Matrix Differentiation of the Characteristic Function
By H. W. TorxsULL, St Andrews University.
(Received 12th January 1931. Read 16th January 1931.)
The following work is a sequel to three previous communications,!

and more particularly to the first. The present object is to shew the
effect of repeated operation with the matrix differential operator

Q= l: 9 1 , when it acts upon a scalar matrix formed from an »n rowed
Xji

determinant | z;|, or sums of principal minors, the n* elements x;; being
treated as independent variables. Thus when z is a scalar quantity
Q z means the matrix [0z/0z;], whose ij** element is the derivative
z[0x;;.
§1. Fundamental Formulae.

From the square matrix
X = [(I:ij] ==L L e e e (l)

there may be derived a determinant | X | and a characteristic function
4 (), given by

\-—xu ...... ~— Xy

=M —X[=| ................ (2)
— Tni A_xrm

=poA" + P A1+ Lo Paii A+ P (3)

Clearly p, is equal to (—)"| X |, while p,=1. The reciprocal of this
polynomial ¢ (1) can be expanded in the form
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11. H. W. Turnbull, Ondifferentiating a matrix, Proc. Edinburgh Math. Soc. (2), 1
(1927), 111-128.

II. A matrix form of Taylor’s Theorem (2), 2 (1929), 33-54.
III. The invariant theory of bilinear forms, Proc. London Math. Soc. (1931).
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for suitably large values of the modulus of A, where the coefficients &,
are homogeneous products of the n latent roots A; of X, defined by
¢ () = 0. The coefficients p and % satisfy the well known Wronskian

relations
hrpo+ R iy + by o2+ oot Ry + Ropr =0, (5)
where r=1,2, .... The unit matrix is denoted by I = [§;] in terms

of the Kronecker delta; and an arbitrary constant matrix by A = [ay].
Both A and the a; are independent of the z;;, whereas the %, and p, are
clearly functions of the z;. As usual s, denotes the sum of the r**
powers of the »n latent roots A,.

By Q6 is meant the matrix [¢6/z;] whose 4j'" element is 06/dxj;,
6 being a scalar quantity. Taking 6 to be s, p and A in turn, the
fundamental formulae of Q differentiation (Cf. I, p. 119) are

Qs, =rXr-1, (6)
Po=X"4+p X" .o 4o X+ 9] = — Qpryy, (7
H=X4+hX'+.. ...+  X+hl= Qbh,. (8)

It is useful to have a special notation P and H for these polynomial
scalar functions of the matrix X, whose order is shewn by the suffix.
Initially » is taken to be zero or a positive integer, so that Po=H,=1;
when 7 > n, the right member of (7) disappears, p, being zero, and
the Cayley Hamilton equation

Po=¢p(X)=X"+p X'+ ....+P, 1, X+ P, I=0 (9)
is put in evidence.

The reciprocal properties (7) and (8) are brought out very clearly
by the following new proof, which is based on the inverse of the
A-matrix Al — X.

Letting X; denote the cofactor of z;; in the determinant | X |, we
may write the reciprocal of the non-singular matrix X in the form

X-1=[X5]/| X|.
But we have
0
X, = .
Jt axjilxl’
hence
[Xu]=Q|X|, X'=Q|X]|/|X]. (12)
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Let each z; be replaced by z; — Aa;, where A and a; are constants.
This leaves 0/ox;;, and therefore Q unaltered, but replaces the matrix
X by X — AA. Accordingly we have the relation

1 QX — |
XM =~ x5xa)

(13)

identically for all values of A and a, a result which can also -be
exhibited as

1
—_— = — . 14
X d Qlog| X — 24| (14)
In particular let 4 be replaced by the unit matrix I. Then
—log| X —M|=—log(h —2A)A=A).... (A, —])
=—log(— A4 Ly %2 4 5
=—log (= A"+ S+ 5% + 5+ -

for large enough values of the modulus of A, while

I X X
-1 4 i L .
=S+t Ete e
Result (6) follows at once by substituting these values in (14) and
comparing coefficients of corresponding negative powers of A\. More

generally, if 4-1 = C, the same procedure leads to the relation

Q, (CX) =7 (CX)-1C (15)
in the notation of IT, p. 37.

To obtain the relation (7), let (13) be written in the form
[Ad — X|
A4 — X
Treating numerator and denominator of the left member as a poly-
nomial and a linear function of A, we may perform ordinary long
division in every case when 4 commutes with X. This is so when

A =1, making the left member ¢(A) ~ (IA — X). The polynomial
¢ (A) is given by (3); on carrying out the long division the result is

— (X — )

=—Q|x —X|. (16)

¢()‘) _ T)n-1 -2 . n-1
m_n + X +p A4 o (X e pan D)
¢ (X)
+I/\—X
P‘Il

=POA11—1+P1A‘"'—2+ ....+Pn_1+

n_x (17)
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Again from the right member of (16), with 4 = I, we obtain

— (A" Qp + A2Qpe 4+ ...+ Qpa),

since QA" =0. On multiplying throughout, here and in (17), by
I) — X, expanding, and equating coefficients of powers of A, we obtain
the relations (7), and also the Cayley Hamilton theorem implied by
$(X)=0.

Reciprocally, since ¢ (A) ¢ (A) = 1, it follows that

QRPN + 6 QP =0;
$ () =] —X|,

QN __1__ Q) as)

but, since

we have

¢ X—-M ()’

Again by ordinary long division of the series (4) by I — XA-!, arranged
in descending powers (all negative) of A, we have

A
I%:A-"+(X+h,1),\-n-l+ (X2 4 Iy X g I)A72 o ...

= HoAd "+ H A"V 4 H A-"-2 4 ...
Also
Qb A) =~ QA1+ h, QA2 ...

On substituting in (18), clearing of fractions, and comparing
coefficients as before, the relations (8) follow. Incidentally we
have the result!

1 P14 P 4 .. 4P, A+ P,
I—x DN A—2) ... (A=~

= (Hy+ H A 4 H A2 4. ) (A= Ao (A = M) A-n-1,

(19)

These coefficients P and H are matrices which commute with X and
with each other, since they are polynomials in X. From this relation
each P, can be deduced as a linear function of the H, with s (7,
the coefficients being polynomial expressions in the p’s. Correlatively
for H in terms of P. Also if the r*" Wronskian relation (5) is written
w, (h, p) = 0, it follows that

w, (H, p) = w, (k, P). (20)
For example ngo—*- Hlpl +H0p2= hZPO -+ hlPI + hon.

1 ¢f. L. E. Dickson, Modern Algebraic Theories (Chicago, 1926), 48, after replacing
Pr by Cn-i-r.
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§2. The Converse Problem.

By solving the recurrence relations (7) and (8) for successive
powers of X we obtain the following equations, in which an accent
denotes the effect of the ) operation:

—p' =1 =k,
—hp) —p' =X =h'+ k' py,
- h2p|' - klel —Ps'= X2=hy + by » + kl'pz,
and in general (since p," = k' = 0),
— w, (h, p') = X7=1 = w, (I, p). (21)
These follow at once from (18), on multiplying throughout by
¢ (A) 4 (A) (which is unity), then expanding each of the three expres-

sions in descending powers of A, and again equating coefficients.
These alternative expressions for & power of X lead to the theorem:

The (r — 1)™ power of a matrix X is obtained by Q differentiation
from the r'® Wronksian relation, either by treating the p’s as constants, or
else by treating the h’s as constants and affixzing a negatice sign to the
result.

§3. Swuccessive Q differentiation.

THEOREM 1. Any two consecutive coefficients p,, Py, of the characteristic
Sfunction ¢ (A) satisfy the matrix differential equation

Qo= (n—71)Qp,. (22)

Proof. The left member of this equation denotes the effect of Q
operating upon Q p,,,, and is therefore equal to

-~ QX"+ X"+ .o+ X +p. ).
Now, by I, p. 117 (2),
QX =80Xv—1‘+ 8 Xv-2 + ... +8,,_‘ I, (23)

where so=n. Also Qp,_, X" =19,_, QX"+ (Qp,_,) X*. Let this last
be simplified, by use of (7) and (23), and arranged in descending
powers of X. On summing the results forv=0,1,2, ...., r we have

Q=@ X'+ X"+ .+ g X g,
where
In=—(Sm +P1Sm1+ - oo +DmSo) + (r —m) p,,.
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After using the Newtonian relation
Smt+P1Sm-1+ oo + P11 +mpyp, =0
qm becomes (r — n) p,. Hence
QLCpa=—m—r(X '+ X"+ ... .+, )=(n—1)Qp,,
which proves the theorem.

TaeorEM II. Correlatively, consecutive coefficients h,,., h, satisfy the

equation

QPhyppr = (n+ 1) Qb,. (24)
Proof. The proof is analogous to that of Theorem I, but utilizes the
relation

Sm +k18m_[ + s e +hm_181 = mhm.

As a consequence of these two theorems we may express each
matrix P, and H, as a matrix derivative of p, and &,, respectively,
provided that the suffix u exceeds v. For example,

QBp=m—r)QLp,=n—r)(n—r—1)Qp,_1.
This leads straightforwardly to the relations

QT =Q T lp, , =21Q""2p, ,=....
=n—r—1Qp,, =—n—r—1)! P, (25)
where r =0,1,....,2 — 1. In particul. r, when r = 0, the result may
be written
Q"pp=—(m—10)l/n—-m)l, 0<mn, (26)

so that the effect of m operations with Q upon the coefficient p,, in
the characteristic function, yields a negative integer.

Similarly from Theorem II,

(n 4+ 7)! ) (n + !

H=Qbrn = ooy he = 1oy

Qakr+3=.... (27)

TerorEM III. Any power series
fX)=al 4+ X +a, X2+ .... (28)

with scalar coefficients a; can be derived from the scalar matriz | X |1 by
means of a matriz operator g (Q) which is a scalar polynomial, of order
n, or less, in Q.
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Proof. On substituting for powers of X from (21) we have

f(X) =BOPII+BIP2, + ... +Bn-1_'pn’;

where
ﬁm=—am—am+1h1—am+ghg—...., (m=0, 1,2,....).

Also by (25),

1
'=Q = 2 5 2= L, ., T —e— m
o =) e w1y T
I 1 mn - .
V2 =QP2=mQ ' Pns
and so on. Hence we have
_ [ B B Q! Bn-2 €2
f(X)_((n_]_)| -+ (n-—2)' 4 oo+ —1!—'+Bn-19 Pn-

=(—)"g (Q) Dn, 52Y.
‘The theorem follows since p, = (—)"| X|.

CoroLLARY. Any polynomial f(X) of order  less than n can be derived
from an earlier coefficient p,, by an analogous operator g,, (£2), whenever
m>r.

A similar theorem holds for the derivation of a polynomial f(X)
from a coefficient A, of higher order. For example

hy hy
n—2Q+(n—-l)(n—2)

= P P
- <1+n+29+ (n+1)(n+2)Q>Qh3'

‘THEOREM IV. The operator Qe? has the same effect upon p, = ¢ (0),
that Q has wpon the characteristic function ¢ (A).

X2=—<1+ Qﬂ>Qp3

2 03
Proof. We have Qempn=(Q—|—)\Q2+ A;‘) + ....>pn
=QA"+p X+ .. .. + pa), by (25),

= Q¢ (),
-which proves the theorem.

We are not however entitled to deduce the equality of e*¢p, and
¢ (A), by operating with Q-?, since it by no means follows that when
QY =0, Y itself is zero.
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§4. Connection with invariant theory.

As has been pointed out in III (see Introduction), the Q process
is equivalent to polarization by use of a sum of symbolic operators

() (=[22) = (B ) (2 25)

where the matrix [z;] is expressed in symbolic notation by various
equivalents

[zi] = [a; a;] = [Bib;] = [yic;] = ete. (29)

In fact Q is given by

qu:Z(u‘;a)(f a%) (30)

where the summation runs through the equivalent symbols, one term
for each pair @, a. The ¢j*" element of Q is given by the coefficient
of u;&; in this expression (30); and » Qa denotes the bilinear differen-

tial form X u; ¢; in the usual matrix product notation. The

ji
quantities p, are now invariants of the bilinear form X u; z; {;; namely

1

D= — (a’ | a), P2 = 2_' a’blaﬁ)’ Ps = — (a’bc | G'IB)’) . (31)

Since the effect of the right hand operation in (30) is to replace each
pair a, a in the operand by u, z, formulae (7) are now almost intuitive.
For example

uQEpy = a (ub| €B) + au[a§ )= a,u; — agu,,

since the symbols @, a are equivalent to b, 8.
Translated back into the original notation this becomes

u(Qp)é=—u(X +p I)¢

identically for all » and ¢. Whence

and similarly for all relations (7).
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Repeated Q operation now appears as repeated polarization.

For example
) (sal) (1)

summed for all pairs of distinct equivalent symbols a, « and b, B.
When this acts, for example, upon p; it strikes out two symbols @, b
and two symbols a, B in every possible way, replacing them by the
single v and §. This leads to the result

u92§=z<u

Q2p3= (n—2)QZ)2=—-('n —_ 2) (.X +p1I),

and similarly for other cases.
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