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Abstract

We characterize the classes of graphs of order n whose automorphism group either contains
or coincides with the 2-Sylow subgroup of the symmetric group Sn.

Subject classification (Amer. Math. Soc. (MOS) 1970): 05 C 25.

1. Introduction

Throughout this paper, all graphs will be on a finite set of vertices without loops,
multiple edges or directed edges. Most of the graph theoretical terms may be found
in Harary (1971). As a result we use Px x P2 for the direct sum of two permutation
groups and PJP2] f° r the composition of Pt around P2.

If Gte{K2,K^, then by [Kf]r we mean the repeated (graph) composition
[<?i[G2[...[Gr]...]]]. We define the graph H(2r) to be the graph [K£]r with Gx = K2

and G{£Gi+1 for / = 1,2 r—1.

LEMMA 1.1. (Sabidussi (1959).) TiGJGJ) = r(G1)[r(G2)] if and only if
(i) if there are distinct vertices in G1 with the same open neighbourhood, then

G2 is connected,
(ii) if there are distinct vertices in Gt with the same closed neighbourhood, then

G2 is connected.

COROLLARY. For all Gt and G2, r(Gx) [IXG-j)] *S T(G1[G2]).

LEMMA 1.2. (Holton and Grant (1975).) Let G be a vertex-transitive graph. If
F(G) contains a transposition, then for some m>\, G = H[Km] or G = H[Rm],
where H is a vertex-transitive graph. Conversely if G = H[Km] or G = H[Km]for

27

https://doi.org/10.1017/S1446788700014907 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014907
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some m>\ and H is vertex-transitive, then G is vertex-transitive and T(G) contains
a transposition.

The Z-join of two graphs is the generalization of composition introduced in
Sabidussi (1961). If G is an Z-join we write G = X[Y1,...,Yn] and refer to the
graphs Yj as constituents of G. The definition of externally related can be found
in Hemminger (1968).

Suppose X, FS V(G). Let XoY={xy: xyeEG,xeX,ye Y}. If

X°Y={xy:xeX,yeY}

we say that Xo Y is full. If X or Y is empty then Xo Y is full.
The graph G is a weak 2-Sylow subgraph of Kn, if G is of order n and F(G)

contains the 2-Sylow subgroup n of £?n = T(Kn). We say that G is a strong 2-Sylow
subgraph of Kn if G is of order n and F(G) = EL We denote the weak 2-Sylow
subgraphs of Kn by W(«) and the strong 2-Sylow subgraphs by ff+(n).

In the paper we show that W+(2r) = {H(2r), H(2r)}, W(2r) = {[K±]r} and
characterize W+(n) and W(n) in terms of W+(2r) and W(2r), respectively.

2. The case « = 2r

In this section we show that W(_2r) = {[K±]r) and W+(2r) = {H(2r),iT(T)}.

THEOREM 2.1. Let r> 1 be an integer. Then W(2r) = {[K±]r}.

PROOF. Using the Corollary of Lemma 1.1 concerning the automorphism group
of a composition and the fact that | II | = 22 '~\ then it is straightforward to show
that {[K±Y}^ W(2r).

Let Ge W(2r). By the structure of II, T{G) is transitive and contains a trans-
position. Hence by Lemma 1.2, there exist graphs Gx and ifx with G1e{/Tni,^ni},
Ht vertex-transitive, and G = H-,[G^\. Hence nl = 2*1 where l O j ^ r . Since
Gi = \.Ki]Sl of [A18S if I V(H-d\ = !> t h e n the result follows. We may therefore
suppose | K(Hj) | * 1 .

Suppose F ^ ) does not contain a transposition. We know that G = HJGJ; so
| V(HX)\ = 2r-<*. Since T(fli) does not contain a transposition T{G) = T{H^) [T{GJ\,
by Lemma 1.1. An order argument then shows that | I^H^I = (22(r~'i'~1) t where
2Jet. Hence tfxe W(2r-s0 or | F(fl,)| = 1. But T ^ ) does not contain a trans-
position. So | V(H-d\ = 1.

Hence T(H^) contains a transposition. We may now proceed by induction till at
stage k we have G = Hk[Gk[Gk_1[...[G1]...]]] with \V(Hk)\ = \. In each case

* [R2]% where J*.xst = r. Thus Ge{[K±n

https://doi.org/10.1017/S1446788700014907 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014907


[3] On Sylow graphs 29

COROLLARY. | W(2r)\ = 2r.

THEOREM 2.2. Let r> 1 be an integer. Then W+(2r) = {H(2r), H(2%

PROOF. Again it is clear that {H(2r),ff^r)}c W+(2r). If Ge W+{2r) and r = 1,
then the equality of the two sets is straightforward. We may therefore suppose
that r > l .

Let Ge W+(2r). Since W+(2r)z W(2r) we have G = GJGJG3... [Gr]...]], where
G{e{K2,R^. If there exists ay", 1 Hj<r such that G}^Gi+1, then G3[GJ+1]e{#4,.£4}.
Hence r(G,[Gy+1]) = ^ and so ^^T(G) . But this is not possible since T(G) is
a 2-group. Hence G^Gi+1, 1 <y<r, and so Ge{H(2r),H(2r)}.

We are now able to characterize W{ri). Suppose « = 2"=oei2i> «» = 0,1 and
Af = {7: ef = 1} with \M\ = m. Then let A{n) be defined as follows. The graph
GeA(n) if and only if

(i) G is an A'-join,
(ii) X={xt: ieM}, and
(iii) y^e JF(2*) for some ieM.

THEOREM 2.3.

PROOF. If GeA(n), then clearly II < T(G) and so GeW(ri).
If Ge ̂ (n), then n = X?=oeir(2i)^ r(G), where r(2*) = T(/7(2i)) = 1X77(2*)).

Further, K(G) = U"=o£i Ai ' w h e r e A i i s t h e o r b i t o f n induced by T(20. If £» = 1,
then r(2*) < F«Af» and so <A4> e W(2i). By the definition of the direct product,
ef AfOCjAj is either empty or full. Hence GeA(n).

3. The case for general n: W(ri)

The main result of this section is Theorem 3.8. This theorem characterizes W(n).
We also include some results which will be of value in the next section.

For the balance of the paper, we assume that n is an integer larger than 1 and
that its binary decomposition is 2™=o H^ where et = 0,1.

We first need some number theoretical results.

LEMMA 3.1. Let n = 2*+^, 0^s<2\ (2*)! = 2<*t, 2Jft. If

n! = 2r«, s\ = 2fiv (2JCu,2J(v)
then y = a.+/?.
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LEMMA 3.2. Ifn\ = 2?u (2J(u), then y = S g ^ , e ^ - 1 ) .

THEOREM 3.3. Let H(n) = OZ-oeiH(2i) where H(2°) is the graph consisting of a
single vertex and if ei = 0, ef Hi!1) = O (the empty graph). Then

T(H(n)) = X 6*1X2*) and H(n)eW+(n).
l=O

PROOF. If rjs 1, H(2r) is connected. Furthermore, if i j > 1, frj then H(2l) g H(2.3).
By definition, 77(2°) is connected and #(2°) ̂ #(20, i> 1. Now it is readily seen
that r(tf(ii))=X&« 6,1X2*) and so | T(H(n))| = II?=o>ei*>| T(201. Therefore
|IX#(n))| = n?=0,s(#o22'-1. Thus |r(/f(n))| = 2r where y = 2 ^ ( 2 ' - 1 ) . Hence,
by Lemma 3.2, T(H(n)) is a 2-Sylow subgroup of Sfn and so #(n) G W+(ri).

LEMMA 3.4. / / GGff(«), then Xg=oeir(2
i)^r(C?). / / GeJP+(w),

PROOF. Let Ge^(n). Then Y{G) contains a 2-Sylow subgroup of ^n. By
Theorem 3.3, H(n)eW+(n). Hence T(H(n)) = Xf=oeir(2i) is a 2-Sylow subgroup
of 6r°n. Thus X?=oeir(20^r(G). If 66^+(n) it is clear from \T(G)\ that

LEMMA 3.5. Let G be a graph with V(G) = XO Y. Let P and Q be permutation
groups acting on Xand Yrespectively and let T(G) = PxQ. IfP acts transitively on
X, then T((X}) = P, where <Z> is the induced graph on the set X of vertices.

PROOF.

Since P is transitive, if there exists an edge x~y in G with xeX, ye Y, then
x'~y in G, for all x' eX. Similarly if x^y in G, then x' *y in G for all x' eX.

Suppose a e r « Z » , then consider a' = a x lQ where l e is the identity element of
Q. Certainly a' preserves adjacencies in <(Z> and < Y). But (x~yY = x° ~y = x'~y
for some x'eX and since we know that when x~y in G then x'~y in G (and
similarly for x*y) then (r'er(G). Hence

LEMMA 3.6. Le* V{G) = 0?=i^i aM^ ^ ' A *e a permutation group acting transi-
tively on Xt, i=\,2,...,s. If T(G) = X|=1Pf, then Pt = r « ^ » . Furthermore, if
1 < i <j s? s, then Xt o Xt is either empty or full. If T(G) = X ?=1 P* then P{ = r « X{}).

PROOF. If T(G) = Xf=1Pi, then clearly P i <r«JT i » . Let l^i<j^s. Then since
Pj and Pj are both transitive Â  o Xj is either empty or full by the argument used in
the proof of Lemma 3.5.

If T(G) = XUipi> then r « Z f » = Pi by Lemma 3.5 and induction.
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Recall that n = £"_<)£< 2*, («je{0,1}) is the binary decomposition of n. Let X(i)
be a set such that | X(i) | = 2i and X(n) = Qf^, e, X{i) where

st X(i) = X{i) for e4 = 1 and st JST(/) = 0 for e< = 0.

Notice that \X(n)\ = n. Henceforward we will assume that V{H{21)) = X(i). Let
//(«) be as in Theorem 3.3. Then

V(H(n)) = 0 «i K(ff(2*)) = ft e< * ( 0
t=0 i=0

LEMMA 3.7. /.<?/ G e W(w) o«^ /er F(G) = X(n). Then the vertices of G can be
ordered so that <ef JST(/)> e ff(2*) one? cf JSTO") o E;- Z(y) w eftAer e/wpr^ or full,

s. IfGe W+(n) then < e < J S T ( i ) ^ S 7

PROOF. Let GePF(n). By Lemma 3.4, X?^6^(2*)^T(G), where 1X2*) acts
transitively on e{X(i), / = 1,2,...,«. Hence, by Lemma 3.6, if ^ = 1,
r ( 2 i ) < r « J r ( 0 » and so (X(i)}eW(2i). If l^i<j^s then, by Lemma 3.6,
ef X{ o e;- Jifj- is either empty or full.

If GEW+(n) then, by Lemma 3.4, T{G)= X^eiY{2i), where r(2*) acts
transitively on ef AT(/), / = 1,2,..., n. Hence by Lemma 3.6, if ef = 1, r « X t » = T(2{)
and so <Zf> e ^+(2*). Thus, <J5Ti>e{jy(2i),^(2T)}, which gives

<e{X(i)>e{H(2%H(2%

Now if n = 2?_oe<2* and M = {i: e^O} with |M\ = w, then we define the set
of graphs A{n) in the following way. The graph G is in A{ri), if and only if

(i) G is an Adjoin;
(n)\V(X)\ = m;

(iii) yX(e W{21) for some i e M , where X = { J ^ , ; ^ , ...,xm}.

THEOREM 3.8. W(n) = A(n).

PROOF. If GcWin), then GeA(n) from Lemma 3.7, with <eiZ(0> = 5'x f o r

suitable xeX.
If Ge/((«), then clearly II s? T(G) and so Ge W(n) by the definition of W(n).

4. The case for general n:

In this section we characterize the set W+(n). We define A+(n) in the following
way. The graph G is in A+(n) if and only if

(i) G is an Adjoin;
(ii) X={Xi:ieM};
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(iii) Y^eW+p*) for some ieM;
(iv) if N(x) = N(x'), then Yx and Yr do not have a common component;
(v) if N(x) = N(x'), then F,. and 7^ do not have a common component.

Our aim is now to show that W+(n) = ^4+(n).

LEMMA 4.1. W+(n)<^ A+(n).

PROOF. If G e F ( n ) , then Y(G) = II. From Lemma 3.7 we know that G is the
Z-join of {Yx} where YxeW+(2i) and conditions (i) through (iii) are satisfied.
If condition (iv) or (v) is not satisfied by G, then clearly II > F(G) and we have a
contradiction.

To obtain A+(n)^ W+(ri) we must work a little harder. We need some pre-
liminary results.

LEMMA 4.2. 77(2*) = T+T' if and only ifT= #(2*), T' = 7/(2*) or

PROOF. If T=H{2% T' = 7/(2*) or T^T^.m^), then the result follows
trivially.

Suppose 7/(2*) = T + r ' and T is nonempty. Now

7/(2*) = [7/(2i-2) O 77(2i-2)] + [7/(2i-2) O 77(2f-2)].

Let P be one of the copies of 77(2i-2) o 7/(2<-2). If T is a proper subgraph of P,
then there exists v e F(7))- V(T) and f e F(r) such that v f t. Hence 77(2*) # T+T'
for any T'. So we must have T'c 7; If 7> = T, then we are done. If P is a proper
subgraph of T, then again H^^T+T' for any T'.

We now consider a graph G from the set A+(n), and the image of one of the
graphs Yx under an automorphism of g. By considering all possibilities we show
that Yx is fixed under T(G) and hence T(G) = II and so A+(n)^ W+(n). This will
be accomplished in a series of lemmas, with the proof completed in Theorem 4.7.
Throughout, we assume that Yg

xnYv^0 implies Yy£ Yx. If it does, the arguments
follow by using g-1 instead of g.

LEMMA 4.3. If Yx = H(2i), YV = H(V), gsY(G) and YxnYy = T?0, then
= Yy.
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PROOF. Suppose that Yx^Yy. Clearly Yx is externally related. Since Yy is
connected, there exists veV(Yy)-V(T) and teV(T) such that v~t. Hence t is
adjacent to every vertex in V(Yy)- V(T) and Yy = T+T'. Similarly

If T' is empty, T = Yv and if T" is empty, T = Yx. This is not possible since this
implies i =j and contradicts the choice of G from A+(n).

If T' is empty and T" is not empty, then YX^T+T". By Lemma 4.2, we have
1-1). Hence Yy^/TCF5). This is clearly a contradiction.

If J ' is not empty and T" is empty, we get a similar contradiction to the last
paragraph.

If both T' and T" are non-empty, then, by Lemma 4.2, we have i =j, which is
not possible.

Suppose then, that Y%<=- Yy. Let 5 s V(Yy) and /?£ V(Yy) be the vertices which
are adjacent to every vertex of V(Y^), and no vertex of V(YX), respectively.
Clearly R±0 by Lemma 4.2. Since Yy = Hi??-1) + //(2^1), we have Fgo<i?>
as a subgraph of one of the copies of HQF*) in Yv, and hence Yx £ #(2>-2). But,
because of the symmetry of the situation, there must also be a copy of //(2f) in R
and a copy of #(2*) 0.7/(2*) in both copies of HyF*). Hence

andso#(2i+2)ci/(2>).

LEMMA 4.4. / / YX = H(2}), Yy = H(V), geT(G) and YxnYy = T*0 then
i-l =jorH(2i+1)cYy.

PROOF. NOW YX = H(F) = Hi?-1) 0 i/^*-1). Let one copy of i / ^ - 1 ) in rg be
A and the other be B. If ^ n y v = 0, then jBn7v#0 by hypothesis. Now Yy is
connected and so there exists veVB and we V(Yy)— V(B) with i;~w. But Yx is
externally related and so for every v' e Yx and w' e Yy we have v' ~ w'. Since
BnYy^=0, there exists aeV(A) and 6eF(i?) such that a~fe, which gives a
contradiction, unless BnYy = B, when i— 1 =7.

If AnYy^0 and 5 0 7 ^ ^ 0 , it is clear from the arguments above, that
Y«nYy= Y%. Let S (R) be the subset of V(Yy) such that every vertex in V{Y%)
is adjacent to every (no) vertex of 5 (R). UR = 0, then Yy = H(2i+1) and the result
follows. If Ri=0, then we can proceed by a similar argument to that used in the
latter half of Lemma 4.3, to obtain i/(2i+1)<= Yy.

LEMMA 4.5. If Yx = H(2i), YV = H(2?), geT(G) and YxnYy = T^0, then
i=j-\ or
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PROOF. Since Yx is connected and Yy is not, then Yx only intersects one com-
ponent of Yv and this component is isomorphic to i/(23'~1). The result then follows
from the proof of Lemma 4.3.

LEMMA 4.6. / / Yx = H(2i), Yy = H{lP), geT(G) and YxnYy = T^0, then

PROOF. Let A and B be the two components of Yx which are isomorphic to
H(2i~1) and C and D be the two components of Yy which are isomorphic to H(2i~1).
It is clear that we cannot have A n C ^ 0 and AnD^0 simultaneously, nor can
we have both BnC^0 and BnD^0.

Suppose AzC and B^Yy. Then an argument using the externally related
property of Yy, gives the contradiction that for all a e V(A) and for all b e V(B),
a~b, unless BnYy = 0. In this case, we have ^ - ^ c ^ - ^ c ^ and by
Lemma 4.3, we have ff(2i+1)s^-1)cri,. The same argument applies to A^C
and 5 s D.

Suppose A <=, C and Be. c. Here we can use Lemma 4.4, to obtain

Suppose AnCj^0 and AnC^C. Then an argument using the externally
related properties of Yx and Yy gives the contradiction that Yx is connected.

We are now in a position to prove the main result of this section.

THEOREM 4.7. W+{n) = A+(n).

PROOF. We already know that W+(n)^A+{ri), by Lemma 4.1.
Suppose Ge A+(n). Clearly n < FG). From among all g £ T(G) - n , for a fixed j ,

choose Yx e W+i?}) so that i is a maximum among all w e V(X) such that
YlpYy * 0 , where Yy e W+(2'). Let ueYx.

Case 1. Assume

1.1. Suppose Yx = HQ?) and Yv = H{2j). By Lemma 4.3, H(2i+2)cYy. Let M
be a copy of H(2l) in Yy such that Yx + M^ Yy. Then Yx + Mg~x is a subgraph of
G and M ^ ^ F j , , since M^M^.

1.1.1. If M9'1 = (J Fz, the disjoint union being over some subset of V(X), then
since | V{MB~1)\ = 2i, a number theoretic argument shows that |J Yz = Yv for some
ye K(JST). But then YV^YX, which contradicts the construction of G.

1.1.2. If Mo~1<=Yv for some z;, then Yve W+(2k) for Jk>/, and the choice of g
is contradicted.
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1.1.3. If M»"*£ 0 Yz> where the union is over some subset Q (with \Q\>2) of
of V(X), then since M"~l is connected, then Q is a clique in X. Suppose qeQ
and without loss of generality, Yg~M^0. Let Mq = Ma~xnYq. Since g is a
clique, every vertex of Mq is adjacent to every other vertex of M9'1 and so
M9~1 = Mq+M' for some non-empty M'. Hence Mq = flr(2i-1). The fact that g
is a clique and that M'"1 is an externally related set, forces Yq to be connected.
Then the externally related property of M9~1 gives Yq = Mq+ Y'q with Y'q non-
empty. Hence Yq^ Yx, a contradiction.

1.2. Suppose Yx = 7/(2*) and Yy = H{2P). By Lemma 4.3, i-\=j or
F(2<+1)cyv. Let M be a copy of H(2>) in 7V such that Y9

x+M<=Yy. Then
yx+Afff~1 is a subgraph of G and M"'^Yy, since WKW".

1.2.1. If M9'1 = 0 Yz, the argument of case 1.1.1 applies.
1.2.2. If M9'1^ Yv, for some v, the argument of case 1.1.2 applies.
1.2.3. If Mg~1c.^)Ye, where the union is over some subset Q of V(X), then

suppose MB~1 = M1uMi where M1sM2^F(2i-1). Choose qeQ such that
7 , n M ^ 0. If there exists a vertex i> e V(Yq) - F(MX) and a vertex w e V(M^ such
that v ~ w, then the externally related properties of M and Yq, show that Mx and M2

are connected by an edge. Hence Yq is connected and Yq = Mt or Yg is disconnected
and Yq = M-LU Y*. In the former case there must exist reQ with Yr connected and
Yq = M2 or 7r disconnected and Yr = M2u y*. By the construction of G, one of
Yq, Yr must be disconnected, in which case it is isomorphic to Yx and we obtain a
contradiction.

1.2.4. If /—1 =j, then we are able to show that condition (iv) is contradicted.
The proof here is essentially that of case 1.3.2 which we give in full.

1.3. Suppose yx = 7/(2*) and Yy = H0). By Lemma 4.5, we know that either
i=j-\ ori7(2i+2)sy!/.

1.3.1. If H(2i+2)cYy, then H(2i+2) is contained in a copy of H{2'-x) in Yy.
The arguments of case 1.1 can then be applied to obtain contradictions.

1.3.2. If i=j-\, then Yy = Y%uK, where K is isomorphic to 77(2*). We
consider the image of K under g. Now K°^YV for some veV(X) unless v = x.
lfK<><= Yv for some veV(X), then YV = K«+ Y* by the externally related property
of K9, if Yv is connected, which is clearly a contradiction. If K°<^ Yv and Yv is
disconnected, then by the previous argument, K9 must be a component of Yv and
hence Yv^ Yv. This is not possible unless v = y and K9 = K. By an order argument,
K9£ 0 ys> so we must have K9<= 0 Ya, for some subset Q of V(X) and we may
assume that for qeQ, Yq-K

9^0. If Yq is connected, then externally related-type
arguments show that Yq^ Yx. If Yq is not connected, we must have Yq^ Yy. Neither
situation is tenable.

Hence we see that K" = Yx or K9 = K. Similar arguments show that ( YQ9 = K
or Yx and so N(x) = N(y). Thus condition (iv) in the construction of G is
violated.
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1.4. Suppose YX = HQF) and Yy= H(2*). By Lemma 4.6, we know that
H(2i+1)<= Yv. Let L be such that Y%+L = H(2i+1).

1.4.1. If LP'1 = U yz, then we repeat the argument of case 1.1.1.
1.4.2. HLP~lcz Yv, for some v, then we repeat the argument of case 1.1.2.
1.4.3. Let Z,""1^ Q Yz, where the union is over some subset Q of V(X), we

repeat the argument of case 1.2.3.

Case 2. Assume u~ug.

In this case we consider G. By construction of G, GeA+(n) and now u*vP.
By case 1, the theorem holds unless G does not satisfy condition (iv). But if G does
not satisfy condition (iv), then G does not satisfy condition (v).

Hence in both cases we see that F(G)—II = 0 and so A+(n)S W+(n).

5. Graphical 2-groups

Given a permutation group P which is a subgroup of the 2-Sylow subgroup of 5Pn,
the question now arises as to whether or not there is a graph on n vertices whose
automorphism group is isomorphic, as a permutation group, to P.

This seems to be a non-trivial question. We content ourselves here with proving
that there is some permutation 2-subgroup of the 2-Sylow subgroup of S?n which
is graphical, for every possible order of such 2-subgroups.

The pattern of proof continues as in the earlier part of the paper. First we
establish the result for n = 2r and then we consider the general case.

LEMMA 5.1. Let n = 2r (r> 1) andn\ = 2as(2J^s). Ifl^P^oc, then there exists a
spanning subgraph H of Kn such that \ T{H)\ = 2^.

PROOF. Let « = 2 r ( r^ l ) and n\ = 2as(2Jfs). We note that a = 2 r - l . We
proceed by induction on r. Thus P(r) is the statement that if 1 <j3<2r- l , then
there exists a spanning subgraph H of Kn such that | T(H)\ = 2?. Clearly P{\) is
true. Now assume P(k) is true for 1 ^k<r and consider P(r). If /? = 2 r - 1 , then
there exists a spanning subgraph H of Kn (for example H(2r)) such that
| T(H)\ = 22'-1. Therefore suppose 1 <j8<2r- l . Choose, if possible, integers j3x

and /?2 such that 1 ^ j3< j82<2r-x-1 and j8 = &+&. Then by the inductive hypo-
thesis we may choose connected graphs G1 and G2 so that | V(Gt) \ = | V(G^) | = 2r~x

and |r(G1)| = 2A, \Y{G^,\ = 2^. Let G = G1oG2. Then since T(Gj)^r(G^,
G^G^. Hence, | T(G) | = | T(GX) | | F(GJ \ = 2*+* = 2". Now clearly if 2 < )8 < 2' - 3
we may always choose j3x and j32 in this way. Now suppose )3 = 2 r -2 . Let
G = i/(2(-1)o/fCFT). Then \V(G)\ = 2r and | T(G)| = 22<2"1-1> = 22'"2 = V.
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Suppose j3 = 2. Let P, denote the path of length /. Then if r # 3 choose
G = Pr_iO.F2,.-i. Clearly | V(G)\ = 2r and | T(G)\ = 22 = 2^. When r = 3 we may
choose the graph G illustrated in Fig. 1. Clearly

= 8 = 2r and |T(G)| = 22 = 2^.

Finally, if j3 = 1, choose G = Pv. Thus | V(G)\ = 2r and | I \G) | = 2 =

G

FIGURE 1

We now extend this result to the case of n any integer greater than 1.

THEOREM 5.2. Let n>2 be an integer and let n\ = 2<*s{2)(s). Then if 1
there exists a spanning subgraph H of Kn such that \ T(H)\ = 2^.

PROOF. Let n = '£ft=oei2
i(eie{0,\}) be the binary decomposition of n. By

Lemma 5.1 we may choose a connected graph Ht such that | V(Ht)\ = 2l and
11X̂ )1 = 2* U f t ^ - l . Let G=OU*Hi- T h e n 1^(01 = Sj-ie,2* = «
and | r ( G ) | = n |Loei | r ( f l i ) | = 2^ when i8 = 2 |Uei i 8 i - N o w by Lemma 3.2,
« = 2 i U £ i ( 2 f - 0- Hence 2"=o £t < i3 < <*• Clearly therefore if 2?=o £i < i8 < a ' t h e n

we can construct G so that | V(G) \ = n and | F(G) = 2^. By combining paths,
asymmetric graphs and unicyclic graphs of the type which is a component of the
graph of Fig. 1, we may construct graphs whose automorphism groups have order

As we have already stated it would be of interest to determine all graphical
permutation 2-groups. It is clear that not all permutation 2-groups are graphical
since Cv, the cyclic group generated by a cycle of length 2r, comes into this class.

The results we have obtained in this area are not very deep and are obviously
much weaker than the results on 2-Sylow subgroups where we can actually
characterize the graphs involved. It would be nice to have a characterization of the
graphs (and groups) in the more general situation.

References

F. Harary (1971), Graph theory (Addison-Wesley, Reading, Mass.)
R. L. Hemminger (1968), 'The group of an Adjoin of graphs', / . Combinatorial Theory 5,

404-418.

https://doi.org/10.1017/S1446788700014907 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014907


38 D. A. Holton and J. Sheehan [12 ]

D. A. Holton and D. D. Grant (1975), 'Regular graphs and stability', J. Austral. Math. Soc.
Ser. A 20, 377-384.

G. Sabidussi (1959), 'The composition of graphs', Duke Math. J. 26, 693-696.
G. Sabidussi (1961), 'Graph derivatives', Math. Z. 76, 385-401.

Department of Mathematics Department of Mathematics
University of Melbourne University of Aberdeen
Parkville, Victoria 3052 Aberdeen
Australia Scotland

https://doi.org/10.1017/S1446788700014907 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014907

