? the unit simple
vertical 3-vectors X1 A Y] AT and —X> A Y> A T have the property that

[X]/\Y]/\T]jz[_XQ/\Yz/\T]j.

This, however, is basically the worst-case scenario. A key, technically demanding result is Proposition
3.38, where we prove that there exist at most two linearly independent unit simple vertical vectors 7y, 7,
such that [7] 7 = [2] 7are multiples of 7(p); moreover, the planes &, 9, associated (respectively) with
+f], 1, are not rank 1 connected,; that is, dim 9| N 9, has codimension at least 2 in 9 (equivalently, in
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). This means that the vertical Euclidean Lipschitz submanifold gr,, has at most two possible tangent
planes &, %,; however (see, e.g., [14, Proposition 1] or [78, Proposition 2.1]), the fact that these two
planes are not rank 1 connected forces gr,, to be a plane (either & or %) itself.

This is not the conclusion yet: we have for the moment proved that, for a.e. w € W, all of the possible
blow-ups of ¢ at w are either the map | parametrising &; or the map ¥, parametrising &; both are
determined by 7(p) (i.e., by w) only. However, it is not difficult to observe that the family of all possible
blow-ups of ¢ at a fixed point must enjoy a suitable connectedness property; hence, it cannot consist of
the two points i1, ¢, only. This proves the uniqueness of blow-ups and concludes the proof of our main
result.

1.7. Structure of the article

In Section 2 we introduce intrinsic Lipschitz graphs in Carnot groups and prove Theorems 1.4, 1.5 and
1.6. Heisenberg groups are introduced in Section 3, where we focus on the algebraic preliminary material,
in particular, about multilinear algebra and Rumin’s complex. We also provide the basis of Rumin’s
spaces of Proposition 1.10, introduce Heisenberg currents and prove Proposition 1.9. Eventually, we
state Proposition 3.38, which we use in the proof of Rademacher’s Theorem 1.1 and whose long and
tedious proof is postponed to Appendix A. In Section 4 we deal with intrinsic Lipschitz graphs of low
codimension; in particular, we define intrinsic differentiability and we prove the crucial Lemma 4.16.
We also introduce H-regular submanifolds and H-rectifiable sets and we study (Euclidean) C'-regular
intrinsic graphs. Section 5 is devoted to the proof of the constancy-type Theorems 1.7 and 1.8. The
proof of Rademacher’s Theorem 1.1 is provided in Section 6. Section 7 contains the applications of our
main result concerning Lusin’s Theorem 1.2, the equivalence between H-rectifiability and ‘Lipschitz’
H-rectifiability (Corollary 7.4) and the area formula of Theorem 1.3.

2. Intrinsic Lipschitz graphs in Carnot groups: extension and approximation results

In this section we introduce Carnot groups and intrinsic Lipschitz graphs; our goal is to prove the
extension and approximation results stated in Theorems 1.5 and 1.6. These two results are used later
in the article for intrinsic Lipschitz graphs in Heisenberg groups; however, they can be proved with no
extra effort in the wider setting of Carnot groups, and we will therefore operate in this framework, which
also allows for some simplifications in the notation. The presentation of Carnot groups will be only
minimal, and we refer to [43, 20, 58, 66, 88] for a more comprehensive treatment. The reader looking
for a thorough account on intrinsic Lipschitz graphs might instead consult [53].

2.1. Carnot groups: algebraic and metric preliminaries

A Carnot (or stratified) group is a connected, simply connected and nilpotent Lie group whose Lie
algebra g is stratified; that is, it possesses a decomposition g = g; @ - - - @ g, such that

Vi=1l....s—-1 gj=I[gj.a1]. 9 #{0} and  [gs0]={0}.
We refer to the integer s as the step of G and to m :=dim @ as its rank; we also denote by d the
topological dimension of G. The group identity is denoted by O and, as is customary, we identify g, oG
and the algebra of left-invariant vector fields on G. The elements of g; are referred to as horizontal.

The exponential map exp : ¢ — G is a diffeomorphism and, given a basis Xi, ..., Xz of g, we will
often identify G with R¢ by means of exponential coordinates:

Rd o2X = (xl,...,xd) “—> exp(xlxl +"'+ded) e G.
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We will also assume that the basis is adapted to the stratification; that is, that

X1, ..., Xy is a basis of g; and

Vj=2,...,s, Xdim(g,e}~~~@gj_|)+ly ooy Xdim(g  @--@q;) 18 basis of g;.

In these coordinates, one has

d
Xi(x) = O+ Y. Pij(x)dx, foreveryi=1,...,m @2.1)

j=m+l

for suitable polynomial functions P; ;. A one-parameter family {6,}.50 of dilations 6, : ¢ — g is
defined by (linearly extending)

62(X) ;= A/ X forany X € TR

notice that dilations are Lie algebra homomorphisms and 6,4, = 6, o §,,. By composition with exp, one
can then define a one-parameter family, for which we use the same symbol, of group isomorphisms
01:G—>G.

We fix a left-invariant homogeneous distance d on G, so that

d(xy,xz) =d(y,z) and d(5,x,6,y) = Ad(x,y) forallx,y,z€ G,4> 0.

We use d to denote both the distance on G and its topological dimension, but no confusion will ever arise.
We denote by B(x, r) the open ball of center x € G and radius r > 0; it will also be convenient to denote
by || - |lc the homogeneous norm defined for x € G by ||x||g := d(0, x). Recall that #¢ is a Haar measure
on G = R and that the homogeneous dimension of G is the integer Q := Z‘;zl jdimg;. One has

Z9B(x,r) =r224(B(0,1))  forallx € G,r > 0.

The number Q is always greater than d (apart from the Euclidean case s = 1) and it coincides with
the Hausdorff dimension of G. Since the Hausdorff' O-dimensional measure is also a Haar measure, it
coincides with Z¢ up to a constant.

Given a measurable function f : G — R, we denote by Vg f = (X1 f,...,X;uf) its horizontal
derivatives in the sense of distributions. It is well-known that, if f is Lipschitz continuous, then it is
Pansu differentiable almost everywhere [81] and, in particular, the pointwise horizontal gradient Vg f
exists almost everywhere on G. Moreover (see, e.g., [47, 56]), we have

if f : G — R is continuous, then fis Lipschitz if and only if Vg f € L (G) 2.2)

where Lipschitz continuity, of course, is meant with respect to the homogeneous distance d on G. It is
worth mentioning that the Lipschitz constant of f is bounded by ||V f |~ (z), apart from multiplicative
constants that depend only on the distance d, both from below and from above.

We will need the following result later, proved in [93, Lemma 2.2], where we denote by exp(X)(x)
the point reached in unit time by the integral curve of a vector field X starting at a point x.

Lemma 2.1. Let f : R — R be a continuous function and let Y be a smooth vector field in R?. Assume
that Y f > & holds, in the sense of distributions, on an open set U C R and for a suitable § € R. If
x € UandT > 0 are such that e&xp(hY)(x) € U for every h € [0,T), then

F(@&XP(Y)(x)) = f(x)+6t  foreveryt € [0,T).
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2.2. Intrinsic Lipschitz graphs

Following [53], we fix a splitting G = WV in terms of a couple W,V of homogeneous (i.e., invariant
under dilations) and complementary (i.e., WNV = {0} and G = WV) Lie subgroups of G. In exponential
coordinates, W, V are linear subspaces of G = R<. Clearly, the splitting induces for every x € G a unique
decomposition x = xywxy such that xyy € W and xy € V; we will sometimes refer to the maps x — xw
and x — xvy as the projections of G on W and on V, respectively.

Given A ¢ W and amap ¢ : A — V, the intrinsic graph gr P of ¢ is the set

gry = {wo(w) :we A} CG.

The notion of intrinsic Lipschitz continuity for maps ¢ from W to V was introduced by B. Franchi,
R. Serapioni and F. Serra Cassano [50] in terms of a cone property for gr . The intrinsic cone € o of
aperture @ > 0 and axis V is

Co :={x€G: |lxwllc < ellxvlic}.
Observe that €, is homogeneous (invariant under dilations) and that V c %,. For x € G we also
introduce the cone € (x) := X6, with vertex x.

Definition 2.2. Let A ¢ W; we say that ¢ : A — V is intrinsic Lipschitz if there exists @ > 0 such that
Vxegr, gry N €a(x) = {x}. 2.3)

The intrinsic Lipschitz constant of ¢ is inf{% :a > 0and (2.3) holds}.

Since all homogeneous distances on G are equivalent, Definition 2.2 is clearly independent from
the fixed distance d on the group. It was proved in [53, Theorem 3.9] that, if ¢ : W — V is an entire
intrinsic Lipschitz map, then the Hausdorft dimension of gr,, is the same as the Hausdorff dimension of
the domain W; actually, the corresponding Hausdorff measure on gr,, is Ahlfors regular and then also
locally finite on gr . This implies that for entire intrinsic Lipschitz graphs one has

Z4(gr,) =0, (2.4)

provided, of course, we are not in the trivial case W = G, V = {0}. As one can imagine, the equality
(2.4) holds, however, for every intrinsic Lipschitz ¢ : A ¢ W — V provided W # G: one way of
proving this fact is by noticing that Z¢(%,(x) N B(x,r)) is a fixed fraction of Z(B(x,r)); hence,
gr, cannot have points of density 1 and (2.4) follows by Lebesgue’s differentiation theorem in doubling
metric spaces (see, e.g., [59, Theorem 1.8]).

Remark 2.3. For the purpose of future references, we observe the following easy fact. Let S ¢ G and
« > 0 be fixed; if

Vxe S SNEq(x)={x},

then § = gr , for suitable ¢ : A — V (which is clearly intrinsic Lipschitz) and A ¢ W. See, for example,
[53, §2.2.3].

2.3. A level set definition of co-horizontal intrinsic Lipschitz graphs

From now on we assume that the splitting WV of G is fixed in such a way that V is not trivial (V # {0})
and it is horizontal; that is, V C exp(g;). Of course, this poses some algebraic restrictions: for instance,
V is forced to be abelian. Moreover, it can be easily checked that free Carnot groups (of step at least 2)
have no splitting such that V is horizontal and dimV > 2. Nonetheless, the theory we are going to
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develop here is rich enough to include intrinsic Lipschitz graphs of codimension 1 in any Carnot group
(in fact, every 1-dimensional horizontal subgroup V of a Carnot group provides a splitting WV for some
W) and intrinsic Lipschitz graphs of codimension at most 7 in the Heisenberg group H"”, which are the
main object of study of the present article.

With such assumptions on the splitting WV, intrinsic Lipschitz graphs ® : A ¢ W — V will be
called co-horizontal (see [6]). We denote by k the topological dimension of V and we assume without
loss of generality that the adapted basis X1, ..., Xy of g has been fixed in such a way that

V = exp(span{ Xy, ..., Xr}).
We consequently identify V with R¥ through the map
R¥ 5 Viseesvi) e exp( X1+ -+ v X)) €V, 2.5)
and we accordingly write v = (vq,...,vr) € V. The map in (2.5) turns out to be a group isomorphism
as well as a bi-Lipschitz map between (R, | - |) and (V, d): this proves that the Hausdorff dimension
of V equals the topological dimension k. We observe that, since the flow of a left-invariant vector field
corresponds to right multiplication, we have
xv = exp(vi Xp +- -+ v Xp) (x).
In particular, the projections on the factors W, V can be written as
xy = exp(x1 X1 + - - +x, Xg), xw = xxy' = xp(= (1 Xy + -+ 0 Xp)) (%)
and are therefore smooth maps.
Our first goal is to provide the equivalent characterisation of co-horizontal intrinsic Lipschitz graphs
stated in Theorem 1.4. However, we need some preparatory lemmata as well as some extra convention

about notation. First, we introduce the homogeneous (pseudo)-norm

L
1
s 2s!

ko= > > Wl7 | . xeG,

j=1i:X;€q;

which is equivalent to || - ||g in the sense that there exists C. > 1 such that
lIxllc/Cs < |Ix|lx < Cillx|le VxeG. (2.6)
Observe that x +— |[|x]. is of class C* in G \ {0}. Second, giveni € {1,...,k}, 8> 0and & > 0, we

introduce the homogeneous cone

Cipe =1wv:weW,vevV, |v+e Z [vil = Bllwll.
jell,. kN {i}
=4xeG:|xi|+¢ Z lx;] > Bllxswll ¢
Je{l...k )\ {i}
where we used the fact that xy = (xy,...,xx). Third, if # € R and f : D — R is a real-valued function

defined on some set D, we denote by {f > ¢} the set {x € D : f(x) > t}. Similar conventions are
understood when writing {f > t}, {f <1}, {f =t}, {t1 < f < 12}, etc.
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Lemma 2.4. For everyi € {1,...,k}, B> 0and & € (0, 1) there exists a 1-homogeneous Lipschitz
Sunction f; g o : G — R such that

fip.e(0) =0 2.7)
1<Xifipe<3 ZaeonG (2.8)
e<Xefipe<3e P%aeonG Vee{l,... k}\{i} (2.9)
{fip.e 20} CCip,e (2.10)

Moreover, if 0 < 8 < f3, then the Lipschitz constant of Jip,e can be controlled in terms of € and B only.

Proof. Without loss of generality, we can assume that i = 1. For x € G, define
2xr +e(xa+---+x1) = Bllxwll ] if [xp + e+ +x3)| < 2B]lxw |
fx) =1 (x1+el+---+xi)) ifx; +e(xp +-- - +x) > 2Blxwll«

3[xy+e(xp+- - +x1)] ifx; +e(xo+- - +xr) < =28|lxwlls.

We prove that fi g . := f satisfies all of the claimed statements. Property (2.7) and the homogeneity of
f are immediate. Property (2.10) is equivalent to the implication

il + el +- -+ xi]) < Bllxwll. = f(x) <0,
which one can easily check. The function f is continuous on G and smooth on G \ D, where
D ={xeG:|x;+elxp+---+xr)| =28|lxwll}.
Since D is gd—negligible, statements (2.8) and (2.9) follow if we prove that for every € = 2, ..., k,
1<X;f<3 and &< Xpf <3¢ on G\ D. 2.11)
Using (2.1) one gets

Vef(x) =(l,e,...,8,0,...,0) ifx; +e(xa+---+x) > 28||lxwll«

Vof(x) = (3.36,...,36,0,...,0) ifx)+e(xs+-+xz) < 28wl . (2.12)

We now notice that, for any x € G, the map y +— yw is constant on the coset xV, which is a smooth
submanifold tangent to X1, ..., Xk. This implies that

Xif,...,. X )(x)=(2,2¢,...,2¢) if |x; +&e(xg + -+ x)| < 28w ]|+,

which, together with (2.12), implies (2.11).

We have only to check that f is Lipschitz continuous on G and that a bound on the Lipschitz constant
can be given in terms of & and 8. Taking into account (2.12) and the continuity of f on G, by (2.2) it is
enough to prove the function g : G — R defined by

g(x) :=2[x1 +e(xz + - - - +xx) — Bllxwll]
satisfies
[Veg| < C on{xeG:|x;+e(xa+-+xr)| <2B|xwll} (2.13)

for some positive C. Since x + xw is smooth on G and || - ||« is smooth on G \ {0}, we get that g is
smooth on G \ V. Moreover, g is 1-homogeneous; thus, Vgg is 0-homogeneous (i.e., invariant under
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dilations) and continuous on G \ V. Inequality (2.13) will then follow if we prove that
[Vegl < C ondBO,1)N{xeG:|x;+e(xp+---+xi)| < Bllxwll}s

in turn, this inequality and the bound (in terms of &, 8) on the Lipschitz constant of f follow by proving
that

[Vogl < C ondB(0,1)N{xe€G:|x;+&(xa+---+x)| < Bllxwll}. (2.14)

The set V is closed, while B(0,1) N {x € G : |x; +&(xz +- - - +x)| < Bllxwl|+} is compact; since they
are disjoint, they have positive distance and the continuity of Vgg on G \ V ensures that

sup {|VGg(x)| :x€0B(0,1)and |x; +e(xa +-- - +xp)| < B||xw||*} < 400,
which is (2.14) and allows us to conclude. O

Lemma 2.5. Let A C W be nonempty and let ¢ : A — V be intrinsic Lipschitz. Then for every € € (0, 1)

andi € {1,..., k} there exists a Lipschitz function f; . : G — R such that
gry C {fi,e =0} (2.15)
1<Xifie <3 ZL%aeonG (2.16)
e<Xfie<3e  ZlaeonG Vee{l,... k}\{i}. (2.17)

Moreover, if the intrinsic Lipschitz constant of ¢ is not greater than & > 0, then the Lipschitz constant
of fi.e can be bounded in terms of & and & only.

Proof. Assume that the intrinsic Lipschitz constant of ¢ is not greater than some A > 0 and define
a = (2A)7!; then (2.3) holds for such a. Recalling that the constant C,. > 0 was introduced in (2.6), we
set B := kC? /. Taking into account the inequalities

IA

Wil+e D0 bl < ol el < kbl < kCalle,
je{l,..., k\{i}

Bllxwll. = Blixwlle/C-

we obtain the inclusion €, g o C €. Fory € G, set fy(x) : fi,ﬁ,g(y‘lx), where f; g . is the function

provided by Lemma 2.4, and define

f(x) = sup fy(x).

YEgry

We prove that f; . := f satisfies the claimed statement.
Let x € gr; then f(x) > fyx(x) = 0, while for every y € gr \ {x} one has f;(x) < 0 because of
(2.10) and

gry N{fy 20} = gry Ny{fip,e 20} C gryNyCipe C gry Ny€a = {3}

This proves that f(x) = 0, which is (2.15).
The functions f, are uniformly Lipschitz continuous; hence, f shares the same Lipschitz continuity.
Let x € G be fixed; then for every n > 0 there exists y € gr, such that

fy(x) = f(x) —n.
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Since X; f, > 1, by Lemma 2.1 we have for every ¢t > 0

FEXB(EX;)(x) > fy (exP(tX;)(x)) > fy(x) +1 > f(x) +1—1n.
By the arbitrariness of 77, one obtains
F(EXP(rX;)(x)) > f(x)+t foreveryt > 0;

that is, X; f > 1 a.e. on G. A similar argument, using g := —f and the inequality X;g > —3, shows that
F@XP(1X;)(x)) < f(x) + 3¢ for every ¢ > 0; that is, that X; f < 3 a.e. on G. This proves (2.16).
The proof of (2.17) is completely analogous and we omit it. m

The following lemma is most likely well-known; however, we provide a proof for the sake of
completeness.

Lemma 2.6. Let f : R¥ — RX be a Lipschitz map such that there exists 6 > 0 for which
(F(x+v) = f(x),v) = 6|v|? for every x,v € RF. (2.18)

Then there exists a unique X € R¥ such that f(x) = 0.

Proof. We reason by induction on k and leave the case k = 1 as an exercise to the reader. We assume
that the lemma holds for some k > 1 and we prove it for k + 1.

By the 1-dimensional case of the lemma, for every x € R there exists a unique g(x) € R such that
Jr+1(x, g(x)) = 0; we claim that g is Lipschitz continuous. Letting L denote the Lipschitz constant of f,
we indeed have for every x, y € RF

(2.18)
St (3. 8(X) + &y —x) = fir1 (v, g(x)) + L|y — x|
> frs1(x,8(x)) = Lly — x|+ Lly —x] = 0

and

L (2.18)
i1 (3,8(x) = §ly —x) < fir1 (3, 8(x)) = LIy — x|
< Jirr(x,8(x)) + L]y —x[ - Lly x| = 0.
The last two displayed formulae imply that
L L
g(x) — gly —x| < g(y) < g(x) + 5y —xl,

and the Lipschitz continuity of g follows. In particular, the function / : R¥ — R defined by h(z) :=
(fi,--., fr)(z, g(z)) is Lipschitz continuous; since

(h(z+v) — h(2),v) > 6|v|>  forevery z,v € R,

by inductive assumption there is a unique Z € R¥ such that 4(Z) = 0. It follows that  := (Z, g(Z)) is the
unique zero of f, which concludes the proof. m

Before passing to the the main proof of this section, we recall once more that V is identified with R¥
by

Rk ] (V],...,Vk) <—>exp(v1X1 +"'+Vka) eV.
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This identification is understood, in particular, when considering scalar products between elements of
R* and V as in (1.2).

Remark 2.7. It is easily seen that, for a given Lipschitz map f : G — RX, statement (1.2) is equivalent
to the uniform ellipticity (a.k.a. coercivity) of the matrix col [X| f]|...|Xy f]; that is, to the fact that

col[Xi fl...|Xefl(x) =261  for P%ae.xeG (2.19)

in the sense of bilinear forms, where I denotes the k X k identity matrix. Observe that such a matrix is
defined a.e. on G by Pansu’s theorem [81, Théoreme 2].

Proof of Theorem 1.4. Step 1. We prove the implication (a) =(b). Consider the map

fi=(flieroos froe) : G- RE,

where £ € (0,1) will be determined later and the functions f; o are provided by Lemma 2.5. The
inclusion (1.1) follows from (2.15). In order to prove (1.2), we first observe that for Z¢-a.e. x € G and
Fk-ae.v € RK = V one has

1 k
(fav) = f(0),v) = /0 <Z vjxjf<x6tv>,v> dr,

J=1

where we used the fact that x6,v = exp(t(vi X} + - - - + vi Xx)) (x). Therefore,

1 k
() = 1@ = [ v X it ds

ij=1
1k 1
=/ Zv%Xifi(xétv) dt+/ Z viv; X fi(x6,v) dt
0 = (U

>(1-3(k*> = k)e)|v|%,

where in the last inequality we used (2.16) and (2.17). If k = 1, this inequality is (1.2) with ¢ = 1; if
k > 2, (1.2) follows with § = 1/2 provided we choose &£ = (6(k> — k))~!. This proves the implication
(a) =(b).

Step 2. We now prove the converse implication (b) =(a); it is enough to prove that Z; := {f = 0}
is the intrinsic graph of some intrinsic Lipschitz function ¢ : W — V. For every w € W, define
fw 1 V=RK 5 RFas £, (v) := f(wv). By Lemma 2.6 there is a unique ¥ = #(w) such that f,, (¥) = 0;
we define ¢ : W — V by ¢(w) := ¥. For 1 € (0, 1), which will be fixed later, we introduce the
homogeneous cone

D= | BO V) = | vBO, Alvilo).-

vevy vevy

By a simple topological argument (see, e.g., [39, Remark A.2]) there exists @ = @(1) > 0 such that
G o C D ,;in order to prove that ¢ is intrinsic Lipschitz, it is sufficient to show that

Zf NxD, = {x} Vxe Zf. (2.20)
To this aim, for every x € Z; and every y € xD, \ {x}, one has by definition

y =xvz for some v € V \ {0} and z € G such that d(0, z) < Ad(0, v).
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Denoting by L the Lipschitz constant of f we obtain

(F),v) =(f(xvz) = f(xv),v) + {(f(xv) = f(x),v)
>—Ld(0,z)|v] +6|v|?
> — LAd(0,v)|v| +6|v]?
> — LAC.|v|l.|v] + ]v|?

(6 — LAC,cr)|v|?

[\

for some positive constant cx depending on & only. It follows that, provided A is chosen small enough,
one has (f(y),v) > 0; hence, f(y) # O and y ¢ Z. This proves (2.20) and concludes the proof of the
theorem. O

Remark 2.8. In Step 2 of the previous proof we showed that, if f is as in Theorem 1.4 (b), then the level
set { f = 0} is an entire intrinsic Lipschitz graph; that is, it is the intrinsic graph of a V-valued map ¢
defined on the whole W.

Remark 2.9. It is worth pointing out that, in the implication (b) =(a), the aperture @ depends, apart
from geometric quantities, only on the Lipschitz and coercivity constants L, ¢ of f. More precisely, if f
is as in Theorem 1.4 (b), the Lipschitz constant L of f is not greater than some L > 0 and the coercivity
constant § is not smaller than some § > 0, then the aperture « (and hence the intrinsic Lipschitz constant
of ¢) can be controlled in terms of L and 6 only.

A similar remark applies at the level of the implication (a) =(b); in fact, if ¢ is as in Theorem 1.4
(a) and the intrinsic Lipschitz constant of ¢ is not greater than some positive A, then statement (b) in
Theorem 1.4 holds with § = 1/2 and (by the second part of Lemma 2.5) a function f with Lipschitz
constant bounded in terms of A only.

2.4. Extension and smooth approximation of co-horizontal intrinsic Lipschitz maps

Given Remark 2.8, Theorem 1.5 is an immediate consequence of Theorem 1.4.

Proof of Theorem 1.5. Let S := gr, and consider f : G — R as given by Theorem 1.4 (b); by Remark
2.8, the level set Zy := {f = 0} is the graph of an intrinsic Lipschitz function é : W — V defined on
the whole W. Since gr,, = § C Zy = grg, ¢ is an extension of ¢. The bound on the intrinsic Lipschitz
constant of ¢ follows from Remark 2.9. o

We now state a technical improvement of Theorem 1.4 that will provide the key tool in the proof of
the approximation result stated in Theorem 1.6. In case k = 1, Proposition 2.10 should be compared
with [93, Lemma 4.3].

Proposition 2.10. Let A ¢ W be nonempty and ¢ : A — Y be intrinsic Lipschitz. Then there exist
0 > 0and a Lipschitzmap f : G — R¥ such that (1.1) (with S := gr¢) and (1.2) hold together with

feC(G\{f=0}). (2.21)

Moreover, if the intrinsic Lipschitz constant of ¢ is not greater than some positive A, then the statement
holds with § = 1/4 and a function f : G — R with Lipschitz constant bounded in terms of A only.

Proof. By Theorem 1.4 and Remark 2.7 there exist § > 0 and a Lipschitz function g : G — R¥ such
that § is contained in the level set Z, := {g = 0} and

Vog(x) = col[Xig|...|Xxgl(x) > 251  for £%ae.x €G. (2.22)
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By Remark 2.9, one can also assume 6 = 1/4 and that the Lipschitz constant of g is bounded in terms
of A only. For j € N, choose

(i) bounded open sets (U;);en such that U_J cG\Zg;and G\ Z, =U,;Uj;
(ii) positive numbers &; such that ¢; < d(U}, Zy);
(iii) nonnegative functions u; € C°(U;) forming a partition of the unity on G \ Z; that is, 3 u; =
lonG\ Z,.

We can also assume that )’ ; yy, < M for some M > 0, where yy; denotes the characteristic function
of U;. Notice, in particular, that the sum in (iii) is locally finite.

We are going to use the group convolution * (see, e.g., [43, Chapter 1]). Here we only recall that,
given G : G — R¥ and H € C(G), the group convolution

(G * H)(x) = [G GO H) AL () = /G G Hy dZ (y)

is a smooth function satisfying
X(GxH)=(XG)*xH for every X € g.

We fix a positive kernel K € C2(B(0,1)) such that fGKd:?d = 1 and, for & > 0, we set K. :=
e 2K o 01/ Possibly reducing ; > 0, as specified later in (2.23), (2.25) and (2.26), define

i 2juj(g*xKe) onG\Z
0 on Zg.

Notice that the sum above is locally finite. We also observe that (1.1) holds because S C Z, C {f = 0};
actually, the equality Z, = {f = 0} will come as a byproduct of what follows.

We first check that f is continuous on G; it is clearly smooth on G \ Z, and hence continuity has to
be checked only at points of Z,. Up to reducing &, we can assume that

|(g x Ke;) — gl < d(Uj;, Zg) on Uj, (2.23)
so that

1f() =8| < ) uj() [(g x Ke)) (1) —g(0)| < d(x,Z)  VxeG\Z.

J

This implies that f is continuous also on Z, = {g = 0} because, for every X € Z,, one has
lim |f(x) - (%) = lim |f(x)] < lim |g(x)] +d(x,X) = 0.
xX—X X=X X=X

We prove that f is Lipschitz continuous on G. Since Z, is an intrinsic Lipschitz graph, by (2.4) we
have gd(Zg) = 0; by (2.2), it is then enough to prove that |Vgf]| is bounded on G \ Z,. Using the
properties of convolutions and the fact that ) ; Vgu; = 0, one gets

Vof :Z(g *Kg;) ® (Vauj) + Z u;j((Vgg) * Ke;)
7 J

=D (g% Ke; = 8) ® (Vouy) + Y uj((Vog) * Ke,). (2.24)
J J
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The second sum in (2.24) is bounded by ||Vgg||r~(c) and then by a multiple of the Lipschitz constant
L of g; possibly reducing &;, we can assume that

|g * Ke; — gl < (sup IV@ujl)_l on U; (2.25)

so that the first sum in (2.24) is bounded by M. This proves that f is Lipschitz continuous on G with
Lipschitz constant bounded in terms of the Lipschitz constant of g (and then in terms of A only).

Eventually, we have to check that f* satisfies (1.2); we prove this by checking the equivalent inequality
(2.19). Writing Vg f := col[ X1 f] .. .| Xk f] and reasoning as in (2.24), we obtain

Vol = (g% Key —2) ® (Vouy) + > u;j(Vog) x Key) =t A+ B.
J J

By (2.22) we have B > 261 a.e. on G. Given i > 0, possibly reducing £; we can assume that
g * Ko, — gl < n(sup [Vou; )™ onU; (2.26)

so that ||Al| ~(G) < Mn. Inequality (2.19) immediately follows provided one chooses n = 7(d) small
enough. The proof is complete. m}

We have all of the tools needed for the proof of the approximation result stated in Theorem 1.6.

Proof of Theorem 1.6. By Theorem 1.5 we can assume without loss of generality that A = W. Let
f : G — R¥ be as in Proposition 2.10; for i € N, we consider

Z;:={f =(1/i,0,...,0)}.

By Theorem 1.4 (applied to the function f — (1/i,0,...,0)) and Remark 2.8, for every i € N the
level set Z; is the graph of an intrinsic Lipschitz function ¢; : W — V defined on the whole W. By
Remark 2.9, the intrinsic Lipschitz constant of ¢; is bounded (uniformly in i) in terms of the intrinsic
Lipschitz constant of ¢. Recalling once more the identification V = R*, which gives the equality
oi(w) = p(w)(d;(w) — @p(w)), we have for every w € W

8161(w) = dW) < (f (Wi (w)) = Fwh(w)), $: () = $(w))
< 1£(wi(w)) = Fwd(w)] 165(w) = $(w)|
_161(w) - $(w)]

1

which proves that ¢; — ¢ uniformly as i — co.
‘We have only to show that each ¢; is C* smooth. The quickest way is probably to reason in exponential
coordinates of the second type; that is, to identify G = R¢ by

R 5 x = (x1,...,%q) ¢ exp(Xgs1 X1 + -+ +XaXg) exp(x1 X1 + -+ - + X Xz) € G.
Since V is abelian, we have for every j = 1,...,k,

exp(Xp41 Xpr1 + -+ +xgXg) exp(x1 X1 + - +x,. Xp)
= exp(xk+1Xk+1 + +ded) exp(x1X1 + - +ijj + +kak) exp(xJ-Xj)
= eTIS(Xij)(ﬁ(xle o XX+ +kak)(eTI>)(xk+le+l +--- +ded)(0))),
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which proves that in these coordinates X; = d,, for all j = 1,..., k. Since f € CeR4\ {f =0}),
the classical implicit function theorem ensures that the level set Z; = {f = (1/i,0,...,0)} is the graph
of a C* smooth function y; = ¥ (Xgi1, ..., xq) : RF — R¥. Writing x = (x",x”) € R¥ x R¥* we
observe that

x=(x1,...,xq) €Z;
—x" = (x1,...,xx) =¥ (x")
e = B (W (M X1 +++++ (i) X @B (Xt Xion + -+ 2 Xa) (0)

&=x = eXp(Xpp1 Xpr1 + -+ +xgXq) exp((i (X)) Xy + -+ (i (x") i Xp),

which in turn proves that ¢; and y; coincide as maps from W to V. This proves that ¢; is smooth, as
wished. o

3. The Heisenberg group
From now on we will always work in Heisenberg groups, which provide the most notable examples
of Carnot groups; we refer to [26] for a thorough introduction. For every n > 1, the nth Heisenberg
group H" is the connected, simply connected and nilpotent Lie group H" associated with the (2n + 1)-
dimensional stratified Lie algebra f) generated by elements X1, ..., X,, Y1, ..., Y,, T whose Lie brackets
vanish except for
[X;,Y;]1=T forevery j=1,...,n.

The algebra stratification is given by h = §; @ b, where

by :==span{Xy,..., X,,Y1,..., Y}, b := span{T};

the second layer f), is the center of the algebra.
We identify H”" with R>"*! = RY x RY X R; by means of exponential coordinates

H" 3 exp(x; X1 + - + X, Xn + V1Y + - + yp Yy +1T) — (x,y,1) € R*"*1,
In these coordinates, the group law reads as
(6,3, (Y1) = (x+x, y +y 0+ + 5(x,)) = 5, 9),
and left-invariant vector fields have the form

YVj X;
X; =0y - 7’6,, Y =0y, + Efa,, T=0.

We also observe that, in exponential coordinates, we have p‘1 = —p for every p € H". As in Section 2,
a one-parameter family (5,)>0 of group automorphisms is provided by the dilations §,(x, y,7) :=
(Ax, Ay, 2%1).

We fix a homogeneous distance d on H” and we denote by B(p, r), p € H*, r > 0, the associated open
balls; for p € H" we also write ||p|la := d(0, p). It will be convenient to assume that d is rotationally
invariant; that is, that

IGey, Olle = 1"y, Ollwr - whenever [(x, y)| = [(x", y)]. (G.D
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Relevant examples of rotationally invariant homogeneous distances are provided by the Carnot—
Carathéodory distance d,

the curve yy, : [0, 1] — H” defined by
dec(p,q) =inf {1Allpijo,17en) ¢ Ya(0) =y Y = 20 (hjXj + hjenY) (vn) ¢
has final point y, (1) = ¢

by the left-invariant distance do (see [48, Proposition 2.1]) such that
deo(0, (x,y.1)) 2= max{|(x, y)]. 21]'/*} (3:2)

and by the Koranyi (or Cygan—Koranyi; see [34]) distance dx defined by

di (0, (x,y, 1)) = ((|x]> + |yP)? + 16:2) /2. (3.3)

The Lebesgue measure #2"*! is a Haar measure on H” = R and Q := 2n+2 is the homogeneous
g g
dimension of H"; in particular,

LN B(p,r)) = reL*(B(0,1)) forevery p € H" and r > 0.

Actually, the Hausdorff and spherical Hausdorff measures # Q. 2 are also Haar measure in H"; hence,
P2+ 2 and $C coincide up to multiplicative constants. Recall in particular that the spherical
Hausdorff measure §* of dimension k > 0 is defined by

S*(E) := lim inf Z(2r,~)k tEC UB(pi,r[) for some p; € H",r; € (0,6) ¢ .
o0 =0 i=0

One of the aims of this section is to introduce Rumin’s complex of differential forms in H", for which

we follow the presentations in [51, 86].

3.1. Multilinear algebra

The Heisenberg group H" is a contact manifold. The contact form 6 defined by 8y, = 0 and 6(T) = 1
satisfies 6 A (dB)" # 0 and, actually, the 2n + 1-form 6 A (d#)" is a left-invariant volume form. In

coordinates,
] n
0=dt+ E jZ:;(yjdx]' —xjdyj),
while
n
do == dx; Ady;

J=1
is the standard symplectic 2-form in R?", up to a sign. Notice that the basis dxi, . .., dy,, 0 is the dual
basis to X1, ..., Y,, T; observe also that here we are identifying the dual of f) with left-invariant 1-forms

on H", in the same way as the algebra b can be identified with left-invariant vector fields.
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It will sometimes be convenient to denote the family Xi,...,Y,,T by Wi, ..., Wa,41, where
W;=X; ifl<j<n
W; =Y ifn+1<j<2n (3.4)
Wop1 :=T.
Analogously, we use 01,...,602,+1 to denote, respectively, dxi,...,dy,,0. Given a subset I C
{1,....2n+ 1}, we write I = {iy,...,ix} fori; <ip <--- < i and we denote by Wy, 6; the (formal)

exterior products

W = W,'] /\"'/\W[k, 6; = 9[1 /\"'/\Qik. (3.5

We also denote by |/| the cardinality of . We can now introduce the exterior algebras A.f and A*h of
(multi)vectors and (multi-)covectors as

2n+1 2n+1
ALD = @ AkD, A*D = @ )
k=0 k=0

where Agh = A% = R and

Ak bi=span{W; : I c {1,...,2n+ 1} With |1] = k}

AKY = span{6; : I c {1,...,2n+1} With 1] = k}.
The elements of Aih and AXY are called, respectively, k-vectors and k-covectors. The inner product on

b making Wy, ..., Ws,4+ an orthonormal frame can be naturally extended to Al in such a way that the
elements Wy form an orthonormal frame. In this way, one can define an explicit isomorphism

Arh 3 v v e AR

by requiring (w | v*) := (w,v) for every w € Arh, where (- | -) denotes duality pairing between
vectors and covectors.
We analogously introduce the exterior algebras of horizontal vectors and covectors

2n 2n
) ) k
Aibp o= @ Aikb1, Ay = @ A"hy
k=0 =0

where
Ax By i=span{W; : I c {1,...,2n} With |I] = k}
A* By = span{; : 1  {1,...,2n} With |1] = k}.
Remark 3.1. Given 7 € A and A € /\kb, 1 < k < 2n, we denote by 1, and Ay, their horizontal

component; that is, the unique 7y, € Agh; and Ay, € A*B; such that 7 = 75, + AT and A = Ay, + £ A 6
for some (unique) o € Ag_1by, u € AK1hy.

Of special importance for us are vertical planes, which we now introduce. As is customary, given a
nonzero simple k-vector T = 71 A - - - A T, we denote by span 7 the linear space generated by 7y, . . ., 7¢;
equivalently, spant = {v : v A 7 = 0}.
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Definition 3.2. A set » c H" is a vertical plane of dimension k if there exists a nonzero 7 € Ag_b
such that

P =exp(span(t A T)).

In exponential coordinates, a vertical plane & is a k-dimensional linear subspace of H" = R?™*! =
R?" x R of the form V x R for some (k — 1)-dimensional subspace V ¢ R?". A vertical plane is always
a normal subgroup of H".

3.2. Differential forms and Rumin’s complex

The spaces b, by, Arb, /\kI), Aibi, /\kbl, as well as the spaces 7F and F2"*'* introduced in (3.6),
canonically induce several bundles on H", which we will denote by using the same symbol. The same
convention applies to dual and quotient spaces of such spaces. As is customary, we denote by QF the
space of smooth differential k-forms on H"; that is, the space of smooth sections of /\kI) (seen as a
bundle on H").

We now recall some of the spaces of differential forms introduced by M. Rumin in [85, 86]. As
before, we identify the left-invariant 2-form d6 in H" with a 2-covector in /\215) and we define

T ={AANO+uAdO: A e ATh ue nk2p},

3.6
T ={AeNh: AA0=2AAdO =0}, oo

where we adopted the convention that A’h = {0} if i < 0. Observe that Z° = {0}. The space I* :=
i':{)] T is the graded ideal generated by 6, while J* := @i’:&l J¥ is the annihilator of Z*. As observed
in [86] (see also [51, page 166]), for 1 < k < n we have J* = {0} and Z*"*!~% = AZ*1-Kp: these

equalities are, in essence, consequences of the fact that the Lefschetz operator® L : A" — A*2p,
defined by L(1) := A A d# is injective for & < n — 1 and surjective for 4 > n — 1; see, for instance, the
beautiful proof in [21, Proposition 1.1].

Remark 3.3. Recalling the notation introduced in Remark 3.1, it can be easily proved that Ay, = O for
every A € J*. In particular, there exists a unique Ay € /\k’lbl such that 1 = Ay A 0; hence,

(t|4)=0 for every 1 € J*, 7 € Aby.

We also notice that Az A d6 = 0.

Remark 3.4. For k > n + 1 it is convenient to introduce the (formal) dual space J := (jk)*. Observe
that every multivector 7 € A} canonically induces an element [7] 7 € J defined by

Itz 1)y :=(r 1) for every 1 € J¥.

Equivalently, [7] .7 is the equivalence class of T in the quotient of Azl by its subspace (7)*.

Let us introduce the spaces Qﬁ of Heisenberg differential k-forms

Qﬁ = C*(H", AI—kkb) = {smooth sections of %} , if0<k<n
Qﬁ = C“(H",jk) = {smooth sections ofjk}, ifn+l1<k<2n+1.

Clearly, Q(E)H = C®(H"). Denoting exterior differentiation by’ d, we observe that, if k > n + 1, then

d(Qf) c Q51 If k < n— 1, we have d(ZF) c TF'; hence, d passes to the quotient. All in all, for

¢Qur operator L actually differs by a sign from the Lefschetz one (wedge product by the standard symplectic form).
7We also use d to denote the distance on H'; of course, no confusion will ever arise.
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k € {0,...,2n} \ {n} a well-defined operator d : Qﬁ — Qﬁ“ is induced by exterior differentiation.
The following fundamental result was proved by M. Rumin [86]; see also [51, Theorem 5.9].

Theorem 3.5. There exists a second-order differential operator D : Qf — Q]’}’H“ such that the sequence

d d d D d d
0—>R—>Q%—>Q%_H—>...—>Qﬂ'fﬂ—>9ﬁ+l—>...—>Q§{"+1—>0

is exact.

The construction of the operator D is crucial for our purposes, and we recall it here. First, as already
mentioned, the Lefschetz operator L : A" 'R?" — A"™IR?" defined by L(1) = A A d@ is bijective.
Second, observe that

A"h _ A"D1
" {uAnd:uen2h}

(3.7)

We are going to define an operator D on smooth sections of A"f); and prove that it passes to the quotient
modulo smooth sections of {u A df : u € A" 2B, }. Given a smooth section a of A™h;, we set

Da:=d(a -6 AL ((da)y,)),

(@+ (=D"L7((da)y,) A 6),

where we used the notation in Remark 3.1. We have to prove that D(8 A df) = 0 for every smooth
section B of A"2h;. Inasmuch as

L7'((d(B A dB))y,) = L' ((dB A dO)y,) = L™ ((dB)y, A d6) = (dB)y,
d(B A do) = (-1)"""d(dB r6),

we deduce that
D(BAdO) =d(BAdO+(=1)"(dB)y, A6)
= (=1)""'d(dB A O — (dB)y, A O)
= (=1)""'d((dB)y, N0 — (dB)y, A B) =0,

as wished.
This proves that D is well-defined as a linear operator Qp — Q"1 We have to check that D(Qy) c

Qﬁ”; thatis, that Da A0 = Da Adf = 0 for every @ € Qf. To this aim, let us write (da), := da - (da)y,
to denote the ‘vertical’ part of da, which can be written as (da), = 6 A B, for a suitable smooth section
Ba of A"h1. Then

Da =d(a+(-1)"L™'((da)y,) A 6)
= (e + (da)y + (=1)"d (L' ((da)y,)) A 6 ~ L~ ((der)s) 7 dB (3.8)
=0 A (B +d(L7 ((da)y,))).
This implies that Do A @ = 0 and, as a consequence, 0 = d(Da A 0) = (-=1)""'Da A d6, as wished.

Example 3.6. Let us compute the operator D : Q]%{ - Q]%ﬂ in the first Heisenberg group H'. Given
we Q]%H, we choose a smooth section a of A'; that is a representative of w in the quotient (3.7). Writing
a = fdx + gdy, we have

(da)y, = (Xg-Yf)dxndy =—(Xg-Y[)do
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and, clearly, L™!((da)y,) = Y f — Xg. Therefore,

Dw=d(fdx+gdy— (Yf—-Xg)0)

= (=Y f+Xgydc A dy — (Tf)dx A0 — (Tg)dy A0
—(XYf-XXg)dxANO— (YYf-YXg)dy A0 — (Y f—Xg)dO
=(2XYf+YXf+XXg)dx A0+ (2YXg — XYg —YYf)dy A 6.

See also [13, Example B.2] and [12, Example 3.11].
We refer to [12, Example 3.12] for the computation of the operator D in H?.

Remark 3.7. It is sometimes convenient to have a unique symbol to denote the differential operators in
Rumin’s complex. Following [54], we then define d¢ : Qﬁ - Qﬁ“ by dc =d,if k # n,and dc = D,
if k =n.

k
Remark 3.8. For k < n, an interesting interpretation of AI—kb and J2"*17K as spaces of integrable
covectors is provided in [51, Theorem 2.9].

3.3. H-linear maps

We now introduce the notion of H-linear maps in H"”, which are among the most simple examples of
contact maps (see, e.g., [64]), and study their behaviour on Heisenberg forms. For a finer study of the
relations between Heisenberg forms and contact maps, see, for example, [24, Chapter 3]. The results in
this section will be applied especially, but not exclusively, to left-translations and dilations in H" and
their compositions.

Definition 3.9. A map £ : H* — H" is H-linear if it is a group homomorphism that is also homoge-
neous; that is, 6, (Lp) = L(§, p) for any p € H" and any r > 0.

It is not difficult to prove that £ is H-linear if and only if [ := exp~! oL oexp : ) — b is a Lie algebra
homomorphism; see, for example, [67, §3.1] and the references therein. In particular,

I(h1) € by and [(h) C bo. (3.9)

Moreover, if for every p € H" one canonically identifies 7, H" = ToH" = b by means of the differential
of the left-translation by p‘], then the differential d£ of L is constant; that is,

dL,=dLo=1 VpeH"

This easily follows by computing the differential at p of £(gq) = L(p)L(p~'q).
By abuse of notation, we use a unique symbol L, to denote any of dL,, dLy and I. Similarly,
the symbol £* denotes any of the associated pullback actions (dLp,)* : Tz(p)H" — T,H", (dLo)" :

TyH" — T7H" and 1" : A'H — Alh. We also use the symbols L., L* to denote the induced maps
L.:AD > Apand L0 A*h — A*D defined by
E*(vl JANKIERAN Vk) = £*(V1) VANREIAN E*(Vk), YVvi,...,vg €D,

and

LA A AAg) = L5A) A AL (Ay), VA, ...,Ax € AlD.
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Proposition 3.10. Let £ : H" — H" be a H-linear isomorphism; then the pullbacks of 6 and d6 satisfy
L(O@)=cgl and L'(dO) =c,déb, (3.10)

where ¢, # 0 is defined> by L.(T) = c.T.

Proof. Since pullback and exterior derivative commute, it is sufficient to prove the first assertion in
(3.10). It is proved in [95, §3.15] that, since 8 is left-invariant, d£*(0) is left-invariant as well. By
(3.9), we have £*(6) = 0 on by; hence, £*(6) is a scalar multiple of 4. The statement follows because
LX(O)(T) =0(L(T)) =6(ccT) =cc. m

Proposition 3.11. Let £ : H" — H" be a H-linear isomorphism, then

() if 1 <k <n, L*: AKh — AKXy passes to the quotient and defines an isomorphism L* /\kb/Zk -
/T

(ii) ifn+1 <k < 2n, L(J°) = J~.

Proof. (i)If 1 < k < n, it is enough to show that £*(Z¥) = Z¥. For every 1 € A" and u € AK2p,

we have by Proposition 3.10

LYANO+pAdD) = co(L(A) AO+ LT (1) A db);

hence, £*(Z¥) c ZF. The equality £*(Z*) = Z* follows because £* is a isomorphism.
(ii) Given A € J* we have

LA)AG=cLAANG) =0 and L*(A) AdO=c'L(ANd) =0,
hence £*(1) € J*. This proves the inclusion £*(J*) c J*, and the equality follows again because £*
is an isomorphism. O

Proposition 3.11 has the following consequence that we will later use when L is (a composition of)
dilations and left-translations. Compare with [24, Theorem 3.2.1].

Corollary 3.12. Let £ : H" — H" be a H-linear isomorphism; then the pullback L* commutes with the
differential operators in Rumin’s complex; that is, for every k € {1,...,2n},

de(L'w) = L (dcw) Jforevery w € Qﬁ.

Proof. When k # n, this is a simple consequence of Proposition 3.11 and the fact that £* commutes
with exterior differentiation d = dc.

When k£ = n, we have dc = D and some computations are needed. For every w € Q{If]I we fix a
representative @ € C*(H", A"};) of the equivalence class w in the quotient in the right-hand side of
(3.7). By Proposition 3.11, L*« is a representative of £*w and we can compute

D(L'w) =d(L'a -6 AL ((dLa)y,))
=d(L'a -0 AL (L (da))y,))
=d(La—L(0/cc) AL (L ((da)y,))),
where we used Proposition 3.10. The latter also gives
L*((da)y,) = L (L™ (da)y, A db)
= L*(L (da)y,) A L*(d6)
=coLY(L7 (da)y,) A do

8The number ¢ is well-defined because of (3.9); it is not zero because L. is an isomorphism.
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so that
L™N(L* ((dayy,)) = ccL5(L7 (da)y,).
Therefore,
D(L'w) =d(L'a =L (0]ce) A crLr(L7! (da)y,))

= d(L* (@~ 6 A (L7 (day,)))

=L (d(a -6 A (L7 (da)y,)))

= L*(Dw)
and the proof is concluded. O

We recall that the notion of vertical plane was introduced in Definition 3.2. Given natural numbers
a,b suchthat 1 < a+ b < n, we denote by %, , C H" the (2a + b + 1)-dimensional vertical plane

Pap ={(x,y,t) eH" :x; =y;=0foralla+b+1<i<nanda+1<j<n}

{1y s Xa46,0,...,0,91,...,Y4,0,...,0,0)} ifa>landa+b <n
=3{(x1 e X V155 Va 0,...,0,0)} ifa>landa+b=n
{(x1,...,x,0,...,0,0)} ifa=0.

@3.11)

As shown by the following proposition, the planes &%, ;, can be considered as canonical models for
vertical planes in H".

Proposition 3.13. Ler & ¢ R¥™*! = H" be a vertical plane; then there exist nonnegative integers a, b
and an H-linear isomorphism L : H* — H" such that

a+b<n and dmP=2a+b+1

L10)=6, L(d8)=d8 and L(P)=Pap.

Proof. The set V := exp~' ({(x,y,1) € & : t = 0}) is a vector subspace of ;. If [ : h — § is the Lie
algebra isomorphism provided by the following Lemma 3.14, then £ := exp ol o exp~! is an H-linear
isomorphism, which, by Proposition 3.10, satisfies the statement of the present proposition. O

Lemma 3.14. Let V C b be a linear subspace with dimV > 1. Then there exist nonnegative integers
a, b and a Lie algebra isomorphism | : ) — b such that dimV =2a + b, (T) =T and

(V) = span{Xi,..., Xy, Y1,...,Ya} ifa>1
- span{Xy, ..., Xp} ifa=0.

Moreover, a = 0 if and only if [V, V] = {0}, that is, if and only if V is an abelian subalgebra of }).

Proof. We first recall the canonical symplectic structure on b, which is provided by the bilinear skew-
symmetric form

B(X,Y) :={([X,Y],T), X,Y €h.
Notice that d6 (seen as a 2-covector at 0; that is, as an element of /\21)) satisfies
(X AY | dO) = -B(X,Y), VX,Yeh ch=TH",

which can be easily checked by testing df on a basis X; A X;, X; AY;,Y; AY; of A%D.

https://doi.org/10.1017/fms.2021.84 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2021.84

30 Davide Vittone

We borrow some language and notation from [10, Chapter 3]. Let
rad(V) ={X eV :B(X,X')=0forevery X' e V}={X eV :[X,V] =0}

be the radical of V and let b := dimrad(V). Choose a subspace U of V such that V =rad (V) & U,
U is clearly nonsingular; that is, for every X € U there exists X’ € U such that [X, X’] # 0. By [10,
Theorem 3.7], the dimension of U is even and we set dim U = 2a.

Ifa > 1, by [10, Theorem 3.7] there exists a basis Yl, R fa, ?1, e, Ya of U such that

B(X;,X;)=0, B(Y.,Y;)=0 and B(X.,Y;) =6, i,je{l,...,a};
that is,
[X:,X;1=0, [¥,Y;]=0 and [X.Y;]=6,T, i,je{l,...,a}.

If b > 1, fix a basis fa+1, R Ya+b of rad (V).
We can now define I’ : V — b by

U(X;)=X; and U(Y;)=Y;
for all integers 1 <i <a+band 1 < j < b. Notice that I” is an isometry of V into }; that is,
B(l'(X),1I'(Y)) = B(X,Y) for every X,Y € V.

By Witt’s theorem (see [10, Theorem 3.9]), I’ can be extended to an isometry [ : §; — B; that is,
a map satisfying [I”"(X),1”(Y)] = [X,Y] for every X,Y € b;. Finally, we extend [ tol : h — b by
setting [y, := 1" and I(T) := T. The map [ provides the desired Lie algebra isomorphism. O

Remark 3.15. Under the same assumptions of Lemma 3.14, if [V,V] = 0, then the Lie algebra
isomorphism [ : § — b provided by Lemma 3.14 can be chosen in such a way that I is an isometry
of h when endowed with the scalar product making X1, ..., X,, Y1,...,Y,, T orthonormal. Observe in
particular that here the term isometry has a different meaning than in the proof of Lemma 3.14.

Let us prove our statement. As in the proof of Lemma 3.14, fix a basis X Lyenes va of V = rad(V).
Consider the linear isomorphism J : §; — b, defined by

J(X;)=-Y; and J(V;)=X; foreveryi=1,...,n.

We observe that B(X,Y) = (X,JY) for X,Y € b, and that J is an isometry of b;. Set Y; == J(X;) and
observe that, since V = rad(V) c (J(V))*, the elements {fi, Yi:i=1,..., b} form an orthonormal
basis of V& J(V).

Consider W := (Ve J(V))*; then W = W’ @ span{T'} where W’ := (V@& J(V))* Nn};. We claim that
J(W’) = W’; by dimensional reasons, it suffices to prove that J(W’) c W’, and this follows because,
for every X € W' and Y € V, there holds

(JX,Y)=—(X,JY)=0
(JX,JY) = (X,Y) = 0.

We can now exhibit a Lie algebra isomorphism [ : h — I that is also an isometry. First, we define
I(T) =T and

(X;)=X; and L(Y;) =Y foreveryi=1,...,b.
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I~f W = {9}, the proof is concluded. Otherwise, we fix a unit element )?;,H € W’ and, defining
Ypi1 :=J(Xpy1) € W, we set

U(Xps1) = Xps1 and  1(Ypy1) = Yoy

IfwW = span{Xb+1,Yb+1} the proof is concluded; otherwise, we fix a unit element Xpia € W' N
span{Xb+1, Yb+1}L and, defining Yy, := J(Xb+2) ewW’'n span{Xb+1, Yb+1} we set

[(Xps2) = Xps2  and  1(Yp42) = Ypso.

It is clear that this construction can be iterated and that it eventually stops providing as a final outcome
the desired isometric Lie algebra isomorphism [ : ) — §.

Remark 3.16. Under the same assumptions of Proposition 3.13, if the vertical plane & is an abelian
subgroup of H" (i.e., if a = 0), then the H-linear isomorphism £ provided by Proposition 3.13 can
be chosen to be an isometry of H". This is an easy consequence of Remark 3.15 and the rotational
invariance of the distance d.

In particular, if V C exp(};) is a horizontal (and necessarily abelian) subgroup of H", we can consider
the vertical subgroup & generated by V and exp(span{7'}) and deduce that there exists an isometric
H-linear isomorphism £ of H" such that

L(V) = exp(span{X1, ..., Xr}),

where k :=dim V.

3.4. A basis for Rumin’s spaces

In this section we provide a basis for Rumin’s spaces J"”, e, jzn; since later in the article we will
denote by k the codimension of the involved objects, we fix k such that 1 < k < n and study 2!k,
By Remark 3.3, this space coincides with {1 A6 : 1 € /\2""‘[)1, A A dO = 0}; hence, one is led to the
study of the kernel of the Lefschetz operator A — A A d6.

We write h := 2n — k and, identifying h; = R*" = R" x RY, we denote by L the operator

L) :==AANdO =—=AA (dx; Adyi + -+ dxn Adyp), A e AR,

Since h > n, the operator L : A"R>" — AM2R?" is surjective ([21, Proposition 1.1]).

We need some preliminary notation. For every i € {1,...,n} we use the compact notation dxy; :=
dx; A dy;, so that df = —(dxy; + - - - + dxy,,). Moreover, for every I C {1,...,n} we denote by |/| the
cardinality of / and, if I = {iy,i,..., |7} withij < --- < i}y, we define

dxp :=dxj Ndxi, N+ Adxy, € AlIR2n
dyr == dyi, Ndyi, A Ndyiy, € AR

dxyy :=dxyi Ndxyi A--- Adxyi, € AR,
For I = 0 we agree that dxyp = dyg = dxyy = 1. It will also be convenient to set fori € {1,...,2n}

dz; =dx;ifi <n, dz;:=dyi_,ifi>n+1
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and, accordingly,
dzy =dz;, Ndzj, A+ A dzim 3.12)

whenever I = {i1,is,...,ij;} with1 <iy <--- <ij < 2n.

A basis of A"R?" is given by the family {dx; A dy; A dxyk }(1.,,k)> where (I,J, K) range among
all (ordered) triples of pairwise disjoint subsets 7,J, K of {1,...,n} such that |I| + |J| + 2|K| = h. In
particular, one can write

AR = @ dxp Adyy A NBTTR™
(1.7)

where the sum ranges among all ordered pairs (1, J) of disjoint I, J € {1,...,n}suchthatQ < |I|+|J] <
h and A1/ R?" is defined by

APTIRY = spanf{dxyx : K c {1,...,n}\ (1uJ) and || +|J| +2|K| = h}.
The parity of || + |J| is necessarily the same of 4. Observe also that
L(dx; Adyy A APTIRYY < dxyp Adyy A ANPPTIR,
more precisely, for every & € A"/ R?" one has

L(dxy Ndyy ANa) =—dxy ANdyy Aa A Z dx; A dy;.
ie{l,..., n}\(IuJ)
In particular,

ker L = (P dx; Ady; Aker Ly, (3.13)
(L.7)

where Ly, 1. : APTIRIM — AM#2.1.IR21 g defined by

Lug.j (@) =—-aA Z dx; A dy;.
ie{l,...,n}\(JUJ)

There is a canonical isomorphism ¢ : A">/-/R?" — AZR?™, where

C=(h—|I1-1UN/2,  m=n-|I]-|J],

2 2 (3.14)
Ap RT™ = span{dxyg : K c {1,...,m},|K| =1},

according to which t o Ly y y = L o «. The study of ker Lj, ;5 (which, by (3.13), determines ker L) is
thus equivalent to the study of the kernel of the restriction

LD =L /\ZD‘;R”"'
Remark 3.17. The objects introduced so far are well-defined unless |/| + |J| = n; that is, if m = 0. This
can happen only if 4 = n and gives that also £ = 0. In this case, we agree that A"-/-/R?" = A2(R>™ = R,

APF2LIRIN — A2642R2m — (0} and Lp = 0. It is immediate to check that, for every such 1, J, one has
L(dxy A dy_]) =0.

Observe that L(AZYR*™) c A2{*2R?™; hence, Lp maps A% R>™ on AZ¢*?R*™ It is understood that,
when ¢ = m, /\2D[+2R " = {0} and Lp = 0. Notice also that the inequality 2¢ > m holds because & > n.
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Lemma 3.18. The operator Lp : /\ZD[}Rzm - /\ZDHZRZV” is surjective for every integer { such that
m < 20 < 2m. In particular,

dim ker LD = dim /\ZDZRZm —dim /\%)f+2R2m — (”Z) _ (57::1 1),

where we agree that (,'},) = 0.

Proof. When 2¢ = 2m, there is nothing to prove. For the remaining cases, it suffices to prove that, for
everyi = 1,...,m, the operator
Lt :=Lpo---oLp: NpTR™ — AR
————

i times

is bijective. Since dim A”?7'R?>" = dim /\%”Rzm, this is an immediate consequence of the bijectivity of
LP: AR 5 AMHRZM: see [21, Proposition 1.1]. m]

We now provide a basis of ker Lp : AXR>™ — A2*2R™ for m < 20 < 2m. Assume that the

numbers 1, ...,m have been arranged (each number appearing exactly once) in a tableau R with two
rows, the first row having £ elements Rll, e, Rél, and the second having m — £ elements R%, ..., ern_ 2
as follows:
RUIRY| ... |R! R! ...|R!
R= 12 i ;n—t’ m—C+1 t (3.15)
RUIRY| | Ryg

where, clearly, R has to be read as a (2 x ¢) rectangular matrix when 2¢ = m. As is customary, we call
Young tableau such a tableau; see [55]. When m = £ = 0, we agree that the tableau is empty. When
m =€ > 1, we agree that R has one row only (the second row is empty).

Given such a Young tableau R, consider the covector ag € /\%Rzm defined by

ag = (dxlel - dxyR]z) A (dxyRé - dxng) A=A (dxerlnif - dxyR'sz) Adxygt  Accs Adxygi.
(3.16)

When m = £ = 0, we agree that ag := 1, whileif m = > 1 we set ag := dxyR; AEERWA dxerln. Using
the equality (dxy; —dxy ;) A (dxy;+dxy;) = 0, valid for every i, j = 1,...,m, one can easily check that

L(ag) =ag Adf =0. (3.17)

It follows that, for every Young tableau R, ar belongs to ker Lp.
Consider now the set &% of standard Young tableaux; that is, of those Young tableaux R such that the
entries in each row and in each column are in increasing order:

1 1 1 1 1
Rl <R, < --<R, _, <R, , < <R,
A A A

2 2 2
Ry < R; < <R, _,

Notice that a standard Young tableau R always satisfies R} = 1. The following lemma shows that the
family {agr }rex C ker Lp is made by linearly independent covectors.

Lemma 3.19. Let m, € be integers such that 0 < m < 2€ < 2m and let R be the set of standard Young
tableaux with two rows of width € and m — €, as in (3.15). Then the elements {ag}rex defined in (3.16)
are linearly independent.
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Proof. When m = 0 also ¢ = 0 and the family {agr}rez is made by a unique element ag = 1;
there is nothing to prove. When ¢ = m, the family &% is made by the single standard Young tableau
R =[1]2]---|m]. Therefore, {ag}rez = {dxy1 A - A dxy,} is made by linearly independent vectors,
as wished.

We therefore assume that 1 < m < 2 < 2m — 2. Let us begin with some preliminary considerations.
Given a Young tableau R, we denote by o-(R) the sum R } + Ré +---+R } of the elements in the first row
of R. Clearly, there exists an integer M = M (m, £) such that

I+ --+f<oc(R)<M for every R € &%,

moreover, there is a unique R,,;, € X such that o(R) =1+ - - - + £, namely,

1|2 [ m=tm—¢+1]---]C |
C+1[6+2 || m '

Ryin =

Let R € & be fixed and_let K = {Ei,ﬁ;, . ,E;} be the subset of {1,...,m} containing the ¢
elements in the first row of R. We claim that, if

R € & is such that each column of R contains one element of K (3.18)
(in particular, by the pigeonhole principle, each column of R contains exactly one element of K), then
o (R) < o(R), and equality holds if and only if R = R. (3.19)

Indeed, for every tableau R as in (3.18) there exist a permutation 7 of {1,...,¢} and a function
u:{l,...,¢} — {1,2} such that

u(j -1 j
Rj(f)an(j) forall j=1,...,¢.
Therefore,
¢ 4 ) t _
o(R) = ZRJl < ZR;{(J) - ZRﬂ(j) =o(R); (3.20)
=1 J=l J=1

notice that equality holds if and only if R} = Rju.(j ) for every j = 1,...,¢; that is, if and only if

—1 =1 —1
{RI,R),....,R}} ={R|,Ry,..., Ry}

Since a standard Young tableau is uniquely determined once one fixes the set of elements of the first
row, equality in (3.20) holds if and only if R = R.

We now prove the lemma. Assume that there are real coefficients (bg)ges, suchthat Y\ pcg brag = 0;
we prove that all of the coefficients bg are null. We perform this task reasoning by induction on
§=1+---+¢,..., M and showing that

br=0 for every R such that o-(R) = 5.
Consider first the case § = 1 + --- + {; we need to prove that bg . = 0. For every R € X let us
write @r = Yk R,k dxyk, where the sum ranges among all K C {1,...,m} with |K| = € and cg k are
suitable real numbers. We claim that, defining K := {1,2,..., ¢}, then

crg =0  forevery R € &\ {Ruin}. (3.21)
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This would be enough to conclude; indeed, one would have

0= Z brag = Z Z brer.kdxyk = bR, dxyg + Z Z brcr,kdxyk,

ReZR K Re% K+#K REZ

which gives bg,,,, =0, as desired.

We prove (3.21): by the very definition (3.16) of ar, we see that for every K one has cg x = 0 unless
each column of R contains (exactly) one element of K (in which case, cr.xk € {1,—1}). Using this
observation with K = K, (3.21) follows because, by the implication (3.18) = (3.19), the only standard
Young tableau such that each of its columns contains one element of K is Rynin itself, because any other
standard Young tableau R with such a property would satisfy o-(R) < 1+---+ (.

Assume now that bg = 0 for every R € &% such that o (R) < 5 — 1; we prove that bg = 0 for every

(fixed) R such that o(R) = 5. Let K := {E}, . ,El;} be the set formed by the elements in the first row
of R; we claim that

cgg=0  forevery R € %\ {R} such that =(R) > 5. (3.22)

This would be enough to conclude; indeed, one would have

0= Z bRaR = Z bR(IR = Z Z bRCR deyK = b+ dxyK + Z Z bRCR,deyKa

ReR ReZR ReZR ReZR
o(R)>s o(R)>s KK o(R)>s

which would give b = 0, as desired.

Claim (3.22) can be proved similarly as before: by the definition of ag, for a standard Young tableau
R one has ¢ % = 0 unless each column of R contains (exactly) one element of K in particular, (3.22)
follows from the implication (3.18) =(3.19). m]

The cardinality of &# can be computed using the hook length formula, also known as Frame—
Robinson—Thrall formula. We refer to [55, page 53]: such a formula states that the cardinality of &

equals
m!
C+D)et-1)---2t-m+2)1- 2-m)---2-1 - im-O(m—-£—-1)---1
m! m!
—({,_,_1)'( _g)v(% m+1) = —(£+1)’( {7)'(€+1 (m—1?))

_(m m

\e) e+t
provided ¢ < m. If £ = m, then the cardinality of & is 1. In both cases, Lemma 3.18 implies that the
cardinality of & is equal to dim ker L. Together with Lemma 3.19, this proves that {ag } rc is a basis

of ker Lp.
We can summarise the discussion above as follows.

Proposition 3.20. Consider integer numbers n, h such thatn > 1 and n < h < 2n. Then a basis of the
kernel of L : A"R?" — AMY2R2M s given by the elements of the form dx; A dy; A ag where

o I,J are disjoint subsets of {1, ...,n};

o ap is defined as in (3.16) and R is a standard Young tableau where the elements of
{1,...,n}\ ({1 UJ) are arranged in two rows, the first one having (h — |I| — |J|)/2 elements and the
second one having (2n — h — |I| — |J|)/2 elements.

Remark 3.21. It follows from (3.17) that, given I,J C {l,...,n} disjoint and a (nonnecessarily
standard) Young tableau Q containing the elements of {1, ...,n}\ (/ UJ), the covector dx; Ady; Aag
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is in the kernel of L. Moreover, by (3.13), dx; A dyj A agp can be written as a linear combination of
covectors of the form dx; A dy; A ag where R ranges among all standard Young tableaux with the same
shape and containing the same elements as Q.

Proposition 3.20 has the following immediate consequence.

Corollary 3.22. Letn > 1 and 1 < k < n be integers. Then a basis of J"*'~ is given by the elements
of the form dx; A dyj N ar A @ where I, J, R are given by Proposition 3.20 with h := 2n — k.

Proof. We observed at the beginning of the section that
Pk = a0 1e A *y and A A do = 0}.

The statement now easily follows from Proposition 3.20. O

Proposition 1.10 is now an easy consequence of Corollary 3.22.
We feel it might be useful to provide some simple examples before continuing our analysis.

Example 3.23. When n = 2, the space J**' = 7 in H? is 5-dimensional. The corresponding basis
dx; Adyyj A ag A 6 provided by Proposition 1.10 is displayed on the left column of the following table,
while on the right column the corresponding triple (1, J, R) appears:

dxi ANdxy N O — ({1,2},0,0)
dxi Ndy, N6 — ({11 {2},0)
dxy Ady; A6 — ({2}, {1},0)
dyiy Ndyy N6 — (0,{1,2},0)

(dxl/\dyl—de/\dyg)/\O — (Q)’Q),)’

where 0 denotes either the empty set or the empty tableau. See also [12, Example 3.12].

Example 3.24. When n = 3, the space [/° in H? is 14-dimensional; let us write the basis provided by
Proposition 1.10. Observe that here n = 3, k = 2 and h = 4. We first determine the triples (1, J, R): since
|I| + |J]| is not greater than k = 2 and has the same parity as & = 4, either |I| + |J| =0 or |I| + |J| = 2.

If |[I| +]J| =0, then m = 3, £ = 2 and all of the indices 1, 2, 3 appear in the tableau R, whose rows
have lengths 2 and 1, respectively. It is immediate to check that R can be only one of the following two
tableaux:

—_

2

—

3

which, respectively, provide the elements
(dx1 A dy; —dxz A dy3) ANdxa Ady, NG, (dx1 Adyy —dxy A dyz) ANdxz ANdys A6 (3.23)

of . If |I| +|J| = 2, then I UJ = {a, b} for some a,b € {1,2,3} and the tableau R contains the
unique remaining index ¢ € {1,2,3} \ {a, b}; in particular, the second row of R is empty (in fact, here
{=m=1)and R = . This produces the following elements of 7

dxg Ndxp Ndxe Ndye N6 provided a < b
dxg Ndyp ANdxe ANdye N6 (3.24)
dyqa Ndyp Ndxe ANdye N6 provided a < b

and, as a, b, ¢ vary in {1, 2, 3}, each of the covectors in (3.24) provides, respectively, three, six and three
elements of 7. All in all, a basis of 7 is provided by the 2+12 elements displayed in (3.23) and (3.24).
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Remark 3.25. The difference between the lengths of the first and second rows of every standard
Young tableau R appearing in Proposition 1.10 (respectively, in Proposition 3.20) is determined by k
(respectively by h) and it is equal to n — k (respectively to & — n). In particular, the standard Young
tableaux R appearing in Proposition 1.10 (respectively in Proposition 3.20) are rectangular (the two
rows have the same length) if and only if k = n (respectively if h = n).

Remark 3.26. It follows from Remark 3.21 that, given I,J C {1, ..., n} disjoint and a (nonnecessarily
standard) Young tableau Q containing the elements of {1, ..., n}\ (/UJ), the covector dx; Ady s Aag A6
belongs to 261 \yhere ¢ denotes the length of the first row of Q, and it can be written as a linear
combination of the elements dx; A dy; A ag A 8 € JTHFY 241 where R ranges among the standard
Young tableaux with the same shape and containing the same elements as Q.

Remark 3.27. Itis a good point to state, for future reference, the following property of the basis provided
by Proposition 1.10.

Let a, b be fixed nonnegative integers such thata + b < nandn < 2a + b < 2n. Let (I, J, R) range
among the triples such that {dx; A dy; A ar A6} (1.1 r) is the basis of 72*?*! provided by Proposition
1.10; that is,

o 1,J are disjoint subsets of {1, ...,n} such that |I| + |J| < 2n — 2a — b;

o Ris astandard Young tableau where the elements of {1,...,n} \ (I UJ) are arranged in two rows,
the first one having (2a + b — |I| — |J|)/2 elements and the second one having
(2n—2a - b —|I| - |J|)/2 elements.

Then either

I={a+1,...,a+b}

J=0
R= 1 2 ~~~n—a—bn—a+1‘---‘a‘ (3.25)
“la+b+1la+b+2 |- n
or
XiN - ANXgupb AYT A ANYg AT | dxy ANdyy Aagr AB) =0 (3.26)

where, in (3.25)

o I=0ifb=0,
o R is the empty tableau if a = 0,
o R has to be interpreted as a rectangular 2 X a matrix if n =2a+ b and a > 1.

Let us prove what is claimed. If either I # {a + 1,...,a + b} or J # 0, then (3.26) holds. If instead

I={a+1,...,a+b}and J = 0, then the shape of R (i.e., the lengths of its rows) is necessarily the same
as the tableau displayed in (3.25) and R contains precisely the elements {1,...,a,a+b+1,...,n}. We
have

XiAN - AXgwp AYT AN~ AYg AT | dxy Adyy ANag A 6)

3.27
=x(X;] A AXgAYT A~ AY, | ar), ( )

where the sign is determined by a and b. By its definition (3.16), @g can be written as a sum
25 0(S)dxys, where o(S) € {l1,-1} is a proper sign and the sum ranges among all subsets
ScAl,....,a,a+b+1,...,n} (ie., S is a subset of the set of the entries of R) of cardinality a
that contain exactly one element from each column of R. It is clear that

if S #{1,...,a},then (X A-- - AX;AYI A--- AY, | dxys) =0.
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If R is such that at least one of its columns contains no elements of {1,...,a}, then none of the S’s
appearing in the sum ar = Y, g o (S)dxys is {1,...,a}, and by (3.27)

Xi A AXgrp AYT A AY AT | dxy Adyy Aag AB) =0.

If all of the a columns of R contain at least one element of {1,...,a}, then each of these columns
contains exactly one such element. Since R is a standard Young tableau, the sum of the elements of the
first row of R is at most 1 + - - - + a, but this sum is clearly also at least 1 + - - - + a. It follows that the
first line of R is made by the elements 1, ..., a (in increasing order) and that the remaining elements
a+b+1,...,n(not belonging to I, J or the first line of R) have to be placed, in increasing order, in the
second line of R. This proves that R must be the one in (3.25) and concludes the proof.

3.5. Heisenberg currents

For every k = 0,...,2n + 1, we introduce the spaces Dﬁ C Qﬁ of compactly supported smooth
Heisenberg k-forms; that is,

Dk = € (H", 22) if0<k<n
DE = CO(H", J5) ifn+l<k<2n+l,

and we observe that dc maps Dﬁ to Dﬁ“. We endow the space Dﬁ with the natural topology induced
by the topology of the space D of compactly supported k-forms on H".

Definition 3.28. Given k € {0,...,2n+1}, we denote by Dy x the space of continuous linear functionals
on D]'}‘H. An element of Dy i is called Heisenberg k-dimensional current or, for shortness, Heisenberg
k-current.

For every k € {l,...,2n + 1} and every Heisenberg k-current T € Dy i, we denote by JT the
Heisenberg (k — 1)-current defined, for every w € Dﬁ’l, by 0T(w) := T(dcw) (recall Remark 3.7).
Namely,

0T(w) =T(dw) ifk #n+1
0T(w) :=T(Dw) ifk =n+1.

It is not our aim to introduce here the mass of a current (see [51, Definition 5.12] and [22, Defini-
tions 2.5 and 2.6]), which would require introducing a notion of comass ([42, 4.1.7]) on Rumin’s spaces
of covectors. For our purposes, it will be enough to introduce the notion of current with finite mass (see
Definition 3.29), and to this end any choice of (co)mass on covectors is equivalent. We denote by | - |
the standard norm on A*f (in particular, | - | is defined on T fork > n+ 1) and we agree that, for every

1<k Snand/le/\kb/Ik,
A :=min {|v| : v € A¥By, [v] =2} (3.28)

where [v] is the equivalence class of v in the quotient Al /{u A d6 : u € AK=2B;} (recall (3.7)). The
quantity | - | is a norm on AKh/Z*.

Definition 3.29. Let k € {1,...,2n} be fixed. We say that a current T € Dy x has finite mass if there
exists Mt € R such that

|IT(w)| < My sugl) lw(p)| for every w € Dﬁ.
peH”
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The current T has locally finite mass if, for each compact set K C H", there exists Mt g € R such that

|T(w)| < Mtk sup |w(p)] for every w € Dﬁ with support in K.
peHn

Finally, T is normal (respectively, locally normal) if both T and 9T have finite mass (respectively locally
finite mass).

Remark 3.30. The reader familiar with the theory of distributions will realise that a Heisenberg k-
current has locally finite mass if and only if it has order O in the sense of distributions; equivalently, if it
is a measure taking values in a proper space of k-vectors. More precisely, if T is a k-current with locally
finite mass, then there exist a locally finite (nonnegative) measure u and a u-measurable function 7,
taking values in J (if kK > n + 1; recall Remark 3.4) or in the dual space (A¥Y/Z¥)* (if k < n), such
that T = 7y; that is,

T(w) = /(T | w) du for every w € Dﬁ.

As done in the Introduction, one can also assume that |7| = 1 u-a.e. In this case, we denote 7 and u by,
respectively, T and ||T|| and write T = T||T||.

As in Subsection 3.4, for the rest of the present section we denote by k the codimension, rather
than the dimension, of a current or submanifold. We focus on the low-codimensional case and we fix
ke{l,...,n}.

Recall that every C'-regular oriented submanifold S ¢ H”" of codimension k naturally induces a
(2n + 1 — k)-dimensional classical current (S|) defined, for every smooth and compactly supported
(2n+ 1 - k)-form w in H", by

(S) (w) = /S w= /S (ts | w) dvols,

where g is a unit (2n + 1 — k)-vector tangent to S and with positive orientation and dvolg is the surface
measure on S induced by the left-invariant Riemannian metric on H" making X, ..., Y}, T orthonormal.
Using the notation in Remark 3.1, for every p € S we can write

ts(p) = (ts(p)y, +ns(p) AT (3.29)

for a unique ns(p) € Az2u—ih1. Notice that ns(p) = 0 if and only if p is a characteristic point of S; that
is, TS C by.

Assume now that p € § is not a characteristic point; then, the intersection 7,S N by is a (2n - k)-
dimensional plane and it is immediate to check that 7),S N h; = spanns(p). Therefore, the unit vector

ns(p)

3.30
s ()] (3:30)

15 (p) =

is canonically associated with the linear subspace T,,S N'};. We denote by t? = Tgﬂ AT the (horizontal)
tangent vector to S. Geometrically, t? characterises the blow-up limit of S at p; in fact,

lim 6, (p~'S) = exp(spantg/(p)),

where the limit is taken with respect to local Hausdorff convergence of sets. See, for example, [68].
With this notation, we define the Heisenberg current [S] € Dy 2n+1-k by

[[S]] (w) = ‘/50? | w) dé)Q_k, wE DﬂZ_ﬂnH—k.
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The definition is well-posed because the Hausdorff measure $'@* is locally finite on S (see, e.g., [68])
and the set of characteristic points of S, where in principle t]gl is not defined, is 2 *-negligible ([ 15, 69]).

The next result, though very simple, has to our knowledge never been noticed in the literature. Lemma
3.31 and the subsequent Corollary 3.34 prove Proposition 1.9, which will play a crucial role in the sequel.

Lemma 3.31. Letn > 1 and k € {1,...,n} be fixed. Then there exists Cp, ;. > 0 such that, for every
oriented and C"-smooth submanifold S of H" of dimension 2n + 1 — k, one has

[ST(w) = Cor(S)(w)  for every w € DE*I7F.

Proof. By [68, Theorem 1.2] (see also [71, Theorem 8.1 and Proposition 8.7]), there exists a positive
constant C,, ; such that

S9KLS = Cpilns AT|vols = Cp |ns| vols,

where ng(p) is as in (3.29). We remark that one is allowed to apply [68, Theorem 1.2] because of the
rotational invariance (3.1) of the distance d; see [68, Proposition 4.5]. Therefore,

[[S]](w>=/s<r§“|w>d&9-k =/S<’7—5AT

sl

a)> dsek = Chk /(ng AT | w)dvolg
s

and by Remark 3.3,

[S1(w) = Co /S (1s)yy + 15 AT | w) dvols = C s /S (15 | w) dvols.

This concludes the proof. O

Remark 3.32. The constant C, ; provided by Lemma 3.31 actually also depends on the distance d.
However, we omit this dependence.

Remark 3.33. Let S be as in Lemma 3.31. The definition of the Heisenberg current [S] depends on
&2~k that is, on the choice of the rotationally invariant distance d. On the contrary, the classical current
(S) is a purely differential object — there is no metric involved. Therefore, Lemma 3.31 suggests that

<§’*Q_k := §27k/C, x, which does not depend on the choice of d, might be the correctly normalised
spherical Hausdorff measure on H".

The following result is very simple.

Corollary 3.34. Let n > 1 and k € {1,...,n} be fixed. If S is an oriented C'-smooth submanifold of
H" of codimension k and without boundary, then 9[ S] = 0.

Proof. If k < n, by Lemma 3.31 and Stokes’ theorem we have for every w € Dﬁ"‘k
1) = [S](dw) = Cpx (S)(dw) = 0.

Similarly, when k = n we have for every w € D
I[S](w) = [S](Dw) = Cok(S)(Dw) =0

because, by definition of D, the form Dw is exact. O

3.6. Rank 1 connection and a property of tangent vectors to vertical planes

We conclude the present Section 3 by stating a technical result, Proposition 3.38, which will be of the
utmost relevance in the proof of Rademacher’s Theorem 1.1. Since the proof of Proposition 3.38 is quite
long and involved, for the moment we only state it and postpone its proof to Appendix A.
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Let us start with a preliminary definition.

Definition 3.35. Let V be a real vector space of dimension ¢ and let m be an integer such that 1 < m < £.
We say that two m-dimensional vector subspaces P, P, of V are rank I connected if dim P} N P, >
m—1.

The terminology chosen in Definition 3.35 is borrowed from some classical problems in the calculus
of variations; see, for example, [14, 78]. Some motivations are provided by the following Remark 3.36,
which we state for future reference and where we identify linear applications and matrices.

Ly, Ly : W — V be linear maps and, fori = 1,2, let 2; := {(w, L;(w)) € WXV : w € W} be the graph
of L;. Then the following statements are equivalent:

Remark 3.36. Let W,V be real vector spaces of dimensions m > 1 and £ > 1, respectively. Let also

(a) the vector subspaces P, P, of W X V are rank 1 connected;
(b) either L; = Ly orrank (L; — Ly) = 1.

The subsequent Lemma 3.37 motivates the terminology in Definition 3.35: recall, in fact, that simple
multivectors are sometimes called rank I multivectors. Before stating Lemma 3.37, let us fix some
standard language. If & c V is a m-dimensional vector subspace and ¢t € A,,V is not null, we say that ¢
is tangent to & if t is simple and it can be written as t = v{ A - - - A v, for some basis vy, ..., v, of .
Equivalently, ¢ is tangent to & if and only if spant := {v € V : v A t = 0} coincides with 9. Needless
to say, if # and s are both tangent to 97, then ¢ and s are linearly dependent; that is, ¢ is a multiple of s
(and vice versa).

Lemma 3.37. Let V be a real vector space of dimension € and let m be an integer such that 1 < m < ¢;
let also Py, P> be fixed m-dimensional vector subspaces of V. Then the following statements are
equivalent:

(a) Py, P, are rank 1 connected;

(b) for every couple of simple vectors ti,t2 € A,V tangent to P, P, (respectively), the difference
t1 — 1y is a simple m-vector;

(c) there exists a couple of simple vectors t1,t) € N,V tangent to Py, P, (respectively) such that the
difference t| — t, is a simple m-vector.

The proof of Lemma 3.37 is quite simple; nonetheless, it is provided in Appendix A for the sake of
completeness.

After recalling Definition 3.2 (vertical planes) and the notation [ - ] 7 introduced in Remark 3.4, we
can eventually state the following result.

Proposition 3.38. Let k € {1,...,n} and { € Jon+1-k be fixed with ¢ # 0. Then

(1) if k < n, there exists at most one (2n + 1 — k)-dimensional vertical plane P whose unit tangent
vector tgp = tg is such that [tg]J is a multiple of ¢;
(ii) if k = n, there exist at most two vertical (n + 1)-planes & whose unit tangent vectors tgp = tg, are

such that [tg] 7 is a multiple of {. Moreover, if 51, P are two different such planes, then 9 and
Py are not rank 1 connected.

As we said, the long proof of Proposition 3.38 is postponed to Appendix A. It is, however, worth
observing that the nonuniqueness phenomenon allowed for by statement (ii) above can indeed occur. In
fact, consider the vertical 3-planes in H?,

Pri={(x,y.) €EH* :xy =y, =0} and P :={(x,y.,1) € H* :x; =y =0}.
Unit tangent vectors are provided by
tg,lle/\Yl/\T and tgzz—Xz/\Yg/\T
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and, using, for instance, Example 3.23, one can easily check that [tg,1 l7= [tg,z] 7. Observe that 9| and
P, are not rank 1 connected, as stated by Proposition 3.38. The latter also guarantees that no vertical
plane & # 9| such that [tg] 7= [tg1 ] 7 exists other than 9,. See also Remarks A.2 and A.4.

4. Intrinsic Lipschitz graphs in Heisenberg groups

Though already introduced in Section 2, for the reader’s convenience we now recall the notion of
intrinsic Lipschitz graph. Assume that a splitting of H" is fixed; namely, let W, V be homogeneous (i.e.,
invariant under dilations) and complementary (i.e., WN'V = {0} and H" = WV) subgroups of H". Each
p € H" possesses a unique decomposition p = pwpy as a product of elements pw € W, py € V. For
a > 0, the homogeneous cone C,, along V is

Co:={p eH: llpvlu = allpwlla} ={wv:w e W,v eV, vl > alw|lx}.

The set C,, is homogeneous (i.e., invariant under dilations) and 0 € C,; actually, V c C,. For p € H"
we set Co(p) = pCq. Observe that C,, coincides with the cone €, defined in Subsection 2.2: the
reason for this change in notation is that, from now on, we will more frequently deal with the intrinsic
Lipschitz constants of maps rather than with the apertures of the associated cones.

Given A ¢ W and amap ¢ : W — V, the intrinsic graph of ¢ is the set

gry = {we¢(w) : w € A} c H".

We hereafter adopt the convention that, whenever a map ¢ : A — V is introduced, we denote by
®: A — H" the associated graph map @ (w) := w¢(w); in particular, gr, = ®(A).

Definition 4.1. Let A ¢ W; we say that a map ¢ : A — V is intrinsic Lipschitz continuous if there
exists @ > 0 such that

Vpegry,  gryNCo(p)={p} 4.1)
We call intrinsic Lipschitz constant of ¢ the infimum of those positive @ for which (4.1) holds.

Intrinsic Lipschitz maps of low dimension ( dim W < n) are Euclidean Lipschitz continuous and the
Hausdorff dimension of their graphs equals the topological one; that is, dim W. See [50, Remark 3.11],
[53, Proposition 3.7] or [8]. On the contrary, intrinsic Lipschitz maps of low codimension k = dimV < n
are not better than Euclidean 1/2-Holder continuous; see Remark 4.5. Despite this fractal behaviour
(see also [63]), they enjoy good metric properties: for instance, the Hausdorff dimension of their graphs
is the same, Q — k, as W, and the (Q — k)-dimensional Hausdorff measure on their graph is even
(Q - k)-Ahlfors regular; see Remark 4.6 and the references therein.

4.1. Intrinsic Lipschitz graphs of low codimension

We are interested in intrinsic Lipschitz graphs of codimension at most n; we then assume that k£ := dim V
is a positive integer not greater than n. It can be easily checked (see, e.g., [51, Remark 3.12]) that this
forces V to be abelian; by Remark 3.16, up to an isometric group isomorphism of H", one can always
assume that

V = exp(span{ Xy, ..., Xr}). “4.2)

Moreover, it follows from [53, Proposition 3.1] (alternatively, from Theorem 1.4) that, if W, W’ are
complementary to V and § ¢ H" is such that § = gr,, for some intrinsic Lipschitz ¢ : A — V with

https://doi.org/10.1017/fms.2021.84 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2021.84

Forum of Mathematics, Sigma 43

A C W, then there exists A” ¢ W’ and an intrinsic Lipschitz map ¢’ : A” — V such that § = gr. In
particular, it will not be restrictive (see also Remark 6.1) to assume that

W = exp(span{Xg41, ..., X, Y1,...,Y,, T} ifl<k<n-1

) 4.3)
W = exp(span{Yy,...,Y,,T}) if k = n.

Hence, from now on we work with the subgroups W, V defined in (4.2) and (4.3). In coordinates

V=A{(x,y,t) eR"XR"XR:y=0, xp41=...=x, =t =0} ifl<k<n-1
V={(x,y,1) eR"xR"xR:y=0, t =0} ifk=n (4.4)
W={(x,y,1) eR"XR"XR:x; =...=x; =0}.

For simplicity, we will write v € Vand w € W as

v=(X1,...,Xk) € R¥
W= (Xktls e e s Xy Voo ooy Yns ) € RIHITK ifl<k<n-1 4.5)
w=1...,Vn 1) € R™! if k =n.
Notice that, if p = (x, y, t), then py = (x, ..., xx). Observe also that the measure P21k induced on
W by the identification W = R?"*1=% in (4.5) is a Haar measure on W that is also (Q — k)-homogeneous;
that is,
PP (B(w, r) N W) = rC kP20, 1) nW) VweW,r>0. (4.6)

In particular, >"*1=% coincides, up to multiplicative factors, with the Hausdorff %2~ and spherical
Hausdorff §<27*% measures on W.

We now write the intrinsic graph map ® in coordinates: writing w € W = R¥"*1=% and ¢(w) € V =
R¥ as in (4.5), one gets

(D(W) = (¢(W),xk+1,---,Xn,yl,---,YnJ— %<¢(W),()’1,,yk)>) ifl<k<n-1

D) = (B Y1 oo syl — B O0). 1)) itk =n, @D

where the scalar products appearing in (4.7) are those of RX. Let us write an equivalent analytic
formulation for (4.1). Clearly, the latter is equivalent to require that

(W) ' D(w) = (—p(W)(-w)wp(w) ¢ C,  forallw,w’ € A, w #w'. (4.8)
Since W is a normal subgroup and V is commutative, we have

(=p(W) (=w)wd(w) = (=W (=w)wp(w’) (¢(w) — $(w"))

ewW €V=Rk

and (4.8) is equivalent to

le(w) = oWl < all(=p(w ) (—w)we(w)llz  forallw,w’ € A, w#w".
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After a boring computation (which we omit) and writing w = (Xg41,...,Yn, ) and w’ =
(x1/<+1’ ..., ynst"), when k < n we obtain that (4.1) is equivalent to

l(w) — ¢(w")

k n
’ ’ ’ ’ ’ 1 ’ ’
<@ || Xkt = Xy -5 Y = Yol = 1 —Z¢A,'(W)(yj—y,-)+§ Z (xjyj = X535 4.9)
j=1 J=k+1 H

for all points w = (Xg41s- .- Vn,1), W = (x,’m, ey t’) € A withw # w'. If k = n, the formula
above reads as

k
|¢(W)—¢(W,)|<(l’ )’1—YE’n-’}’n—)’;ut—f'—Z%’(W')(yj—y;-) (410)
J=1 H

forallw = (y1,...,yn, 1), w = (yi,...,y;l,t’) eA,w#Ww.
It is convenient to point out some basic facts about intrinsic Lipschitz functions.

Remark 4.2. Let ¢ : A ¢ W — V be intrinsic Lipschitz with intrinsic Lipschitz constant not greater
than « and assume that ¢(0) = 0; then, |¢p(w)| < a||w|g for every w € W. In order to prove this
statement, it is enough to plug w’ = 0 in (4.9) and (4.10).

Remark 4.3. Assume that H" is endowed with the distance d., defined in (3.2) and let & < 1/2 be
fixed. Then, for every intrinsic Lipschitz ¢ : W — V with intrinsic Lipschitz constant not greater than
«a there holds

|pv — qv| < 2ads(p, q) for every p,q € gr,. 4.11)
We can assume without loss of generality that g = 0; using Remark 4.2,
Ipvl = 1¢(pw)| < @de (0, pw)
< @(dw(0, p) + doo(p, pw)) < @des(0, p) + 3des(py,0) = @des (0, p) + 51pvl,
which is (4.11).

Remark 4.4. Assume that H" is endowed with the distance d., defined in (3.2). Then, for every
& > 0 there exists @ = @(&,n, k) > 0 such that the following holds: for every intrinsic Lipschitz map
¢ : W — V with intrinsic Lipschitz constant not greater than @,

(1-&)lpv — ¢(pw)| < deo(p,gry) < |pv —¢(pw)l  ¥VpeH" (4.12)
The second equality in (4.12) is trivial (and, actually, it holds for every ¢ : W — V) because
doo(P. gry) < deo(p. P(pw)) = doo (PP, pwd(pw)) = deo(0, (pv) ' $(pw)) = Ipv — d(pw)l.

In order to prove the first inequality in (4.12), we argue by contradiction. Assume that there exists £ > 0
such that, for every i € N, there exist p; € H" and ¢; : W — V such that ¢; is intrinsic Lipschitz with
intrinsic Lipschitz constant not greater than 1/i and

forevery i de(pi,gry,) < (1=8)|(pi)v = ¢i((pi)w)l. (4.13)

Up to a left translation we can assume that (p;)w = 0 and ¢;(0) = 0 for all i; in particular, p; € V for
all  and, up to a dilation, we can also assume that do, (p;,0) = 1, so that (4.13) becomes

for every i deo(pis Pi) = deo(pis 8r4,) < 1-¢, (4.14)
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where the points p; € gr,, are chosen so that deo(pi, Pi) = de(pi, gry,). Observe that de (0, p;) <
de(0, p;) + de(pi, pi) < 2; in particular, up to extracting a subsequence there exist p € V and
p € B(0,2) such that p; — p € Vand p; — p asi — +oo; clearly, d(p,0) = 1. By Remark 4.2 we
have that ¢; — 0 uniformly on compact sets of W (equivalently, gr, — W with respect to the local
Hausdorff convergence of closed sets in H"), in particular, p € W. Letting i — +oco in (4.14) provides

deo(p,p) < 1-6.
However, writing p = (p1,...,pk,0,...,0)and p = (0,...,0, pr+1, - - -, P2n+1), We notice that

deo(p.P) 2 |(p1,- ... P =dw(0,p) = 1,
a contradiction.

Remark 4.5. It follows from (4.9)—(4.10) that, if K ¢ W is compact and ¢ : W — V is intrinsic
Lipschitz with intrinsic Lipschitz constant a, then there exists M = M («, ¢(0), K) such that |¢| < M
on K.

In particular, one can apply [52, Proposition 4.8] to get the following: for every @ > 0 and every
compact set K ¢ W there exists C = C(«, K) > 0 such that, for every w, w’ € K and every intrinsic
Lipschitz ¢ : W — V with ¢(0) = 0 and intrinsic Lipschitz constant not greater than «, the 1/2-Hdlder
estimate

p(w) = p(w')| < Clw —w'|'/?

holds, where | - | denotes the Euclidean norm in W = R2**1-k,

Remark 4.6. It was proved in [53, Theorem 3.9] that the (Q — k)-dimensional Hausdorff measure on
intrinsic Lipschitz graphs graphs is (Q —k)-Ahlfors regular; in particular, intrinsic Lipschitz graphs have
the same Hausdorff dimension Q — k of the domain W. Actually, the statement of [53, Theorem 3.9] is
more quantitative; in fact, it states that for every @ > 0 there exists C; = Cj(a) > 0 such that, for every
intrinsic Lipschitz function ¢ : W — V whose intrinsic Lipschitz constant is not greater than «, one has

O < §9 (gr, N B(p.r) < Cir¢F Vpegry r>0. (4.15)

Let us point out for future reference one further consequence that is implicitly proved in [53, Theorem
3.9]. Denote by y : H" — W the projection 7w (p) := pw; by [53, formula (44)] there exists a constant
Cy = C(a) € (0, 1) such that, for every ¢ as above,

mw(B(p, Cor)) C ww(gry N B(p,r)) Caw(B(p,r))  Vpegry, r>0.
By [53, Lemma 2.20], which states that there exists C3 > 0 such that
Pk (o (B(p, 1)) = C3r@7* VpeH", r>0,
we deduce that
Cy7' 89 Lgr, < @y(LFLW) < Cu8% Lgr,

for a suitable C4 = C4(a) > 0, where ®4 denotes push-forward of measures. Since €% Lgr,isa
doubling measure, one can differentiate the measure ®4(Z 1=K _ W) with respect to 2 L_gr o (see,
e.g., [83]) to get the existence of g : gr, — [C471, C4] such that @y (LXK W) = g2k L gry.
Equivalently, there exists a measurable function J4 : W — [C4’l , C4] such that

SOK L gry = @y(Jp L2 LW).
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Theorem 1.3 (proved later in Section 7) will show that J4 coincides with the intrinsic Jacobian de-
terminant J¢¢ of ¢ (see Definition 4.9) up to a multiplicative constant. We will, of course, need to
consider J4 and J?¢ as separate notions until Theorem 1.3 is proved, and we therefore ask the reader
to remember that the two objects are distinguished even though quite similar in notation.

4.2. Intrinsic differentiability and blow-ups of intrinsic Lipschitz maps

Left-translations of intrinsic Lipschitz graphs are also intrinsic Lipschitz graphs. When A c W, w € A
and an intrinsic Lipschitz map ¢ : A — V are fixed and one sets p := w¢(w); then (see [9, Proposition
3.6] or [53, Proposition 2.21]) 5~ 'gr , is the intrinsic Lipschitz graph of the map ¢ : p~'A¢(w) — V
defined by

b (W) = p(W) ' p(pwe(w) ™).

We observe that the domain p~'A¢(w) = ¢(w)'w1Ag(W) of ¢, is a subset of W because W is a
normal subgroup; moreover, ¢,; (0) = 0 by construction. Clearly, ¢, has the same intrinsic Lipschitz
constant as ¢.

Dilations of intrinsic Lipschitz graphs are intrinsic Lipschitz graphs too: if A and ¢ are as above, r > 0
and ¢(0) = 0, then 6, (gr,,) is the intrinsic Lipschitz graph of the function ¢" : 6,A — V defined by

¢" (W) :=6,¢(S1/rw) =rd(S1/rw).
The intrinsic Lipschitz constant of ¢” equals the one of ¢.

Definition 4.7. Let ¢ : A — V be a map defined on a (relatively) open subset A ¢ W. We say that
¢ : W — Visablow-up of ¢ atw € A if there exists a sequence (r;); such thatr; — +ooas j — +oo and

lim (¢3)"7 = ¢ locally uniformly on W.
Jj—

Remark 4.8. Clearly, every blow-up ¢ of ¢ is such that ¢(0) = 0. Blow-ups of ¢ at w are in general not
unique. The functions (¢,;)", r > 0, have the same intrinsic Lipschitz constant as ¢; in particular, every
blow-up of ¢ is intrinsic Lipschitz continuous with intrinsic Lipschitz constant not greater than the one
of ¢.

We say that ¢ : W — V is intrinsic linear if its graph gr,, is a homogeneous subgroup of H"; in
coordinates, this is equivalent to requiring that gr, is a vertical plane (recall Definition 3.2) of dimension
2n+ 1 — k. Another characterisation can be given as follows. For every w € W define wy € R?"*1k as

wyg = Xkel, ..o yn) ifk <nandw = (Xgq1,. .., Vn, b)

. 4.16
wg = (yi,...,yn) ifk=nandw=(y1,...,ynt). (4.16)

Then, ¥ is intrinsic linear if and only if there exists a k X (2n — k) matrix M (here identified with a linear
map M : R?"% — R¥ = V) such that, for every w € W, ¢ (w) = M wp.
We can now state the following definition.

Definition 4.9. Let A € W be open and ¢ : A — V be given; we say that ¢ is intrinsically differentiable
at w € A if there exists an intrinsic linear map d¢,; : W — V such that

ol v -

lim

5s—0

The map d¢y is called intrinsic differential of ¢ at w; the intrinsic graph of d¢y; is called tangent plane
to gry, at (W) and is denoted by Tanﬁg{rd) (Dd(W)).
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The intrinsic gradient V? ¢ (W) is the unique k x (2n — k) matrix such that d¢; (w) = Vep (W) wy
for every w € W. We also define the intrinsic Jacobian determinant J?¢(W) of ¢ at w as
1/2

b}

JPH(W) = (1 + Z(detM)2

M

where the sum ranges on all minors (of any size) of the matrix V¢¢.

Remark 4.10. The notions introduced in Definition 4.9 (and, in particular, that of intrinsic Jacobian
needed in Theorem 1.3) make sense also when the subgroups W, V are orthogonal; that is, when they are
orthogonal as linear subspaces of H” = R?"*!_ In fact, as Remark 3.16 (see also [33, §2.4]) in this case
there exists an isometric H-linear isomorphism sending W, V to the subgroups defined in (4.3) and (4.2).

Remark 4.11. It will be convenient to denote the components (V¢¢);; of the intrinsic gradient using
indices that vary in the rangesi = 1,...,k and j = k + 1, ..., 2n. This choice might seem a bit unusual
for what concerns the index j, but it is somehow suggested by the definition of w . Further justification
is provided in Subsection 4.5.

In the following Proposition 4.12 we collect several statements that are equivalent to intrinsic
differentiability: the equivalences among (a), (b) and (c) are straightforward, while for the equivalence
with (d) we refer to [52, Theorem 4.15].

Proposition 4.12. Consider an open set A C W, amap ¢ : W — V and a point w € A. Then the
following statements are equivalent:

(a) ¢ is intrinsically differentiable at w;

(b) there exists an intrinsic linear map ¥ : W — V such that (¢,)" — ¥ locally uniformly on W as
r — +00;

(c) the blow-up of ¢ at w is unique and it is an intrinsic linear map;

(d) there exists a (2n+ 1 — k)-dimensional vertical plane P that is complementary to V and such that,
asr — +oo, the sets 8, (®(w) ' gr ) converge to P with respect to the local Hausdor(f convergence
of sets; that is,

s—0*

lim |su —d(cp(w)—lp,g-")
Pl d@m). p)

Moreover, the plane P in (d) coincides with Tanﬂg{[rd) (D(W)).

tpEgryN B(@(W),s)}) =0. 4.17)

It is worth observing that intrinsic graphs parametrising H-regular submanifolds are intrinsically
differentiable; see Remark 4.18 for a precise statement.

As one can easily guess, intrinsic Lipschitz functions with small Lipschitz constant have small
intrinsic gradient at differentiability points; the following lemma provides a quantitative version of this
statement.

Lemma 4.13. Assume that H" is endowed with the distance d = d, introduced in (3.2). Let ¢ : A - V
be an intrinsic Lipschitz function defined on an open set A of W and let a be the intrinsic Lipschitz
constant of ¢. Then for every point w € A where ¢ is intrinsically differentiable, we have

[(Vepw)ijl <@ Yi=1,....k,Vj=k+1,...,2n (4.18)

Proof. By Remark 4.8, the intrinsic differential d¢,, is intrinsic Lipschitz with Lipschitz constant not
greater than a. Let i, j be as in (4.18); then, by Remark 4.2, we have

[(V2p(w))ij| = [(dw (exp(W)))i| < el exp(W)) [l = @ de (0, exp(W))) = @,
where (d¢,. (exp(W;))); is the i-component of d¢,, (exp(W;)) € V = RX. O
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4.3. Blow-ups of intrinsic Lipschitz maps are almost always t-invariant

The aim of this section is the proof of the following Lemma 4.16, a very first step towards Theorem 1.1.
Given h € R, we write h := exp(hT) and we observe that, in coordinates, (x,y,t)h = (x,y,t + h).
We say that ¢ : W — V is t-invariant if

¢(w71) = ¢(w) forevery w € W, h € R.

With the notation introduced in (4.16), ¢ : W — V is t-invariant if and only if there exists fy : R¥k
R¥ = V such that

d(w) = fo(wh) for every w € W. (4.19)

Clearly, every intrinsic linear map ¢ : W — V is r-invariant; a simple consequence of this fact is
contained in the following observation.

Remark 4.14. If ¢ is intrinsically differentiable at w, then

[p(wh) = ()| = o(h]'?)  ash — 0.
This is a simple consequence of the fact that, as r — +o0, (¢,3)” converges to an intrinsic linear (and
then ¢-invariant) map.

Let us collect some basic facts about intrinsic Lipschitz maps that are also ¢-invariant. Though very
simple, they will be useful in the sequel.

Lemma 4.15. Let ¢ : W — V be intrinsic Lipschitz continuous and t-invariant and let fy be as in
(4.19). Then

@) fo: R>"7k — RK and ¢ - W = R?% — V = R¥ are Euclidean Lipschitz continuous;
(ii) the intrinsic graph gr, coincides with

{(fsw),w,1) e RF xR * xR=H":w e R*" ¥ r e R}

(iii) ¢ is Euclidean differentiable at w if and only if f is Euclidean differentiable at wy ;
(iv) ¢ is intrinsically differentiable at w if and only if it is Euclidean differentiable at w. In this case,

VO¢(w) = Vis(Wr).

Proof. The second part of statement (i) is a direct consequence of the first one, which we now prove
only in case k < n as the case k = n requires only minor adjustment in the notation. For every
U= (Xket ..., yn) ER™Fandu’ = (x),,...,y,) € R?"¥, consider w := (Xg41, ..., yn, 0) € W and
w' = (X 5. ypet’) € W, where t' =t/ (u, u”) is defined by

n k
’ 1 ’ ’ ’ ’
1= Y Gy =) = ey = )
j=k+1 j=1
From (4.9) we deduce that for a suitable @ > 0 and a positive C depending on the distance d,
|fo () = fo (u) = | (w) — $(w")]
S all ket = Xppps -0 Yn = Vs Ol

< Cadoo(07 (-xk+1 _x]’c+l’ e ¥Yn T )’;1,0))
=Callu — u'||g2n«.

This proves (i).

https://doi.org/10.1017/fms.2021.84 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2021.84

Forum of Mathematics, Sigma 49

Statements (ii) and (iii) are trivial. Concerning (iv), if fy is Euclidean differentiable at w € W, one
has

b (W) = ¢(W) " p(Wp(W)wp(W) ") = f5 (W)W (W) ) — fo(Wrr)

. i y (4.20)
= foWg +wh) — fo(Wh) = Vig(W)wy +o(lwgl)

and the intrinsic differentiability of ¢ at w follows because |wg | < dw (0, w) < Cd(0, w) for a suitable
C > 0. Conversely, assume that ¢ is intrinsically differentiable at w; for every u € R>"% we define
w = (u,0) € W and, as in (4.20), we obtain

foWa +u) = fo(Wr) = fo(Wh +wh) — fo(WrH)
= ¢y (W) = doyi (W) + 0(deo (0, w)) = V2O (W)wh + o([ul).

This proves that f;s is Euclidean differentiable at wg and, by (iii), that ¢ is Euclidean differentiable at
weW. m|

We now state and prove the following result, which will play a distinguished role in the proof of
Theorem 1.1.

Lemma 4.16. Let ¢ : W — V be intrinsic Lipschitz. Then there exists a ¥\~ -negligible set E ¢ W
such that, for every w € W \ E and every blow-up ¢ : W — V of ¢ at w, ¢ is t-invariant.

Proof. We prove the statement assuming k < n, the case k = n requiring only straightforward modifi-
cations in the notation.
We claim that

forae.weW  |p(wh) — ¢(W)| = o(|h|'?) as h — 0. (4.21)

To prove this, we write ¢ = (¢1,...,¢x) € V = R¥ and, for every fixed i € {1,..., k} and every fixed
(Fkt1s -3 Fns Vs v v s Picls Viels- - ¥n) € R2"7%1 we consider the map ; : R?> — R defined by

Uiy, 1) = i (Xiats - X J1s oo 5 Viels Y5 Vil - - - Vs 1)

Using (4.9) we obtain that for every y, y’,¢,t’ € R,
|¢i(y9t) _lpi(yl’t,)l fa ”(0’ .. "O’y _ylvo" . '903t—t, _l//i(ylst’)(y _yl)“H’

where « is the intrinsic Lipschitz constant of ¢. This ensures that ¢; is intrinsic Lipschitz in H!: that is,
when seen as a map ; : W — V’ where W’ := {(0,y,7) : y,t € R} and V' := {(x,0,0) : x € R}.
By Rademacher’s theorem for intrinsic Lipschitz graph of codimension 1 [52], y; is intrinsically
differentiable at #?-a.e. ( y,t) € W’ and, by Remark 4.14, for every such (y, ¢) one has

Wiy, 1 +h) —wi(y, 0l =o(|h'?)  ash—0.

The claim (4.21) easily follows.
In order to prove the statement of the lemma, it suffices to prove that, for every fixed & > 0, there
exists £, € W such that

(a) LPK(E,) < eand
(b) forevery w € W \ E and every blow-up ¢ : W — V of ¢ at w, ¢ is t-invariant.
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By (4.21) and the Severini—-Egorov theorem, for every & > 0 there exists E. C W such that

1. ?+1-kK(E,) < € and
2. there exists a sequence (8;); such that

|h|12

|¢(w‘zh) o(w)| < forevery w e W\ E.,i € Nand h € (-6;,6;).

By (4.6), the Lebesgue measure #>"*!=% is doubling and the Lebesgue theorem holds in the metric
measure space (W,d, 32"”‘/‘) (see, e.g., [91, Chapter 1]). Therefore, up to modifying E. on a
negligible set, we can also assume that

(3) foreveryw e W\ E,

L (B(w, ) N W\ Ey)
lim - =
s—0  LH-K(B(w, 5) NW)

By construction, E . satisfies (a) above; we are going to prove it also satisfies (b), thus completing the
proof.

Let then w € W\ E and a blow-up ¢ : W — V of ¢ at w be fixed; up to a left-translation, we can
assume without loss of generality that w = 0. Let r; — +oco be a sequence such that

lim ¢ = ¢ in LY
j—>+oo¢ ¢ loc

(W).

Let R > 0 be fixed; we prove that
é(-xk+l7 LRI ayn’t) = é(xk+l’ e 7)’n50) v (-xk+l7 LRI ayn’t) € [_R’ R]2n+l_k - W = R2n+l_k9

which would immediately give (b). In turn, it is enough to prove that for every r > 0 there exists j € N

such that
|¢rj(xk+l,-'~’}7n,t) _¢rj(xk+1""’yn70)| < 77 V] Z J_’v (xk+]’-'~7)’n,t) € [_R’R]2n+l_k'
(4.22)

Observe that, by property (3), for j large enough the set 6, (W\ E ) is n-dense in the box [-R, R]>"™+!7¥;

namely, for every w = (X1, . . ., yn, 1) € [-R, R]*"*17% there exists w’ € 6,,(W\ E;) N [-R, R]*"*!7*
such that [w — w’| < 1. We write w’ = (x

1o s Ynt)); setting @ o= LR'2/n] + 1, for large enough j
(and, namely, for rjz. > R/&;) we have

16" (Xjesrs -2 Y t') = ¢’-”(x1'<+1, e »y;,())l

, /2 R1/2
— . Fhesl _ k+1 0 |t| < <
rj ¢( rj ""’r’ 2) ¢( ""r’ ) l-rJ - i )7’
where we used | t2| —2 < 0; and the fact that (= st s f;‘, 2) O1/r; (W) € W\ E satisfies (2).

By Remark 4.5 there ex1sts C > 0 (depending only on R and the Lipschitz constant of ¢/, which is
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the same as the Lipschitz constant of ¢ and is thus independent of j) and we finally obtain for large

enough j
1" (Xka1s -5 Yns ) = 7 (Xkeats o5 Vs O)| U7 (Xt -+ o5 Vs 1) = T (X ps e v s Yo 8]
+ |¢rj(xl,<+1’ . ,y;,t') - ¢rj(xl,<+1’ ce ’y;"o)l
107 (g 3 0) = 677 (it O)]
< 2CIw —w'|'2 47
< 2C77]/2 +7.
Since the requirements made on j depend on 7 and R but not on (Xg+1, .., Yn,1) € [-R, R]*"*17% we
have proved the existence of j such that (4.22) holds. This concludes the proof. O

4.4. H-regular submanifolds and H-rectifiable sets

In this section we briefly introduce submanifolds with intrinsic C! regularity in Heisenberg groups
together with the notion of H-rectifiability. We refer to [51] for a more comprehensive presentation.

Given an open set U C H", we say that f : U — Ris of class C]él if f is continuous and its horizontal
derivatives

V]H[f = (le, e ,an, Y]f, e ,Ynf)

are represented by continuous functions on U. In this case, we write f € Cﬁ(U). We agree that, for
every p € U, Vi f(p) € R* is identified with the horizontal vector

Vuf(p) =Xif(p)Xi+---+Y,f(p)Y, €by.

Definition 4.17. Let k € {1,...,n} be fixed. We say that S ¢ H" is an H-regular submanifold (or a
Cﬁ—submanifold) of codimension k if, for every p € S, there exist an open neighbourhood U ¢ H" of p
and f € C}(U,R¥) such that

SNU={qeU: f(q) =0} and Vgf(g)hasrankk forall g € U.

We also define the horizontal normal nH;I( p) to S at p as the horizontal k-vector

Vafi(p) A A Vuafi(p)
IVafi(p) A AV fi(p)l

ng(p) = Akbi

and the (horizontal) tangent tg(p) = *n?(p) € Nons1-ib.

In the definition of the tangent multivector ¢, the symbol * denotes the Hodge operator. The
latter, recalling the notation introduced in (3.4) and (3.5), can be defined as the linear isomorphism
%1 Arh — Agur1-ih such that

Wy = (-1)"Dw,. forevery I c {1,...,2n+ 1} such that |I| = k,
where I* := {1,...,2n+ 1} \ I and o (I) denotes the number of couples (i,i*) € I X I* such thati > i*.

Equivalently, the sign (—=1)7 (") can be defined by requiring that W; A W;. = (=1)7(Dwy,
all in all, this amounts to requiring that

.....

vAsv = [PXI A AY, AT YvenD
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where the norm | - | is the one associated with the canonical scalar product on multivectors making
the basis W; orthonormal. Notice that, if v = v{ A --- A vg € Aglhy is a simple horizontal k-vector,
then xv = w A T for some w € Ay,_ib. In particular, the horizontal tangent t?( p) is in fact a vertical
multivector; that is, it can be written as 75 (p) = ¢ (p) A T for a unique unit vector in 7¢' (p) € Azy— b1
Observe that, when S is of class C!, the definition of Tgﬂ is consistent with (3.30).

Both n]gﬂ and t? are unit simple vectors. Observe that they are well-defined (even though only up to a

sign); that is, independent from the choice of the defining function f. One way of proving this fact is by
considering the blow-up of S at p; indeed, one has

lim 61/, (p™'8) = Tang (p), (4.23)

where the limit is taken with respect to the local Hausdorff convergence and TanﬂgI (p) := exp(span t? (p).
See, for example, [51]. The (2n + 1 — k)-plane Tan]g[ (p) is a vertical plane according to Definition 3.2
and it is called fangent plane to S at p. As a consequence of Theorem 4.19 (see also [61, Lemma 3.4]),
we have the weak convergence of measures

SLHELS1), (p7'S) = S2FLTang (p). (4.24)

Also, the vector TEI is defined only up to a sign; its geometric meaning is provided by the equality

exp(span 7g'(p)) = Tang (p) N exp(hy).

Remark 4.18. Proposition 4.12 implies that the notation Tan? introduced in (4.23) is consistent with
the notation Tan?i(ﬁ of Definition 4.9. As a consequence, if A € W is open and the function ¢ : A - V

parametrises an H-regular submanifold § = gr, such that Tanﬁsﬂ( p) is complementary to V for every
p € S, then ¢ is intrinsically differentiable at every point of A.

Itis well-known that H-regular submanifolds are locally intrinsic Lipschitz graphs and that an integral
formula can be provided for their spherical Hausdorff measure §©~. We resume these facts in the follow-
ing statement, which summarises several results available in the (quite vast) literature and, in particular,
[9, Theorem 4.2], [51, Theorem 4.1] and [33, formula (43)]; see also [4, 17, 18,29, 32, 36, 35,61, 70, 76].
It is worth recalling that the intrinsic Jacobian determinant J ¢ was introduced in Definition 4.9.

Theorem 4.19. Let S ¢ H" be an H-regular submanifold of codimension k < n. Then for every p € S
there exist an open neighbourhood U of p, an open set A C W and an intrinsic Lipschitz ¢ : A - V
such that, up to an isometric H-linear isomorphism of H",

SNU=gr,
¢ is intrinsically differentiable on A

V¢ is continuous.

Moreover,

SLK(E) = Cox / J2¢ dL*™ 'k for every Borel set E C SN U, (4.25)
O-1(E)

where ®(w) := wo(w) and Cp i > 0 is the same constant as in Proposition 1.9.

Remark 4.20. As pointed out in [33], the area formula (4.25) holds more generally when W,V are
orthogonal (recall Remark 4.10).
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Remark 4.21. As explained in [71] and [33], the exact value of the constant C,, ; (which, from the

philological point of view, in the present article is introduced for the first time in Lemma 3.31) in
Proposition 1.9 and Theorem 4.19 is

-1

Cok = (sup (L2 1k (W A B(p. 1)) : p € B(O, 1)}) .

The rotational invariance of the distance d plays an important role; see [33, Theorem 2.12].
‘We now introduce intrinsic rectifiable sets in Heisenberg groups.

Definition 4.22. Let k € {1,...,n}; we say that R ¢ H" is a H-rectifiable set of codimension k
if $C7%(R) < oo and there exists a finite or countable family (S 1);j of H-regular submanifolds of
codimension & such that

SO+ (R v S.,-) = 0.
J

We say that R ¢ H" is a locally H-rectifiable set of codimension k if R N B(0,r) is H-rectifiable of
codimension k for every r > 0.

Later we will use the well-known fact that sets that are rectifiable (see, e.g., [42]) in the Euclidean
sense are also H-rectifiable. As a matter of terminology, we say that a set R ¢ H" = R**! is locally
Euclidean rectifiable of codimension k if §7"*17% L R is a locally finite measure and there exists a finite
or countable family (S;); of Euclidean Lipschitz submanifolds of codimension & such that

S 3K (R Usj) =0,
J

where &) .2‘””’]‘ denotes the spherical Hausdorff measure with respect to the Euclidean distance on
H" = R+ If oSﬁ"”_k (R) < oo, we say that R is Euclidean rectifiable.

Proposition 4.23. Let R ¢ H>"*! be locally Euclidean rectifiable of codimension k, 1 < k < n. Then R
is also locally H-rectifiable of codimension k.

A proof of Proposition 4.23 can be found, for instance, in [51, Proposition 5.4].

We also recall that classical rectifiable sets of dimension m in R" can be equivalently defined as
those sets with finite &’ m-measure that can be covered, up to &' l’f“l-negligible sets, by a countable family
of (possibly rotated or translated) graphs of Lipschitz maps R — R"™. As we will prove later in
Corollary 7.4, a similar statement holds in Heisenberg groups; namely, R c H" is H-rectifiable of
codimension k € {1,...,n} if and only if S27%(R) < oo and there exists a countable family (¢ i)
of intrinsic Lipschitz maps ¢; : W; — V;, where W, V; are homogeneous complementary subgroups
of H" with dim V; = k, such that

soK

R\ Ugr(z,_’_) =0.
J

Definition 4.24. If R c H" is locally H-rectifiable and (S;); is a family of H-regular submanifolds as
in Definition 4.22, we define the horizontal normal n% (p) € Arh at p € R by

nﬂg(p) :=n?j(p) itpeRNS;.

Accordingly, we set t5(p) := #n%(p) € Aznr1-1h and Tang(p) := exp(span(r3(p)). Eventually, we

define TEI([)) € Aon—i D1 by requiring that tg(p) = T};I([)) AT.
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The objects introduced in Definition 4.24 are well-defined $2 %-a.e. on R (as usual, up to a sign)
because of the following well-known lemma, whose proof we sketch for the sake of completeness.

Lemma 4.25. Let S|, Sy € H" be H-regular submanifolds of codimension k € {1,...,n}; then
SOK({p € S10 S nE (p) # {205, (P)})) = 0.

Proof. LetE ={peS NS,: n]gﬂl (p) ¢ {J_rng[z(p)}}. For every p € E, we have

limsupél/r(p_lE) C lim supdl/r(p_l(Sl NnSsy) C Tanﬂgll (p)n Tangz(p),
r—0*

r—0*

where the lim sup are taken with respect to the local Hausdorff topology. Since the right-hand side is a
vertical plane of dimension at most 2n — k, the statement now follows from [77, Lemma B.3]. O

4.5. Currents induced by C' intrinsic graphs

We now want to study currents induced by C' regular intrinsic graphs of codimension k in H”" with
1 < k < n. Assume that a C' map ¢ : W — V is fixed; we introduce the family V¢ = (VZH, e, V;’”)
of vector fields on W defined by

X; ifk+1<i<n
Ve =Yy + i T =08y, +ind ifn+l<i<n+k (4.26)
Yin ifn+k+1<i<2n.
The vectors Vf’ are tangent to W because so are Xy, ..., Yy, T. The family V¢ was introduced in [4]

in the case of codimension 1 and in [32, 88] for codimension k < n.

Remark 4.26. The notation introduced in (4.26) is consistent with the one in Definition 4.9; in fact (see,
e.g., [32, Proposition 3.7]), when ¢ is of class C!, the components of the matrix V?¢(w) associated
with the intrinsic differential d¢,, are precisely the derivatives V;/’ ¢;(w)of ¢ =(¢1,...,¢) along the

directions V?.

Recalling the notation W; and @ introduced in (3.4) and (4.7), one can differentiate the graph map ®
along the directions Vf’ to obtain that, for every w € W, the vectors

k
V;”q>(w)=(wi+2vf’¢h(w)xh (®(w)), i=k+1,...,2n (4.27)
h=1

(which should be thought of as vectors in ®(w) that are continuous with respect to w) are horizontal
and tangent to the submanifold S := gr , at the point ®(w). The equality in (4.27) comes from a boring

computation that we omit. Since the vectors V;pCD(w), i=k+1,...,2n, are also linearly independent,
they generate the (2n — k)-dimensional subspace To(w)S N b1; hence, the multivector

VOD(w) = VI D(w) A+ A VS O(W) € Agyiby (4.28)

is a multiple of the unit multivector Tgﬂ(d)(w)) defined in Subsection 3.5.

Remark 4.27. It is worth noticing that the intrinsic Jacobian determinant J?¢(w) equals the norm
|[VO®(w)| of the multivector V¥®(w). As usual, the norm on multivectors is the one induced by the
left-invariant scalar product making X, ..., Y,,T orthonormal.

We state for future reference the following result, which is essentially a restatement of Theorem 1.6.

https://doi.org/10.1017/fms.2021.84 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2021.84

Forum of Mathematics, Sigma 55

Proposition 4.28. Let A ¢ W and ¢ : A — V be intrinsic Lipschitz. Then there exists a sequence
(¢i)ienw of C® smooth and uniformly intrinsic Lipschitz maps ¢; - W — V such that

¢; — ¢ uniformlyin A asi — oo,

Moreover, there exists C > 0, depending only on the intrinsic Lipschitz constant of ¢ and the distance
d, such that

|V d;(w)| < C foreveryi e Nandw € W,

where ®; is the graph map W > w — we;(w) € H".

Proof. The first part of the statement is Theorem 1.6, while the second one is a consequence of Lemma
4.13, Remark 4.26 and (4.27). O

Similar to (4.27), one gets

k
Td(w) = (T + Z Tén(w)Xp | (@(w)). (4.29)
h=1

The vector fields in (4.27) and (4.29) generate the tangent space to S at ®(w). We then fix the orientation
of S is such a way that

VD ATD

ts(®(w)) := Vo® A TD|

is positively oriented for every w € W. (4.30)

Observe that (ts, Wi A+ - - AWy, AT) # 0 on S. Actually, our choice of the orientation for S corresponds
to declaring that a unit tangent vector tg is positively oriented if and only if (t5, Wi A-- - AW, AT) >0
on S.

Recalling the notation introduced in (3.29), we deduce from (4.27), (4.29) and (4.30) that

Ve®(w)

150N = 1955y AT

which implies 7¢ (®(w)) = V/®(w)/|V?®(w)| and, eventually,

VoD (w)

13 (®(w)) = 2] AT.

431

The multivector V?® also allows characterising the Heisenberg current associated with a C! intrinsic
graph. The following lemma is an important tool used in the proof of Theorem 1.1.

Lemma 4.29. Let ¢ : W — V be a C' map and let the graph S := gr, be oriented as in (4.30). Then
[ST(w) = Ch i / (VED(W) AT | w(®(w))) dZ> 17K (w) Jforevery w € Dﬁnﬂ_k,
W

where the constant Cp, i > 0 is the one provided by Proposition 1.9.
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Proof. We have for every w € DK,
[51@) = Cux [ AN | 0(p)) a5 )
=Cnk ‘/W(tgﬁ(d)(w)) | w(@(w))) J®p(w) dL¥ 1 (w)
_ VoD(w)
= Cn’k./w<—|V¢’<1>(w)| AT

= Cux fw (VD) AT | 0(@(w))) dL" (),

w(fl>(W))> JP¢(w) dZ* K (w)

where the first equality comes from Theorem 4.19 and a change of variable; the second one is justified
by (4.31) and the last one by Remark 4.27. O

5. The constancy theorem for Heisenberg currents

The classical constancy theorem (see, e.g., [42, 4.1.7] or [90, Theorem 26.27]) states that, if T is an
n-dimensional current in a connected open set U C R” such that T = 0, then T is constant; that is,
there exists ¢ € R such that T(w) = ¢ fU w for every smooth n-form w with compact support in U. The
constancy theorem can be generalised (see, e.g., [65, Proposition 7.3.5]) to currents supported on an
m-dimensional plane 9 c R": if T is an m-current with support in 9 and such that T = 0, then there
exists ¢ € R such that T(w) = ¢ f » w for every smooth m-form w with compact support.

As mentioned in the Introduction, the version for planes of the constancy theorem implies the
following fact (see [89, Theorem 4.2]): if R c R" is an m-rectifiable set and T = 7y is a normal m-
current, where u is a Radon measure and 7 is a locally u-integrable m-vectorfield with 7 # 0 y-a.e., then

(i) puL_R is absolutely continuous with respect to the Hausdorff measure " L_ R, and
(ii) 7 istangent to R at u-almost every point of R.

See also [42,4.1.31] and [57, Example 10 at page 146] for simpler cases and [1, §5] and [2] for similar-
in-spirit results.

A similar program is developed in the present section for currents in Heisenberg groups. First, in
Subsection 5.1 we prove Proposition 5.3, where a partial version of the Constancy Theorem 1.7 is proved.
Proposition 5.3 can also be seen as a particular case of Theorem 1.8, but actually the proof of Theorem
1.8 follows from Proposition 5.3 by a blow-up argument. The proof of Theorem 1.8 is developed in
Subsection 5.2: observe that we are not able to prove any ‘absolute continuity’ statement analogous to
(i) above but only a ‘tangency’ statement corresponding to (ii). As we said in the Introduction, this is
due to the absence of a good notion of projection on planes. The proof of the Constancy Theorem 1.7
for Heisenberg currents without boundary and supported on vertical planes is contained in Subsection
5.3. Observe that here we are able to prove not only the ‘tangency’ property (ii) but also the ‘absolute
continuity’ one (i); in fact, by using group convolutions on vertical planes one can reduce to the case in
which ||T|| is already absolutely continuous.

5.1. A partial version of Theorem 1.7

For the reader’s convenience, we recall some preliminary notation. First, given a Radon measure ¢ on
H" and a locally p-integrable function 7 : H" — J,,41-k, we denote by Tu the Heisenberg (2n+1—k)-
current defined by

)= [ GO @) dul), <D
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Given natural numbers @, b such that 1 < a+ b < n, the (2a + b + 1)-dimensional vertical plane
Pa.p was introduced in (3.11) as

Pap ={(x,y,t) eH" :x; =y;=0foralla+b+1<i<nanda+1<j<n}

{(x1, s Xa+6,0,...,0,¥1,...,94,0,...,0,t)} ifa>landa+b<n

- 5.1
= {1, s X Y1+ -5 Ya,0,...,0,8)} ifa>landa+b=n
{(x1,...,xp,0,...,0,0)} ifa=0.
We are interested in the case in which the codimension 2n—2a—b of %, , equalsagivenk € {1,...,n};

hence, we also assume that n < 2a + b < 2n — 1. Observe that, if a = 0, then necessarily b = n. A unit
tangent vector to &, p, is

t,  =XiA-AXap AYI A AYg AT,

and we agree that, when a = 0, this expression has to be read as X| A - -- A X;; A T. We also notice that
(5.1) induces a natural identification between the subgroup %, , and R2#**! according to which the
measures §24+P+2 and £24+P+1 being Haar measures® on %, j, coincide up to a multiplicative constant.

Lemma 5.1 is stated in the setting of maximal codimension k = n; however, it holds also for
1 < k < n—-1, as shown later in Lemma 5.2. We use the following notation: given i, j € {1,...,n},
by O(x;), O(xl.z), O(x;x;) we denote smooth differential forms that can be written, respectively, as
xia/,xl?,B, x;x;7y for suitable smooth differential forms a, 8,y. When applying exterior differentiation
we will freely use straightforward formulae like d(O(xl.z)) = 0(x;), d(O(x;x;)) = O(x;) + O(x;) and
similar ones. Eventually, the equivalence class [ - ] 7 is as in Remark 3.4.

Lemma 5.1. Let a, b be natural numbers such that 2a + b = n and let P, p, be the (n+ 1)-plane defined
in (5.1). Assume there exists T € Jn.1 such that the Heisenberg (n + 1)-current T = 18™+? LPupis
such that 0T = 0. Then there exists n € R such that

T=n[XiA - AXagsb AYI A~ AYg AT 7.

In particular, T is a multiple of [tgu’b]‘j.

Proof. We assume that a > 1; the case a = 0 requires only simple modifications at the level of notation.
We have to prove that there exists 7 € R such that, for every 1 € J**,

(Tl =nXT A AXgepb AYT A=~ AYg AT | A). 5.2)
Clearly, it is enough to check (5.2) for A ranging in the basis of 7**! provided by Proposition 1.10 (with
k :=n).Fix I,J c {1,...,n} and a standard Young tableau R such that

oINJ=0and|I|+]|J] <nand
o Risa (2 x W)-rectangular (recall Remark 3.25) tableau that contains the integers in the set
{1,...,n}\ ({UJ).

Testing X; A+ - AXgip AYI A--- ANY, AT against A = dxy Adyj A agr A6, one realises that it is enough
to show that

either I={a+1,...,a+b}, J=0andR = aib+llasb+2

S

(5.3)

or (t|dx;ANdyjAarAB)=0.

9The measure 245! js a Haar one because Pa.b is canonically isomorphic to H x RP.
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We are going to prove (5.3) first under some additional assumptions on I, J or R; see the following
Claims 1, 2 and 3. We fix an auxiliary function y € C2°(H") such that

/ Y dS™? = 1.
'@a.b

Claim I: If In{a+b+1,...,n} #0,then (Tt | dx; ANdy; Aag A8) =0.
FixtieIn{a+b+1,...,n} and define

w(x,y,t) = x% Y(x,y,t) depyy Adyjugay A ag.

By identifying w € C2°(H", A™;) with its equivalence class [w] according to the quotient in the right-
hand side of (3.7), we have w € D}j. One easily computes

dw = £2x; Y (x,y,t) dxy; Adxp gy ANdyy Aag + O(Xiz)
where the sign + depends only on 7 and / and, in the sequel, it can change from line to line. We obtain
L_l((da))bl) =42x; Yy (x, ¥, 1) dxp\gy Adyg Aag + O(xlg)
and, in turn,

Dw =d(w+ (-1)"L™' ((dw)y,) A 8)
=22y (x,y,)dx; Adyy Aag A0+ 0(x5).

Since O(x;) = 0 on £, ;,, wWe obtain

0=0T(w) =T(Dw) = / (t | Dw)dS™?

ga,b
= i2/ W(t | dx; Adyy Aag AB)YdS™?
@ah
=+2(t |dx; Ndy; Nagr A B)

and Claim 1 follows.

Claim2:If Jn{a+1,...,n} # 0, then (T | dx; Ady; Aag A 8) =0.
The proof is analogous to that of Claim 1. Fix j € JN{a+1,...,n} and define w € Dy by

WX, y,1) = y7 Yy, 0) dxpogy A dysgy A ar.
A computation similar to the one in Claim 1 gives

Dw=+2y(x,y,t)dxy Adyy Aag NG+ 0(yj)
and, again,

0=9T(w) = / (1| DwYdS™? = £2(t | dx; Adyy A ag A 6)
gba,b

allows us to conclude.

Claim 3: If the first row of R contains an element i such that1 > a+1, then (t | dx; Adyj Aagr AN6) = 0.
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We observe that, since R is a standard Young tableau, the assumption of Claim 3 is equivalent to R
containing a column made by two elements 7, j such that a + 1 <7 < j < n. Define w € DJj by

(U(x, y’t) = YZYJ' ¢(-x7 Y, t) dxlU{l_,j_} A dy./ A ag,

where Q is the standard Young tableau obtained by removing from R the column containing 7, j (for
instance, Q is the empty tableau if R consists of the column 7, j only). One has

do =y (x,y,t)(y;dy; + yrdyy) Ndxjog gy Adyy Aag+O0(yiyy)
=y (x,y, ) [(=D)y;dxy; A dxgoggy + (=) Py dxy; A dxpogy ] Adys Aag +O0®viyy)
where
c=Niel:i<1}
d=|{iel:i<j}={ielu{i}:i<J} -1
Then

L' ((dw)y,) = ¢ (x, . ) [(-Dy;dxpogy + (=D dxgom ] Adys Aag +0(yiy;)
and, in turn,

Dw =d(w+ (=D)"L™ ((dw)y,) A 6)
= (-1 U(x,y,1) [(—1)C+1dyj- Adxrugyy + (—1)ddy; A dxlu{,—}] ANdyy ANag A8
+0(y;) +0(yj)
= (D™ g, y, O [(-D 2 dxy; A dxp + (-1 dxy; Adxg | Adys Aag A6
+0(y1) +O(yj)
£ Y(x,y,0)(dxy; — dxy;) ANdxp Adyy Aag A8 +0(y:) +O0(yj)
F Y(x,y,)dxy Adyy Aag AO+0(x;) +O(xj).

As before, we obtain
0=0T(w) = / (| DwYdS™? = F(t | dx; Ady; A ag A 6)
a,b

and the claim is proved.

Claim 4: (5.3) holds.
We already know that (5.3) holds in case I, J, R satisfy any one of the assumptions in Claims 1, 2
and 3. We then assume that none of such assumptions hold; that is, that

Ic{l,...,a+b}
andJ c {1,...,a} 5.4)
and the elements in the first row of R are not greater than q,

and we prove that necessarily

I={a+1,...,a+b}, J=0 and R:a+b+1a+b+2 Tl (5.5)

This would be enough to conclude.
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The first two conditions in (5.4) imply that all of the n —a — b = a integersa+ b + 1, ..., n appear in
R. They all belong to the second row of R by the third condition in (5.4); hence, R has at least a columns.
Therefore, the first row of R contains at least a elements, all of them not greater than a. It follows that
the first row of R contains precisely 1, ..., a (displayed in this order) and that, in turn, the second row
of R contains precisely a + b + 1, . . ., n (displayed in this order). In particular, R is the one displayed in
(5.5). The remaining integers a + 1, ..., a + b, not appearing in R, have to belong to either I or J; the
second condition in (5.4) implies that they all belong to I, and the proof is concluded. O

Lemma 5.1 also holds for nonmaximal codimension k < n, as we now prove. The reader will easily
notice the similarity between the two proofs, the main difference lying in the use of the standard exterior
differentiation d in place of Rumin’s operator D.

Lemma 5.2. Let a, b be natural numbers such that1 < a+b <nandn+1 <2a+b < 2n; let Py}, be

the plane defined in (5.1). Assume there exists T € Joq+p+1 Such that the Heisenberg (2a+ b+ 1)-current
T := v 82042 P, 4, is such that AT = 0. Then there exists n € R such that

T=n[Xi A AXgup AYI A~ AYg AT] g

. . . H
In particular, T is a multiple of [tg,a.b]g.

Proof. Observe that necessarily @ > 1. We assume also that b > 1 and omit the simple modifications
one has to perform in order to treat the case b = 0.

As in Lemma 5.1, we have to prove that (5.2) holds for every A in the basis of 2****! provided by
Proposition 1.10 (with k := 2n—2a — b). To this aim, fix I,J C {1, ..., n} and a standard Young tableau
R such that

oINJ=0and|l|+|J| £2n—-2a-b;

o R contains the integers in the set {1,...,n} \ (/U J);

o the first row of R has length £ := (2a + b — |I| — |J])/2 and the second one has length
2n=2a-b-|I|-|J])/2.

Let us observe that the lengths of the two rows of R are never equal; actually, the difference between
these lengths is fixed and equal to 2a + b —n > 1; see also Remark 3.25. In particular, the rightmost
element in the first row of R belongs to a column of height 1 (there is no element in the second row
‘below it’).

The proof will be accomplished if we prove that

I={a+1,...,a+b}

J=0
either (5.6)
R= 1 2 --«n—a—bn—a—b+1‘--~‘a‘
la+b+1la+b+2] - n
or (t|dx;Ady;yAnarAB)=0. 5.7

In the following Claims 1, 2 and 3 we prove that (5.7) holds under some additional assumptions on 7, J
or R; the argument will be completed later in Claim 4. We again fix an auxiliary function y € C2°(H")

such that
/ l)b dcs>2u+b+2 — 1
g’a‘b

Claim I: If In{a+b+1,...,n} # 0, then (5.7) holds.
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Fixie IN{a+b+1,...,n} and define w € DI**" by
w(x,y, 1) =x; ¥ (x,y, 1) depy Adyy ANag N6,
where Q is the Young tableau whose first row is equal to that of R and whose second row is made by

the second row of R with the addition of the extra element 7 in the rightmost position. Namely, denoting
by ¢ and r, with £ > r, the lengths of the first and second rows of R, respectively, we have

1 1] pl I
Rl ctt Rr Rr+] ."‘R[‘
R2 cet R2 7 .

1 r| !

The Young tableau Q is not necessarily a standard one; nonetheless, w € Dﬁ“b by Remark 3.26. One
can compute
dw=+y(x,y,t)dx; ANdyy Nag A0+ 0(x;)
=+y(x,y,t)dxy Adyy ANar A0+ 0(x3),
where the second equality is justified by the fact that dx; A @ contains a factor dx; A (dxy, — dxy;) =

dx; A dxyy, for a suitable A (namely, & = Ri ,1) appearing in the first row of R. Since O (x;) = 0 on Py p,
one gets

0=90T(w) = T(dw) = / (7| dw)dS***P*2 = £(1 | dx; Adys A ag A 6)
Qa,b
and Claim 1 follows.
Clam2:If In{a+1,...,n} # 0, then (5.7) holds.

The proof is similar to that of Claim 1. Fix e JN{a+1,...,n} and define w € Dﬂzﬂ“’rb as

w(x,y,1) =y (x,y, 1) dxp ANdyj\ gy Aag A6,

where Q is the Young tableau whose first row is equal to that of R and whose second row is made by the
second row of R with the addition of the extra element ; in the rightmost position. Again, w € Dﬁ“*’b
because of Remark 3.26. One can compute

dw=xy(x,y,t)dx; Adyy; ANag A0+ 0(yj)
=xy(x,y,t)dxy ANdyy Aag A0+ 0(yj),

where, as before, the second equality is justified by the fact that dy ; A ap contains a factor dy; A (dxy, —
dxyj) = dyj A dxyy, for a suitable h appearing in the first row of R. We deduce that

0=0T(w) = T(dw) = / (1| dw)dS** P2 = 2(1 | dx; Adyy A ag A6)
L@u,b
and Claim 2 follows.

Claim 3: If the first row of R contains an element J such that J > a + 1, then (5.7) holds.

Since R is a standard Young tableau, the rightmost element in the first row of R is not smaller than
a + 1; we can then assume that j is precisely this element. As already noticed, there is no element in the
second row of R ‘below’ j. Consider the form w € DIZHI“”’ defined by

w(x,y,t) =y;(x,y,t) depuy Adyy Aag A6,
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where Q is the (possibly empty) tableau obtained from R by removing the rightmost entry (i.e., j) of
the first row. Since Q is a (possibly empty) standard Young tableau containing the same elements of R
except for j, we have w A df = 0 and, in particular, w € Dﬂzﬂ”b . Since

dw =y (x,y,1)dy; Ndxpuy Adyy Aag A9+ 0(yy)
=xy(x,y,t)dxy ANdyy Nag Adxy; AO+O(yj)
=xy(x,y,t)dx; Adyy ANar NG+ 0(yj),

we deduce as before that

0=9T(w) = T(dw) = / (1| dw)dS>@*P*2 = £(t | dx; Ady; A ag A6)

gba.b
and Claim 3 follows.

Claim 4: At least one between (5.6) and (5.7) holds.
We know that (5.7) holds if 1, J, R satisfy any one of the assumptions of Claims 1, 2 and 3. We then
assume that none of such assumptions holds; that is, that

Ic{l,...,a+b}
andJ c {1,...,a} (5.8)
and the elements in the first row of R are not greater than q,
and we prove that (5.6) holds.
By (5.8), all of the integers a + b + 1, . . ., n appear in the second row of R. The length of such a row
is then at least n — a — b. Since the difference between the lengths of the rows of R is equal to 2a + b —n,
the length of the first row of R is at least a. By the third condition in (5.8), the first row of R contains at
most a elements; hence, it contains precisely the a elements 1, . . ., a (in this order). In turn, the second
row contains n — a — b elements, which are forced to be the numbers a + b + 1, . . ., n (in this order). In
particular, R is the one displayed in (5.6). The remaining integers a + 1, ..., a + b, not appearing in R,

have to belong to either I or J; the second condition in (5.8) implies that they all belong to I, and the
proof is concluded. O

Proposition 3.13 allows extending Lemmata 5.1 and 5.2 to general vertical planes (Definition 3.2).

Proposition 5.3. Let k € {1,...,n}, 7 € Jont1-k and a vertical 2n+ 1 — k)-plane P C H" be fixed;
assume that the current T := 18K P is such that 0T = 0. Then there exists n € R such that

T=1t5]s

Proof. By Proposition 3.13 there exists an H-linear isomorphism £ : H* — H" such that £L(P) = P, 1,
and L*(d0) = d6. Consider the push-forward LT of T; that is, the Heisenberg (2n + 1 — k)-current
defined by

LiT(w) = T(L*(w)), w e DFHIK,

Also, L£4T has zero boundary by Corollary 3.12. The push-forward Lg(SC7¥L_9) of the measure
SC*_ P, defined by

Ly(SCFLP)E) = 82K LYE)NDP), E c H",
is a Haar measure on &, ;, and, in particular,
Li(SCHLP) =y L2,
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for a suitable y > 0. It follows that for every w € D%I"*"k,

L4T(w) = /g, (] £ (@) dS2 = / L) | ) dSCH

g’u,b

where L. : Jon+1-k — Jon+1-k is the isomorphism defined by
(L) | D) :=(T | L)) Ve Ik (5.9)

Observe that we are implicitly using Proposition 3.11. By Corollary 3.12, the current L£4T =
YL.(1)SCL* P, , has zero boundary; therefore, Lemma 5.1 (if k = n) or Lemma 5.2 (if 1 < k < n)
implies that there exists 7 € R such that

y L) =i, 17 =nCIL(t)]g=nC L1515

for a suitable C # 0 depending on £ and . Since L. : Jont1-k — Jon+1—k i8S an isomorphism, we
obtain that 7 =  C y~! [tg,] 7 and the proof is concluded. O

5.2. Proof of Theorem 1.8

We now prove Theorem 1.8. Recall once again that, for k € {1, ..., n}, the space Jo,+1-x Was introduced
as the dual space to 72"*!~%. However, we need to also introduce the dual space to Rumin’s space
A"h/I" and, for convenience of notation, we will denote such dual space by 7,,. The spaces 7,, and
Tn+1s - - - » Jo2n are endowed, respectively, with the operator norm | - | arising from either the norm on
A™y/T" introduced in (3.28) or the standard norm on J2"*!17% ¢ AZ*lky k= 1,.. . n.

Proof of Theorem 1.8. Without loss of generality, we can assume that R is a H-regular submanifold S.
We have to prove that there exists { : § — R such that

T(p) =L(p)[E(p)ls  for [Tlle-ae. p € S. (5.10)

Since $C7*_S is locally (Q — k)-Ahlfors regular, we can differentiate the measure ||T|| with respect
to S KL_S; see, for example, [90, Theorem 4.7 and Remark 4.5]. In particular, we can write ||T||, =
FSC7KL_S for a suitable f € Llloc(é’Q_k L_S) and, for §2*-a.e. p € S, one has

[ U= rmimase* =o(seHsnBpm) =002 H) 61D
SNB(p,r)
and

ITlls(B(p.r)) = 0(r®7"). (5.12)
Statement (5.10) (and then Theorem 1.8) reduces to proving that there exists  : S — R such that

FT(P) =n(p)E(p)ly  for §%F-ae. pes. (5.13)

Since JT also has locally finite mass, by Riesz’s theorem (recall also Remark 3.30) there exist a Radon
measure v and a locally v-integrable function o : H" — J,,_x such that |o-| = 1 v-a.e. and 9T = ov;
that is,

0T(w) = / (c|wydv, weDI*
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Differentiating v with respect to SC7¥_S, we obtain that for §% %-a.e. p € S,
v(B(p.r) =0 (§2H(S N B(p, 1)) = 0(r2H). (5.14)

We claim that (5.13) holds for those p € S for which (5.11), (5.12) and (5.14) hold. This would be
enough to conclude.

Let such a p be fixed. For r > 0, consider the map £, , : H" — H" definedby L, ,(q) := 1, (r'q
and the push-forward T, ;- := L, -, T; that is, the current

Tpr(w) =T(L, ), w e DFHIK,

Observe that, by homogeneity and left-invariance, the equality £}, ,w = r @R (wo L p.r) holds for

every w € Df{"“’k. If 7 > 0 is such that spt w c B(0, 7), one gets

1 o
lim T = lim — T L d||T
li Ty (@) = lim o [  FlesL,a)

(5.12) / > 0-k
= (fTlwoL,,)dS
r—0r r@-k SNB(p,r¥) P
GD iy
B r—0t rQ_k

/ ST |wo Lp,) dSOH
SNB(p,rF)

and a change of variables gives

lim T, ,(w) = lim (F(P)T(p) | wy d§2*
r—0t r—0t 511 (p~'S)NB(0,7)

= lim FP)T(p) | w) dS7.
20" J 61 (pm1S)

By (4.24) we can define the limit current To, as

To@)i=tm T @ = [ () | 0) ds@F v eDyit,
r—0* Tangh(p)

The current T, is supported on the plane TangI (p). We now study its boundary and observe that for
every w € Dﬁ”_k,

0Tw(w) = Te(dcw) = lim T), »(dcw) = lim T(L), ,dcw)
r—0* r—0* ’
and by Corollary 3.12

OTe(@) = lim T(de L) = lim IT(L; o) = /H (o1 L) dv.

By homogeneity, we have £}, .w = r™(wo L,,), where A is the homogeneity degree of w and

A=Q0-k-2=n ifk=n
A=Q-k-1 ifl<k<n-1.

https://doi.org/10.1017/fms.2021.84 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2021.84

Forum of Mathematics, Sigma 65

We then obtain

|0Teo(w)| = lim 772
r—0*

/ (clwoLly,,)dv
H"

B(p, rr
< lim ook YBWPrD) G2
ro-k

the last equality following from (5.14) and the inequality A < Q — k.
The current Te, = f(p)T(p)SL¥ I_Tang(p) is such that 0T, = 0. By Proposition 5.3 there exists
n =n(p) € R such that

FOT(P) =1l ) 17 =nlEs5 ()7

Tan

and the proof is accomplished. m

5.3. The constancy theorem in Heisenberg groups

In this section we prove Theorem 1.7. We start by establishing some standard facts inspired by classical
results about mollification of distributions. Given k € {1, ...,n}, let a, b be fixed nonnegative integers
such that 1 < a+b < nand2a+ b =2n - k. Consider the vertical plane &, ; defined in (5.1); let us
fix a mollification kernel ¢ € C2°(Z2,, ) such that

/ 0dS§2* =1 and spto c B(0,1)NPy,.
gu,b

As usual, for every & > 0 we define the rescaled kernels ¢, = £"2 (¢ 0 6, /&) and, given a Heisenberg
(2n+ 1 — k)-current T with support in &, 5, we define the Heisenberg (2n + 1 — k)-current T, as

Te(w) = / 0:(P)T(Lyw) dS%*(p),  we DI+ (5.15)

where £,(q) := pq denotes left-translation by p € P, 5.

Lemma 5.4. Let T be a Heisenberg (2n + 1 — k)-current with support in P, p and with locally finite
mass, for € > 0, consider Tz as in (5.15). Then the following statements hold:

(i) Tz has support in Pq p;

(i) Te = Tase — 0, that is, To(w) — T(w) for every w € D]%I””*k;
(iii) there exists a C™-smooth map T¢ : Py p — Jon+1-k such that T, = T892k L Pabs
@{iv) ifdT =0, then 0T, = 0.

Proof. The statement in (i) is clear: in fact, if w € D%["”_k is such that spt w N %P, = 0, then
spt E”I‘,w NPyp =0forevery pe P, p and To(w) = 0.

Concerning (ii), let w € Dﬁ"*l_k be fixed and let R > 0 be such that spt w c B(0, R). Writing
T= _"F||T|| as in Remark 3.30, we estimate

ITe(w) - T(w)] = '/9) ¢e(p) T(Lpw - w) dS27*(p)

< sup 1£,w = wllcopo,r+e) ITIB(O, R +&))
pE@aybﬁB(O,é‘)

and, in particular, T, (w) — T(w) as € — 0*.
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Since £,w(q) = w(pq), statement (iii) follows from

To(w) = /g /@ 0o (p) (@) | 0(p)) dIITI(g) dSC*(p)

= 0:(pg )T(q) dIITlI(q) | @(p)) dS2* (p).
LA o)

Eventually, if 0T = 0 one has

OTe(w) = Te(dew) = / ¢o(P)T(dc(Lyw)) dSC™*(p) = 0, (5.16)

ga,b

where we used Corollary 3.12. O

Remark 5.5. One can more generally observe that, as in (5.16),
0T = [ o) 0T(L0) 45O p;
a,b

that is, 0Tz = (0T),.

For the reader’s convenience, we separate the proof of Theorem 1.7 in the cases k = n and 1 <
k < n - 1; as one can expect, the former is computationally more demanding because of the use of the
second-order operator D.

It is convenient to fix some notation. If R is a Young tableau and the elements displayed in R are all
different, by abuse of notation we write > ; g to denote summation on all of the elements k displayed
in R. Moreover, if R is rectangular and k is an element displayed in R, we denote by [ R\ k] the (possibly
empty) Young tableau obtained from R by removing the column containing k. For instance, if

1|2(3

R=1079]5

then

—
w

DI =FO+F)+fQ+fR)+f(5)+f(9)  and  [R\I] =[5,

keR

Proof of Theorem 1.7, case k = n. Reasoning as in Proposition 5.3, by Proposition 3.13 one can assume
without loss of generality that & = &, for some nonnegative integers a, b such that 2a + b = n.
Moreover, by Lemma 5.4 it is not restrictive to assume that T = TS| P4.p for a suitable C*-smooth
T Pyp — Jn+1. By Theorem 1.8, T can be written as 7 = ¢, [tga,b]j for some ¢, € C*(P,p); let
us prove that ¢ is constant on P, p,.

We are going to utilise test n-forms w = fdx; Adyj Aagr, where f € C2°(H") and the triple (/, J, R)
is as in Proposition 1.10 (with k = n); in particular, R is rectangular. As usual, w is a smooth section of
A", but we identify w with an element in D as in (3.7). By (3.8) we have

Dw = (dw)y + 0 A d(L™' ((dw)y,)). (5.17)
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Taking into account that

dw = Z(Yif)dy[ ANdxyp ANdyy A ag +Z(Xjf)de ANdxy Adyy A ag

iel jeJ
+ > (X f)dxe + (Yef)dyi) Adxy Adyy Aag+(Tf)OAdx Adyy Aar,
keR
we obtain
(dw)y = (Tf)O Ndxy Adyy A agr (5.18)
and

L_l((dw)b]) = Z i(Y[f)dxl\{i} ANdyj A ag+ Z i(Xjf)dxl A dyJ\{j} A aR

i€l jeJ
(5.19)
+ Z (£(Xe dxrogry Adyy £ (Yef)dxr Adyjoy) A @rid-
keR

The signs + appearing in (5.19) could be easily specified, but they are in fact irrelevant for our purposes.
Let us fix

1 2 . la

I:={a+1,...,a+b}, J:=0 and R:=a+b+1a+b+2 ol

Ifa=0,thenb=n1={1,..., n} and R is the empty tableau. If b = 0, then @ = n/2 and I = 0.
Assume a > 1, fix acolumn of R and let @, y be its elements, with @ < 7y; in particular, y = a+n—a.
On choosing

I:=TU{a}, J:={y} and R:=[R\c]
fx,y,1) :==x, g(x,y,t) foran arbitrary g € Co°(H")

one gets from (5.18) and (5.19)
(dw)y =0(xy) =0 on P, p,
where we used the notation introduced before Lemma 5.1, and

O Ad(L™' ((dw)y,)) = (Yo Xy f)dxs Ady7 Aar Adxya A0+ 0(xy) +0
=+(Yog)dxy Ndyz Nag ANO+0(xy) +0

where, here and in the following, o denotes a form (which may vary from line to line) in the annihilator
of [15, , 17 equivalently, (X; A+ A Xaup AY1 A AYy AT | o) = 0. In particular, (7 | o) = 0 and
from (5. 17) we obtain

0=T(Dw) = t/ 0r(Yog) dL™!  for every g € C(H™). (5.20)

*@a,b

In a similar way, on choosing

I:=1U{y}, J:={a} and R:=[R\a]
f(x,y,t) =y, g(x,y,t) foran arbitrary g € CZ°(H")
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one again gets (dw), = O(yy) = 0 on P, 5, and

oA d(L_l((da))bl)) = +(X Y, fldxy ANdygz Nagr Ndxya AO+O(y,) +0
= +(Xo8)dxz Adys Nag ANO+0(yy) +0

where o again denotes a form in the annihilator of [tg , ] 7. From (5.17) we obtain

0=T(Dw) = J_r/ 9o (Xog) dL™!  forevery g € C(H"),

a,b

which, together with (5.20), gives

Xopr =Yapr =0 foreverya=1,...,a 5.21)
Tor =X1Y19: = Y1 X197 = 0. '

We recall once again that the equalities in (5.21) are proved only under the assumption a > 1.
Ifb > 1, we fix 8 € I and choose

1 2 .. la
Blatb+2 |- |n

Fx,y,1) = yasps1 g(x,y,1) for an arbitrary g € C2°(H").

[=TU{a+b+1}\{B8}, J:=0 and R:=

The tableau R is obtained from R on replacing the entry a + b + 1 with 8. Then
(dw)y = O(yasp+1) =0 on P,y
and

0 Ad(L™ ((dw)y,)) = £(XgYarpr1 [)dxy Ady7 Aar AO+O0(Yarps1) + 0
= +(Xpg)dxy Ady; A ag A0+ 0 (Yarps1) + 0

where o again denotes a form annihilating [tgju’b] 7 and we used the fact that dx; A dy; A (ar — ag)

annihilates [75, , |7 From (5.17) we obtain

0=T(Dw) = J_r/ ¢r(Xgg) dZL™!  forevery g € CZ(H")

ga.b

so that
Xgpr =0 forevery f=a+1,...,a+b. (5.22)

Ifa > 1,(5.21) and (5.22) are enough to conclude that ¢ is constant on &P, . If a = 0, (5.22) still
holds and we have only to prove that

To:=0 on P, . (5.23)
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We then choose I = T = {1,...,n}, J = J= 0,R = R (in this case, the empty tableau) and we fix an
arbitrary f € C°(H"). By (5.17), (5.18) and (5.19),

i=1

Dw=60A ((Tf)dX{l ,,,,, n) + d( Z (Y f)dxq,., n}\{i}))

0 A dxqg

,,,,,

= (Tf + i +X;Y; f

i=1

for a suitable o in the annihilator of [tgu . ]7. This gives

0, dm! B2 / (Tf)or dL™!
gba,b

0=T(Dw) = /@ (Tf+zn:iXin-f
a.b i=1

and (5.23) follows from the arbitrariness of f. This concludes the proof. m]

Proof of Theorem 1.7, case 1 < k < n— 1. Reasoning as in Proposition 5.3, by Proposition 3.13 one
can assume without loss of generality that &» = %, ;, for some nonnegative integers a, b such that
1 <a+b <nand2a+b =2n—-k.Observe thata > 1. By Lemma 5.4 it is not restrictive to assume that
T =182k P, for a suitable C*-smooth 7 : P, ;, — Jon+1-k. By Theorem 1.8, T can be written
asT = ¢r [tg ]z for some ¢, € C*(P,4.p); let us prove that ¢ is constant on P p.

a,b
We are going to consider the Heisenberg (2n — k)-form w = fdx; A dyj A ag A 6, where

o feCr(H");
olc{l,....n},Jc{l,....n},|I|+|J|<k+1andINJ =0;

o R is a (nonnecessarily standard) Young tableau that contains the elements of {1,...,n}\ (1 U J)
arranged in two rows of length, respectively, (2n —k — 1 —|I| = |J|)/2 and (k + 1 — |I| - |J])/2.

Observe that w € D¥'* because of Remark 3.26. Then

dw = Z (Y f)dxp iy Adyy Aag Adxy; N6
iel
+Zi(Xjf)de /\dyj\{j}/\aR/\dxyj A0 (5.24)
jeJ
+ Z (£ (X f)dxromy Adyy = (Yief)dxr Adyjogy) Aag A8
keR

where, again, the signs + will play no role.

We set
7::{a+1,...,a+b}, J:=0
R o= 1 2 ~~-n—a—bn—a—b+1‘~~~‘a‘
“la+b+1lla+b+2 |- n
and fix @ € {1,...,a}. Observe that R is never rectangular, a fact _that plays a role in the following

construction. If @ > n —a — b + 1, we define R by removing « from R; that is,

1 cerln—a->b ---‘a—l‘a+l‘---‘a‘_

R::a+b+l n
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otherwise, if @ < n — a — b, we define a tableau R by removing from R the column containing a and
a + a + b and placing @ + a + b as the rightmost element in the second row; that is,

1 a—1 a+1 ---n—a—bn—a—b+1---‘a‘
a+b+1|---la-1+a+bla+1+a+Db| - n a+a+b

R =

With this choice of R, we consider the Heisenberg form w = fdx; Ady; Aagr A6 € Dﬁ”_k associated
with 7 ;=T and J := {a}; by (5.24),

dw=*(Xof) dxg ANagr Ndxya N0+ 0
=x(Xof)deg Nag ANO+ 0,

where o is again a form annihilating tg . that can vary from line to line. This gives
0=T(dw) = i/ (Xof)pr dL*HP* forevery f € C(H™)
‘@a b

and, in turn,
foreverya =1,...,aqa, Xopr=00n P, p. (5.25)

Using the same tableau R, but choosing I := IU{a} and J := 0, one gets for w := fdx; Ady; Aag Al €
D2 that

do=+Yof)dxg ANar Adxy, N0+ 0
=i(Yaf)dx7/\aE/\9+0',

for o annihilating tg, L Similar to before, we deduce that

foreverya =1,...,a, Yopr =00n P, p, (5.26)

which, together with (5.25) and the inequality a > 1, implies

Te:=0 onP,p. (5.27)

If b =0, (5.25), (5.26) and (5.27) imply that ¢ is constant on &, . If b > 1, we have only to show
that

forevery S=a+1,...,a+b, Xgpr =00n P, p. (5.28)

LetB e {a+1,...,a+b} be fixed. We consider the test form w = fdx; Adyy; Aar A0 € D%I”_k where

I :=1\{B},J :=0and R is the tableau obtained from R on placing an extra entry equal to 3 as the
rightmost element in the second row, namely,

R 1 2 ~wrln—a-bln-a-b+1 «--‘a‘
“la+b+1lla+b+2 |- n B ’
Then
dw=+(Xgf)dxjupy Nar A0+ 0
= i(X’gf)de A ag ANO+o
and, as before, the arbitrariness of f implies (5.28), as desired. O
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6. Proof of Rademacher’s Theorem 1.1

This section is devoted to the proof of our main result. We start with a boring (but necessary) preliminary
observation.

Remark 6.1. Let W,V be homogeneous complementary subgroups of H” andlet ¢ : A c W — V
be fixed. By Remark 3.16 there exists an isometric H-linear isomorphism £ : H" — H" such that
L(V) =V :=exp(span{Xi, ..., Xi}). Let us write Wy := L(W) and A; := L(A); then L(gry) = gr,,
for ¢; ;= Logpo L7 1 A — V. Since also Wy := exp(span{Xy41,...,Y,, T}) is complementary to
Vo, it follows from [53, Proposition 3.1] (or, alternatively, from Theorem 1.4 of the present article) that
8y, =8y for some map ¢g : A9 — V defined on a suitable Ay C W.

Let us check that, if ¢ is intrinsic Lipschitz, so is ¢¢. Since L is an isometry, ¢ is also intrinsic
Lipschitz. Moreover, W; is complementary to Vo; hence, W; = gr; for an intrinsic linear map L :
Wy — Vp; let C > 0 be such that ||L(wo)l|lg < C|lwollu for every wo € Wy. We prove that, for every
a > 0, the inclusion

{wovo : wo € Wy, vg € Vo, |[vollg = (aC +a + C)||wollu}
C {wivg : wi € Wi, vj € Vo, [vjllz = allwill=}

holds. The intrinsic Lipschitz continuity of ¢y will then easily follow from the intrinsic Lipschitz
continuity of ¢;. Let wg € Wy and vy € V be such that ||vg|lg > (aC + @ + C)||wollg; then

wovo = leé for wi := woL(wg) € W, and V(/) = L(W0)71V0 eV
and

alwilla < a(1+C)llwolla < [Ivolls — Cliwolle < [Ivolle = IL(wo)lle < [Ivglls,

as claimed.

Eventually, let us observe that ¢ is intrinsically differentiable a.e. if and only if ¢ is intrinsically
differentiable a.e. This follows from the geometric characterisation of intrinsic differentiability provided
by Proposition 4.12 (d) and by Remark 4.6, which imply that

@9 is intrinsically differentiable a.e. on W
& the blow-up of gr,, is a vertical plane at & 2=k _almost every point of gr,,
< the blow-up of gr is a vertical plane at § 9=k _almost every point of gr,,

&= ¢ is intrinsically differentiable a.e. on W.

This discussion shows that, in order to prove Theorem 1.1 for intrinsic Lipschitz graphs of codimen-
sion at most #, it is not restrictive to assume that V and W are those defined in (4.2) and (4.3).

We can now prove our main result. For the reader’s convenience, the proof is divided into several
steps.

Proof of Theorem 1.1. As mentioned in the Introduction, thanks to [8] we have to deal only with the
case of intrinsic Lipschitz graphs of low codimension; in particular, V is an abelian horizontal subgroup
of H" and k := dimV is at most n. By Remark 6.1, we can, without loss of generality, assume that
V = exp(span{ X, ..., Xx}) and W = exp(span{Xy1,. .., Yy, T}). By Theorem 1.5 we can also assume
that ¢ is defined on the whole W.

Step 1: Definition of a current T supported on gr ,. By Proposition 4.28 we can consider a sequence
of smooth functions ¢; : W — V such that
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o ¢; — ¢ uniformly on W and
o there exists C > 0 such that [V ®;(w)| < C forallw € W and all i € N,

where ®; is the graph map @;(w) := we;(w) and V% ®; : W — As,_rb; is defined as in (4.28). By
Lemma 4.29, the Heisenberg (2n + 1 — k)-current [ S;] associated with the intrinsic graph S; := gry,
can be written as

[S:](w) = Cux / ([V9®D;(w) AT]7 | w(®;(w))) dL* 1 F(w) for every w € DF17F,
W

Possibly passing to a subsequence, we can assume that there exists ¢ € L®(W, Jopt1-k) =
(L' (W, 72"*1=%))* such that

[V#®; AT]; — ¢ weakly-* in LY (W, Jons1—k).

The uniform convergence ®; — @ implies that for every w € Dﬁ"*l‘k,

T(w) = Jim [$;](w) = Cux / (W) [0 (@(w)) dZ* 17 (w). ©.1)
—00 W
The Heisenberg current T is clearly supported on gr,. The boundary 9T of T is the null current; in fact,
0T(w) = T(dcw) = lim [S;](dcw) =0 for every w € Dﬁ"‘k,

where dc is as in Remark 3.7 and the last equality is due to Corollary 3.34. The equality 0T = 0 is the
key geometric information we will exploit.
Let us prove that

(w)#£0  for P F a6 weW. (6.2)
Let 8 € J2"*!17* be defined by

Bi=dxgsi A ANdxp Adyr AN ANdy, N O ifk<n
Bi=dytAN---ANdy, N6 if k =n.

Then, for every y € C;°(W) we have

/ XOWEOw) | B dLY™ ¥ (1) = lim / ) (V9D () AT | B) L1 ()
W 1—00 W

=1

:/X(w)d.sz””’k(w).
W

This implies that (£ (w) | B) = 1 for Z¥**!~*_a.e. w € W and (6.2) follows.

Step 2: Statement of sufficient conditions for differentiability. Since SC*|_ gr, is (Q — k)-Ahlfors
regular (Remark 4.6), the Lebesgue differentiation theorem applies (see, e.g., [59, Theorem 1.8]) and
we obtain for S€ *-a.e. pe gry,

/ e@7 () - @7 ()] dSOHE(p) = 0 (§27 (e, 0 (1))
grd,ﬁB(p,r) (63)

=0(r27%) asr — 0",
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By (6.2), (6.7) and Lemma 4.16, the following three properties

the condition (6.3) holds for p := ®(w) € gry 6.4)
every blow-up of ¢ at w is t-invariant (6.5)
{(w) #0 (6.6)

hold for #?>"*1=k_a.e. w € W. We claim that ¢ is intrinsically differentiable at every w € W such that
(6.4), (6.5) and (6.6) hold. This will be enough to conclude. Let such a w be fixed.

Step 3: Blow-up at w. Let ¢, be one of the (possibly many) blow-ups of ¢ at w. Namely, there exists
a sequence (r;); of positive numbers such that r; — +c0 as j — +oco and

lim (¢)" = ¢oo locally uniformly on W,
J —00

where (¢y5)"7 (W) = 6, (W) ™' ¢(Wd(w) (517, w)p(w)™1)) is as in Subsection 4.2. For r > 0 let us
introduce the maps Ly : H* — H" defined by

L (q) :=6,(@(w)g), r>0, geH"

Ly r is defined in such a way that gr(,, ) = 6y, (@(W)‘lgr¢) = L r;(gr,). Consider the push-forward
T; = (Lyw.r,)4T; that is, the Heisenberg current defined by

Tj(w) = T(/:i}}’rjw) = T(er_k w o [:w’rj), w € D]%_H"H*k

where L7, - denotes pullback of forms and the last equality comes from left-invariance and homogeneity.
Observe that T; = 0 for every j because

Ti(dcw) = T(L, , (dew)) = T(de(Ly, ) = IT(Ly, , w) = 0.

By Remark 4.6 there exist a constant C > 1, depending only on the intrinsic Lipschitz constant of ¢,
and a measurable function J4 : W — R such that

C'<Js<C and S%FLgr, =u(Jy L"), 6.7)
where @4 denotes push-forward of measures. Using (6.1) and (6.7),
(8, (D7) D(w)))

Jgp(w)
(6, (P(7)"'p))
5 J5(@7(p))
o w6, (@) p)

R LJ&W) J5 (@ (p))

=Cni er_k /W [(((W) | w(or, (CI)(W)*lq)(W))» d.sz'”]*k(w) +0(rj—_(Q—k))] ’

BwhawﬁkA¢W)

=Cnk er_k /
g

> J¢, (W) dg2n+l—k (W)

<§(¢>_1(p)) >dé’Q_k(p)

J

> ds2*(p) + o(r_(Q_k))
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where, in the third equality, we used (6.4) and the fact that, if w is supported in B(0,7), then p —
w(6y, (d)(vT/)‘lp))/J¢(d)‘1 (p)) is supported in B(®(w), 7/r;). Therefore,

lim Tj(w) = Cyx lim r?™* / (CO7) | (8, (@(9) ' D(w)))) dL> 17K (w)
J— J—o W ;

provided the limit in the right-hand side exists. We now perform the change of variable w =
Wwo (W) (01/r, u)p(w)~', u € W, according to which

§r (W) ' D(w)) =@ (u),  where @ (u) = u (¢33)" (u).
Therefore,
lim T;(w) = Cyx lim / (£W) | @(@(u))) dL*'7* (u)
J— J— Jyy

o / () | (@ (u))) AL ()
W

due to the uniform convergence of CD:_i (1) = u((¢)"7 (u)) to the graph map Do (1) := Upoo (u1).
We obtained that the Heisenberg (2n + 1 — k)-current To, defined by

Teo(w) := lim T;(w) = Cok /W (D) | wo @) L™ 7k e DEHIk

is supported on gr,, . Since 9T; = 0 for every j, then also dTs = 0. Moreover, ¢o, is a uniform limit of
uniformly intrinsic Lipschitz maps; hence, it is intrinsic Lipschitz and there exists a measurable function
J¢ : W — R such that

Cl'<Jp, <C and S9FLgr, =@uy(Jp, 2*"75).

In particular,

Lw) —k 2n+1-k
Too(w) = cn,k/ —= | w(p)) dS2*(p), w € D=k,
g <J¢w(q>oo '(p)) "
that is,
T = _fW) é’Q*kl_grd) .
J ., 0 D *

By (6.5), the intrinsic Lipschitz map ¢ is t-invariant: by Lemma 4.15 and Proposition 4.23, ¢ is
Euclidean Lipschitz and gr,_ is locally H-rectifiable of codimension k. By Theorem 1.8 and (6.6) we
deduce that there exists 7 : gr,,  — R\ {0} such that

(o) = n(p)tg, (P)g  for 9 ae pegr,,. 6.8)

Step 4: Every blow-up is linear. We claim that ¢, is intrinsic linear. Let fg_ : Rk — RK be
defined by ¢poo (W) = fy.. (W) for every w € W, where the notation wy is the one introduced in (4.16);
fs. is Buclidean Lipschitz continuous by Lemma 4.15 (i). By Lemma 4.15 (iv), the gradient V f_ (Wg )
is defined for a.e. w € W and it uniquely determines Tanﬁg{rd)w (Do (w)); since ¢ is intrinsic linear if

and only if fj_ is linear, ¢, is intrinsic linear if and only if Tangr%o is constant on gr,, . Assume that
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Tan]gq5 is not constant; then, by (6.8) and Proposition 3.38, there exist two vertical planes &, %, that

are not rank 1 connected and such that
Tan:g{rd) (p) € {P, P,} for $%* . pEgry, .

In particular, there exist two k X (2n — k) matrices M, M, such that Vf, € {M;, M>}. By Lemma
4.15 (ii) and Remark 3.36, the rank of the matrix M; — M, is at least 2. However, a well-known result
proved in [14, Proposition 1] (see also [78, Proposition 2.1]) states that, if a Lipschitz map has only
two possible gradients M1, M5 and rank (M| — M>) > 2, then the map is affine. This proves that fj_ is
linear and, actually, that

either fy, = My or fg, = M>. (6.9)

Step 5: Uniqueness of blow-ups. We have proved that every blow-up ¢, is intrinsic linear. We now
prove that the blow-up of ¢ at w is unique: by Proposition 4.12 (c), this is equivalent to the intrinsic
differentiability of ¢ at . Assume, on the contrary, that there exist two different blow-ups ¢!, $2, of
¢ at w; observing that the matrices M|, M, introduced in Step 4 are uniquely determined by ¢(w) (via
the vertical planes 9, 9, provided by Proposition 3.38), we deduce from (6.9) that, possibly renaming
M, and M>,

ol (w)=Mwy and ¢%(w)=Mwy VweW.

Let w € W be such that ¢. (w) # ¢2 (w); that is, Miwy # Mowpg. By definition of blow-up, there
exist two diverging sequences (rjl. )i (r?) ; such that

(60)7 > oL, and (¢w)7 — 62,

2 1
J < rj+l

for every j. Let & := d(¢L,(w), 92 (w)) > 0; since the map r — (¢y)" (w) is continuous and bounded

and, up to passing to suitable subsequences, we can assume without loss of generality that rJl. <r

(see Remark 4.5), for every large enough j we can find r; € (r}l., r?) such that d((¢v—v)r-? (W), pL,(w)) >

6/3 and d(((m)rf' (w), #2,(w)) = 6/3. By Remark 4.5 and Ascoli-Arzeld’s theorem, up to passing to

a subsequence we have that (¢W)r; — ¥ locally uniformly on W for some ¢ : W — V. Observe that
d(y(w), ¢l (w)) > 6/3 and d(¢ (w), $2 (w)) > §/3; thus, ¢ is a blow-up of ¢ at w (in particular, it is
t-invariant) that is different from both ¢ and ¢2 . This contradicts (6.9), and the proof is concluded. O

We conclude this section with an observation. Let ¢ : A ¢ W — V be intrinsic Lipschitz. The-
orem 1.1, together with Remark 4.6, implies that a tangent'? plane Tan]g% to gr, exists & Q-k_ae. on

gr,: let us denote by tg¢ (p) € A*"*1=k} the unit tangent vector associated with Tan]gl% (p)atp € gry.
o,
respect to & -k Lgr¢. As one can expect, there are, however, two canonical choices for the orienta-
tion: we present below one of the two, the other being of course the opposite one. See also [23] for
some related issues. With this consistent choice of orientation for gr,, one will be allowed to define the
(2n+ 1 — k)-Heisenberg current [ gr ¢]] canonically associated with gr, by

Again (p) is defined only up to a sign; hence, p +— tg(p (p) could be not even measurable with

lerpl(@) = [ (1, |0)dSO, weDF*. (6.10)
gy

As a further property, we will prove in Proposition 7.5 that for entire graphs (A = W) the equality
[ gr 4] = 0 holds.

10In the sense of blow-up limits as in Proposition 4.12 (d).
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Let us fix our choice of tg . As in Remark 6.1, up to an H-linear map £ we can assume that W,V
are as in (4.2) and (4.3). In this case, our choice for the orientation of gry is (compare with (4.31))

Vo (2! (p)

H —
et (P) = o0 @1 (p))]

where, remembering (4.27) and (4.28), we set
VOD(w) 1= VI D(W) A+ AV O(W) € Apuibi

and

k
VD(w) = (wi + (VWi X | (@(w),  i=k+1,....2n.
h=1

For general subgroups W, V, our choice corresponds to fixing a unit tangent vector tgj and declaring that
(tg(/) (p). ;) > 0 for €7 *-ae. p € gr,, where (-, ) is the canonical scalar product on multivectors.
Let us point out that, when W, V are those in (4.2) and (4.3), as in Remark 4.27 we have J?¢ = |V?®|;

this equality and Theorem 1.3, which we will prove in Section 7, provide the alternative representation

[eryll(w) = cn,k/Ww%/\T | wo @) dF* 1k, w e DIk, (6.11)

7. Applications

In this section we provide some consequences of Theorem 1.1. For computational reasons it is useful to
fix a convenient distance on H"; therefore, in the present section d denotes the distance d, introduced
in (3.2).

We need to fix some notation. When M is a matrix, we denote by |M | its Hilbert—Schmidt norm. When
M, M, are square matrices, inequalities of the form M| > M, are understood in the sense of bilinear
forms; I denotes the identity matrix. Recall also the notation Wy, . . ., W, introduced in (3.4) to denote
horizontal left-invariant vector fields. Eventually, if A and B are given sets, AAB := (A\ B) U (B \ A)
denotes their symmetric difference.

The proof of the following lemma closely follows the one of the classical Whitney’s extension
theorem; see, for example, [40, Theorem 6.10]. A version of Whitney’s extension theorem in H" has
been proved in [48, Theorem 6.8]; see also [92, Theorem 3.2.3].

Lemma 7.1. For all integers n > 1 and 1 < k < n there exist positive constants @y = ao(n, k) and
co = co(n, k) with the following property. For every § > 0 and every intrinsic Lipschitzmap ¢ : W — V
whose intrinsic Lipschitz constant « is not greater than «, there exists f € C]%ﬂ(H”, R¥) such that

[Wif(p)| € coa foreverype H andi=k+1,...,2n (7.1)
|col[ X1 £(p)| ... |1Xk f(p)] - I| < cow  for every p € H" (7.2)
the level set S .= {p € H" : f(p) =0} is a H-regular submanifold (7.3)
S = gry, for an intrinsic Lipschitz  : W — V with Lipschitz constant at most coa 74
S2 K ((gryAS)Ufpegr,nS: Tang¢ (p) # Tang(p)}) <6 (7.5)
PR WA {p =y and VP = VVy}) < 6. (7.6)
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Proof. Asin Remark 6.1, it is not restrictive to assume that W and V are the subgroups defined in (4.2)
and (4.3). Fix 6 > 0 and an intrinsic Lipschitz function ¢ : W — V whose intrinsic Lipschitz constant
« is not greater than «@g; the number @ > 0 will be chosen later. We organise the proof in several steps.

Step 0. We establish some notation and preliminary facts. By Theorem 1.1 there exists a measurable
set A € W such that Z>*1=K (W \ A) = 0 and ¢ is intrinsically differentiable at every point of A. For
every w € A, let us introduce the homogeneous homomorphism L,, : H* — R,

Lw(p) = (pl"'-vpk)_V¢¢(W)(pk+lv~"9p2n)’ p:(pl""7p2n+1)€Hn9 (77)

where V?¢(w) is the intrinsic gradient (identified with a k x (2n — k) matrix) introduced in Definition
4.9. Notice that L,, is constructed in such a way that

Tanﬁh (®(w)) =ker L. (7.8)
Moreover, for every w € A,

col[X1Ly|... | XiLyw] =1

(7.9)
Wi(Lyw)| = 1(V2o(w))ijl <@ Vi=1l,...,k,Vj=k+1,....2n

where, as usual, ®(w) := w¢(w) is the graph map and, in the last formula, we used Lemma 4.13. By
abuse of notation, in the sequel we will identify each L,,, with the kx2n matrix VgL,, = [ 1| -V?¢(w) ],
I being the k x k identity matrix. We also introduce the homogeneous homomorphism L : H* — R*
defined by

L(p) = (p1,---sPk)s p=(pi,...,poms+1) € H"

and we identify L and the k x2n matrix [ 7|0 ]. We can estimate the Hilbert—Schmidt norm of L,, — L by

L, —L| <Vk(Qn-k)a  foreveryw € A. (7.10)

Let us observe that (7.8), the Lipschitz continuity of L,, and Proposition 4.12 (and, in particular, (4.17))
imply that for every w € A,

. Ly(®w)"'p) _
rll»nol+ (sup {W tpEgryN B(CD(W),r)}) =0. (7.1D)

By Lusin’s theorem there exists a closed set B C A such that Z>**1=K(W \ B) < 5 and V?¢|p is
continuous; the number 7 will be chosen later in Step 8 depending on d, n and k. By the Severini-Egorov
theorem, there exists a closed set C C B such that Z>**17%(W \ C) < n and the convergence in (7.11)
is uniform on compact subsets of C.

Step 1. Define the closed set F' := ®(C) and let U be the open set U := H" \ F’; for every p € H" we set

1

20 inf{d(p,q) : q € F}.

1
rp = %d(p,F) =

We are going to use a variant of the classical Sr-covering argument (see, e.g., [59, Theorem 1.2]), which
cannot be utilised here since the radii of the balls we use are not uniformly bounded. By Zorn’s lemma,
there exists a maximal set € C U such that the family of balls {B(p,r,) : p € €} is pairwise disjoint;
we claim that

U= U B(p,5rp).

pE®
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The inclusion D in the formula above is clear by the definition of 7 ,; assume that the reverse inclusion
does not hold; that is, that there exists g € U\ U, c¢ B(p, 5rp). By maximality of €, there exists p € €
and p” € U such that p’ € B(p,rp) N B(q,ry) and, in particular,

20ry =d(q,F) <d(q,p") +d(p’,p) +d(p, F) <rq+21rp.
It follows that r, < %r p and, in turn,

q € B(q,rq) C B(p,rp+rq) C B(p, %rp) C B(p,5rp),

a contradiction.
Step 2. For every g € U we define

Gy :={p € € : B(q,10ry) N B(p, 10r,) # 0}.

We claim that #6, < 1299 and 1/3 < rq/rp < 3 forevery p € €. In fact, if p € €, one has

1 1 1
Irp = rql < 55d(p,@) < 55(10rp +10r) = S(rp +1y).

This implies that r,, < 3r, and ry4 < 3r, and the bounds on r, /r,, follow.
In addition, for every p € €, we have

d(p,q)+rp, <10(rp +ry) +rp <43y

and, in particular, B(p,r,/3) € B(p,rp) C B(q,43ry). The balls {B(p,r4/3) : p € €4} are then
pairwise disjoint and contained in B(g, 43rq); therefore,

o < L (Blg,43r,))

< =1299,
7 F(B(0,14/3))

as claimed.
Step 3. Now let 4 : R — R be a smooth nonincreasing function such that

O<uc<l, u(t) =1forr <24, u(t) =0forz > 2.
For every p € € define

dk (p.q) )

gp(q) 3=,U( 5
P

where, as in (3.3), dk is the homogeneous Koranyi (or Cygan—Koranyi) distance. Observe that dx (p, -)
is smooth on H" \ {p}. Being a homogeneous distance (see [34]), dx is globally equivalent to d and,
more precisely,

d(p/’pu) < dK(P’,PN) < 21/4d(p/,p”) Vp',p” c H".
It follows that g, € C°(H"), 0 < g, < 1 and

gp=1 onB(p,5ry)
gp=0 onH"\ B(p,10r,). (7.12)
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Moreover, there is a constant M = M (n) > O such that |Vug,| < M/r,; by Step 2, |[Vug,(g)| < 3M/ry
whenever p € 6,. Thanks to (7.12), one has g,,(¢) = 0if p € € \ 6,; hence,

|Vugp(q)| <3M/r, forallg e H" and p € €. (7.13)

Define 0(q) := X pe% &p(q) for every g € H". By (7.12) again, one obtains that g, = 0 on B(g, 10r,)
whenever p ¢ €, so

o(q) = Z gp(q) for every g € U and ¢’ € B(q, 10ry).
PEGy

Observe that o > 1 on U; infact, for every g € U there exists p such thatg € B(p, 5r) and, in particular,
o(q) = gp(q) = 1. Using (7.13) and the inequality #6, < 1292, we deduce that o € C*®(U) and there
is a constant M’ = M’ (n) > 0 such that

7’

|Vao(q)| < forall g € U.

q
Now we define a partition of the unity {v, } ,e% on U subordinate to the covering {B(p, 10r,,) : p € €)}
by setting

_ (@)

D= gy

Vugp _ 8p Vuo
(oa

Notice that v, € CZ(U) and Vgv, = = eventually, we deduce that for a suitable

M =M"(n) > 0,

14

M
Yvp@=1 > Vavy(@)=0 and  [Vav,(g)| < (7.14)

r
pE® pE® q

forevery g € U and every p € 6.
Step 4. For every p € €, choose G, € F suchthatd(p, G,) = d(p, F); we then define f : H" — R as

0 ifgeF
F@) =1 > vp@Lo1(g) (@0 = D) vp(@ Lo, (dp 'q) ifgeU.
pe?ﬁ PG%L]

Notice that f € C*(U) and
Vuf(q) = Z [ch—l(q,,)(f?p_lCI) ® Vuvp(q) +vp(q)Le-1(g,) onU, (7.15)

PEBy

where we recall the identification between homogeneous homomorphisms L., and k X 2n matrices.
Step 5. We claim that Vi f(g) = Lg-1 (¢) for every g € F. For every such g we define the compact

set H := F N B(q, 1) and, fornp > 0,

Lo-1(p) (p~'p)
d(p,p’)
+ sup {|L¢_1(p) = Lo-1(pn] : p,p €H, d(p,p’) < 77} .

U(U) :=Sup{ pvp’eH’0<d(p’p,)Sn}

The map p > Lg-1(,) is uniformly continuous on H; in fact, ®~!' : H — C is uniformly continuous and,
since V¢ is continuous on C, w > L,,, is also uniformly continuous on the compact set ®~! (H). This,

https://doi.org/10.1017/fms.2021.84 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2021.84

80 Davide Vittone

together with the fact that the convergence in (7.11) is uniform on compact subsets of C, implies that

lim v() = 0. (7.16)
n—0*

For every ¢’ € H, one has

|f(@") = £(@) = Lo-1(g (a7 q")| = |Lo-1(g) (a7 a")| < v(d(q.q") d(q.q"). (7.17)

Instead, for every ¢’ € U, one has

|f(a") = £(@) = Loy (a™"q")|
=|f(q") = Lo1(y)(q7'q)]

< Z Vp(q/)|L<1rl(qp)(Cfp_l‘I') — Lo-1(9)(q7'q)]
pEGy
(7.18)
< Z vp(q) [|Lq>—l(q,,)(67p_14') - L<1>—l(q,,)(£1_14')| +[(Lo-1(g,) ~ Lo-1g)(q"'q)]
PEGy
’ - -1 ’
< Z vp(q )[|L<1>—1<q,,)(61p DN+ |Lo-1(g,) = Lo-1(gld(q.4") |-
pECy
Since 207y < d(q, q’), for every p € €, we obtain
d(q,qp) < d(q,p) +d(p,qp) < 2d(q.p) <2(d(q.q") +d(q’, p)) (7.19)

<2(d(q.q")+10(rg +1p)) <2(d(q.q") +40ry) < 6d(q.q’).

Therefore, when d(q, q") < 1/6, we have G, € H for every p € €,; using (7.18) and Step 2 we then
obtain

£ (@) = £(9) = Lo-1g) (a7 q")] < Tv(6d(q.4")) d(g.4").
Recalling (7.16), this inequality and (7.17) eventually give
(@) = f(@) = Lo (a7 q")| = 0(d(q.q4")  asq’ —gq

and the claim follows.

Step 6. Let us prove that f € Cﬁ(H”); since f € C*(U), it suffices to prove that Vi f is continuous
on F. We fix g € F and ¢’ € H" with d(q, q’) < 1/6 and we define H and v as in Step 5. If ¢’ € F, we
have by Step 5

Ve f(q") = Vaf(@)] = [Lo-1(p) = Lo-1(p)| < v(d(q.9)).
If ¢’ € U we choose g € F such that d(q’,g) = d(q’, F) = 20ry to get

IVuf(q) = Vaf (@] < IVaf(q@') — Lo-1g| + Lo-1(g) — Lo-1(g)]

, ) (7.20)
<|Vuf(q’) — Lo (gl +v(2d(q.q")),

where in the last inequality we used the estimate

d(q,q) <d(q.q")+d(q’,q) <2d(q.q")
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and, in particular, the fact that § € H. Using (7.14) and (7.15), we estimate

IVaf(q") = Lo1(g)l

Z [LKD’I(ﬁp)(q_P_lq’)®VHVp(q,)+vp(q/)LCD’1(q'p):| - Z vp(q) Lo (g

pECy pECy
< Z iLd)*l(q,,)(qp_IQ)®VHVIJ(‘I,)|+ Z |(Ld)’1(qp)_L(D’l(q))(q_lql)®Vva(ql)|
pE(gql pe%q/ (721)
+ 3 vp(@)Lon(g,) — Loi(g)]
pPECy
M o o M o , o
< > vd(@.3,)d(G.q,) + — D v(d(@.3,)dq. D+ Y, v(d(d.q,)

r Ty
4q pqu/ 4q pE%‘,/ pe%q/

where, in the last inequality, we used the fact that, as in (7.19), g, € H. Recall that r,, < 3r, for all
p € €, ; therefore, for every such p one can estimate

d(g.qp) <d(q,q")+d(q',p) +d(p,dp) <20ry +10(ry +rp) +20r, < 120ry (7.22)
and, in particular,
d(q,qp) <6d(q’,q) <6d(q’,q) (7.23)

for every p € €, . Combining (7.21), (7.22) and (7.23) one finds

IV (q") = Lo ) < (120 M” +20M" +1) Z v(d(3, ) < (140 M” +1)(129)%u(6d(q’, q)),
pE%q/

which, together with (7.20), gives

Vaf(q) - Vaf(@)| =0 asq —gq,
as claimed.

Step 7. Let @y := min{1/2, @(1/2,n, k)}, where @(1/2, n, k) is the number provided by Remark 4.4.
We claim that there exists ¢; = ¢;(n, k) > 0 such that, if @ < @1, then

|Vaf(g)—L| <cia for every g € H". (7.24)
We will later choose @ and cq in such a way that oy < @ and ¢¢ > cy; in this way, statements (7.1)

and (7.2) are immediate consequences of (7.24).
If g € F, (7.24) follows from Step 5 and (7.10); hence, we can assume g € U. By (7.15) and (7.14),

Vaf(@) L= " Lo1(g) (@ '@) ® Vavp(@)+ > vp(a)(Lei(g,) — L)

pEBy PEBy
= > (Lo @) = (a7 = $(gw)) ® Vuvy (@) (7.25)
PEBy
+ Z vp(q)(Lo-1(g,) - L),
PEy
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where we recall that, for every p € H", we write p = pwpv for suitable (unique) pw € W and py € V.
From (7.10) we obtain

> vp(@ (Lo, — D)| < Vk@n-k) a. (7.26)

PEGy

‘We now estimate the first addend in the rightmost side of (7.25). First, we notice that for every p € €,

|Lq>—l(q,,)(67p_161) - L(Gp ') < |Lo-1(g,) — Ll d(q.Gp)

< VkQ@2n-k)a (d(q,p)+d(p.qp))
VkQ@n k) a (10(r, +r4) +20r,)
IOOWQ rq.

(7.27)

IN

IA

Noticing that Z((j,,‘lq) = (q,,—lq)v, we deduce that

IL(3,"'0) = (qv = dlgw))| = lgv = (@p)v + (qw) — qvl = |¢(gw) = (@p)v| = |¢(qw) = $((3p)w)]

and by Remark 4.3,

IL(Gp"q) — (qv — d(qw))| < 20d(Gp. P(qw))
<2a(d(gp,p) +d(p.q) + d(q, P(qw)))
=2a(d(qp,p) +d(p,q) +|qv — ¢(qw)])
< 2a(20r, + 10(rp +rg) +2d(q, gry)),

where in the last inequality we used Remark 4.4 with & = 1/2. Recalling that r,, < 3r, forevery p € €,
we deduce

IL(G,"q) = (qv — ¢(qw))| < 280ar, (7.28)

and the claim (7.24) is now a consequence of (7.25), (7.26), (7.27), (7.28) and the last statement in (7.14).
Step 8. Denote by K > 0 a constant with the property (see, e.g., [56]) that

8(p) ~ 2()| < K(sup|Visgl)d(p.q)  forevery g € C(H", BY) and p,g € "

We now fix c¢o := max{cy,2Kc;} and ag := min{a, (2¢;)~'}. The inequality (7.24) now implies
that, if @ < ay, then col [ X1 f(p)|...|Xxf(p)] = %I; hence, Vg f(p) has rank k for every p € H". In
particular, the level set S = {p € H" : f(p) = 0} is a H-regular submanifold and statement (7.3) follows.

Theorem 1.4 ensures that S = gr,, for an intrinsic Lipschitz ¢ : W — V. We claim that the
intrinsic Lipschitz constant of ¢ is at most 2Kcja. To this aim, fix w € W and v € V \ {0} such
that ||w|lg < |[vllz/(2Kc1@), so that wy € Cg for some § > 2Kcja. For every g € H" we have
L(gw) = L(q) and, in particular,

1f(gw) = f(@)] = 1(f = L)(gw) = (f = L)(q)] < K(s}?f |VHf_Z|)”W”H <Ivlle/2,
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the last inequality following from (7.24). Now, for every p € S = gr,, we have f(p) = 0; hence,

Lf (pwv)l = |f (pwv) = f(p)]
2 |f(pwv) = f(pw)| = | f (pw) = f(P)]

> <f<pwv>—f(pw>,|i>— RS
V| 2

where we used Remark 2.7. This proves that f (pwv) # 0; hence, gr,NpCp = {p} forevery p € gr,, and
all B > 2Kce. This implies that the intrinsic Lipschitz constant of ¢ is at most 2K ¢ and statement
(7.4) follows because ¢y > 2Kc;.

Step 9. By construction, for every w € C we have ®(w) € F C {f = 0}; hence, ¢(w) = ¢(w) and

Tan (©(w)) = ker Vi f(®(w)) = ker L,, =’ Tan_(@(w)).
In particular, the inclusion
Cc{weW:p(w)=y¢(w)and V2¢(w) = V¥y(w)}
holds, and (7.6) follows provided n < §. The inclusion above also guarantees that
(gryAS)U{pegr,nS: Tangq> (p) # Tang (p)} € ®(W\ C) UY(W\ C), (7.29)

where W is the graph map ¥ (w) := wy (w). The intrinsic Lipschitz constants of ¢ and y are both bounded
by max{ag, coap}, which depends only on n and k; then, by Remark 4.6, there exists k = «(k,n) > 0
such that

SO KL gry <k @p(L¥™FLW) and $2FLgr, <k Wp(L>FLW). (7.30)
Statements (7.29) and (7.30) imply that
&Q‘k((grd, AS)U{pegry,nS: Tan&(ﬁ (p) # Tan]gﬂ(p)}) < 2k,
and (7.5) follows provided we also impose i < (2«)~'8. This concludes the proof. m}

Theorem 7.2 is one of the main results of this section; recall that it implies Theorem 1.2.

Theorem 7.2. Let A € W be an open set and ¢ : A — Y an intrinsic Lipschitz function. Then, for every
& > 0 there exists an intrinsic Lipschitz function  : A — V such that gr,, is an H-regular submanifold

and
SO ((gr,Agr,)U{pegryngr,: Tan§¢ (p) # Tan& (p)}) <e (7.31)
LKA\ {w € Az p(w) = y(w) and VI p(w) = V¢ (w)}) < & (7.32)

Proof. Asin Remark 6.1, it is not restrictive to assume that W and V are the subgroups defined in (4.2)
and (4.3). By Theorem 1.5, without loss of generality, we can assume that A = W. Let ¢, co be the
constants provided by Lemma 7.1; up to reducing a(, we can assume that apcy < 1/2.

Let a be the intrinsic Lipschitz constant of ¢; if @ < g, the statement directly follows from Lemma
7.1. We then assume a > ag and define A := ag/a < 1. Let us consider the H-linear isomorphism
L : H" — H" defined (if k < n) by

’

L(xl,xll’ yl, y/l’ t) = (/lx/’x’/, y;,yll, t)
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forevery (x’,x”,y’,y",t) € REXR*" K xR¥xR" % xR = H", and (if k = n) by L(x, y,1) := (Ax, y/A, 1)
for every (x,y,t) € R" XxR" xR = H". We discuss only the case k < n, as the case k = n can be treated
with some modification in the notation only.

We claim that C,, € £(Cy). To this aim, fix w = (0,x”,y’,y"”,¢t) € Wand v = (x",0,0,0,0) € V
such that wy € Cg; that is, ||w|lg < ||v|la/ao. Then

||£-1<w>||H=H(0x Ayt < 1oy Ol = vl

< vl = 2116, 0.0.0.0) 1 = 21 |(5:0.0.0.0) = S1£ Wl

This proves that wy € L(C,), as claimed.
For every p € L(gr,) we have

L(gry) N pCay € L(grs) N pL(Ca) = L(gry, N L™ (p)Ca) = LIL™ () = p;

hence (see Remark 2.3), the set £(gr) is the intrinsic Lipschitz graph of some function ¢ : W — V
with intrinsic Lipschitz constant at most ap. By Lemma 7.1, there exists fy € Cﬂlﬂ(H", R¥) such that

[Wifo(p)l <1/2 foreverypeH'andi=k+1,...,2n (7.33)

col| X1 fo(p)] .. |ka0(p)] I for every p € H" (7.34)

the level set Sp := {p € H" : fo(p) = 0} is a H-regular submanifold
So = gry, for an intrinsic Lipschitz o : W — V

SO (g, A S0) U {p € grg, 0 So : Tang, (p) # Tang (p)}) < e/M™" (7.35)
LW {w € W2 o(w) = gro(w) and V¥ ¢(w) = V¥uo(w)}) < /MC7K, (7.36)

where M > 0 denotes the Lipschitz constant of £7' : H"* — H". The function f := fy o £ is of class
CL(H",R¥) and

X f(p)=A(Xifo)(L(p)) foreveryi=1,...,k

VS () = SOR) (L(p)) foreveryi=1,....k
W f(p) = (Wifo)(L(p)) wheneverk+1<i<norn+k+1<i<2n

so that, by (7.33) and (7.34),

1
[W:f(p)| < 1 forevery pe H" andi=k +1,...,2n
A
col| X1 f(p)|-.. |ka(p)] > EI for every p € H".
By Theorem 1.4 and Remarks 2.7 and 2.8, the level set {f = 0}, which is an H-regular submanifold,
is the intrinsic graph of an intrinsic Lipschitz function ¢ : W — V whose Lipschitz constant can be

estimated in terms of A (i.e., of @) only; see Remark 2.9. Moreover, the equalities

(gr¢ A gr,;,) U{pegry,Ngr,: Tangr (p) # Tang, (P)}
((gr¢0 Agr, )U{pegry, Ngry : (P) Ea Tan (P)})
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and

{¢ =y and V?¢ = V¥y} = L7 ({0 = ¢ and V? ¢ = V¥0y})

hold. Statements (7.3 1) and (7.32) now follow from (7.35) and (7.36), and the proof is accomplished. O

Remark 7.3. Taking (7.4) into account, a further outcome of the proof of Theorem 7.2 is the existence
of a function u : (0, +c0) — (0, +o0) such that, if A, ¢ and ¢ are as in the statement of Theorem 7.2 and
the intrinsic Lipschitz constant of ¢ is @ > 0, then the function ¢ provided by Theorem 7.2 has intrinsic
Lipschitz constant at most u(«).

A first consequence of Theorem 7.2 is the equivalence between the two possible notions of H-
rectifiability; this was already stated in Subsection 4.4.

Corollary 7.4. Let ¢ : A — V be an intrinsic Lipschitz map defined on some subset A C W then gr
is H-rectifiable.

In particular, a set R c H" is H-rectifiable of codimension k, k € {1,...,n}, if and only if
S2*(R) < oo and there exists a countable family (¢); of intrinsic Lipschitz maps ¢; : W; — V;
where W ;,V ; are homogeneous complementary subgroups of H" with dimV; = k and

R\Ugr¢j) =0.
J

Proof. We can assume A = W because of Theorem 1.5. By Theorem 7.2, for every j € N there exists
¢; : W — V such that gry, is H-regular and

§oHK

§Q_k(gr¢ \ gr¢_,) <1/j.

The first part of the statement follows as well as one implication of the second part of the statement.
The other implication is a simple consequence of the fact that (Theorem 4.19) H-regular submanifolds
are locally intrinsic Lipschitz graphs. O

A second consequence of Theorem 7.2 is the area formula of Theorem 1.3, which we now prove.
Recall that the intrinsic Jacobian determinant J ¢ was introduced in Definition 4.9.

Proof of Theorem 1.3. Recalling Remark 4.10, it is not restrictive to assume that W, V are the subgroups
in (4.3) and (4.2). By Theorem 1.5, one can assume that A = W. Since every Borel nonnegative function
h can be written as a series of characteristic functions of Borel subsets of gr > We can, without loss of
generality, assume that & = yg for some Borel subset E C gr,,, and we must prove that

SCKE)=Chx / Jp dFIk,
o-I(E)

Let & > 0 be fixed; by Theorem 7.2 we can find an intrinsic Lipschitz map ¢ : W — V such that gr,,
is an H-regular submanifold and, defining the graph map ¥ (w) := wy(w) and D := {w € W : ¢(w) =
W (w) and V¢¢(w) = V¥ (w)}, one has

Pk (W\D)<e and SCKE\¥(D)) <e. (7.37)
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Using Theorem 4.19,
SCE) = SCKENY(D)) + SCX(E\ ¥(D))

=Chx / JVy dF?HIk 4 §9K(E\ W(D))
Y-1(En¥ (D))
—Cos / 796 ALK 4 SOK(E\ W(D))
o1 (E)nD
=Cp.x / JPodL R —Cui / Jp d* 1k L 92°K(E\ W(D))
foxal (E) foxal (E)\D
so that

’ostk(E> ~Cu [ s0paziit
o 1(E)

< Chk / Jp APk 4 $CK(E\ ¥(D))
W\D
< (CpiC + s,

where, in the last inequality, we used (7.37) and the fact that, by Lemma 4.13, J ¢’¢ < C for some positive
C depending only on the intrinsic Lipschitz constant of ¢. The arbitrariness of € concludes the proof. O

Eventually, as a further consequence of Theorem 7.2 we prove the fact that, as anticipated in Section 6,
the canonical current associated with an entire intrinsic Lipschitz graph has zero boundary. We will use
(6.11), whose validity is now guaranteed by Theorem 1.3.

Proposition 7.5. Let ¢ : W — V be intrinsic Lipschitz. Then the (2n+1 —k)-Heisenberg current [ gr ¢]]
introduced in (6.10) is such that d[ gr 4] = 0.

Proof. As in Remark 6.1 we can assume without loss of generality that the subgroups W,V are those
defined in (4.3) and (4.2). Let £ > 0 be fixed and let ¢y : W — V be the map provided by Theorem 7.2.
It was shown in the proof of Theorem 7.2 that there exists f € CI;H(H”, R¥) such that gr, ={f =0k
moreover, the construction performed in Lemma 7.1 ensures that f € C*(H" \ gr,,). As in the proof of
Theorem 1.6, for every positive integer i there exists i; € C*(W, V) such that

gry, ={f=(1/i,0,...,0)}.
Moreover, defining the graph maps ¥ (w) := wiy(w) and ¥;(w) := wiy;(w), as i — +o0, one has
i =, ¥ - Wand VViy; — VY locally uniformly on W. (7.38)
The last convergence stated in (7.38) follows from the local uniform (with respect to w € W) convergence
Tangw'_ (¥;(w)) = ker Vig £ (¥; (w)) — ker Vi f(¥(w)) = Tan]grw (¥(w)).
Using Proposition 1.9, Lemma 4.29 and formulae (7.38) and (6.1 1) we deduce that for every w € Dﬁ”_k R
0 = lim[er,, | (dcw)

= lim Gy, x / (VYW AT | (dew) o W;) dL 1
W

1—00

= n,k/ww' AT | (decw) o W) dF¥ 1k
W
= [er, I (dcw).
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In particular,

|6|[gr¢]](a))| = |[[gr¢]](dcw) - [[gr¢]](dcw)|

<r§;¢ | dew) dS27F - <tﬂ§¢ | dew) dSCF
gy gry

< SQ_k((grcb Agr,)U{pegr,ngr,: Tangll)(p) # Tanlgr.ﬁ 203 S];;P ldcw|

<& supldcwl.
Hn

The arbitrariness of & implies that 6[[gr¢]] (w) =0 forevery w € D%I"’k, as desired. m}

A. Proof of Proposition 3.38

We provide here the proofs of Lemma 3.37 and Proposition 3.38 that were only stated in Subsection
3.6. The proof of Lemma 3.37 is quite simple.

Proof of Lemma 3.37. Assume that (a) holds; then either dim &%} N &, = m, in which case &; = P,

and (b) trivially holds or dim %, N P, = m — 1. Let vy, ..., v, be a basis of | N P, and choose
wi € P\ P and wy € P, \ Py, then, for every 11,1, as in statement (b) there exist ¢1,¢y € R\ {0}
such that

H=CiWi AVI A AV

I =CoWar AV A=+ AVpy—1.

The difference ¢; — ¢, is clearly a simple vector and (b) follows.

Statement (b) implies (c); hence, we have only to show that (c) implies (a). Assume there exist ¢y, #, as
in (c). Let h := dim 9} N P,; we assume h > 1, but the following argument can be easily adapted to the
case h = 0. By assumption,  := ] —t, is simple; moreover, we have 9| N9, C spant, because for every
v e P NP, wehave vAt = vA(t)—tp) = 0. In particular, after fixing abasis vy, . . ., vy of 1 NP, we
can find vp41,..., Vv, € Spant, e, ..., em-n € P \ &P and e, pi1s - - -y €2(m-h) € Py \ Py such that

FT=VIAN- - AVR AV AN AV
H=viA---AvpANerN---Nepy_p
D=VIA- - AVh Nemht1 N N €2m-h)-

Then, onthe one side, t’ := ej A Aep_p—€m-hs1 A" - - A€2(m—p) €quals the simple vector v1 A« - -Avpy;

hence, dimspant’ = m — h. On the other side, ey, ..., es(n-p) are linearly independent and one can
easily check that, in case m — h > 2, one would have

spant’ ={v e V:vAt' =0} = {v e spanfey,...,er0m-n)} : v AL =0} = {0}.
This implies that 4 > m — 1, which is statement (a). m]

On the contrary, the proof of Proposition 3.38 is long and technical: there might well be a simpler
one but the author was not able to find it. The proof provided here is based on Lemmata A.1 and A.3,
where one essentially studies the model cases of the planes &, j, introduced in (3.11). Proposition 3.38
will then follow by a quite standard use of Proposition 3.13.
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Remark 3.27 will be utilised several times.

2a-vector such that

Lemma A.l. Let a > 1 be an integer such that n < 2a < 2n — 1; assume that T € Aygb is a simple

[TAT)g=[XiA-- AXgAYI A~ ANYy AT] 7

Then the following statements hold:

() if2a>n, thent =X A---AXgAYT AN AYy;
(ii) if 2a = n, then either

T=X A AXg AV A A Y,
or
T=(=D)Xae1 A+ AXog AYar1 Ao+ A Yog.
Remark A.2. When 2a = n one can use computations analogous to those in Remark 3.27 to check
the action of (—=1)¢ Xg41 A -+ A Xog A Yas1 A -+ A Yoy AT in duality with elements of the basis of
J = 7! provided by Proposition 1.10. As a matter of fact, the equality

[Xi A AXgAYTA - AY AT 7= (=D X1 A AXpg AYgui A= AYag AT 7

does hold.
For instance, recalling Example 3.23. it can be easily checked that in H?.

I AYYAT | A ==X AYSAT | 2) for every 1 € J°.

Proof of Lemma A.1. Let us write 7 = ' A --- A 72¢ for suitable horizontal vectors 7* € §;. Writing

TiszX1+~--+T£nYn, i=1,...,2a
we introduce the matrix
‘rl1 ‘1'12“ M,
M:=col[t'|---|7%] =] : of=row | o,
Tzln 7'225 M>,
where for every i = 1,...,2n we denoted by M; = (Tl-l, e, Tiz“) € R24 the ith row of M. It is worth

noticing that for every I C {1,...,2n} with |/| = 2a the equality
(7 | dzp) = det[M;]iers

holds, where we used notation (3.12) and denoted by [M;];c; the 2a X 2a matrix formed by the rows
M;,i € I, arranged in the natural order.

We now fix a subset I c {1,...,2n} of indices having maximal cardinality among all subsets
& c{1,...,2n} satisfying the two properties

Vi,jeJ i% jmodn A
(M;);c.s are linearly independent. '
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We also define
J:={je{l,...,2n} :JieIsuchthat j =imodn}\I
K:={1,....2n} \ (1 UJ).

Clearly, I N J = 0.

Claim1:a < |I| < nand |J| = |1|.
Let us prove the first claimed inequality. We have v # 0, for otherwise we would obtain the
contradiction

0=t AT |agAO)y=(X1 A AXgAYTA---AY AT |ag AB) =1

where

R = 1 2 ~--n—an—a+1‘---‘a‘ 20 > n

a+lja+2 |---| n
0 5 (A2)

_ la ]

R'_a+1a+2 Ta if 2a = n.
In particular, the rank of M is 2a and we can find distinct numbers iy, ..., i, in {1,...,2n} such that
M;,, ..., M,;,, are linearly independent. It is then obvious that we can find a subset of {7y, . . ., 2, } made

by at least a elements that are never congruent modulo r; this proves that |I| > a.
The remaining part of the claim (|I| < n and |J| = |I]) is clear from the definitions of 7 and J.

Claim 2: For every k € K, My € span{M; :i € I}.
Assume, on the contrary, that there exists k € K such that (M;);eju(x} are linearly independent; then
& := 1 U {k} would satisfy the two properties in (A.1) and this would contradict the maximality of I.

Claim 3: There exists J' C J such that |J'| = 2a — |Iland (M;);cyuy are linearly independent. In
particular, (M;)icruyr form a basis of R*®.

We are going to implicitly use the facts that / N J = @ and |I| = |J|. Let ji, j2,..., jjr| be an
enumeration of all of the elements of J; for £ =0, 1,.. ., || we inductively define J l’, by J(’) ;=0 and

if Mj, ¢ span{M; :i e IUJ;_,}, thenJ; :=J,_, U{jc}
if Mj, € span{M; : i € TUJ,_,}, then J; :=J;_,.

Setting J’ = J I/ 1 the elements (M;);csuy- are linearly independent by construction; let us prove that

they span the whole R>¢, which will also imply the equality |J’| = 2a — |I|. Assume, on the contrary,
that the dimension of

M o=span{M; :i € 1UJ'} =span{M; :i € [UJ}

(the second equality holding by construction) is less than 2a; recalling Claim 2 and the fact that
ITUJUK ={1,...,2n}, this would imply that

Vie{l,...,2n} M; € M,

and the rank of M would not be 2a. This is a contradiction, and Claim 3 is proved.
‘We now introduce

A={ie{l,...,n}: {i,i+n} cIUJ}
B:=(UJ)Y\(AUu(n+A)=I\(AU(n+A))
C:=Kn{l,...,n},

https://doi.org/10.1017/fms.2021.84 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2021.84

90 Davide Vittone
where for E c {1,...,n} wewriten+E for {i € {n+1,...,2n} : i —n € E}. We notice the following
properties:
(i) ifi € A, theneither(i e Iandi+n € J'),or(i € J andi+n € I);
(ii) |1 = [J| = |Al + |B| and 2|A[ + |B| = [I| + |J'| = 2a;
(iii) K=CU (n+C).
In particular,

|Al = |Cl = |Al = 5IK| = |Al = 520 = 1| = |J]) = 2|A| +|B| =n=2a~n 20

and we can define the (nonnecessarily standard) Young tableau

a a DEEEEY DY DY a
R -=41[%2 ‘ |A] ‘
Cl 6'2 PEEIEY Clc‘
where ay, ..., a4 is the increasing enumeration of the elements of A and ¢, ..., ¢|c| is the increasing

enumeration of the elements of C; of course, when |A| = |C| (or, which is the same, 2a = n) the tableau
Ris a2 X |A| matrix.
We now consider the covector A := dzp A ag; it can be easily checked that A A 8 € f‘”l.

Claim4: {t | 1) # 0.
It is enough to check that

(t 1) =(7 | dzp Ndxya); (A.3)
in fact, if (A.3) were true one would get
(| ) =(t | dzp ANdxya) = £det[M;]icavnrayup = £ det[M;]icruy # 0, (A4)

as claimed. The signs + in (A.4) are not relevant and depend on A and B only.
Let us prove (A.3). By definition of ag, the covector A can be written as

A=dzgp Nag =dzp /\dxyA+/i
where 1 is a sum of covectors of the form +dzg A dxyaucr, where A’ € Aand C’ ¢ C satisfy
|A’|+|C’|=]A] and |C'| =1
(in particular, |A’| < |A]). We have
(t | dzp N dxyaucr) = = det[M;]icpuauciu(n+A)U(n+C?) (A.5)

and we claim that this determinant vanishes. Choose indeed @ € A\ A’ and let j € J’ be such that j = a
mod 7 (recall property (i) above); by Claim 2 we obtain

span(M;)iepuaucru(neayum+cr) C span(M;)iepuaru(n+an) + span(M;)iccru(n+c?)
C span(M;)icpuaru(n+ar) + span(M;)icy
C span(M;)ierugn (j}-
In particular, span(M;);epua'uc’u(n+A’un+c’) cannot be of maximal dimension 2a. This implies that

the determinant in (A.5) is null, as claimed. The equality (r | 1) = 0 then immediately follows and,
since (7 | 1) = (1 | dzp A dxy, + A), equality (A.3) follows.
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Claim 5: B = 0.

By Remark 3.21, the covector ag can be written as a finite linear combination ag = >, cras,, cr € R,
of covectors as, associated to standard Young tableaux S, containing the elements of AUC. In particular,
if B # 0, one would have

(Tl =) ce(rldzg nas,) = Y co(Xi A AXg AYi Avee AV | dzg Aas,) =0,
4 t

the last equality due to Remark 3.27 (with b := 0) and the fact that dzp contains no factors of the form
dx;. This would contradict Claim 4; hence, B = () as claimed.
Claim 5 implies that |A| = a and

IUJ =AU(+A)=1UJ and C={l,....n}\A.

Without loss of generality, we can assume that / = Aand J =J' = n + A.

Claim 6: My =0 foreveryk ¢ AU (n+ A).
Assume that, on the contrary, there exists k ¢ AU (n+ A) (i.e., k € K = C U (n+ C)) such that
My # 0. By Claim 3, (M;);cau(n+a) form a basis of R2%; hence,

span{M; :i € A} Nspan{M; : i e n+ A} = {0},
which gives that
either Mj ¢ span{M; :i € A} or My ¢span{M,;:ien+A}.

This would contradict the choice of I, because ¥ := A U {k} (in the first case) or . := (n+ A) U {k}
(in the second one) would satisfy both conditions in (A.1), but |#| > |I|.

Claim 7: {t | dxyp) = 0 for every D C {1,...,n} such that |D| = |A| and D # A.
This is an immediate consequence of the equality (7 | dxyp) = +det[M;];epu(n+p) together with
Claim 6.

Claim8: {n-a+1l,n—a+2,...,a} C A.

Here we are understanding that the claim is empty when n = 2a. Denoting by R the Young tableau
defined in (A.2), one can easily check that the covector ax can be written as a sum of elements of
the form +dxyp where the subsets D C {1,...,n} have cardinality |D| = |A| = a and all contain
{n—a+1,...,a}. fonehad {n—a+1,...,a} ¢ A, then one would get the contradiction

I=(XiA- - AXgAYT A AYy |ag) =(t|ag) =0,

the last equality following from Claim 7.

Claim 9: If 2a > n, then A ={1,...,a}.
The condition 2a > n implies that [C| =n —|A| =n—a < a =|A|. Leta; < as < --- < a4 be the
elements of A and ¢; < - -+ < ¢|c| those of C and define

R, = a1laz] laici]aici [ [ajal]
cileal| - Clcl

The Young tableau R; is not necessarily a standard one, as it might happen that a; > ¢; for some i;
however, it can be easily seen that the tableau

Ry = |mi]mal - Imicifajcpn [--|aia)]
Hi|M2] | H|C|
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defined by setting m; := min{a;, ¢;}, y; := max{a;, ¢;} (or, equivalently, by switching the positions of
a;,c; in case a; > c¢;) is a standard one. Notice that, since the ith column of R; and the ith column of
R contain the same elements a;, ¢;, we have ag, = +ag,. Using Claim 7 we obtain

Xy A AXgANYT A= ANY | ag,) =(7 | ag,) = £(T | ag,) (A6)
==+ (1 | dxya) = £ det[M;]icav(n+a) # 0, '
which, by Remark 3.27, implies that R> = R. Therefore, the rightmost entry in the first row of R, must
be a, but this coincides with the rightmost entry in the first row of R;; that is, with max A. Therefore,
A c{l,...,n}issuchthat |A| = a and max A = a, and the claim A = {1,..., a} follows.

Claim 10: If 2a = n, then either A={1,...,al or A={a+1,...,2a}.
The proof is similar to that of Claim 9. Notice that now |C| = |[A| = a;leta; < ay < --- < a4 be
the elements of A and ¢; < - - < c|4) those of C and define

alar| - la
R, = 1|a2 |A|
ci|caf --- ClAl
as before. Again, let
m m ... m
Ry = 1|ma2 |A|
Hi|H2 | - | HiA]

be defined by m; := min{a;, ¢;}, u; :=£nax{ai, ¢i}; Ry is a standard Young tableau, ag, = tag,, and
as in (A.6), we can conclude that R, = R. We now distinguish two cases:

o if 1 € A, thena; =m; =1 and, since R, = R, we have (1 =cy =a+ 1. In particular,
Cc{l,...,n}={1,...,2a} is such that |C| = @ and min C = a + 1. This implies
C={a+1,...,n}andinturn A ={1,...,a};

oifl ¢ A,thenl =m; =cyanda+1=pu; =aj.Inparticular, A C {1,...,n} ={1,...,2a} is such
that |A| = ¢ and min A = a + 1, which implies A = {a + 1,...,n}.

The conclusion of the proof now follows easily. If 2a > n, by Claims 6 and 9 we have that M; = 0
foreveryi e {a+1,...,n,n+a+1,...,2n}. This implies that t = tX; A--- A X, AY] A--- A Y, for
some ¢ € R, and ¢ is forced to be 1 because (X; A--- AXyAY; A---AY, | ag,) #0and

(XiAAXgAYIA-AYg lag) =(Tlag) =KX1 A AXg AYT A AYy | ag).

This concludes the proof in case n > 2a. The case n = 2a follows analogously on considering Claims 6
and 10. O

We now use Lemma A.1 to prove the following, more general, result, of which Lemma A.1 represents
the case b = 0.

Lemma A.3. Let a > 0 and b > 1 be integers such thatn < 2a+ b < 2n — 1; assume that T € Nog+pb1
is a simple (2a + b)-vector such that

[t AT)7=[Xi A AXgsp AYi A= AYy AT] (A7)

Then, the following statements hold:

G) if2a+b>nthent =X AN ANXgp ANYI A~ ANYy;
(ii) if2a + b = n, then either

T=X1 A ANXgwp NYT A ANY,
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or
= (=D Xog Ao A Xy AYupit Aee A Y
Remark A.4. As a matter of fact, if 2a + b = n, the equality
[Xi A AXgp AYT A AY AT 7= [(=DP*) X Ao AXy AYgypst A= AYy AT

holds. This can be proved by using Remark 3.27 and checking the action of X1 A -+ A Xy A Ygip1 A
.-+ AY, AT in duality with elements of the basis of 2“**! = 7! provided by Proposition 1.10.
For instance, in H? one has the equality [X; AX, AY] AT]7= [Xa A Xz AY3 AT] .

Proof of Lemma A.3. Let us write 7 = 7' A --- A 724*? for suitable horizontal vectors 7% € by ; writing

=X+ +1) Yy, i=1,...,2a+b
we introduce the matrix
Tll e Tf“”’ M,
M :=col[ |- |72 ]| =] : S l=row]| |,
1'21n - 7223”’ Mo,
where for every i = 1,...,2n we denoted by M; = (t},...,7?**?) € R?#*? the ith row of M. Again, for

every I C {1,...,2n} with |I| = 2a + b the equality
(t | dzy) = det[M;]ies

holds, where we used notation (3.12).

Claim 1: Mgy1, . .., Mgyp are linearly independent.
Assume not: then, for every I C {1,...,2n} with |I| = 2a we would get

(t | dxiasi,. avpy ANdzy) =0.

In particular,

1 2 ~-n—a—b-~\a\
a+b+1la+b+2]|--- n

atby Nag) =0 for R:=

,,,,,

,,,,,,,,,, a+b N\ CZR> ==+1

by assumption.

Claim 2: Up to a proper choice of t',...,72%*? the b x (2a + b) subblock M of M determined by
the rows My41, . . ., Mayp satisfies

Ma+1
M=| = | =|0px2al|lp
Marp

where Opxoq denotes a b X 2~a block with null entries and I, is the b X b identity matrix.
By Claim 1, the matrix M has rank b; up to a permutation of 7', ..., 72“*” we can assume that the
rightmost b X b minor of M has nonzero determinant. Namely, calling M’/ = (Ti Iy TZI +h)T the jth
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column of M (the superscript T denoting transposition), the rightmost minor M := [M2a+Y| | M2
of M satisfies det M # 0. Fori =2a+1,...,2a + b we define

b
. JR .
ol = E (M )/ r2ati
=1

and we notice that span{7', ..., 72¢**} = span{7!, ..., 724, 2%+ . 5?%*"} because of the equality
span{72e*l . 724+0} — gpan{c29t!, .., o?%*P}. Notice that
da+i i . .
o2t =5 foralli,j € {l,...,b}; (A.8)
in particular, when in the matrix M the rightmost b columns 72¢*! . . 729*0 are replaced by
o2+l %P the block M is replaced by a block of the form
*px2a | Ip

where *py2, denotes a b X 2a matrix. Define

b
ot :=Ti—ZTZ+j02a+j, i=1,...,2a
j=1
so that
ocb=0 foralli=1,...,2a,j=a+1,...,a+b. (A.9)
It is easily seen that span{7!,..., 72%*?} = span{c', ..., 0?%*?}; in particular, o ;= o' A --- A 024D
is a nonzero multiple of 7. Upon multiplying o' by a nonzero factor, we can assume that o = 7. In this
way, if one replaces 7!, ..., 729" by ¢!, ..., 0>*” then the new matrix M is such that the block M
has the form
Opx2a [ Ip
as wished.
In the following, we will keep on using the notation 7', . . ., 72%*” for the new family o', .. ., ¢+,
Claim 3a: If n > 2a + b, then up to a proper choice of T\, ..., 72%*" we can assume that the matrix
M is of the form
1,10 |A;
00 |1
0(0|D
_ (_1\ab 1
M =(-1) 017, A, (A.10)
B||B;| C
0|0 |D,
where

(i) the 2a + b columns of M have been arranged into three blocks of size, respectively, a, a and b;
(ii) the 2n rows of M have been arranged into six blocks of size, respectively, a, b,n —a — b, a, b and
n—a-b;

https://doi.org/10.1017/fms.2021.84 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2021.84

Forum of Mathematics, Sigma 95

(iii) O denotes null matrices of the proper size;
(iv) 14, I denote identity matrices of size a, b;
(v) Ay, Az, B,C1,Cy, D1, Dy denote generic matrices of the proper size.

Claim 3b: If n = 2a + b, then up to a proper choice of T, 724 \we can assume that

I, 0 A4 0]0|D;
010 |Ip 0101
0/0|D I,|0 A

i — (—1)ab 1 _ (_1yab+) | La 1

either M = (-1) 017, 4, orM = (-1) 010D, (A.11)

B |B;| C B |B| C
010 1|D;, 0|1,]A;

where the notation is similar to Claim 3a, (i)—(v).

We prove Claims 3a and 3b simultaneously; notice that there is nothing to prove in case a = 0. Using
the block subdivision of M as in (A.10) and (A.11), we already know by Claim 2 that the second block
of rows is of the form [0]0|/,]. Let us prove that we can choose 7', ..., 72%*? 5o that null and identity
blocks 0 and 7, appear where claimed in (A.10) and (A.11).

We consider now a (n— b)th Heisenberg group and we agree that all objects associated with it will be
overlined; in particular, we denote by Yl s Yn,b, 7] R ,7,,,1,, T the standard basis of left-invariant
vector fields in H"~?. Define

—Z(TX +10, Y )) + Z (T Xj+ 1o Y, i=1.....2a.
Jj=a+1
Consider 7 := ?1/\--'/\?2“;weprovethat
E— — - = - = = —  2a+l
GATID = (D)PX A ARG AV A AT AT | forallle 777 (A12)

—a+1 —

where the sy_mbol JZ “*" stands for Rumin’s space of (2a + 1)-covectors in H""?. Lemma A.l then
implies7 = X A--- A X AY A--AY, (unlfss 2a + b = n, in which case we also have the possibility
T=(-1)ge1 A AXnp A Ya+1 A --- AY,_p) and this implies Claims 3a-3b up to some tedious

arguments. B .
Consider I c {1,...,2(n—>b)} suchthat || = 2a; calling M the (2n—2b) X 2a matrix whose columns
areT',...,7>% and using for forms in H"? the notation dz+ 7 analogous to that in (3.12), we have

(7 | dzp) = det[M;]

iel’

where, of course, M,- is the ith row of M. Since M is obtained from M by cancelling the third block of
columns and the second and fifth blocks of rows (according to the arrangement in (A.10) and (A.11))
and since the second block of rows of M is [0|0|/}], it is clear that

(T | dz7) :det[ﬁ]iej = (-1)%b det{Mi], )0 qar....arb)

where ¢ : {1,...,2(n-b)} — {1,...,2n} is defined by
i ifl<i<a
(i):=4i+b ifa+l1<i<n-b+a

i+2bifn—-b+a+1<i<2n-2b.
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This implies that, for every disjoint subsets 1, 7_C {1,...,n—b} and every standard Young tableau R,
with rows of the proper lengths %(2& —|I|-1|J])and n—b — %(Za + |I| + |J|) and whose entries are
precisely the numbers in {1,...,n - b} \ (I U J), we have

(T | dxy A dyg Aag) = (DT 1 de, gy gant....arn) N DT AR (A.13)
where ¢(R) denotes the tableau of the same form of R, obtained on replacing each entry, say i, of R with
t(Z). Observe that ¢(R) is also a standard Young tableau because ¢ is increasing. Taking Remark 3.27
and assumption (A.7) into account, equality (A.13) now implies (A.12).

From now on we assume that, if n = 2a + b, we are in the first case between the two displayed in
(A.11); indeed, the following arguments can be easily'' generalised to the other possible case.

Claim 4: Up to a proper choice of T',..., 72 we can assume that the blocks Ay, Ay in (A.10)—
(A.11) are O.
It is enough to replace i fori=2a+1,...,2a+b, with

a
i ij o, i _a+j
T E (TjT + T T ).
Jj=1

We are using in a key way the two blocks of the form 7, appearing in (A.10)—(A.11).
From now on the vectors 7 are fixed; we are going to prove that the remaining blocks B, Cy, C2, D1, D5
in (A.10)—(A.11) are 0.

Claim 5: The blocks By and B; in (A.10)—(A.11) are 0.
We need to prove that

i =0 foralli=1,...,2a, j=1,...,b.

n+a+j —

Fix then such i and j. Let R be the standard Young tableau

= 1 2 ~--n—a—b---\a‘ )
R'_a+b+1a+b+2 n ifn<2a+b
(A.14)
R = 1 2 N ifn=2a+b
“la+b+1la+b+2|---|n hn=sa+b.

We define a new tableau Q in the following way:

o if 1 £ i < a, Q is the tableau obtained from Ron replacing, in the first row, the entry i/ with a + j;
o ifa+1 <i < 2a,(Q is the tableau obtained from R on replacing, in the first row, the entry i — @ with
a+j.

Consider

Ai=dx(as, . arb )\ {a+j} NdYi Nag ifl<i<a

.....

Ai=dxi_ayu{a+,...arb}\{a+j) N @Q ifa+1<i<2a.

The tableau Q is not a standard Young one; nonetheless, A A 8 € Jratb+l

the assumption (A.7), we have

and, using Remark 3.21 and

(r|14)=0. (A.15)

0ne elegant way is to apply the H-linear isomorphism associated with the Lie algebra isomorphism L.(X;) =
Xarbris Li(Yi) =Yaup+i if1 <0 <a, Lo(Xi) =X, L(Yi) =Yiifa+l <i<a+b, L.(Xi) =Xi—qb, Ls(Yi) =Yi—a-b
ifa+b+1<i<n=2a+b.
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Assume that 1 < i < a; we can write

A= dx g, _asb)\(asj) A dyi A Y 0 (S) dxys (A.16)

S
where o (S) € {1, -1} is a suitable sign and the sum varies among the 2"~¢~? subsets S c {1,...,a,a+
j,a+b+1,...,n}\ {i} (ie., S is a subset of the entries of Q) of cardinality a and containing exactly

one element from each column of Q. For any such S we have

..... atbP\farjy N dyi Ndxys) =det[Melee((att,....ath )\ {a+j})U{n+i}uSU(n+S) (A17)
=+ det[Nelresu(nes)uin+iys '

where

o the sign + depends only on S, 1, j,

o Ny := (Tl, e, T{?“, ‘r[za” ) is obtained from the £th row M, of M on cancelling the last b

components except for the (2a + j)th one,
o we used that the second block of rows in (A.10)-(A.11) is [0]0]/p].

Using Claim 4, one finds
ifS={1,...,a,a+j}\ {i}, then (7 | dx (41, .. a+b)\{a+j} N dYyi N dxys) = iT,i+a+j. (A.18)

Notice that the case S = {1,...,a,a+ j} \ {i} correspods to S containing the elements in the first row
of Q. Instead, if S # {1,...,a,a+ j} \ {i}, then there exists an element £ € S belonging to the second
row of Q; thatis, £ € SN{a+b+1,...,n}. In this case, N; and N, ; are linearly dependent, because
by Claim 3 all of their entries are null except (possibly) for the last one; in particular,

it S #{l,...,a,a+j}\{i}, then (7 | dx(as1.....a+p}\(a+i} N @Yari A dxys) =0. (A.19)
By (A.15), (A.16), (A.18) and (A.19) we obtain

0=(t|A) = =7,

n+a+j

(A.20)

and the claim is proved incase 1 <i < a.Ifa+1 <i < 2a, (A.20) can be proved by a completely

analogous argument that we omit. The claim is proved.

Claim 6: The block C in (A.10)—(A.11) is O.
The block C is a square one, with size b X b; we start by proving that the elements on the diagonal
of C are all null; that is, that

729% =0 foranyi=1,...,b. (A.21)

n+a+i

Lettheni € {1,..., b} be fixed; consider
A =dx(an,... atb )\ fari) N DYari N g,
where R is as in (A.14). We can write

A= dx (a1, . awb) (asiy A dYasi A Y o°(S) dxys (A22)
S
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where o (S) € {1, -1} is a suitable sign and the sum varies among the 2"~¢~? subsets S c{l,...,a,a+
b+1,...,n} of cardinality a and containing exactly one element from each column of R. For any such
S we have

(t | dxiast,....arb\(asi} N @Vasi N dxys) =det[M]jc((a+1,...,a+b )\ {a+i})U{n+a+i USU(n+S) (A23)

=+ det[N;]jesu(n+S)u{n+ati}s
where

o the sign + depends only on S and i,

o Nj:= (T}, ..., T2 T]?““' ) is obtained from the jth row M; of M on cancelling the last b components
except for the (2a + i)th one,

o we used that the second block of rows in (A.10)—(A.11) is [0]0|/p].

Using Claims 4 and 5, one finds

it §={1,...,a}, then (7 | dx{qs1, _a+b}\{a+i} N DVasri N dxys) = iT,zlf:;ii. (A.24)
On the contrary, if § # {1, ..., a}, then there exists an element fes belonging to the second row of R:
thatis, £ €e SN{a+b+1,...,n}. Inthis case, N; and N, 7 are linearly dependent, because by Claim 3

all of their entries are null except (possibly) for the last one; in particular, (A.23) gives

if S #{1,...,a}, then (7 | dx (qel,...avb P\ fa+i} N AYari N dxys) =0. (A.25)

By (A.22), (A.24) and (A.25) we obtain

0= (X| A AXgsp AVI A AYq | A) = (1| A) = £72¢4

n+a+i’

and (A.21) is proved.
We now prove that the off-diagonal entries of C are null as well. We then fix i, j € {1, ..., b} with
J < i and prove that

T = =0, (A.26)

n+a+j = ‘n+a+i

Let us consider

Ap = dx{a+1 ..... a+b}\{a+j,a+i} N dy{n+a+j,n+a+i} Aag
A2 = dx(au,....avb)\(atj.ari) N @Q

where R is as in (A.14) and Q is the tableau obtained by adding a column (a + j, a + i) on the left of R;

that is,
la+j 1 '--n—a—bn—a—b+1‘---‘a‘ .
Q:= a+ila+b+1]--- n ifn<2a+b
la+j 1 <eela P
Q= laxilavb+1]-n ifn=2a+b.

Notice that Q is not a standard Young tableau; however, 1] A 6 and A, A 6 belong to JRatb+l and, using
Remark 3.21 and the assumption (A.7), one obtains

Tlap ={Xin-AXgp NYIA---AY, | A1) =0

A27
(TlAd)=Xi A AXagsp AYIL A= ANy | A2) =0. (A2
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The argument that follows is pretty much similar to the previous one as well as to that of Claim 5. We
write

(A.28)

where o7(S), o (T) € {1, -1} are suitable signs and the sums vary among the subsets S, 7" of the sets of
entries of R, Q (respectively) with cardinality (respectively) a, a + 1 and containing exactly one element
from each column of (respectively) R, Q. For any such S, T we have

(r | dX{a+1 ..... atbP\{a+j,a+i} N dy{n+a+j,n+a+i} A dxys)

det[Melee({at,...,avb )\ {a+j,a+i}) U{n+a+jnta+i USU(n+S) (A.29)

* det[0f]lESU(n+S)U{n+a+j,n+a+i}s
and

(t | dx(as1,....arb )\ (atj,ari} N AxyT) =det[Melee({art,....arb )\ {a+).a+i})UT U(n+T)

(A.30)
=+det[O¢lrerun+T)

where

o the signs + depend only on S, 7T, and j,

o Op:=(th,..., T{%“, T?Mj , T?Mi ) is obtained from the £th row M, of M on cancelling the last b

components except for the (2a + j)th and (2a + i)th ones,
o we used that the second block of rows in (A.10)—(A.11) is [0]0|1].
Using Claims 4 and 5 and the fact that the diagonal of C is null, one finds that

() if S={1,...,a}, then

(t | dX(as1,....atb}\(a+j,a+i}) N Antatjnrari N dXYs)

Tza"‘f 72a+i 72a+i 2ati 2
— n+a+j ‘n+a+j | — o ntatj | a+j a+i .
== det dat) Dati = +det 2a+j 0 = iTn+a+iTi’l+a+j’

n+a+i ‘n+a+i n+a+i

(i) if T ={1,...,a,a+ j}, then
<T | dx{a+l ..... a+b}\{a+j,a+i} A dxyT>
2a+j 2a+i
= idet( Tzaz;rfj Tt ) = idet(] 0 ) = 7204

Da+i 0 T2a+i ) n+a+j°
n+a+j n+a+j n+a+j

(iii) if T ={1,...,a,a +i}, then

(t | dxgast,...avb)\fa+j,a+i} N dXYT)

2a+j  _2a+i 0 1 .
T, . A 2a+j
=+ det ( za‘-;if Zaa-:L-i ) = £ det ( 2a+j 0 ) = iTn+a+i’
n+a+i " n+a+i n+a+i
where the + signs will be irrelevant. If S # {1, ..., a}, then there exists an element fteSn{a+b+
1,...,n}; it follows that Oz, O, 7, Opniaxr j» Onta+i are linearly dependent, because by Claims 3 and 5
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all of their entries are null except (possibly) for the last two ones. In particular, (A.29) gives

if S #{1,...,a},

(A31)
then (7 | dx(as1,....a+b )\ {atj,ati} AN DYntarjnrari A dxys) = 0.

IfT #{1,...,a,a+j}yandT # {1,...,a,a+i}, then there exists anelement £ € TN{a+b+1,...,n};
notice also that eithera+j € Tora+i € T.If a+ j € T, then Oz, 0,,,7,Ou+j, Onsas; are linearly
dependent, again because by Claims 3 and 5 all of their entries are null except (possibly) for the last
two. Similarly, when a +i € T one has that O;, O O a+i, Oniq+i are linearly dependent. We deduce
by (A.30) that

n+l>

ifT#{l,...,a,a+j}and T # {1,...,a,a +1i},

(A.32)
then (7 | dx(441,....asb}\{a+j.a+i} N dxyT) = 0.
By (A.27), (A.28), (A.31) and (i)—(ii)—(iii) above we finally achieve
2a+j a+i 2a+j a+i
e o ;=0 and =+ Treari Tr%+;:+j =0,
and (A.26) is proved.
Claim 7: The blocks Dy and D, in (A.10)—(A.11) are 0.
The claim amounts to showing that
T =0=14"  foranyl<i<banda+b+1<j<n. (A33)

Fix i, j as in (A.33) and consider the Young tableau Q obtained from Ron replacing, in the second row,
the entry j with a +i. Set

A =dx(jyu{a,...arb}\fa+i) N XQ

and write

A = dx(jyufa+,....arb )\ {a+i} N Z o (S) dxys (A.34)
S

where o (S) € {1,—1} is a suitable sign and the sum varies among the 2"~%? subsets S ¢ {a +i} U
{1,...,a,a+b+1,...,n}\ {j} (ie., S is a subset of the set of entries of Q) with cardinality a and
containing exactly one element from each column of Q. For any such S we have

(t | dx(jyu(as,....a+b )\ fari) A dxys) =det[M¢lec(jyu{atl,....a+h )\ {a+i})USU(n+S)

(A.35)
=+ det[Nelee(jjusu(n+s)
where
o the sign + depends only on S, j and i,
o N¢:=(1},...,77%,7;%*) is obtained from the £th row M, of M on canceling the last b components
except for the (2a + i)th one,

o we used that the second block of rows in (A.10)—(A.11) is [0]0|/p].
Using the previous claims, we obtain

if S={1,...,a}, then (7 | dx (jyu{a+l,...,arb )\ {a+i} N dxys) = iT]gaH.. (A.36)
If S # {1,...,a}, then there exists an element £/ € S belonging to the second row of Q; that is,

teSn({a+i}u{a+b+1,...,n}\{j}). Inthis case, N; and N,  are linearly dependent, because by
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Claims 3, 4 and 5 all of their entries are null except (possibly) for the last one; in particular, (A.35) gives
if S# {1,...,a}, then (7 | dx(qs1,._a+b}\{a+i} N AVa+i A dxys) = 0. (A.37)
By (A.34), (A.36), (A.37) and Remark 3.21 we obtain
0=(X; A AXap AYI A A | 2) = (T | ) = £7;4%

and the first equality in (A.33) is proved.
We are left to show that also i‘rﬁfr‘;?i = 0 for any i, j as in (A.33); this can be done by considering (for
the same Q above)

..... arbP\fa+i} NdYj A ag

and following a similar argument, which we omit. The proof of Claim 7 is then complete.
The proof of Lemma A.3 now follows from the equality 7 = 7! A - - - A 729*?; the fact that the blocks
A1,A2,B1,B,,C,D1, D5 in (A.10)—-(A.11) are all null; and the equality
XiAN-ANXgp AYIT A AT,
=(-DPX A AXGAYI A AYa AKXt A A Xasp. o

Proof of Proposition 3.38. Assume that there exists a (2n+ 1 — k)-dimensional vertical plane 9| whose
unit tangent vector tg] is such that [tgl ].7is a multiple of {. By Proposition 3.13 there exist nonnegative
integers a and b and an H-linear isomorphim £ : H" — H" such thata + b < n,dim % =2a+b + 1,
L*(0) =0, L*(df) = db and

L(P1) = Paps

where £, 5, is defined as in (3.11). Let us denote by L. : Jont1-k — J2n+1-k the isomorphism defined
in (5.9). Clearly, E*([tgl 17) = [L. (tg1 )].7 is a multiple of

[15,,17=[Xi A A Xasp AYI A= NV AT

hence, £, is amultiple of [X] A+ A Xgyp AYIA--- AY, AT] 7
Assume that 9, is another vertical (2n + 1 — k)-plane in H" such that [tgz] 7is a multiple of {. The
vertical plane 5 := L(%) is such that 15, is a multiple of &(@2); hence, [, |7 is a multiple of

E*([tg,z]j); that is, of £, and eventually of [X; A~ A Xgep AYI A--- AY, AT] 7. If k < n, Lemma
A.3 implies that 3 = P, p; hence, P, = P;. This proves part (i) of the statement.
If instead k£ = n, Lemma A.3 implies that either 93 = &, j, or

Py =exp(span{Xy+1, .. . » X Yaublr o> Y, T}).

Observe that, if a = 0, then 93 = P, . On the contrary, if a > 1, then either 93 = &P, or 3 and
P, are not rank 1 connected, because

dimPsNPup=b+1<2a+b+1)-2=dim%P; - 2.
All in all, we deduce that either &% = &y, or
Py = L7} (exp(span{Xg+1, -+ +» Xn> Yarbils- - - Y, T}))

and &, &P, are not rank 1 connected. This concludes the proof. O
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