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Abstract

We characterize the classes of graphs of order n whose automorphism group either contains
or coincides with the 2-Sylow subgroup of the symmetric group S,.

Subject classification (Amer. Math. Soc. (MOS) 1970): 05 C 25.

1. Introduction

Throughout this paper, all graphs will be on a finite set of vertices without loops,
multiple edges or directed edges. Most of the graph theoretical terms may be found
in Harary (1971). As a result we use P, x P, for the direct sum of two permutation
groups and P,[P,] for the composition of P, around P,.

If G;e{K,, Ky}, then by [Kf]" we mean the repeated (graph) composition
[GL[G,l...[G,]...]]]. We define the graph H(2') to be the graph [K#]” with G, = K,
and G, #G;,,fori=1,2,...,r—1.

LemMaA 1.1. (Sabidussi (1959).) I'(G,[G,)) = I'(G)) [I'(G,)] if and only if

(i) if there are distinct vertices in G, with the same open neighbourhood, then
G, is connected,

(ii) if there are distinct vertices in Gy with the same closed neighbourhood, then
G, is connected.

COROLLARY. For all G, and G,, T'(Gy) [['(G)]1< I'(G4[G,)).

LemMa 1.2. (Holton and Grant (1975).) Let G be a vertex-transitive graph. If
I'(G) contains a transposition, then for some m>1, G= H[K,] or G= H[K,],
where H is a vertex-transitive graph. Conversely if G = H[K,,] or G = H[K,,] for
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some m>1 and H is vertex-transitive, then G is vertex-transitive and I'(G) contains
a transposition.

The X-join of two graphs is the generalization of composition introduced in
Sabidussi (1961). If G is an X-join we write G = X[Y},...,Y,] and refer to the
graphs Y; as constituents of G. The definition of externally related can be found
in Hemminger (1968).

Suppose X, YS V(G). Let Xo Y ={xy: xy€ EG, xc X, ye Y}. If

XoY={xy: xeX,yeY}

we say that Xo Y is full. If X or Y is empty then Xo Y is full.

The graph G is a weak 2-Sylow subgraph of K,, if G is of order n and I'(G)
contains the 2-Sylow subgroup II of ¥, = I'(K,)). We say that G is a strong 2-Sylow
subgraph of K,, if G is of order n and I'(G) =I1. We denote the weak 2-Sylow
subgraphs of K,, by W(n) and the strong 2-Sylow subgraphs by W+(n).

In the paper we show that W+(2") = {H(2"), H22")}, W(2T)={[K%]} and
characterize W+(n) and W(n) in terms of W+(2") and W/(2"), respectively.

2. The case n = 27
In this section we show that W(27) = {[KF]"} and W+(2") = {H(2"), H(2")}.
THEOREM 2.1. Let r> | be an integer. Then W(27) = {[K£]"}.

Proor. Using the Corollary of Lemma 1.1 concerning the automorphism group
of a composition and the fact that |II| = 22", then it is straightforward to show
that {[KF]} <= W(2").

Let Ge W(27). By the structure of II, I'(G) is transitive and contains a trans-
position. Hence by Lemma 1.2, there exist graphs G, and H; with G, €{K, ,K,},
H, vertex-transitive, and G = H;[G,]. Hence n, =2% where 1<s,<r. Since
G, = [KpJ* or [K,]%, if |V(Hy)| =1, then the result follows. We may therefore
suppose | V(Hyp)| # 1.

Suppose I'(H,) does not contain a transposition. We know that G = H;[G,]; so
| V(Hy)| = 2. Since I'(H,) does not contain a transposition I'(G) = I'(H,) [T'(G))],
by Lemma 1.1. An order argument then shows that | '(Hy)| = (22"*'~1)¢ where
2)t. Hence H,e W(2"%) or |V(H,))| = 1. But I'(H,) does not contain a trans-
position. So | V(Hp|=1.

Hence I'(H,) contains a transposition. We may now proceed by induction till at
stage k we have G = Hy[G,[G}_,[...[G,]...]]] with |V(H)|=1. In each case
G;{[K;]%, [R,)%}, where Tk 5, = r. Thus Ge{[KE]}.

https://doi.org/10.1017/51446788700014907 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700014907

[31 On Sylow graphs 29

COROLLARY. | W(27)| = 2.
THEOREM 2.2. Let r>1 be an integer. Then W+(27) = {H(2"), H2")}.

PROOF. Again it is clear that {H(2"), H2N}< W+Q2"). If Ge WH(27) and r = 1,
then the equality of the two sets is straightforward. We may therefore suppose
that r> 1.

Let Ge WH(27). Since WH(2r)c W(27) we have G = G,[G,[G; ... [G,] ... ]], where
G;€{K,, K;}. If there exists a j, 1 <j<r such that G;= G;,,, then G;[G;,;]1€{K,, K,}.
Hence I'(G,[G;.,]) = & and so % <I'(G). But this is not possible since I'(G) is
a 2-group. Hence G; £G;,,, 1<j<r, and so Ge{H(2"), H(2")}.

We are now able to characterize W(n). Suppose n= X% ,¢;2%, & =0,1 and
M = {i: ¢, =1} with | M| = m. Then let A(n) be defined as follows. The graph
G e A(n) if and only if

(i) G is an X-join,
(ii) X ={x;:ie M}, and
(iii) Y, € W(2") for some i€ M.

THEOREM 2.3. W(n) = A(n).

Proor. If G € A(n), then clearly II < T'(G) and so Ge W(n).

If Ge W(n), then Il = X7, &, T(2) < I'(G), where I'(2%) = T'(H(2%)) = T(H(2Y).
Further, V(G) = U2, & A;, where A, is the orbit of IT induced by I'(2%). If¢; =1,
then I'(2Y) < T'({A,)) and so <{A,> € W(2%). By the definition of the direct product,
£;4;0¢;A; is either empty or full. Hence G € A(n).

3. The case for general n: W(n)

The main result of this section is Theorem 3.8. This theorem characterizes W(n).
We also include some results which will be of value in the next section.

For the balance of the paper, we assume that » is an integer larger than 1 and
that its binary decomposition is X7  &,2* where &; =0, 1.

We first need some number theoretical results.

LEMMA 3.1. Let n = 28 +5, 0<5< 28, (20)! = 224, 2 y 1. If

nl=2vu, s!'=26v (Qyu,2tv)
then y = a+f.
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LEMMA 3.2. If n! = 2Yu (2 Y u), then y = T2 4,2 —1).

THEOREM 3.3. Let H(n) = U7, &; H(2%) where H(2°) is the graph consisting of a
single vertex and if e; = 0, ¢, H(2?) = Q (the empty graph). Then

T(H(m) = % &, T'Q%) and H(n)e Wp).
1=0

PrOOF. If r > 1, H(27) is connected. Furthermore, if i, j > 1, i#j then H(2%) & H(2Y).
By definition, H(2°) is connected and H(2°) £ H(2%), i> l. Now it is readily seen
that F(H(n)) = X169 and so |T(H®m)| = [2yg,.m0l T2H|. Therefore
|TCH()| = T2 5,20 2%~ Thus | [(H(n))| = 27 where y >, &(28—1). Hence,
by Lemma 3.2, I'(H(n)) is a 2-Sylow subgroup of %, and so H(n)€ W(n).

LemMMA 34. If GeW(n), then X3 ,&T(RHST(G). If GeWH(n), then
I(G) = X1,&T(2) =11

PrOOF. Let Ge W(n). Then I'(G) contains a 2-Sylow subgroup of .%,. By
Theorem 3.3, H(n) € W+(n). Hence I'(H(n)) = X2, ¢, 1'(29) is a 2-Sylow subgroup
of . Thus X2, TQH<I(G). If GeW*(n) it is clear from |I'(G)| that
X2 &2 =T(G) =11

LEMMA 3.5. Let G be a graph with V(G) = XU Y. Let P and Q be permutation
groups acting on X and Y respectively and let 1'(G) = Px Q. If P acts transitively on
X, then T'(KX)) = P, where {X ) is the induced graph on the set X of vertices.

ProofF. Clearly P<T'((X D).

Since P is transitive, if there exists an edge x~y in G with xe X, ye Y, then
x'~y in G, for all x' € X. Similarly if x~y in G, then x'~y in G for all x'eX.

Suppose o € I'({ X }), then consider o’ = o x 1, where 1 is the identity element of
Q. Certainly ¢’ preserves adjacencies in (X > and (¥ ). But (x ~ ) =x7~y=x"~y
for some x’€ X and since we know that when x~y in G then x'~y in G (and
similarly for x ~ y) then ¢’ € I'(G). Hence I'({X D)< P.

LEMMA 3.6. Let V(G) = Uf=1 X; and let P; be a permutation group acting transi-
tively on X, i=1,2,...,5. If I'(G) = X§_, P;, then P;= I'({X;)). Furthermore, if
1<i<j<s, then X;0 X, is either empty or full. If I'(G) = X$_, P;, then P; = I'({X}).

Proor. If I(G) = X$_, P,, then clearly P;<I'({X;>). Let 1<i<j<s. Then since
P; and P; are both transitive X0 X; is either empty or full by the argument used in
the proof of Lemma 3.5.

If I'(G) = X$_, P;, then I'((X};>) = P; by Lemma 3.5 and induction.
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Recall that n = T2 4 ¢;2¢, (¢;€{0,1}) is the binary decomposition of n. Let X(i)
be a set such that | X(})| = 2¢ and X(n) = U2, &; X(i) where

g X(@)=X()fore;=1 and ¢ X(@)=0 for ¢;=0.

Notice that | X(n)| = n. Henceforward we will assume that V(H(2%)) = X(i). Let
H(n) be as in Theorem 3.3. Then

V(H(n)) = g & V(H(2Y) = g) & X() = X(n).

LemMa 3.7. Let Ge W(n) and let V(G) = X(n). Then the vertices of G can be
ordered so that {e; X(i)>€W(2") and &;X(i)oe; X(j) is either empty or full,
1<i<j<s. If Ge WH(n) then {g; X(i)> € {H(2%), HY)}.

PROOF. Let Ge W(n). By Lemma 3.4, X% ¢ '(2)<T(G), where I'(2) acts
transitively on & X(i), i=1,2,..,n. Hence, by Lemma 3.6, if g =1,
IF2H<T(KX(F))) and so {X()>eW(2). If 1<i<j<s then, by Lemma 3.6,
&; X;0¢; X; is either empty or full.

If GeW+(n) then, by Lemma 3.4, T'(G) = X2 ¢, (2%, where I'(2Y) acts
transitively on¢; X(§),i = 1,2, ...,n. Hence by Lemma 3.6, if ¢; = 1, T({X;)) = ['(2%)
and so (X;>e W+Q2%). Thus, {X;> € {H(2%), H(2%)}, which gives

e X(i)y e {H(29), H2Y).

Now if n =37 ¢,2¢ and M = {i: ¢; 0} with | M| = m, then we define the set
of graphs A(n) in the following way. The graph G is in A(n), if and only if
(i) G is an X-join;
@) | V(X)) = m;
(i) Y,,€ W(2%) for some ie M, where X = {x;, X, ..., X,}-

THEOREM 3.8. W(n) = A(n).

Proor. If Ge W(n), then Ge A(n) from Lemma 3.7, with {¢; X(i)> =Y, for
suitable x € X.

If Ge A(n), then clearly II <T'(G) and so G e W(n) by the definition of W(n).

4. The case for general n: W(n)

In this section we characterize the set W*(n). We define A4+(n) in the following
way. The graph G is in A*(n) if and only if
(i) G is an X-join;
(i) X={x;:ieM};
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(i) Y, € W+(2%) for some i€ M;

@iv) if N(x) = N(x"), then Y, and Y, do not have a common component;
(v) if N(x) = N(x'), then P, and ¥, do not have a common component.
Our aim is now to show that W+(n) = A*(n).

LeMMA 4.1. WH(n)< A+(n).

ProoF. If Ge W(n), then I'(G) = II. From Lemma 3.7 we know that G is the
X-join of {Y,} where Y, e W+(2%) and conditions (i) through (iii) are satisfied.
If condition (iv) or (v) is not satisfied by G, then clearly IT > I'(G) and we have a
contradiction.

To obtain A*(n)< W+(n) we must work a little harder. We need some pre-
liminary results.

LemMma 4.2. HQ2)=T+T' if and only if T = H(2%), T' = H(2%) or

T~T'~ H(2Y),

Proor. If T= H(2Y), T' = H(2%) or T=T'~-H(2* ), then the resuit follows
trivially.
Suppose H(2Y) = T+T' and T is nonempty. Now

H(2Y) = [HQ2i-?) 0 HQ2i?)]+ [H(2) © H2?)).

Let P be one of the copies of H(2:2)w H(2!?). If T is a proper subgraph of P,
then there exists v € V(P)— V(T) and te V(T) such that v~ t. Hence HQH)#T+T"'
for any T'. So we must have P<T. If P =T, then we are done. If P is a proper
subgraph of T, then again HQQ)#T+T' for any T'.

We now consider a graph G from the set A+(n), and the image of one of the
graphs Y, under an automorphism of g. By considering all possibilities we show
that Y, is fixed under I'(G) and hence I'(G) = II and so A+(n)< W+(n). This will
be accomplished in a series of lemmas, with the proof completed in Theorem 4.7.
Throughout, we assume that Y9nY, # & implies Y, ¢ Y7. If it does, the arguments
follow by using g~ instead of g.

Lemma 43, If Y, = H2Y), Y, = H(2), geT(G) and YinY,=T+#O, then
HQ2?) =,
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ProoF. Suppose that Y¢<4Y,. Clearly Y7 is externally related. Since Y, is
connected, there exists ve V(Y,)— V(T) and te V(T) such that v~¢. Hence ¢ is
adjacent to every vertex in V(Y,)—V(T') and Y, = T+T’. Similarly

YoxY,~T+T".

If T' is empty, T = Y, and if T” is empty, T = Y,.. This is not possible since this
implies i = j and contradicts the choice of G from A+(n).

If T’ is empty and T” is not empty, then Y,~T+T". By Lemma 4.2, we have
Tx~T"~ H(2:™Y). Hence Y, ~ H(2'-Y). This is clearly a contradiction.

If T’ is not empty and T” is empty, we get a similar contradiction to the last
paragraph.

If both T’ and T” are non-empty, then, by Lemma 4.2, we have i = j, which is
not possible.

Suppose then, that Y¢<Y,. Let S<V(Y,) and R< V(Y,) be the vertices which
are adjacent to every vertex of V(Y?), and no vertex of V(Y9), respectively.
Clearly R# @ by Lemma 4.2. Since Y, = H2'")+ H(2/-), we have YZu<(R)
as a subgraph of one of the copies of H(27-Y) in Y,, and hence Y¢< H(27-%). But,
because of the symmetry of the situation, there must also be a copy of H(2%) in R
and a copy of H(2%)u H(2) in both copies of H(2"T). Hence

[H(2) 0 H2)]+ [H(2H) 0 H(2H)]< H(2)

and so H2+%) < H(2).

LemMA 4.4, If Y,=H(2)), Y,=H(2), gecl'(G) and YinY,=T#OD then
i—1=jor H2"*)CY,.

Proor. Now Y, = H(2%) = H(2:-)u H(2-1). Let one copy of H(2"Y) in Y7 be
A and the other be B. If AnY, =, then BnY,# @ by hypothesis. Now Y, is
connected and so there exists ve VB and we V(Y,)— V(B) with v~w. But Y7 is
externally related and so for every v'e€ Y¢ and w'eY, we have v'~w'. Since
BnY,#4, there exists ac¥(4) and be V(B) such that a~b, which gives a
contradiction, unless BnY, = B, when i—1 = .

If AnY,#@ and Bn Y,#6, it is clear from the arguments above, that
YinY, = Y9 Let S (R) be the subset of ¥(Y,) such that every vertex in V(Y9)
is adjacent to every (no) vertex of S (R). If R = @, then Y,, = H(2**!) and the result
follows. If R# @, then we can proceed by a similar argument to that used in the
latter half of Lemma 4.3, to obtain H(2*)<Y,,.

Lemma 4.5. If Y, = HQY), Y, = HQ), geT(G) and YInY,=T#®D, then
i=j—1or H2"*¥)cyY,.

2
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PROOF. Since Y? is connected and Y, is not, then Y7 only intersects one com-
ponent of ¥, and this component is isomorphic to H(2/71). The result then follows
from the proof of Lemma 4.3.

Lemma 4.6. If Y, = H(Q2Y), Y, = H2), geI(G) and YinY,=T# D, then
H(Q2HY) <Y,

ProoF. Let 4 and B be the two components of YZ which are isomorphic to
H(2'-1) and C and D be the two components of Y, which are isomorphic to H(2/-1).
It is clear that we cannot have An C#Q and A n D# @ simultaneously, nor can
we have both BnC#Q and Bn D#@.

Suppose ASC and B¢Y,. Then an argument using the externally related
property of Y,, gives the contradiction that for all ae V(4) and for all be V(B),
a~b, unless BnY, =@. In this case, we have HQ2'"Y)c H(2’-Y)<Y, and by
Lemma 4.3, we have H(2*')< H(2/-1)<Y,. The same argument applies to 4= C
and B< D.

Suppose A< C and B< C. Here we can use Lemma 4.4, to obtain

H@*)c HQI Yy,

Suppose ANC#@ and AnC#C. Then an argument using the externally
related properties of Y¢ and Y, gives the contradiction that Y7 is connected.

We are now in a position to prove the main result of this section.
THEOREM 4.7. W+(n) = A*(n).

ProoOF. We already know that W+(n)< A+(n), by Lemma 4.1.

Suppose Ge A*(n). Clearly I < I'G). From among all g € I'(G)—11, for a fixed j,
choose Y,e W+H(2) so that i is a maximum among all weV(X) such that
Y9nY, # @, where Y, € WH(2)). Let uey,.

Case 1. Assume u ~ 19,

1.1. Suppose Y, = H(2%) and Y, = H(2/). By Lemma 4.3, H2*?)<Y,. Let M
be a copy of H(2%) in Y, such that Y¢+ M<Y,. Then Y, +M ¢7* is a subgraph of
G and M?7'¢Y,, since u~+uf.

1.1.1. If M7 = |JY,, the disjoint union being over some subset of ¥(X), then
since | V(M 97")| = 2%, a number theoretic argument shows that |J Y, = Y, for some
ve V(X). But then Y,~Y,, which contradicts the construction of G.

1.1.2. If M9’ <Y, for some v, then Y, € W+(2¥) for k>1i, and the choice of g
is contradicted.
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1.1.3. If M97'c (J Y,, where the union is over some subset Q (with |Q|>2) of
of V(X), then since M 97" is connected, then Q is a clique in X. Suppose g Q
and without loss of generality, Y,—M#@. Let M, =M ' n Y, Since Q is a
clique, every vertex of M, is adjacent to every other vertex of M¢™" and so
M9 = M,+ M’ for some non-empty M’. Hence M, = H(2'"?). The fact that Q
is a clique and that M 97" is an externally related set, forces Y, to be connected.
Then the externally related property of M¢™" gives Y, = M,+ Y, with Y non-
empty. Hence Y,~Y,, a contradiction.

1.2. Suppose Y, = H(2") and Y,=H(2). By Lemma 4.3, i—1=j or
H(@2"*Y)cY,. Let M be a copy of H®) in Y, such that Y9+ McY,. Then
Y,+M? " is a subgraph of G and M?7'¢Y,, since u~ud.

1.2.1. If M7™" = |JY,, the argument of case 1.1.1 applies.

1.2.2. If M97'<Y,, for some v, the argument of case 1.1.2 applies.

1.2.3. If M97'c(JY,, where the union is over some subset Q of V(X), then
suppose M?9'= M,UM, where M,~M,~ H(2*-1). Choose ge€Q such that
Y,n M, #@. If there exists a vertex ve V(Y,)— V(M,) and a vertex we V(M,) such
that v ~w, then the externally related properties of M and Y,, show that M; and M,
are connected by an edge. Hence Y, is connected and Y, = M; or Y, is disconnected
and Y, = M, u Y}. In the former case there must exist r € Q with Y, connected and
Y, = M, or Y, disconnected and Y, = M,u Y¥. By the construction of G, one of
Y,, Y, must be disconnected, in which case it is isomorphic to Y, and we obtain a
contradiction.

1.2.4. If i—1 =, then we are able to show that condition (iv) is contradicted.
The proof here is essentially that of case 1.3.2 which we give in full,

1.3. Suppose Y, = H(2") and Y, = H). By Lemma 4.5, we know that either
i=j—1or H2*})cY,.

1.3.1. If HQ2*?<Y,, then H(2+?) is contained in a copy of H(2™') in Y,.
The arguments of case 1.1 can then be applied to obtain contradictions.

13.2. If i=j—1, then Y, = YZUK, where K is isomorphic to H(2!). We
consider the image of K under g. Now K?9#Y, for some v V(X) unless v = x.
If K9<Y, for some ve V(X), then Y, = K74 Y¥ by the externally related property
of K9, if Y, is connected, which is clearly a contradiction. If K9<Y, and Y, is
disconnected, then by the previous argument, K¢ must be a component of Y, and
hence Y,>Y,,. This is not possible unless v = y and K¢ = K. By an order argument,
K9# )Y, so we must have K9< | Y, for some subset Q of ¥(X) and we may
assume that for ge Q, Y,— K?# @. If Y, is connected, then externally related-type
arguments show that Y,~Y,. If Y, is not connected, we must have Y,~ Y,. Neither
sitvation is tenable.

Hence we see that K¢ = Y, or K9 = K. Similar arguments show that (Y2)? = K
or Y, and so N(x) = N(y). Thus condition (iv) in the construction of G is
violated.

https://doi.org/10.1017/51446788700014907 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700014907

36 D. A. Holton and J. Sheehan [10]

1.4. Suppose Y, = H(2") and Y,= H(2). By Lemma 4.6, we know that
H(21#) <Y, Let L be such that Y2+ L = H(2:+).

1.4.1. If L9 = |J Y,, then we repeat the argument of case 1.1.1.

1.4.2. If L9'c Y,, for some v, then we repeat the argument of case 1.1.2.

1.4.3. Let L97'<J Y,, where the union is over some subset O of V(X), we
repeat the argument of case 1.2.3.

Case 2. Assume u~uf.

In this case we consider G. By construction of G, Ge A*(n) and now u~ u?,
By case 1, the theorem holds unless G does not satisfy condition (iv). But if G does
not satisfy condition (iv), then G does not satisfy condition (v).

Hence in both cases we see that I'(G)—I1= © and so At(n)< W+(n).

5. Graphical 2-groups

Given a permutation group P which is a subgroup of the 2-Sylow subgroup of &%,
the question now arises as to whether or not there is a graph on n vertices whose
automorphism group is isomorphic, as a permutation group, to P.

This seems to be a non-trivial question. We content ourselves here with proving
that there is some permutation 2-subgroup of the 2-Sylow subgroup of &%, which
is graphical, for every possible order of such 2-subgroups.

The pattern of proof continues as in the earlier part of the paper. First we
establish the result for » = 2" and then we consider the general case.

LeMMA 5.1. Letn=2"(r>1) and n! = 2%s 2 ¥ 5). If 1 < B< «, then there exists a
spanning subgraph H of K, such that |T'(H)| = 2.

PrROOF. Let n=27(r>1) and n!=2*s5(2}s). We note that « =2"—1. We
proceed by induction on r. Thus P(r) is the statement that if 1<8<27—1, then
there exists a spanning subgraph H of K, such that |[((H)| = 24. Clearly P(1) is
true. Now assume P(k) is true for 1 <k <r and consider P(r). If 8 = 2"—1, then
there exists a spanning subgraph H of K, (for example H(2")) such that
| T(H)| = 2¥-1. Therefore suppose 1<B<27—1. Choose, if possible, integers B,
and B, such that 1<B<B,<271—1 and B = B, +B,. Then by the inductive hypo-
thesis we may choose connected graphs G; and G, so that | V(G,)| =| V(G| = 2"
and |[(G)| =25, |TI'(Gy|=2F. Let G = G,0G, Then since I'(G)£I(Gy,
G, £G,. Hence, | I(G)| = | I'(Gy)| | T(Gy)| = 2#++Fr = 28, Now clearly if 2< <273
we may always choose B; and B, in this way. Now suppose B =27—2. Let
G=HQYHuHQ2™ ). Then [V(G)|=2" and |T(G)|=22@"'-1) = 222 =24,
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Suppose B=2. Let P, denote the path of length /. Then if r#3 choose
G = Pp-10 Py, 4. Clearly | V(G)| = 27 and |I'(G)| = 22 = 24. When r =3 we may
choose the graph G illustrated in Fig. 1. Clearly

|V(G)|=8=2" and |T(G)|=22=24
Finally, if 8 = 1, choose G = Py, Thus | V(G)| = 2" and |[(G)| =2 = 27.

oo o oL

FIGURE 1

We now extend this result to the case of n any integer greater than 1.

THEOREM 5.2. Let n>2 be an integer and let n! = 2%s (2 }s). Then if 1<B8<x
there exists a spanning subgraph H of K, such that |T'(H)| = 2°.

PROOF. Let n= X1 ,¢&,2'(¢;,€{0,1}) be the binary decomposition of n. By
Lemma 5.1 we may choose a connected graph H; such that | ¥(H;)| = 2¢ and
IT(H)| =24, 1<B;<2'—1. Let G=Jry¢;H,. Then |V(G)|=3X12,&2=n
and |I(G)| = M2o&|(H)| =27 when B=32,¢B;, Now by Lemma 3.2,
a= Y2 ,&(2°—1). Hence X2, ¢, <B<a. Clearly therefore if 37 ,¢;<B<a, then
we can construct G so that |V(G)|=n and [I'(G) = 2. By combining paths,
asymmetric graphs and unicyclic graphs of the type which is a component of the
graph of Fig. 1, we may construct graphs whose automorphism groups have order
28 for 1<B<IP, &

As we have already stated it would be of interest to determine all graphical
permutation 2-groups. It is clear that not all permutation 2-groups are graphical
since C,,, the cyclic group generated by a cycle of length 27, comes into this class.

The results we have obtained in this area are not very deep and are obviously
much weaker than the results on 2-Sylow subgroups where we can actually
characterize the graphs involved. It would be nice to have a characterization of the
graphs (and groups) in the more general situation.

References

F. Harary (1971), Graph theory (Addison-Wesley, Reading, Mass.)
R. L. Hemminger (1968), ‘The group of an X-join of graphs’, J. Combinatorial Theory 5,
404-418.

https://doi.org/10.1017/51446788700014907 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700014907

38 D. A. Holton and J. Sheehan [12]

D. A. Holton and D. D. Grant (1975), ‘Regular graphs and stability’, J. Austral. Math. Soc.
Ser. A 20, 377-384.

G. Sabidussi (1959), ‘The composition of graphs’, Duke Math. J. 26, 693-696.

G. Sabidussi (1961), ‘Graph derivatives’, Math. Z. 76, 385-401.

Department of Mathematics Department of Mathematics
University of Melbourne University of Aberdeen
Parkville, Victoria 3052 Aberdeen

Australia Scotland

https://doi.org/10.1017/51446788700014907 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700014907

