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1. Introduction. G. Legrand [1] studied a generalization of
the almost complex structures [2] by considering a linear operator
J acting on the complexified space of a differentiable manifold Vrn

satisfying a relation of the form h )\z(identity) where \ is a
nonzero complex constant. Such structures are called m-structures.
A mw-structure is defined on Vm by the knowledge of two fields, of

proper supplementary subspaces Tl and Tz of the complexified
tangent space TG: at x €V , such that dim(T1 ) = n
x m

1
;n. + n, = m. Inthe remaining case, \ =0,

dim(T,) = n, ; n, + n,

H.A. Eliopoulos [3] introduced almost tangent structures and
discussed euclidean structures compatible with almost tangent
structures [4]. In a similar way the purpose of this paper is to study
singular riemannian structures compatible with m-structures, briefly
R“-structures.

2. We define on V , equipped with w-structure, a complex
m
0
metric of class C , thatis, a symmetric tensor G = (gij) for
which the components, in a system of local coordinates (xl) are

i 00
complex functions of (x) of clagss C , with the condition that the
rank of G is n . We will say that the metric G is compatible
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with w-structure if the scalar product of two arbitrary vectors of
c .

T  is proportional to the scalar product of one of the vectors with
X

the transform of the other by J. This means that for any

()
u, ve T , one has
X

(2.1) (a, Jv) =X (u, v)

where (u, v) denotes the scalar product gijule . Relation (2.1)

can be written in the form
(2.2) JG = \G.

In the above case we shall say that V is endowed with a
m
singular riemannian structure subordinate to w-structure, briefly,
C
R -structure. Let us refer the space T to an adapted base.
1T X

From the relation (2.2) we obtain

M o G
11 12 11 N 11 12
021 -)\IZZ GZl 22 21 22
It is easy to see that G has the form
% |
G = 11 12
(@)
21 22
where G = (g ) isan n x n matrix of rank n
11 af 1 1 1

THEOREM 2.1. Given an arbitrary quadratic form on V
m

defined by a tensor (a,,) of rank m and a linear operator J on
ij —

c
Tx such that J® = )\Z(identity), one is able to obtain from (aij)

an R =-structure.
L el
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Proof. Indeed, we shall show that one is able to take for G
the matrix given by

(2.3) G =JA + \A

where A = (aij)' We clearly have

JG = JF’A+ I\A
= A +2\JA
= A(MNA + JA)
= \G.

Moreover, from (2.3) we have that, with respect to an adapted basis,
G has the form

2\ A
G = 11 12
021 22
where All = (a [3) is n o x n matrix. This means that
a
=2\a , * = pXk = % % = 0. Si )i f rank
gaﬁ op g“B ga'3 ga B ince (aij) is of rank m,

we have det(gaﬁ) # 0. Moreover, we note that under a change of

basis

In particular we have

1
= A A = ,
2o B' a' B ®hi A a' B' Ap
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so that det (A' ) =det (A')® det (A ) # 0, which shows that
11 1

det (g B) # 0 does not depend on the chosen adapted base. Hence
o

(gij) is of rank n
3. R -adapted bases. Consider at a point x of V an

"™T m
adapted basis (e.) and the corresponding dual basis
. 1
(81). We have
a P

iJ
= (] = [°]
gij (°] ga[ﬂ 0 .

ds®

Since the quadratic form is of rank n , onecan always find an
orthonormal base (ea') of T1 by taking suitable linear combinations

of (ea). By doing so

Oune can also find the set of vectors (e ,*) by suitable linear
a
combinations of (e *) such that Je  * = -Ae  * . The vectors
a a a

(e.,) = (e (0 € , %) then form an adapted basis for which (e |) are
a a a

it

orthonormal. We will say that such a basis is adapted to the sub-

ordinate R -structure. In the sequal, we shall denote these bases
Tr

by R -adapted bases.
™

Suppose now that (ei) and (ej') are two R -adapted bases,
m

then
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i
where (Ak') = A = and (gk'1') =G =

0] A o o
21 22 21 2z |

For the sake of convenience, we shall use A1 and AZ for All
and Azz respeétively. We may then write the above condition in

the form

(3,1) G=A -YaqG),

t
where (AG) is the tranpose of (AQG),

t
which means that Al . (A) = In or Al is orthonormal. We
1

1
thus see that a transformation matrix of any two R“-adapted bases

is of the form

R = where A = (Al ) ¢ O(n , Q).
1

Let O(n1 , nz) be the set of matrices of the form R. This set is

the subset of G(n , nz) such that its elements satisfy the relation
1

(3.2) rRYRrG) = R .
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THEOREM 3. 1. O(n1 ) nz) is a Lie subgroup of G(n , n ),
12

Proof. Let R, R! belong to O(n1 » n, ). Then

®.R')RR'G) = (RR)YR G).Y(R)
- RIR' (R )] 'R)
- r[G]. Y(R)
- ®e'Rr) as G = G
= R)'(RG) = G
R™HYa) R
1 t,_ =1
R™)G)HRT)
)
1

rRHR)RGER™)

and ®7)(RT Q) =
(R™)(
= ®R TR RGERT)
(R
= 're)'R™) = \R'RG) = G.
Hence RR' and R-1 both belong to O(n1 , nz). This shows that
O(n1 , nz) is a subgroup of G(nl , nz). Since O(nl , nz) is an
algebraic subgroup of the Lie group G(n1 , nz), then necessarily
O(n1 , nz) is itself a Lie group [ 7]. Let E]R(Vm) be the set of the
Rﬂ-adapted bases at the different points of Vm and let
p' :ER(Vm) - Vm be the canonical mapping which to a base relative

to x makes correspond x itself. Furthermore, let p' be the
vV )y-v_[E_(V )
C m m- - C m

being the set of all the complex ba.ses] such that E(]Z(Vm) has, with

restriction of the canonical mapping p: E

respect to p, a natural structure of a principal fibre bundle with
base V and the structure group GL(m, C). We also know that
m

O(n1 , nl) is a topological Lie subgroup of G(n1 , nl) and

consequently of GL(m, C). Hence the right translation by
g e O(nl , nz) is the restriction to ER(V ) of the right translation
m

operated on Eq:(V ). From this it is obviously true that for every
m
x €V there exists a neighbourhood u of x and a differentiable
m

section of E_(V ) with values in E_(V ). Hence one can deduce
C' m R m
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from a proposition of D. Bernard [5, Proposition 1,5,2] that
ER(Vm) is a differentiable principal subfibre bundle of EQ:(V )
m

with base Vm and structure group O(n1 , nz).

4. Rﬂ-connections. We will call R“-connection any infinite-

simal connection [2] defined on the fibre bundle E_(V_ ). Given
m

R
a covering of V by neighbourhoods endowed with local cross
m
sections of ER(vm) an R_n_—connection may be defined in each neigh-
bourhood u by a form W with values in the ILie algebra LO(nl , nz)
u

of the group O(n , nl). Such a form may be represented by x ¢ V
1 m

by means of a matrix of order m whose elements are complex
valued linear forms at x; it will be denoted locally by

w = (WT) where W% ¢ ILO(n , n_).
u J J 1 2

To determine the form of the elements of LO(nl , nz) we
recall that O(n] s nz) consists of matrices R of GL(m, C) such
that Rt(RG) = G. The Lie algebra of O(nl s nz) consists of the
set of all the infinetesimal right translations of O(n1 , nz) defined
by a tangent vector at the identity element of O(n1 » n, ). Thus, one

can show that O(nl , nz) consists of m X m matrices

(4.1) R = where RG + t(RG) =0,

where RG is the conjugate of RG. Indeed, let us assume that’

RG + t(RG) = O and EI—E + 1:(Rl G) = O. For simplicity, we set
X and R'G = Y. Alsoset Z = [X,Y] = XY ~ YX.

' - (®)()

(-¥) (-X) - (-X)(-Y)

RG

Yz) = xy) - fyx)

=Y.X-X.Y

N

i
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t —_—
Hence (Z) + Z = O which implies that [X, Y] s LO(nl , nz).

With respect to an Rﬂ—adapted basis (4.1) can be written as

A © (A) O o o
1 12 1 12 11 12
o o0 “lo o “lo o
21 22 21 22 21 22
or
t
(4.2) A+ a) =0

ER(Vm) being a subbundle of the fibre bundle EG:(Vrn)’ one
concludes that any Rw-connection defines canonically a linear
connection with which it can be identified.

Conversely, let us consider a complex linear connection and a
covering of Vm by open sets, each equipped with a local form, with
values in the Lie algebra of GL(m, C), represented by a matrix
(Wi,) whose elements are complex valued local Pfaffian forms. In
oréer that the given connection be able to be identified with an R"-
connection it is necessary and sufficient that (W;) belongs to the
Lie algebra of the structure group O(n1 , nz) of ER(Vm)’ that is

to say that the following conditions be satisfied:

(4.3) wP*- w? =0
a ﬁap

(4. 4) wP s w® o= o,
a g

As shown by G. Legrand [1] the condition (4. 3) expresses that
the tensor J = (F;) has absolute differential zero (which is a

necessary and sufficient condition that the given connection be a
w-connection).
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The condition (4. 4) expresses that the submatrix (W;)
belongs to the Lie algebra of the group O(n_l , €). In order to

interpret (4.4) we introduce the absolute differential of the tensor,
assuming the condition (4.3). We have

k k
=-W - W
ve3; ;B i Bl -

We also recall that with respect to R -adapted basis g = 8
L

Hence we have

* *
N N N N B a
== (W w - %) = - =

AL ( ag)\‘; o g)\*ﬁ) (Wﬁga)\+ Wﬁ g %) (Wa+Wﬁ) 0

* = (w)‘ * 4 W)\'* % k) (W)\* + W)\* =0
vgaﬁ - ag)\ﬁ o B\ B B Ean [3* ga)\*) N

N Ak ) %

K % = * * ko % %) - ko X kg k%) =

VgaB (ng)\ﬁ +Wag)\r<‘3) (W‘3 ga)\+Wﬁ g%\ )=0.

Hence veg.. = 0.

THEOREM 4.1. The absolute differential of the metric
tensor in an R -connection is zero.
™

Combining this result with YF' = 0, we have
j

THEOREM 4.2. A complex linear connection can be identified

with an R -connection iff the tensors (F%) and (g..) have absolute
Tr i — 7ij —/—

differential zero.

We will say that a complex linear connection defined on a
complex metric (gij) is euclidean if vgij =0. The preceding

theorm expresses that one is able to identify the Rﬂ-connection
with euclidean w-connection.

5. Holonomy groups of the Rﬂ-connections. Let us be given
in an R“-structure an R“-connection. Any horizontal path con-

structed in Eq;(vm) relative to the complex linear connection
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coinciding with the Rn-connection and beginning at an R -adapted
™
basis b ends at an Rw-adapted basis. One concludes from this

that the holonomy group at b[2] of the complex linear connection
is a subgroup of O(n , n ).
1 2

Conversely, let Vm be a differentiable manifold endowed with

a complex linear connection and let us suppose that at the point x
of V there exists a complex basis b such that the holonomy group
m

qu of the connection at b is a subgroup of O(n1 s nz)’ Let us

consider at the point x the tensors (gij) and (F;) defined on the

whole manifold. Now at the point x we have F;th = )\2 6; and
i a
Fg.-\g.  =F -\g
KBy T VB T Tp Bay T T Cyp
=xs% & -2b
B ay YP
ER N - N5
By YB
=X -\
= 0.

which implies that JG - NG = O or JG = XG. These relations
remain true at any point of Vm. One thus has defined on V an
m

R‘n_-structure. Since the tensors (gij) and (F;) are invariant
under Lpb they have absolute differential zero [2]. Thus the given
connection is able to be identified with an Rn-connection. We may
thus state the following.

THEOREM 5.41. In order that a differentiable manifold has an
R -structure it is necessary and sufficient that there exists a
™

complex linear connection whose holonomy group is a subgroup of
O(n. , n_).
1 2

6. Note on characteristic forms. An R -connection
T

determines canonically a w-connection. We can thus associate to
it characteristic forms defined by:
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. . i h
where Q; = dw; + Trll_l/\'rr, is a tensor 2-form. If the connection is
Jj .

defined with respect to w-adapted bases by (Tr; ), we have

[°3 ax
qu = )\d(wa) , LIJZ = -)\d(-rr(ﬂ< ).
. . . . . g a
This given connection being an R =-connection, we have w + wﬁ =
T a
or o+ = 0, or 7" = 0. Hence $yo= )\d(ﬂa) = 0. This
o a a 1 a

leads to the following theorem.

THEOREM 6.1. The first characteristic form lil is zero

for any R -connection.
™

7. R =-structures and infinitesimal transformations. It has
T

been proved by G. Legrand [1] that with a w-structure, one can

associate a tensor field t (two times covariant and one time

contravariant) in V called the torsion of w-structure. He has
m

also shown that this torsion can be regarded as the torsion of a
suitable w-connection. Furthermore, one can deduce from Section
4 of this paper that any R -connection defines canonically a
m-connection with which it can be identified. We conclude that the
torsion t of a w-structure can also be regarded as the torsion of a
suitable Rﬂ-connection. Iet us recall that if w-structure is

integrable then t is identically equal to zero. The converse is true

only if w-structure is of class c’. 1Itis obviously true that this
condition of integrability is same for Rﬂ-structure.

We consider the set M(Vm) of all the contravariant
differentiable vector fields (infinitesimal transformations) in Vm.
We also consider the following bilinear operators in M(Vm),

. e :
associating to u, v M(Vm) a field w € M(Vm) [9].

(i) w =[u, v] (bracket of Poisson), defined with the help of

local coordinates %’ and of the corre sponding local components

715

https://doi.org/10.4153/CMB-1969-092-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1969-092-8

u‘], vJ of u and v by

j k 8u uk 3
w' =V — -
axk Bxk

(G =1, ..., m);

(ii) w = [u, v] , 7 being briefly denoted by any R -
L T
. k . K .
connection in V_, defined by mJ =v V¥ uJ - u Vv vJ , where V.
m k k j

is the covariant derivative with respect to m;

(iii) w = T(u, v), T being the torsion of the Rﬂ—connection
. . K
defined by wJ = T‘Ll u vz. At the point x € Vm, T(u, v) depends
only on the vectors u, v at x, whereas the bracket depends on the
fields u, v.

The relation [u, V]'rr = [u, v] + T(u, v) is obviously true.

We claim that

(7.1) [To, 3v]_ = 3(3u, v]_+ Ju, Jv]_ - 2 [u, v]_

Indeed, in terms of the local coordinates x‘], let FJk be the

k
components of the tensor field representing J(x), then ijl = 0.

The j-th component of [Ju, Jv]n_ is equal to
ji p , 1 k Y k
FJkF 2 (V Vpu - u vpv )

p_Ji P ] j_p k 2 P k
= -\? v - + (F F u - F
(v Pu u VPV ) ( kV vp( P ) KE g u VPV )

J
k

£

P P k
F
u vp( ) v )

+(FjF vl uk-F
K 2 Yp

which is the j-th component of the second member of (7.1).

Replacing in (7.1) [u, V]Tr by [u, v] + T(u, v) we get

(7.2)  [Ju, Iv] = J[Ju, v] + J[u, Iv] - X\?[u, v] + JT(Ju, v)
+ JT(u, Jv) - T(Ju, Jv) - N> T(u, v).
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Let us in particular arrange in such a manner that T 1is the torsion
t of the Rn_-structure. Now in this case the operators J and

T(u, v) = t(u, v) in M(Vm) are related by

(7.3) t{u, Jv) = t(Ju, v) = -Jt(u, v).

These relations are consequences of the definition of the tensor t.

Operating J on the relations (7.3), we get
Jt(u, Jv) = Jt(Ju, v) = - T2t(u, v) = = \?t(u, v).
Also replacing u by Ju in (7.3), we get
t(Ju, Jv) = t(Jzu, v) = )\Zt(u, v).
Substituting these values in (7.2) and replacing T by t, we have
[Ju, Jv] = J[Ju, v] + J[u, Iv] - \?[u, v] - 4\%t(u, v)

or
(7.4) - 4\*t(u, v) = [Ju, Jv] - J[Ju, v] - Ju, Jv] + \[u, v].

Thus the condition of integrability t = 0 can be formulated as

follows:

In order that the R‘n_-structure in Vm be without torsion
(integrable, if the structure is of class Cm) it is necessary and

sufficient that [Ju, Jv] = J[Ju, v] + J[u, Jv] = A?[u, v] for all
vector fields u, v € M(Vm).

The Nijenhuis tensor is defined [8] by

N(u, v) = [Ju, Iv] + 3%[u, v] - I[Ju, v] - J[u, Iv]
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for any vector fields u, v. For R =-structure we have J* =\
T

then
N(u, v) = [Ju, Jv] + N?[u, v] - J[Ju, v] - Ju, Iv];
comparing this relation with (7. 4), we have
(7.5) N(u,v)= -4\’t(u, v).
Hence we conclude this section by stating the following

theorem.

THEOREM 7.41. In order that the R -structure in V be
T m

completely integrable it it necessary and sufficient (only if the

. w .s .
structure is of class C ) that the Nijenhuis tensor be equal to zero.
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