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Infinitely Many Rotationally Symmetric
Solutions to a Class of Semilinear
Laplace—Beltrami Equations on Spheres

Alfonso Castro and Emily M. Fischer

Abstract. We show that a class of semilinear Laplace-Beltrami equations on the unit sphere in R”
has infinitely many rotationally symmetric solutions. The solutions to these equations are the solu-
tions to a two point boundary value problem for a singular ordinary differential equation. We prove
the existence of such solutions using energy and phase plane analysis. We derive a Pohozaev-type
identity in order to prove that the energy to an associated initial value problem tends to infinity as
the energy at the singularity tends to infinity. The nonlinearity is allowed to grow as fast as |s|P~s
for |s| large with1 < p < (n+5)/(n —3).

1 Introduction

The Laplace-Beltrami operator is a generalization to Riemannian manifolds of the
Laplacian. For a differentiable function f defined on a Riemannian manifold M, the
Laplace-Beltrami operator acting on f is defined as the Laplacian of the extension of
f that is constant on normal directions to M (see [6]). If u is a differentiable function
defined on the unit sphere in R”, $”, that is rotationally symmetric with respect
to the z-axis, an elementary calculation shows that the Laplace-Beltrami operator is
given by

(1.1) Asu(x1, %25 - . o3 Xp_1,2) = (1= 22" + (1= n)zud/,

where u’ and 4" denote the first and second derivative of u with respect to z. The
goal of this paper is to give sufficient conditions for the semilinear Laplace-Beltrami
equation

(1.2) Asu+ (1-|2])f(u)=0

to have infinitely many rotationally symmetric solutions. Throughout this paper we
assume that f is super linear, i.e.,

(1.3) lim L) _

lul>+c0 U

+00
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Also, for the sake of simplicity in the calculations, we assume that f is nondecreasing
and that f(0) = 0.

Our main result is the following theorem.
Theorem 1.1 Letn > 3 and F(u) = [ f(s)ds. If there exists 0 € (2,22) and
k € (0,1) such that OF(d) — df(d) is bounded below and
d ) (n+1)/2
f(d)
then the boundary value problem (1.2) has infinitely many rotationally symmetric solu-
tions on the unit sphere.

(1.4) lim ( (6F(kd) - df(d)) = +oo,

From (1.1) we see that finding classical solutions to (1.2) is equivalent to finding
solutions to

(15) {(1 - 2)u"+ (1= m)zu' + (1= |2} f(u) = 0,

u'(1) = u'(-1) = 0.
Since every solution to

L6) (1-22)u" +(1-n)zu' + (1-|2]) f(u) =0,
' u'(-1) =u'(0) =0

yields an even solution to (1.5), we prove Theorem 1.1 by showing that (1.6) has in-
finitely many solutions. It is easily verified that if f(u) = |u[f~'u for u > 0, and
f(u) = [u?"u for u < 0, with 1< p,q < 22, then f satisfies the hypotheses of The-
orem L1. In this case we say that f has subcritical growth. If p > *2 or g > 242, we
say that f has supercritical growth. Suggested by the result in [2], we believe that The-
orem 1.1 also holds requiring subcritical growth for u > 0 while allowing supercritical
growth for u < 0. Our results extend to the case where the right-hand side in (1.2) is
replaced by a rotationally symmetric function g € Lo,. Again, for the sake of clarity
we leave the corresponding calculations for the reader.

Standard contraction mapping principle arguments show that, for each d € R, the

initial value problem

{(1 -2+ (1-n)zu' + 1+2)f(u) =0, ze[-1,0],

a7 u(-1)=d,u’'(-1) =0

has a unique solution, and that such a solution depends continuously on d in the

C'([-1,0]) topology.
For u(z, d) solution to (1.7) we define the energy function by

18) E(z.d) - (”'(zz’d))z . liZF(u(z,d)).

The first step in proving the existence of infinitely many soltions to (1.6) is to estimate,
in terms of d, the value ¢, for which u(ty,d) = kd,andd > u(t,d) > kd fort € [-1, to ]
(see Lemma 2.1). Next, in Lemma 2.2, we establish a version of the Pohozaev identity
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for (1.7). Using the estimate for t and our version of the Pohozaev identity, we prove
that

1.9) dlim E(z,d) = oo.

To finish the proof, we consider the (u, u") phase plane. From (1.9) we have that for
sufficiently large d, we can define a continuous argument function #(z, d) such that
n(-1,d) = 0. We prove that

dlim 7(0,d) = oco.

Then, by the intermediate value theorem, we can say that there are infinitely many
solutions where u’(0, d) = 0, and hence there are infinitely many rotatationally sym-
metric solutions to (1.2). Our argument resembles those in [3], where radial solutions
to similar semilinear elliptic equations in balls were considered. Despite the similar-
ity in the equations, the critical exponent arising here is surprisingly bigger than the
one in [3]. The reader is referred to [7] for recent results on the existence of multiple
solutions to semilinear Laplace-Beltrami equations on general compact Riemannian
manifolds using variational methods. Also, the reader is referred to [4] for the role of
hypotheses such as (1.4) in the existence of dead core and bursts solutions to quasi-
linear equations.

2 Energy Analysis
First we estimate the quantity ¢, in terms of d.
Lemma 2.1 Letk € (0,1) be as in Theorem 1.1 and let u(z, d) := u(z) be the solution
to (1.7). There exists Dy > 0, ky > ky > 0 such that ifd > Dy, u(tq) = kd, and u(z) > kd

forall z € [-1, ty], then
1/3

2.1) k(d/f(d))" < to+1<ky(d/f(kd))".

Proof Let D; > 0 be such that f(kd) > 0 for d > D;. Multiplying the second order
differential equation in (1.7) by (1 - z?)"1/2, and integrating on [~1, ) we have

(1= Y0 ()= - [ 12D+ 2) f(u(2))dz

> —f(@2 0 [(14 20
-1
H(n41)/2

n+3
Hence there exists a constant ¢; > 0, independent of d, such that

u'(t) > —cif(d)(1+1t)>

Integration on [-1, ¢, ] yields
to+123c1(d/f(d))" =k (d] £ ().

The existence of k; follows similarly. ]

f(d)(@+ 1)),
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In order to prove (1.9), we develop a form of the Pohozaev identity for our problem
in the next lemma.

Lemma 2.2 Ifu(z) := u(z,d) is the solution to (1.7), then

P(z):=(1-22)F h(z2) (W) + (1-22) T uu’ +2(1- 22)"7 (1+ 2)h(z)F(u)

- [j(l_lfy)z[F(u)(h(y)(6y—4ny+2)—2) —uf(u)]dy,

1-n

where h(z) = (1-22)'T fzo(l—yz)_Tdy.

(2.2)

Proof First we observe that

forn>3 and lim &:lfornzi

n-3 z—-1* ln(

(2.3) zl—iE+ h(z) = )
2(1+z)

Let p(z) = (1-22)"T and q(z) = 2(1- 2%)"T h(z). Multiplying (1.7) by p(z)u gives
us

(1-22)Tuu” +(1-n)(1-22)"T zuw' + (1-22)"7 (1+ 2)uf(u) = 0.

Then integrating, we have

a5 ‘ AN AV S R Z(l_yz)"T_l
(24) (1-2z°)72 uu 3 (1-y9)7 (u')*dy= Loy uf(u)dy.
On the other hand, multiplying (1.7) by q(z)u' yields

25 (1-22)T h(2)u'v" + (1-n)(1-22)"T h(2)z(u')?
+(1-22)"T 1+ 2)h(2)u' f(u) = 0.
A simple calculation shows that
W) =-(1-2)" - (-3)(1-2)Fz [ =) Ty,
0 B
(2.6) (1-2*)h'(2) = -1- (n - 3)zh(z2).
Integrating (2.5) and using (2.6) gives us

1 n+l1
@7 J0-2)FhE)
o5 10T Wy s -2 T (L k@) Fw)
-1
z (1= 2 21
- L (ﬂy)F(u)[h(y)By -2ny+1) -1]dy.
Multiplying (2.7) by 2, adding to (2.4), and simplifying, (2.2) follows. ]

Now, from (2.2), we estimate the energy defined in (1.8) as d tends to +occ.

Lemma 2.3 Ifn, f are as in Theorem 1.1, then lim,_, o, E(z,d) = oo uniformly for
ze[-1,0].
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Proof First we consider the case where n > 3. From (2.3) we see that there exists
T € (-1,-1/2) such thatif y € [-1, T]; then h(y)(6y—4ny+2) -2 > 6 (see (1.4)). Let
D, > Dy be such that for d > D,, ty < T < —1/2 (see (2.1)). Replacing these in (2.2)

we have
. P(ty) > (OF(kd) - df(d)) [1t0(1+y)"7_1dy
> (0F(kd) - df(d)) %(1 Fho)

Let M < 0 be such that 0F(s) —sf(s) > M for all s € R. Hence, for t € [y, T],

t
P(t) > P(to) + Mf (1= y)DI2(1 4 y) DIz,
to

> P(ty) + M2("3)/2,

(2.9)

From equations (1.4), (2.1), and (2.8), limy_,cc P(fp) = +oco. This and (2.9) give
limy_,o P(2z,d) = +oo uniformly for z € [t, T]. Thus, from the definition of P we
have limy_, o, E(2,d) = +00 uniformly for z € [¢o, T].

From (1.8), for t € [-1, t0], E(t,d) > F(kd). Hence,

(2.10) dlim E(z,d) = +o0 uniformly for z € [-1, T].

From (1.8) and (1.7),
E'(z,d) = (n-1)z(u'(2))*/(1-2*) > -2(n - 1)E(z,d) /(1 - T*) := ~CE(z,d).
Integration on [T, z] yields E(z,d) > E(T,d)e™, which together with (2.10) prove

the lemma for n > 3.
If n = 3, then multiplying (1.7) by (1 + z)u’ and integrating results in

\2
(2.11) (%) (1-2)(1+2)%+F(u)(1+2)* =
%/ (s e [T R
-1 -1
Thus, for d > D, and z € [-1,t], (1 - 2)E(2z,d) > F(kd). Since F is bounded from
below, from (2.11), for z € [ty, 0] we have

liminf(1-z)E(z,d) > liminf F(kd) = +oo,
d—+o0 d—+oo

which concludes the proof of the lemma. ]

3 Phase Plane Analysis

Let x(z,d) = u(z,d) and y(z,d) = u'(z,d). From Lemma 2.3, there exists D3 > D,
such thatifd > Dj, then p(z,d) = \/x(z,d)* + y(z,d)? > 0 forall z € [-1,0]. Hence,
for d > D3, there exists a differentiable function #(z, d) that satisfies

n(-1,d) =0
(3.1) x(z,d) = p(z,d) cos(n(z,d))

y(2,d) = —p(z,d)sin(y(z,d))
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for z € [-1,0]. A straightforward calculation shows that
-1)z x(z,d))\ cosy(z,d
(021 gy Hotad) cosnen)
z p(z.d)

From (1.3) there exists a real number M; > 0 such that if |v| > M, then vf(v) > 0.
Hence,

(3.3) f(x(z,d)) cos(x(z,d)) >

(32)  #(z,d)=sin’y(z,d) - (

min{vf(v);|v| < M} M
p(z.d) p(z,d)’

Now we have enough information to prove the following lemma.

Lemma 3.1 The n function satisfies
lim #(0,d) = +oo.

d—+o0
Proof Let Dy > Dj be such that if d > Dy, then p(z,d) > M; for all z € [-1,0].
Therefore, if i is a non-negative integer and #(z,d) = im, then 4'(z,d) > 0. Hence,
n({,d) > in for all { € (z,0]. In particular, #({,d) > 0 for all { € [-1,0]. Let us see
that given a positive integer j, there exists d; > 0 such thatif d > d;, then (0, d) > jm.
Let j be given and z > —%. Let § > 0 be such that
15(n—-1) . 3

1
(3.4) 8<m1n{z —} and (1—8)2— )8>7.
6 16jn 16 4
By (1.3) there exists X; > 0 such that if x| > X, then

f(x) N 162 +3(n—1)
x  2cos*(Z-96)

2
Since limg_ o p(2,d) = +oo0, there exists a d; such that if d > d;, then

(3.5)

X
p(z,d)> 0s(0) +4 Ml/z
Let k be a nonnegative odd integer. If 7(z, d) € [% -0, "2—"+6], then from (3.2), (3.4),
and (3.3),
15(n - 1) aM, 1
. "(z,d) > (1-6)* - - >
66) i (end) 2 (10 - S s

For (z) € [ +0, (k+2)” — 8], from (3.1) we have |x(z,d)| > p(z,d)|cos(8)| > X.
Therefore, from (3.5), we have

(3.7) n'(z,d) > 4j°m.

Suppose n(-3/4,d) € [k—z’r -4, kz—” + 8] for some positive integer k. By (3.6), there

exists z; € [— 3/4 3/4 + 28] such that n(z;,d) = § + kn/2. Similarly, by (3.7) there is

azye(z,z + 252 4] — ), where

(ZZ> ) (] +22)T[ 6»
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and, by (3.6), there exists z3 € (23,2, + 48), where 0(z3,d) = @ + 0. Hence,

m—20
<-3/4+ (40 + —— +49).
Z3 [4+ (46 + e +496)
Repeating this argument j times, we see that there exists
- . m—26
ze(-3/4,-3/4+j(80+ 4],72”) ) < (-3/4,0)

such that7(Z, d) > jm. Similar arguments show thatif (-3/4, d) € ["2—”+8, @—5]
for some positive odd integer j, there is a

Ze(-3/4,-3/4+ j(40+ M)) 7<0,

4’
where 7(Z,d) > jm. Therefore, since Z < 0 and 0 is increasing in z, we have that
1(0,d) > jm for |d| > d;. This proves the lemma. [ |

Now we prove Theorem 1.1.

Proof of Theorem 1.1 By Lemma 3.1, there exists K such that if k > K is a positive
integer then there exists ex > D3 such that #(0, ex) = 2k7r. Hence u’(0, ex) = 0 for all
k > Ky. That is, each

ur(xp, .o xn-1,2) == u(z, ex),  ur(x1,eeosXn-1,-2) = g (X1, .. Xn-1,2)

defines a rotationally symmetric solution to the boundary value problem (1.5). This
proves the theorem. ]
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