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Abstract
In this paper, we aim to investigate the fluid model associated with an open large-scale storage network of non-
reliable file servers with finite capacity, where new files can be added, and a file with only one copy can be lost or
duplicated. The Skorokhod problem with oblique reflection in a bounded convex domain is used to identify the fluid
limits. This analysis involves three regimes: the under-loaded, the critically loaded, and the overloaded regimes.
The overloaded regime is of particular importance. To identify the fluid limits, new martingales are derived, and
an averaging principle is established. This paper extends the results of El Kharroubi and El Masmari [7].

1. Introduction

In this paper, we are concerned with an open large-scale storage system with non-reliable file servers in
a communication network. The overall storage capacity is assumed to be limited.

In the network considered, servers can break down randomly and when the disk of a given server
breaks down, its files are lost, but can be retrieved on the other servers if copies are available. In order
to ensure persistence, a duplication mechanism of files to other servers is then performed. The goal is
for each file to have at least one copy available on one of the servers as long as possible. Furthermore,
in order to use the bandwidth in an optimal way, there should not be too many copies of a given file so
that the network can accommodate a large number of distinct files.

In the system considered here, if there is enough storage capacity, a file with one copy can be dupli-
cated on the other servers aiming to guarantee persistence in the system and new files can be admitted
to the system for storage, each with two copies, otherwise, if capacity does not allow the new files are
rejected and the duplication is blocked.

The natural critical parameters of the network are (N , `N ,_N , bN , FN ) where N is the number of
servers, µN is the failure rates of servers, _N the bandwidth allocated to files duplication, bN is the
bandwidth allocated to new files admission and FN the total storage capacity. In this paper, it will be
assumed that the total capacity FN is proportional to N, that is

lim
N→+∞

FN

N
= V̄ (1)

V̄ is the average storage capacity per server, and that the parameters bN , `N ,_N are given by

_N = _N , `N = `, and bN = bN

for some positive real constants _, b and µ.
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The evolution in time of the number of files having one copy and files having two copies is modeled
by two sequences of stochastic processes which are solutions of some stochastic differential equations
with reflecting boundary. In order to study the qualitative behavior of the system, these stochastic pro-
cesses are renormalized by a scaling parameter N. The resulting renormalized processes are the unique
solution of a Skorokhod problem involving a sequence of random measures induced by the process
describing the free capacity. Our main result shows that, as the scaling parameter goes to infinity, the
sequence of renormalized processes is relatively compact in the space of R2-valued right continuous
functions on R+ with left limits and the limit of any convergent subsequence is the unique solution of
a given deterministic dynamical system with reflections at the boundary of a bounded convex subset of
R2 (Theorem 3.2). Without reflections at the boundary, this dynamical system admits a unique equilib-
rium point. According to the position of this equilibrium point, three possible regimes can therefore be
derived: the under-loaded, the overloaded, and the critically loaded regime.

In the under-loaded regime, the probability of saturation of the system is small, and one can suppose
that the capacity of the system is infinite and in this case the fluid limits are explicitly identified in El
Kharroubi and El Masmari [7].

In the overloaded regime, the capacity FN is reached in a finite time. In order to identify the fluid
limits, exponential martingales are constructed which are useful in studying the limiting hitting time.
Furthermore, the analysis involves a stochastic averaging principle with an underlying ergodic Markov
process.

In the critically loaded regime, a probabilistic study of fluctuations of the processes around the
equilibrium point gives the convergence to a reflected diffusion.

Large-scale storage networks of non-reliable file servers with duplication mechanism have been stud-
ied in many papers, see for example, Ramabhadran and Pasquale [12], Picconi, Baynat, and Sens [9],
Picconi et al. [10], Li, Ma, and Ma [11], and Aghajani, Robert, and Sun [1] where the impact of differ-
ent replicating functionalities in a distributed system on its reliability is investigated using the theory of
Markov processes. The present paper is one of the research articles on the stochastic analysis of unreli-
able storage systems with duplication mechanisms. The series of articles on this type of research began
with the fundamental paper Feuillet and Robert [3], in which the authors investigated the evolution of
a closed loss storage system and employed different time scales to provide an asymptotic description
of the network’s decay. This work was generalized in Sun, Feuillet, and Robert [14], where the total
number of replicas allowed for any file was assumed to be any integer d.

Within the same context, a recent paper El Kharroubi and El Masmari [7] investigated the storage
system of non-reliable file servers with the duplication policy as an open network due to the newly
added transition of admitting new files to the system. The asymptotic behavior of the system is stud-
ied under a fluid level, and the explicit expression of the associated fluid limits is obtained by solving
a Skorokhod problem in the orthant R+2 . Nevertheless, in El Kharroubi and El Masmari [7] capac-
ity of the system is assumed to be infinite. And in order to give a complete description of a storage
network with loss, duplication, and admitting policies which is of real use in practice, in this paper,
capacity of the system is assumed to be finite and the asymptotic behavior of the system is also stud-
ied under a fluid level. The associated fluid limits are solutions of a Skorokhod problem in a given
bounded convex domain in R2

+. Unfortunately, the resolution of the obtained Skorokhod problem is
more complex due to the introduction of the process describing the free capacity of the system noted
(mN (t)).

Outline of the paper

Section 2 introduces the stochastic model considered and establishes the stochastic evolution equa-
tions of the Markov processes investigated. In Section 3, the link between the fluid equations and the
Skorokhod problem is established. It is shown in Theorem 3.2 that the sequence of the scaled processes
converges in distribution to a deterministic function, which is the unique solution of a given Skorokhod
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problem. The under-loaded regime and the critically loaded regimes are studied in Sections 4 and 6. In
Section 5, the overloaded regime is investigated.

2. Stochastic model

In this paper, we consider a large-scale storage system that consists of N servers in a communication
network. Let FN be the total number of files that can be stored in these servers. It will be assumed that
FN is finite. The file storage system operates as follows: As long as the storage capacity is not exceeded
new files can be admitted and files with one copy can be duplicated.

For i ∈ {1, 2}, XN
i (t) denotes the number of files with i copies present in the network at time t

and (X0(t)) denotes the number of files lost for good. Let (mN (t)) be the number of free places in the
network at time t ≥ 0. The sequence of the processes (mN (t)) is defined on N̄ = N∪ {+∞} and is given
by

mN (t) = FN − 2XN
2 (t) − XN

1 (t) (2)

The file duplication and admitting policies can be described as follows : conditionally on
(XN

1 (t), XN
2 (t)) = (x1, x2) with x1 > 0 and 2x2 + x1 < FN , a file with one copy gets an additional copy

with rate _N
x1

. If mN (t) ≥ 2, new files can be stored with rate bN . Copies of files disappear independently
at rate µ. If the last replica of a given file is lost before being repaired, the file is then definitively lost.

All events are supposed to occur after an exponentially distributed time. The admitting, failure, and
duplication processes are then independent Poisson processes. The process XN (t) = (XN

1 (t), XN
2 (t)) is

then a Markov process on the state space

DN = {(x1, x2) ∈ N2 | 2x2 + x1 ≤ FN }

For (x1, x2) ∈ N2 the Q-matrix QN = (qN (., .)) of (XN (t)) is given by

(x1, x2) −→ (x1, x2) +


(0, 1) bN1{x1+2x2<FN−1}
(1,−1) 2`x2

(−1, 1) _N1{x1>0,x1+2x2<FN }
(−1, 0) `x1

(3)

2.1. Stochastic differential equations

The evolution equations associated to the Markov processes (XN
0 (t)), (XN

1 (t)) and (XN
2 (t)) are given

by:

XN
0 (t) = XN

0 (0) +
+∞∑
i=1

∫ t

0
1{i≤XN

1 (u− ) }N`,i (du). (4)

XN
1 (t) = XN

1 (0) −
∫ t

0
1{XN

1 (u− )>0,2XN
2 (u− )+XN

1 (u− )<FN }N_N (du) (5)

−
+∞∑
i=1

∫ t

0
1{i≤XN

1 (u− ) }N`,i (du)

+
+∞∑
i=1

∫ t

0
1{i≤XN

2 (u− ) }N2`,i (du).
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XN
2 (t) = XN

2 (0) +
∫ t

0
1{2XN

2 (u− )+XN
1 (u− )<FN−1}NbN (du) (6)

−
+∞∑
i=1

∫ t

0
1{i≤XN

2 (u− ) }N2`,i (du)

+
∫ t

0
1{XN

1 (u− )>0,2XN
2 (u− )+XN

1 (u− )<FN }N_N (du)

where (NU,i) denotes an i.i.d sequence of Poisson processes with parameter U. All the sequences of
Poisson processes are assumed to be independent. And x(u−) = lim

s→u
s<u

x(s)

The equations (5) and (6) can be rewritten as

XN
1 (t) = XN

1 (0) + MN
1 (t) − `

∫ t

0
XN

1 (u)du + 2`
∫ t

0
XN

2 (u)du (7)

− _N
∫ t

0
1{XN

1 (u− )>0,2XN
2 (u− )+XN

1 (u− )<FN }du

XN
2 (t) = XN

2 (0) + MN
2 (t) − 2`

∫ t

0
XN

2 (u)du (8)

+ bN
∫ t

0
1{2XN

2 (u− )+XN
1 (u− )<FN−1}du

+ _N
∫ t

0
1{XN

1 (u− )>0,2XN
2 (u− )+XN

1 (u− )<FN }du

where (MN
1 (t)) and (MN

2 (t)) are martingales associated to Markov processes (XN
1 (t)) and (XN

2 (t))
(see[13] pp 348) given by :

MN
1 (t) =

+∞∑
i=1

∫ t

0
1{i≤XN

2 (u− ) } [N2`,i (du) − 2`du]

−
∫ t

0
1{XN

1 (u)>0,2XN
2 (u)+XN

1 (u)<FN } [N_N (du) − _Ndu]

−
+∞∑
i=1

∫ t

0
1{i≤XN

1 (u− ) } [N`,i (du) − `du]

(9)

MN
2 (t) =

∫ t

0
1{2XN

2 (u)+XN
1 (u)<FN−1} [NbN (du) − bNdu]

+
∫ t

0
1{XN

1 (u)>0,2XN
2 (u)+XN

1 (u)<FN } [N_N (du) − _Ndu]−

−
+∞∑
i=1

∫ t

0
1{i≤XN

2 (u− ) } [N2`,i (du) − 2`du]

(10)
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The predictable increasing processes associated to the martingales (MN
1 (t)) and (MN

2 (t)) are,
respectively, given by

〈MN
1 〉(t) = 2`

∫ t

0
XN

2 (u)du + `

∫ t

0
XN

1 (u)du

+ _N
∫ t

0
1{XN

1 (u)>0, 2XN
2 (u)+XN

1 (u)<FN }du
(11)

〈MN
2 〉(t) = bN

∫ t

0
1{2XN

2 (u)+XN
1 (u)<FN−1}du + 2`

∫ t

0
XN

2 (u)du

+ _N
∫ t

0
1{XN

1 (u)>0, 2XN
2 (u)+XN

1 (u)<FN }du
(12)

3. Fluid equations and Skorokhod problem

Let S be the convex domain in R2 given by

S = {(x1, x2) ∈ R2 |x1 ≥ 0, x2 ≥ 0, 2x2 + x1 ≤ V̄}

and D(R+,R2) the space of R2-valued right continuous functions on R+ with left limits. Let Mm,n(R)
be the space of m × n matrices over R.

In this paper, we consider the following Skorokhod problem in the convex domain S . Let \ ∈
M2,1(R), A ∈ M2,2(R) and R ∈ M2,2(R). Let a be the measure on [0,+∞[×N̄ satisfying
a( [0, t] × N̄) = t for all t ≥ 0.

Definition 3.1. The couple of functions z ∈ D(R+,R2) and y ∈ D(R+,R2) with z(0) ∈ S , is called
the solution of the Skorokhod problem associated with the data (\, a, A, R,S) and the function

x(t) = z(0) + t\ + V (t, Γ) +
∫ t

0
Az(s)ds (13)

where for Γ in a f-algebra B(N̄)

V (t, Γ) =
(

0
a(t, Γ)

)
if the three following conditions hold :

(1)

z(t) = z(0) + t\ + V (t, Γ) +
∫ t

0
Az(s)ds + Ry(t) (14)

(2) z(t) ∈ S for all t ≥ 0
(3) for i = 1, 2 the component yi of the function y are non-decreasing functions with yi (0) = 0, and for

t ≥ 0

y1(t) =
∫ t

0
1{z1 (s)=0}dy1(s) (15)
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y2(t) =
∫ t

0
1{z1>0,z1 (s)+2z2 (s)=V̄}dy2 (s) (16)

If z ∈ D(R+,Rd) and y ∈ D(R+,Rd) with z(0) ∈ S is a solution of the above Skorokhod problem
then the function z = (z(t)) has the following properties. First z behaves on the interior of the set S like
a solution of the following ordinary differential equation

x(t) = x(0) + \t + V (t, Γ) +
∫ t

0
Ax(s)ds (17)

And second, z is reflected instantaneously at the boundaries (mS)1 = {x1 = 0} and (mS)2 = {x1 + 2x2 =

V̄} of the set S . The direction of the reflection on the boundary (mS)1 is the first column vector of the
reflection matrix R and the direction of reflection on (mS)2 is the second column vector the matrix R.
See for example, Tanaka[15].

3.1. Fluid equations

If (XN (t)) is a sequence of processes, one defines the renormalized sequence of processes of (XN (t))
by

X̄N (t) def
=

XN (t)
N

, for t ≥ 0

From equations (2), (7), (8) one gets the fluid stochastic differential equations associated with the
sequence of processes (X̄N

1 (t)) and (X̄N
2 (t))

X̄N
1 (t) =X̄N

1 (0) + M̄N
1 (t) − _t − `

∫ t

0
X̄N

1 (u)du

+ 2`
∫ t

0
X̄N

2 (u)du + _

∫ t

0
1{X̄N

1 (u)>0,mN (u)=0}du

+ _

∫ t

0
1{X̄N

1 (u)=0}du

(18)

X̄N
2 (t) =X̄N

2 (0) + M̄N
2 (t) + (_ + b)t − 2`

∫ t

0
X̄N

2 (u)du

− b

∫ t

0
1{mN (u)≤1}du − _

∫ t

0
1{X̄N

1 (u)>0,mN (u)=0}du

− _

∫ t

0
1{X̄N

1 (u)=0}du

(19)

The process (mN (t)) evolves on a very rapid time-scale compared with the process X̄N (t) def
=

(X̄N
1 (t), X̄N

2 (t)). One can see that, while the velocity of the process (XN (t)) is of the order O(1), the
velocity of the process (mN (t)) is much faster than (XN (t)) and is of the order O(N).
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We consider as in Hunt and Kurtz [5] the random measure aN on [0,+∞[×N̄ defined by

aN ((0, t) × Γ) =
∫ t

0
1{mN (u) ∈Γ}du (20)

for all t ∈ [0,+∞[ and Γ in af-algebraB(N̄). Note that the measure aN satisfies the condition aN ((0, t)×
N̄) = t. There is a subsequence of the sequence (aN ) that converges in distribution to random measure a
satisfying a((0, t) × N̄) = t. (see Hunt and Kurtz [5] for more details). In terms of the random measure
aN equations (18), (19) becomes

X̄N
1 (t) =X̄N

1 (0) + M̄N
1 (t) − _t − `

∫ t

0
X̄N

1 (u)du

+ 2`
∫ t

0
X̄N

2 (u)du + _

∫ t

0
1{X̄N

1 (u)>0,mN (u)=0}du

+ _

∫ t

0
1{X̄N

1 (u)=0}du

(21)

X̄N
2 (t) =X̄N

2 (0) + M̄N
2 (t) + (_ + b)t − 2`

∫ t

0
X̄N

2 (u)du

− baN ( [0, t] × {0, 1}) − _

∫ t

0
1{X̄N

1 (u)>0,mN (u)=0}du

− _

∫ t

0
1{X̄N

1 (u)=0}du

(22)

The above equations can be rewritten in the matrix form as follows:

X̄N (t) = X̄N (0) + M̄N (t) + t\̄ − bVN (t, {0, 1})

+
∫ t

0
AX̄N (s)ds + RYN (t)

(23)

where

X̄N (t) =
(
X̄N

1 (t)
X̄N

2 (t)

)
M̄N (t) =

(MN
1 (t)
N

MN
2 (t)
N

)

\̄ =

(
−_
b + _

)
, A =

(
−` 2`
0 −2`

)
, R =

(
_ _

−_ −_

)

VN (t, {0, 1}) =
(

0
aN ( [0, t] × {0, 1})

)

YN (t) =
( ∫ t

0 1{X̄N
1 (u)=0}du∫ t

0 1{X̄N
1 (u)>0,mN (u)=0}du

)
As illustrated in Figure 1 the couple of processes (X̄N (t)) and (YN (t)) can be interpreted as the

solution of the Skorokhod problem associated with data (\̄, aN , A, R,S) and
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Figure 1. Simulation of the process (XN
1 (t), X

N
2 (t)) in the convex S

V̄N (t) = X̄N (0) + M̄N (t) + t\̄ − bVN (t, Γ) +
∫ t

0
AX̄N (s)ds (24)

The following graphic illustrates the simulation for the process (X1(t), X2(t)), and it has been shown
that the process (X1 (t)) is well reflected at the boundary (mS)1 and the process (X1(t) + 2(X2(t))) is
reflected at the boundary (mS)2.

In the next theorem, we prove the relative compactness of the sequence of processes(
XN (.), YN (.),VN (.)

)
inD(R+,R2)×M1(R+×N̄). WhereM1(R+×N̄) is the space of Radon measures

on R+ × N̄.

Theorem 3.2 Suppose that

lim
N→+∞

(XN
1 (0), X

N
2 (0)) = (x1, x2) ∈ S ,

the sequence
(
XN (.), YN (.), aN (.)

)
is then relatively compact in D(R+,R3) and the limit

(x(.), y(.), a(.)) of any convergent subsequence satisfies:

x1(t) = x1 − _t − `

∫ t

0
x1(s)ds + 2`

∫ t

0
x2(s)ds

+ _

∫
[0,t]×N

1{x1 (s)>0}1{0} (u)a(ds × du) + _y1(t)
(25)

x2(t) = x2 + (_ + b)t − 2`
∫ t

0
x2(s)ds − ba( [0, t] × {0, 1})

− _

∫
[0,t]×N

1{x1 (s)>0}1{0} (u)a(ds × du) − _y1(t)
(26)
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where the function y1 is a non-decreasing function with y1(0) = 0, and for t ≥ 0

y1(t) =
∫ t

0
1{x1 (s)=0}dy1(s)

Lemma 3.3. The sequences of processes
(

MN
1 (t)
N

)
t≥0

and
(

MN
2 (t)
N

)
t≥0

converge in distribution to 0
uniformly on compact sets.

Proof. Doob’s inequalities show that, for n > 0 and t ≥ 0

P

(
sup

0≤s≤t

MN
i (s)
N

≥ n

)
≤ 1

n2N2E(〈M
N
i 〉(t))

From equations (11), (12) one gets

E(〈MN
1 〉(t)) ≤ `FN + _Nt

E(〈MN
2 〉(t)) ≤ `FN + (_ + b)Nt

Then from (1) the sequences of processes
(

MN
1 (t)
N

)
t≥0

and
(

MN
2 (t)
N

)
t≥0

converge in distribution to 0
uniformly on any bounded time interval. �

Proof. proof of Theorem 3.2 First, we prove the relative compactness of the process

X̄N (t) =
(
X̄N

1 (t)
X̄N

2 (t)

)
For this we prove separately that(XN

1 (t)) and (XN
2 (t)) are tight.

For T > 0, X > 0 we denote by lT
g (X) the modulus of continuity of the function g on [0, T]:

lT
g (X) = sup

0≤s≤t≤T , |t−s | ≤ X

|g(t) − g(s) | (28)

The equation (21) shows that the processes (XN
1 (t), YN

1 (t)) with YN
1 (t) = _

∫ t
0 1{XN

1 (u)=0}du) is the
unique solution of the Skorokhod problem associated to the process

VN
1 (t) = XN

1 (0) + MN
1 (t) − _t + `

∫ t

0
(2XN

2 (u) − XN
1 (u))du

+ _

∫
[0,t]×N

1{X1
N (u)>0}1{0} (y)aN (ds × dy)

(29)

By using explicit representation of the solution of the Skorokhod in dimension 1, see El Karoui and
Chaleyat-Maurel [6], one has

‖XN
1 ‖∞,t

def
= sup

0≤s≤t
|XN

1 (s) | ≤ 2‖VN
1 ‖∞,t

and

|_YN
1 (t) | ≤ ‖VN

1 ‖∞,t
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By equation (29), one gets that

‖VN
1 ‖∞,t ≤ |XN

1 (0)) | + 2_t + `

∫ t

0
‖XN

1 ‖∞,sds

+ 2`
∫ t

0
‖XN

2 ‖∞,sds + ‖MN
1 ‖∞,t

and using inequalities given above,

‖XN
1 ‖∞,t ≤ 2|XN

1 (0) | + 4_t + 2`
∫ t

0
‖XN

1 ‖∞,sds

+ 4`
∫ t

0
‖XN

2 ‖∞,sds + 2‖MN
1 ‖∞,t

‖XN
2 ‖∞,t ≤ |XN

1 (0) | + |XN
2 (0) | + (4_ + 3b)t + ‖MN

1 ‖∞,t + ‖MN
2 ‖∞,t

+ `

∫ t

0
‖XN

1 ‖∞,sds + 4`
∫ t

0
‖XN

2 ‖∞,sds

Then

‖XN
1 ‖∞,t + ‖XN

2 ‖∞,t ≤ HN (T) + 8`
∫ t

0
(‖XN

1 ‖∞,s + ‖XN
2 ‖∞,s)ds

with

HN (t) = 3|XN
1 (0) | + |XN

2 (0) | + (8_ + 3b)T + 3‖MN
1 ‖∞,T + ‖MN

2 ‖∞,T

Gronwall’s lemma gives that the relation

‖XN
1 ‖∞,t + ‖XN

2 ‖∞,t ≤ HN (T)e8`t

holds for all t ∈ [0, T]. The convergence of martingales and of |XN
1 (0) |, |X

N
2 (0) | shows that the sequence

(HN (T)) converges in distribution. Consequently for n > 0, there exists some C > 0 such that for i = 1, 2
and all N ∈ N

P
(
‖XN

1 ‖∞,t + ‖XN
2 ‖∞,t > C

)
≤ n .

If [ > 0, there exists N1 and X > 0 such that for all N ≥ N1

X(_ + 4`C) ≤ [

2

and

P

(
lT

MN
1
(X) ≥ [

2

)
≤ n
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One gets finally

P

(
lT

VN
1
(X) ≥ [

)
≤ P

(
2_X + 2`X(‖XN

1 ‖∞,T + ‖XN
2 ‖∞,T ) ≥

[

2

)
+ P

(
lT

MN
1
(X) ≥ [

2

)
≤ 3n

Consequently the sequence (VN
1 (t)) is tight and by continuity of the solution of the Skorokhod

problem in dimension 1 the sequences (XN
1 (t)) and (YN

1 (t)) are tight, see Billingsley [8].
From equation ((22)) one gets for s< t :

|XN
2 (t) − XN

2 (s) | ≤ (_ + b) (t − s) + 2`
∫ t

s
|XN

2 (u) |du + |MN
2 (t) − MN

2 (s) |

+ (2_ + b) (t − s) + _(YN
1 (t) − YN

1 (s))

and

P

(
lT

XN
2
(X) ≥ [

)
≤ P

(
lT

MN
2
(X) ≥ [/3

)
+ P

(
lT

YN
1
(X) ≥ [/3

)
+ P

(
2`X‖XN

2 ‖∞,T + X(2_ + 3b) ≥ [/3
) (30)

There exists N1 ≥ 0 such that X(2`C − b) ≤ n and

P

(
lT

MN
2
(X) ≥ [

3

)
≤ n

and

P

(
_lT

YN
1
N

(X) ≥ [

3

)
≤ n

and, consequently

P

(
lT

XN
2
(X) ≥ [

)
≤ 3n

The sequence XN
2 is therefore tight.

It remains to prove the relative compactness of the sequence of random measures aN on [0,+∞[×N̄.
Since for all N and all t ≥ 0

aN ( [0, t[×N̄) = t

The result is given in Hunt and Kurtz [17] Lemma 1.3. �
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12 S. El Masmari and A. El Kharroubi

Remark 3.4. The dynamical system associated to the equations given in (25) and (26) are given by{
x1(t) = x1 − _t − `

∫ t
0 x1(s)ds + 2`

∫ t
0 x2(s)ds + _y1(t)

x2(t) = x2 + (_ + b)t − 2`
∫ t
0 x2(s)ds − _y1(t)

The unique solution of this reflected ordinary differential equations noted x(t) = (x1(t), x2(t)) is
given by

(1) If (x1, x2) ∈ S1 ∪ S2, then for all t ≥ 0,


x1(t) =

(
x1 + 2x2 −

_ + 2b
`

)
e−`t −

(
2x2 −

_ + b

`

)
e−2`t + b

`

x2(t) =
_ + b

2`
+

(
x2 −

_ + b

2`

)
e−2`t

(31)

(2) If (x1, x2) ∈ S3, x1 = 0, then

x1(t) =
b

`

(
e−` (t−g1 ) − 1

)2
1[g1,+∞[ (t) (32)

x2(t) = (x2 + bt) 1[0,g1 ] (t) +
(
_

2`
+ b

2`

(
1 − e−2` (t−g1 )

))
1[g1,+∞[ (t) (33)

y1(t) =
(_ − 2`x2)t − `bt2

_
1[0,g1 ] (t) +

(_ − 2`x2)2

4_`b
1[g1,+∞) (t) (34)

where g1 =
_−2`x2

2`b .

With

S1 =

{
(x1, x2) ∈ S |

(
x1 + 2x2 −

_ + 2b
`

) (
2x2 −

_ + b

`

)
≤ 0

}

S2 =

{
(x1, x2) ∈ S | x1 + 2x2 >

_ + 2b
`

,
_ + b

`
< 2x2

}

S3 =

{
(x1, x2) ∈ S | x1 + 2x2 <

_ + 2b
`

,
_ + b

`
> 2x2

}
See (4) for the explicit solution to the reflected ODE obtained above. This dynamical system admits

a unique equilibrium point
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Figure 2. Simulation of the process (X1(t), X2 (t)) with respect to the boundary (mS)2

(
b

`
,
_ + b

2`

)
Thus, according to the position of this equilibrium point in the convex set S, three possible regimes can
be considered. Let

d
def
=

_ + 2b
`

The under-loaded regime (d < V̄), the critically loaded regime (d = V̄) and the overloaded regime
(d > V̄). Each of the aforementioned regimes will be developed in detail in the next sections.

4. The under-loaded regime

Throughout this section, we assume that the condition

d < V̄ (35)

holds.
In the Under-loaded regime, the equilibrium point d is less than V̄, and the figure below, fig. 2,

illustrates the stabilization of the process (X1(t), X2(t)) at the equilibrium point and never reaches the
boundary (mS)2.

Let (XN
1 (t)) and (XN

2 (t)) the processes given, respectively, by equations (7) and (8). Recall that
(XN

1 (t) +XN
2 (t)) is the process describing the total number of files that are present in the system at time

t. Let (ZN (t)) be the process given by

ZN (t) =
XN

1 (t) + 2XN
2 (t) − Nd

√
N

(36)

The Q-matrix QN = (qN (., .)) of the Markov process (XN
1 (t), XN

2 (t), ZN (t)) is defined by;

https://doi.org/10.1017/S026996482510003X Published online by Cambridge University Press

https://doi.org/10.1017/S026996482510003X


14 S. El Masmari and A. El Kharroubi

For (x1, x2) ∈ DN and z =
x1 + 2x2 − Nd

√
N

(x1, x2, z) −→ (x1, x2, z) +



(0, 1, 2√
N
) bN1{z< FN −1√

N
−Nd}

(1,−1,− 1√
N
) 2`x2

(−1, 1, 1√
N
) _N1{x1>0,z< FN√

N
−Nd}

(−1, 0,− 1√
N
) `x1

(37)

and the generator of (XN
1 (t), XN

2 (t), ZN (t)) is given by,

AN f (x1, x2, z) = bN1{z< FN −Nd−1√
N

} [f (x1, x2 + 1, z + 2
√

N
) − f (x1, x2, z)]

+ _N1{x1>0 , z< FN −Nd√
N

} [f (x1 − 1, x2 + 1, z + 1
√

N
) − f (x1, x2, z)]

+ `x1 [f (x1 − 1, x2, z − 1
√

N
) − f (x1, x2, z)]

+ 2`x2 [f (x1 + 1, x2 − 1, z − 1
√

N
) − f (x1, x2, z)]

For any function f depending only on the third variable z, i.e.,

f (x1, x2, z) = g(z) ∀ (x1, x2) ∈ N2 with x1 > 0

for some twice differentiable function g on R one gets

ANg(z) = bN1{z< FN −Nd−1√
N

} [g(z +
2
√

N
) − g(z)]

+ _N1{z< FN −Nd√
N

} [g(z +
1
√

N
) − g(z)]

+ `(
√

Nz + Nd) [g(z − 1
√

N
) − g(z)]

Remark that condition (35) implies that terms FN−Nd−1√
N

and FN−Nd√
N

converge to +∞. Thus the generator
converges to

−`zg′ (z) + (_ + 3b)g′′ (z) z ∈ R

when N → +∞, which is the generator of an Ornstein–Uhlenbeck process with variance converges to
_+3b
`

. By results given in Ethier and Kurtz [2] one can see that for some positive constant U the process
(XN

1 (t) + 2XN
2 (t)) lives in [Nd − UN , Nd + UN] ⊂ [0, N V̄] and the probability of saturation of the

system is therefore small. In the under-loaded regime one can suppose that the capacity of the system
is infinite, i.e., FN = +∞. In this case, the complete study of the process (XN

1 (t), XN
2 (t)) is made in the

article El Kharroubi and El Masmari [7].
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Figure 3. Simulation of the process (X1(t), X2 (t)) with respect to the boundary (mS)2

5. The overloaded regime

Throughout this section, we assume that the condition

d > V̄ (38)

holds.
In the Overloaded regime, the equilibrium point d exceeds V̄, and the figure below, fig. 3, illus-

trates that the process (X1 (t), X2(t)) being constrained by the boundary (mS)2 and never reaching the
equilibrium point.

the Q-matrix QN = (qN (., .)) and the generator of the Markov process
(X1

N (t/N), X2
N (t/N), mN (t/N)) are given by,


qN ((x1, x2, m), (x1 − 1, x2, m + 1) = 1

N `x1

qN ((x1, x2, m), (x1 + 1, x2 − 1, m + 1) = 2
N `x2

qN ((x1, x2, m), (x1 − 1, x2 + 1, m − 1) = _1{x1>0 , m≥1}
qN ((x1, x2, m), (x1, x2 + 1, m − 2) = b1{m≥2}

AN f (x1, x2, m) = 1
N
`x1 [f (x1 − 1, x2, m + 1) − f (x1, x2, m)]

+ 2
N
`x2 [f (x1 + 1, x2 − 1, m + 1) − f (x1, x2, m)]

+ _1{x1>0 , FN−(2x2+x1 )≥1} [f (x1 − 1, x2 + 1, m − 1) − f (x1, x2, m)]
+ b1{FN−(2x2+x1 )≥2} [f (x1, x2 + 1, m − 2) − f (x1, x2, m)]

For any function f depending only on the third variable m, i.e.,

f (x1, x2, m) = g(m) ∀ (x1, x2) ∈ N2
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16 S. El Masmari and A. El Kharroubi

for some function g on N one gets

ANg(m) = `
FN − m

N
(g(m + 1) − g(m))

+ _1{x1>0 ,m≥1} [g(m − 1) − g(m)]
+ b1{m≥2} [g(m − 2) − g(m)]

This generator converges to

Ag(m) = `V̄ (g(m + 1) − g(m))
+ _1{x1>0,m≥1} [g(m − 1) − g(m)]
+ b1{m≥2} [g(m − 2) − g(m)]

Thus, for any x = (x1, x2) ∈ N∗ ×N, this is the generator of the Markov process (m(t)) with transitions

m −→ m +


+1 `V̄

−1 _1{m≥1}
−2 b1{m≥2}

(39)

Proposition 5.1. Under the condition (38), the process (m(t)) has a unique invariant distribution c,
its generating function g(u) = ∑

n≥0
c(n)un is given by, for u ∈ [−1, 1]

g(u) = 1
−`V̄ + (_ + b)u + b

[(_u + b (1 + u))c(0) + b (1 + u)uc(1)] (40)

Where (c(0), c(1)) are given by

c(0) = (1 + y∗) (_ + 2b − `V̄)
(_ + 2b) (1 + y∗) − 2`V̄y∗

(41)

c(1) = −`V̄ + _ + 2b
2b

− _ + 2b
2b

c(0) (42)

with

y∗ =
(_ + b) −

√
(_ + b)2 + 4b`V̄
2`V̄

Proof. The existence and uniqueness of the stationary distribution is a simple consequence of Foster’s
criterion. See Proposition 8.14 of Robert [13]. For u ∈ [−1, 1], define

g(u) =
∑
n≥0

c(n)un

The equilibrium equation

+∞∑
m=0

[`V̄ (f (m + 1) − f (m)) + _1{x1>0 ,m≥1} (f (m − 1) − f (m))

+ b1{m≥2} (f (m − 2) − f (m))]c(m) = 0

(43)

for f (m) = um, gives the following relation
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g(u)(`V̄u2(u − 1) + _(u − u2) + b (1 − u2)) = _(u − u2)c(0) + b (1 − u2) (c(0) + uc(1))

Let

P(u) def
= −`V̄u2 + (_ + b)u + b

then we have

P(u)g(u) = ((_ + b)u + b)c(0) + b (1 + u)uc(1)) (44)

Note that P(−1) = −(`V̄ + _) < 0, P(0) = b and P(1) = −`V̄ + _ + 2b > 0 by Condition (38). The
function P(u) has a unique root in[−1, 1] and it is necessarily y∗.

We have therefore that y∗ is a root of the RHS of the Relation (44), hence

`V̄y2
∗c(0) + by∗(1 + y∗)c(1) = 0

and the relation g(1) = 1 gives the additional identity

_ + 2b
2b

c(0) + c(1) = _ + 2b − `V̄

2b

The proposition is proved. �

5.1. Fluid limits

Our aim in this section is to identify the limit of the renormalized processes (X̄N
1 (t)) and (X̄N

2 (t)) given,
respectively, by equations (18) and (19). We assume that

lim
N→+∞

(
XN

1 (0), X
N
2 (0)

)
= (x1, x2) (45)

and we successively study the cases where (x1, x2) is chosen inside the set S and the case where (x1, x2)
lies on the boundary (mS)2.

5.1.1. Starting from the interior of S

Let TN
1 be the hitting time

TN
1 = inf{t > 0 | mN (t) ∈ {0, 1}}

Note that before time TN
1 the Markov process (XN

1 (t), XN
2 (t)) coincides with the Markov process

describing the storage process with infinite capacity (FN = +∞).
The Proposition 5.4 proves the convergence in distribution of the hitting time TN

1 . The proof of this
result is inspired by the study of M/M/N/N queue ( see Robert [13] and Fricker, Robert, and Tibi [4]).
Let qN

c be the function on R+ defined by

qc (t) = ce`t (d + cb
2`

e`t)

for c ∈ R∗, N ∈ N∗.
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Lemma 5.2. Let v = (1, 2). The function

gc :(t, w) ∈ R+ × N∗ × N→ (1 + ce`t)v·we−Nqc (t)

where v · w = w1 + 2w2

is space-time harmonic with respect to the Q-matrix Q given in (4) with FN = +∞. In other words

mgc

mt
(t, w) + Q(gc) (t, w) = 0, for all t ∈ R+ and for all w ∈ N∗ × N

Proof. For t ∈ R+ and w ∈ N∗ × N

mgc

mt
(t, x) = e−qc (t)ce`t

[
v · w`(1 + ce`t)v·w−1

−
(
_N + bN (2 + ce`t)

)
(1 + ce`t)v·w

]
on other hand

Q(gc) (t, w) = Q(gc (t, .)) (w)

is given by

Q(gc) (t, w) = _N
[
(1 + ce`t)v·w+1e−qc (t) − (1 + ce`t)v·we−qc (t)

]
+ `v · w

[
(1 + ce`t)v·w−1e−qc (t) − (1 + ce`t)v·we−qc (t) ]

+ bN
[
(1 + ce`t)v·w+2e−qc (t) − (1 + ce`t)v·we−qc (t)

]

= e−qc (t)
[
(_ + b)N

(
(1 + ce`t)v·w+1 − (1 + ce`t)v·w

)
+ `v · w

(
(1 + ce`t)v·w−1 − (1 + ce`t)v·w

)
+ bN

(
(1 + ce`t)v·w+2 − (1 + ce`t)v·w+1

)]
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= e−qc (t)
[
−v · wc`e`t (1 + ce`t)v·w−1

+ ce`t
(
_N + bN (2 + ce`t)

)
(1 + ce`t)v·w

]
= −mgc

mt
(t, w)

�

Proposition 5.3.

(1) For c ∈ R∗ and N ∈ N∗ the process (
gc (t, XN (t))

)
(46)

is a martingale.
(2) For N ∈ N∗ the following processes are martingales.(

e`t (v · XN (t) − Nd)
)

(47)

(
e2`t

(
(v · XN (t) − Nd)2 − v · XN (t) − N

b

`

))
(48)

Proof.

(1) By Lemma 5.2 the function (t, w) → gc (t, w) is space-time harmonic for the Q-matrix Q given
in ((4)) with FN = +∞. Since t → mgc

mt is continuous, then the process (gc (t, XN (t)) is a local
martingale (See Corollary B.5 in Robert [13]). Furthermore, for t ∈ R+,

v · XN (t) ≤ (2XN
2 (0) + XN

1 (0)) + 2NbN (]0, t]) +N_N (]0, t])

one gets for t ≥ 0,

E( sup
0≤s≤t

|gc (t, XN (t) |) < +∞

Thus the process (gc (t, XN (t)) is a martingale (see proposition A.7 in Robert [13]).
(2) Let Ψ be the function on R+ × N defined by

Ψ(x, z) = (1 + x)ze−Ndxe−
N b

2` x2

Note that

Ψ(ce`t , v · XN (t)) = gc (t, XN (t))

and therefore (Ψ(ce`t , v · XN (t)) is a martingale. On other hand, it is well known that

e−Ndx (1 + x)z =
∑
n≥0

CNd
n (z) xn

n!
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where CNd
n (z) is the nth Poisson-Charlier polynomial (see Chihara [16]). Hence, the expansion of

Ψ(x, z) is given by

Ψ(x, z) =
∑
n≥0

(
n∑

k=0
CNd

n−k (z)bk

)
xn

n!
(49)

where b2k+1 = 0 and b2k =

(
−N b

2`

)k

Replacing in (49) x and z by ce`t and v · XN (t), respectively, one gets that for any n ∈ N∗,(
en`t (

n∑
k=0

CNd

n−k (v · XN (t))bk)
)

is a martingale. In particular for n= 1 and n= 2 one gets that the processes(
e`t (v · XN (t) − Nd)

)
and (

e2`t (v · XN (t) − Nd)2 − v · XN (t) − Nb

2`
)
)

are martingales. �

Proposition 5.4. if Conditions (38) and (45) hold with x1 + 2x2 < V̄ then the hitting time TN
1 converges

in distribution to T0 where

T0 =
1
`

log
(
_ + 2b − `(x1 + 2x2)

_ + 2b − `V̄

)
(50)

Proof. We assume that Conditions (38) and (45) hold with x1 + 2x2 < V̄. Doob’s optional stopping
Theorem applied to the martingale given in (47) and to TN

1 show that the process(
e`t∧TN

1
[
v · XN (t ∧ TN

1 ) − Nd
] )

is a martingale. Thus, the following equality holds

E
(
e`t∧TN

1
[
Nd − v · XN (t ∧ TN

1 )
] )

= Nd − v · XN (0)

Since v · XN (t ∧ TN
1 ) ≤ FN − 1, one gets that,

E(e`t∧TN
1 ) ≤ (_ + 2b)N − `v · XN (0)

(_ + 2b)N − `FN + `

By letting t go to infinity, monotone convergence Theorem shows that

E(e`TN
1 ) ≤ _ + 2b − `v · X̄N (0)

_ + 2b − `
FN
N + `

N
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And that implies uniform integrability of the martingale

E(e`t∧TN
1 (v · XN (t ∧ TN

1 ) − dN))

One gets therefore the following identity

E(e`TN
1 ) = _ + 2b − `v · X̄N (0)

_ + 2b − `
F̄N
N + `

N

(51)

Doob’s optional stopping theorem applied again to the martingale given by (48) and to the stopping
time TN

1 shows that the process(
e2`t∧TN

1 (v · XN (t ∧ TN
1 ) − dN)2 − v · XN (t ∧ TN

1 ) − bN
`

)
is a martingale. Since v · XN (t ∧ TN

1 ) ≤ FN − 1,N V̄ < Nd and N V̄ = FN one could then use the same
arguments used above to get the following identity

E(e2`TN
1 ) =

N (v · X̄N (0) − d)2 − v · X̄N (0) − b

`

N ( FN−1
N − d)2 − FN−1

N − b

`

(52)

One then deduces that var(e`TN
1 ) = O(1/N) and the Tchebychev inequality implies that, for n > 0,

P( |e`TN
1 − E(e`TN

1 ) | > n) ≤ var(e`TN
1 )

n2 ,

Hence, using the identity given by (51), the sequence (TN
1 ) converges in probability to T0. �

Theorem 5.5 If Conditions (38) and (45) hold with x1+2x2 < V̄ and x2 >
_+b
2` Then for the convergence

in distribution,

lim
N→+∞

(XN
1 (t), X

N
2 (t))0≤t≤T0 = (x̄1(t), x̄2(t))0≤t≤T0

with (x̄1(t), x̄2(t)) are given in (31).
Note that at time T0 , the fluid limit (x̄1(t), x̄2 (t)) hits the boundary (mS)2, i.e., x̄1 (T0) +2x̄2(T0) = V̄.

Proof. We assume that Conditions (38) and (45) hold with x1 +2x2 < V̄ and x2 >
_+b
2` . By Theorem 3.2

the sequence (
XN (t), YN (t), aN (t)

)
is relatively compact inD(R+,R3) and the limit (x(.), y(.), a(.)) of any convergent subsequence satisfies
for all t ≥ 0:

x1(t) = x1 − _t − `

∫ t

0
x1(s)ds + 2`

∫ t

0
x2(s)ds

+ _

∫
[0,t]×N

1{x1 (s)>0}1{0} (u)a(ds × du) + _y1(t)
(53)
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x2(t) = x2 + (_ + b)t − 2`
∫ t

0
x2(s)ds − ba( [0, t] × {0, 1})

− _

∫
[0,t]×N

1{x1 (s)>0}1{0} (u)a(ds × du) − _y1(t)
(54)

The condition x2 >
_+b
2` implies that the function y1(t) = 0 for all t ≥ 0 (see Theorem 2 in El Kharroubi

and El Masmari [7]). Thus, it is sufficient to show that for all t ≤ T0

a( [0, t] × {0, 1}) = 0

Let us first recall that,

aN ((0, t) × {0, 1}) =
∫ t

0
1{mN (u) ∈{0,1}}du

and that the increasing sequence of hitting times (TN
1 ) converges in probability to T0. For any t ≤ T0

and for any n > 0

P{sup
s≤t

aN ((0, s) × {0, 1}) ≥ n} ≤ P{ sup
s≤t∧TN

1

aN ((0, s) × {0, 1}) ≥ n}

+ P{ sup
TN

1 ≤s≤t
aN ((0, s) × {0, 1}) ≥ n}

The first term of the RHS of the above Inequality is equal to zero. Since for TN
1 ≤ s ≤ t

aN ((0, s) × {0, 1}) =
∫ TN

1

0
1{mN (u) ∈{0,1}}du +

∫ s

TN
1

1{mN (u) ∈{0,1}}du

≤ T0 − TN
1

P{sup
s≤t

aN ((0, s) × {0, 1}) ≥ n} ≤ P{|TN − T0 | ≥ n}

Thus,

lim
N→+∞

P{sup
s≤t

aN ((0, s) × {0, 1}) ≥ n} = 0
�

Application 1 : In that case, simulations have shown that if one assumes that if the system starts
from the interior of the domain S , x1 + 2x2 < V̄, the storage system before TN

1 behaves like the system
with infinite capacity, and the processes (XN

0 (t)), (XN
1 (t)) and (XN

2 (t)) in the finite capacity case are
close to the processes (XN

0 (t)), (XN
1 (t)) and (XN

2 (t)) without constraints on the boundary FN . And the
better choice of parameters that guarantees reliability remains the same as in the infinite capacity case
before T1,

S3 =

{
(x1, x2) ∈ S | x1 + 2x2 <

_ + 2b
`

,
_ + b

`
> 2x2

}
The graphs below illustrate the closeness of the processes with finite capacity, represented by the color
red, and those with infinite capacity, represented by the color blue in figs. 4a), 4b and 4c)
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Figure 4. Comparison between the stochastic processes in the finite and infinite case before TN
1 . a) The

stochastic processes (XN
0 (t)) in the finite and infinite case. b) The stochastic processes (XN

1 (t)) in the
finite and infinite case. c) The stochastic processes (XN

2 (t)) in the finite and infinite case.

5.1.2. Starting from the boundary of (mS)2 of the set S

Theorem 5.6 If Conditions (38) and (45) hold with x1 + 2x2 = V̄. Then for the convergence in
distribution,

lim
N→+∞

(X̄N
1 (t), X̄N

2 (t))t≥0 = (x1(t), x2(t))t≥0

where (x1(t), x2(t))t≥0 is the solution of the ordinary differential equation,

x1(t) = x1 − _(1 − c(0))t + `

∫ t

0
(2x2(u) − x1(u)) du + _y1(t)

x2(t) = x2 +
(
`V̄

2
+ _

2
(1 − c(0))

)
t − 2`

∫ t

0
x2(u) du − _y1(t)

(55)
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where c(0) is defined by Equation (41).

Proof. Our goal is to identify the measure a in Equations (53) and (54). The Q-matrix of the Markov
process (XN (.), mN (.)) is given by,

(xN , mN ) −→ (xN , mN ) +


(xN + e2, mN − 2) bN1{mN ≥2}
(xN + e1 − e2, mN + 1) 2`xN

2
(xN + e2 − e1, mN − 1) _N1{xN

1 >0}1{mN ≥1}

(xN − e1
N , mN + 1) `xN

1

Thus, the process(
f (XN (t), mN (t)) − f (XN (0), mN (0)) −

∫ t

0
(Qf ) (XN (s), mN (s))ds

)
is a martingale for all bounded function f on R+ × N̄. In particular the process

MN (t) def
= g(mN (t)) − g(mN (0))

−
∫ t

0
[g(mN (s) − 2) − g(mN (s))]bN1{mN (s)≥2}ds

−
∫ t

0
[g(mN (s) + 1) − g(mN (s))]`(2XN

2 + XN
1 (s))ds

−
∫ t

0
[g(mN (s) − 1) − g(mN (s))]_N1{XN

1 (s)>0}1{mN (s)≥1}ds

(56)

is a martingale for all bounded function g on N̄. It follows from Doob’s inequality that the process
(M

N (t)
N ) converges in distribution to 0.
Since 2X̄N

2 (t) + X̄N
1 (t) = FN

N − mN (t)
N , Equation (56) can be rewritten as

MN (t)
N

=
g(mN (t)) − g(mN (0))

N

−
∫ t

0

{
[g(mN (s) − 2) − g(mN (s))]b1{mN (s)≥2}

+ [g(mN (s) + 1) − g(mN (s))]`(FN

N
− mN (t)

N
)

+ [g(mN (s) − 1) − g(mN (s))]_1{XN
1 (s)>0}1{mN (s)≥1}

}
ds

(57)

In terms of measure aN (.), we may rewrite the last term on the RHS of (57) as follows :

∫ t

0

{
(g(y − 2) − g(y))b1{y≥2}

+ (g(y + 1) − g(y))`(FN

N
− y

N
)

+ [g(y − 1) − g(y)]_1{X̄N
1 (s)>0}1{y≥1}

}
aN (ds × dy)

(58)
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which also converges to 0 since 1
N

(
g(mN (t)) − g(mN (0))

)
converges to 0 as N → +∞. Furthermore,

by continuous mapping theorem one gets that∫
[0,t]×N

{
[g(y − 2) − g(y)]b1{y≥2} + [g(y + 1) − g(y)]`V̄

+[g(y − 1) − g(y)]_1{x1 (s)>0}1{y≥1}

}
a(ds × dy) = 0

for all t ≥ 0.
Thus, for almost all t ≥ 0,∑

y∈N

{
[g(y − 2) − g(y)]b1{y≥2} + [g(y + 1) − g(y)]`V̄

+[g(y − 1) − g(y)]_1{x1 (t)>0}1{y≥1}

}
at (y) = 0

Hence, for all t ≥ 0 such that x1(t) > 0, the measure at (.) = c where the measure c is invariant for the
Markov process (m(t)) with Q-matrix given by (39). The theorem is proved. �

Application 2: In the Overloaded case, if the system starts from the boundary mS2, i.e., x1 +2x2 = V̄,
and the parameters have been fixed as follows:

- The number of nodes N = 100,
- The duplication rate is _ = 0, 3,
- The admitting rate is b = 0.3,
- The loss rate is µ= 0.01,
- The maximal number of files to be stored in the system is Fmax = 7000.

In the simulations below, it will be shown that the fluid limits (x0(t), x1(t), x2(t)) obtained in (55)
coincide with the stochastic process (XN

0 (t), XN
1 (t), XN

2 (t)) defined for the model. And the new coming
files for storage are accepted with approximately the rate bN (1−cV̄ (0)). On the other hand, the reliability
of the system is not impacted by the capacity of the system in this case.

See the graphs below, fig. 5 which clearly illustrate the striking alignment between the stochas-
tic processes and their corresponding fluid limits. This strong correspondence underscores the critical
role of the fluid limits in accurately capturing and describing the asymptotic behavior of the stochastic
processes.

6. The critically loaded regime

In the Critically-loaded regime, the equilibrium point d is identical to V̄, and the figure below, fig. 6,
illustrates that the process (X1(t), X2 (t)) being constrained by the boundary (mS)2 which coincides
with the equilibrium point.

Throughout this section, we assume that the condition

d = V̄ (59)

holds. Let {ZN
1 (t), ZN

2 (t), ZN (t)} be the Markov process defined by

ZN
1 (t) =

√
N (d1 − X̄N

1 (t)), ZN
2 (t) =

√
N (d2 − X̄N

2 (t))
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Figure 5. Comparison between the stochastic processes XN
0 (t), XN

1 (t), XN
2 (t) and their respective fluid

limits x0(t), x1(t), x2(t). a) The stochastic process (XN
0 (t)). b) The associated fluid limit x0(t). c) The

stochastic process (XN
1 (t)). d) The associated fluid limit x1(t). e) The stochastic process (XN

2 (t)). f) The
associated fluid limit x2(t).
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Figure 6. The equilibrium point in the critically loaded regime

and

ZN (t) =
√

N (d − X̄N
1 (t) − 2X̄N

2 (t)) = ZN
1 (t) + 2ZN

2 (t)

where

d1 =
b

`
, d2 =

_ + b

2`

In the following proposition we prove that the sequence of processes

{ZN
1 (t), ZN

2 (t), ZN (t)}

converges in distribution to a reflected three-dimensional Ornstein–Uhlenbeck process.
The Q-matrix QN = (qN (., .)) and the generator of the Markov process {ZN

1 (t), ZN
2 (t), ZN (t)}

are given by:



qN ((z1, z2, z), (z1 + 1√
N

, z2, z + 1√
N
) = `N (d1 − z1√

N
)

qN ((z1, z2, z), (z1 − 1√
N

, z2 + 1√
N

, z + 1√
N
) = 2`N (d2 − z2√

N
)

qN ((z1, z2, z), (z1 + 1√
N

, z2 − 1√
N

, z − 1√
N
) = _N1{z1<

√
Nd1, z≥ 1√

N
+
√

N ( V̄− FN
N ) }

qN ((z1, z2, z), (z1, z2 − 1√
N

, z − 2 1√
N
) = bN1{z≥ 2√

N
+
√

N ( V̄− FN
N ) }

AN f (z1, z2, z) = `N (d1 −
z1√
N
) [f (z1 +

1
√

N
, z2, z + 1

√
N
) − f (z1, z2, z)]

+ 2`N (d2 −
z2√
N
) [f (z1 −

1
√

N
, z2 +

1
√

N
, z + 1

√
N
) − f (z1, z2, z)]

+ _N1{z1<
√

Nd1, z≥ 1√
N
+
√

N ( V̄− FN
N ) } [f (z1 +

1
√

N
, z2 −

1
√

N
, z − 1

√
N
) − f (z1, z2, z)]

+ bN1{z≥ 2√
N
+
√

N ( V̄− FN
N ) } [f (z1, z2 −

1
√

N
, z − 2

1
√

N
) − f (z1, z2, z)]
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Proposition 6.1. If f is twice differentiable on R3 and such that ∇f (z1, z2, 0) = 0 then the generator
converges to

Af (z1, z2, z) = `(2z2 − z1)
mf
mx1

(z1, z2, z) − 2`z1
mf
mx2

(z1, z2, z)

− `z
mf
mx3

(z1, z2, z) + (_ + b) m
2f

mx2
1
(z1, z2, z) + (_ + b) m

2f
mx2

2
(z1, z2, z)

(_ + 5
2
b) m

2f
mx2

3
(z1, z2, z) − (2_ + b) m2f

mx1mx2
(z1, z2, z) − 2_

m2f
mx1mx3

(z1, z2, z)

+ (2_ + 3b) m2f
mx2mx3

(z1, z2, z)

(60)

for z> 0 and to

(_ + b) m
2f

mx2
1
(z1, z2, 0) + (_ + b) m

2f
mx2

2
(z1, z2, 0)

(_ + 5
2
b) m

2f
mx2

3
(z1, z2, 0) − (2_ + b) m2f

mx1mx2
(z1, z2, 0) − 2_

m2f
mx1mx3

(z1, z2, 0)

+ (2_ + 3b) m2f
mx2mx3

(z1, z2, 0)

(61)

which is the generator of the three-dimensional Ornstein–Uhlenbeck process reflected on the boundary
of the half-space z> 0. One could refer to the following papers Ward and Glynn [19], Ward and Glynn
[18], and Lidong and Chunmei [20] where the properties of the reflected Ornstein–Uhlenbeck and the
associated infinitesimal generator are presented.
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