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The following work is a sequel to three previous communications,1

and more particularly to the first. The present object is to shew the
effect of repeated operation with the matrix differential operator

il = — , when it acts upon a scalar matrix formed from an n rowed

determinant \xii\, or sums of principal minors, the n- elements xi} being
treated as independent variables. Thus when 2 is a scalar quantity
£1 z means the matrix [dz/dx^], whose ijth element is the derivative

§ 1. Fundamental Formulae.

From the square matrix

X = [*„] =
. . . . Xn

(1)

there may be derived a determinant | X | and a characteristic function
<f> (A), given by

A — XU — Xln

(2)

+ . . . . +Pn-A+Pn- (3)

Clearly pn is equal to (—)n\X\, while po = l. The reciprocal of this
polynomial <f> (A) can be expanded in the form

l A ) = A" A-+"1 F*1"2 (4)

I 1 . H. W. Turnbull, On differentiating a matrix, Proe. Edinburgh Math. Soc. (2), 1

(1927), 111-128.

II. A matrix form of Taylor's Theorem (2), 2 (1929), 33-54.

III. The invariant theory of bilinear forms, Proc. London Math. Soc. (1931).
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for suitably large values of the modulus of A, where the coefficients hr

are homogeneous products of the n latent roots A4 of X, defined by
<f> (Aj) = 0. The coefficients p and h satisfy the well known Wronskian
relations

Kpo + K-\ Pi + K-2P2 + +hi pr^ + hopr = 0, (5)

where r — 1,2, . . . . The unit matrix is denoted by / = [Sy] in terms
of the Kronecker delta; and an arbitrary constant matrix by A = [ay].
Both A and the av- are independent of the x^, whereas the hr and pr are
clearly functions of the xv-. As usual sr denotes the sum of the rth

powers of the n latent roots A,.

By Q. 6 is meant the matrix [86/dxji] whose ij'h element is 86/dXji,
6 being a scalar quantity. Taking 9 to be s, p and h in turn, the
fundamental formulae of Q differentiation (Cf. I, p. 119) are

Qsr = rXr-\ (6)

Pr = X' + PlX
r-1+ .... +pr.lX+prI= -apr+1, (7)

Hr= Xr + h1X
r-1+ .... +hr_1X + hrI = Qhr+l. (8)

I t is useful to have a special notation P and H for these polynomial
scalar functions of the matrix X, whose order is shewn by the suffix.
Initially r is taken to be zero or a positive integer, so that P0=H0=I;
when r ̂  n, the right member of (7) disappears, pr being zero, and
the Cayley Hamilton equation

Pn = cf>(X) = Xn + Pl X ' - 1 + . . . . + P , _ , X + PnI = 0 (9)

is put in evidence.

The reciprocal properties (7) and (8) are brought out very clearly
by the following new proof, which is based on the inverse of the
A-matrix XI — X.

Letting Xy denote the cofactor of xv- in the determinant | X \, we
may write the reciprocal of the non-singular matrix X in the form

X-^iXjii/lX].
But we have

Xji = — I X I,
CXji

hence
[ Z ] Q | X | X i Q | | | | . (12)
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Let each Xy be replaced by x^ — Aa,j, where A and a# are constants.
This leaves d/dxji} and therefore Q. unaltered, but replaces the matrix
X by X — XA. Accordingly we have the relation

1 _Cl\X-XA\ .
X-XA \X-\A\'

identically for all values of A and a, a result which can also be
exhibited as

^ =aiog\X-XA\. (14)

In particular let A be replaced by the unit matrix / . Then

- l o g | X - A / | = - l o g (A, -A)(A2-A) . . . . (A,,-A)

for large enough values of the modulus of A, while

Result (6) follows a t once by substituting these values in (14) and
comparing coefficients of corresponding negative powers of A. More
generally, if A'1 = C, the same procedure leads to the relation

ns(cxr = r(cxy-lc (is)
in the notation of II , p. 37.

To obtain the relation (7), let (13) be written in the form

=-d\XA-X\. (16)
XA —

Treating numerator and denominator of the left member as a poly-
nomial and a linear function of A, we may perform ordinary long
division in every case when A commutes with X. This is so when
A = I, making the left member <j> (A) ~ (IX — X). The polynomial
<j> (A) is given by (3); on carrying out the long division the result is

J\ -y- * • " • I V " I / ' I " / "

+ ix-X

= PoA"-1 -t-P!An-2+ + P n - i + ,,. " y . (17)
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Again from the right member of (16), with A = / , we obtain

- ( A » - i a ^ + A"-2Q^2+ . . . . + Qpn),

since D. An = 0. On multiplying throughout, here and in (17), by
IX — X, expanding, and equating coefficients of powers of A, we obtain
the relations (7), and also the Cayley Hamilton theorem implied by

Reciprocally, since <f> (A) tfj (A) = 1, it follows that

{Q^(A)}0(A) + 0(A)Q0(A) = O;
but, since

<f>(X)=\\I-X\,
we have

Again by ordinary long division of the series (4) by / — XX-1, arranged
in descending powers (all negative) of A, we have

- + (X + h I) A"""1 + (X* + hlX + h2l) A-"-2 + . . . .- 1 = A
1 — A A

= H0X-n + tfjA-"-1 + H2X-n-2

Also
h,ClX-n-1+ h2Q.X-n-2+

On substituting in (18), clearing of fractions, and comparing
coefficients as before, the relations (8) follow. Incidentally we
have the result1

IX-X (A - A,) (A - As) . . . . (A - A,,)

= (#0 + #iA-1 + #2A-2 + . . . . ) ( A - A 1 ) . . ( A - A n ) A - " - \

These coefficients P and H are matrices which commute with X and
with each other, since they are polynomials in X. From this relation
each Pr can be deduced as a linear function of the HK with s ^ r,
the coefficients being polynomial expressions in the p's. Correlatively
for H in terms of P. Also if the rth Wronskian relation (5) is written
i»r (̂ > V) = °» it follows that

wr(H,p) = wr{h,P). (20)

For example H2 Po + # i Pi + Ho Pa = h2 Pa + h{ P, + h0 P2.

1 Of. L. E. Dickson, Modern Algebraic Theories (Chicago, 1926), 48, after replacing
Pr by Cn-l-r.
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§ 2. The Converse Problem.

By solving the recurrence relations (7) and (8) for successive
powers of X we obtain the following equations, in which an accent
denotes the effect of the Q. operation:

— h2p/ — hxp2 —ps'= X 2 = ha' + h/p! + h'p.2,

and in general (since p0' = h0' = 0),

-wr(Kp')=Xr-^wr(h',p). (21)

These follow at once from (18), on multiplying throughout by
<£(A) t/j (A) (which is unity), then expanding each of the three expres-
sions in descending powers of A, and again equating coefficients.
These alternative expressions for a power of X lead to the theorem:

The (r — l)th power of a matrix X is obtained by Q. differentiation
from the r'h Wronksian relation, either by treating the p's as constants, or
else by treating the h's as constants and affixing a negatiie sign to the
result.

§3. Successive Q. differentiation.

THEOREM I. Any two consecutive coefficients 2}r,Pr+i of the characteristic
function <f> (A) satisfy the matrix differential equation

(22)
Proof. The left member of this equation denotes the effect of Cl
operating upon Qpr+l, and is therefore equal to

-Cl(X' + p1X
r-i+ .... +pr_lX + PrI).

Now, by I, p. 117 (2),

Q I " = « D I ' - 1 ' + s 1 I " - ! + . . . . + 5 , . ! / , (23)

where s0 = ». Also Qpr^vX" = pr^wQ.X" + (Qpr_v) X". Let this last
be simplified, by use of (7) and (23), and arranged in descending
powers of X. On summing the results for v — 0, 1, 2, . . . . . r we have

Cl2pr+1 = qoXr-'+q,Xr-"+ .... +qr_2X + qr_lI,
where

<lm = — {sm + PiSm-l+ +pms0) + (r — m)pm.
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After using the Newtonian relation

«m + }>ism-i + +pm-iSi + mpm = 0

qm becomes (r — n)pm. Hence

which proves the theorem.

THEOREM I I . Correlatively, consecutive coefficients hr+\, hr satisfy the
equation

fi2 hr+1 = (n + r)Q hr. (24)

Proof. The proof is analogous to that of Theorem I, but utilizes the
relation

sm + hism.l + . . . . + hm_x Si = mhm.

As a consequence of these two theorems we may express each
matrix Pv and Hv as a matrix derivative of p^ and h^, respectively,
provided that the suffix /LI exceeds v. For example,

Q?pr+\ ={n —r) Q.2pr = (n — r)(n — r —

This leads straightforwardly to the relations

Qn-rpn = Qn-r-1yn_1 = 2! Q»-«-*pn_2 = ....

= (n-r - 1)! Q.p,+ = - (n - r - 1)! Pr, (25)

where r = 0, 1, . . . . , n — 1. In particul. r, when r = 0, the result may
be written

Qmpm= ~(n - ] ) ! / ( n - m ) ! , 0 < TO < » , (26)

so that the effect of m operations with Q. upon the coefficient pm in
the characteristic function, yields a negative integer.

Similarly from Theorem II,

_ (n + r)\ _ (n + r)\ .
Hr = nhr+l- ( B + r + 1 ) , a k + . - ( - + r + 2 ) ! a f t , + . (27>

THEOREM III. Any power series

+ . . . . (28)

scalar coefficients a^ can 6e derived from the scalar matrix \X\I by

means of a matrix operator g (Q) which is a scalar polynomial, of order

n, or less, in H.
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Proof. On substituting for powers of X from (21) we have

/(.2O = A>2>i' + j3iJ»,'+ . . . . + pn-ipn',
-where

Pm = — O-m — Om+1 ^1 ~ am+2 h ~ (TO = 0, 1, 2, .

Also by (25),

and so on. Hence we have

+
>«, say.

The theorem follows since pn =(—)") X \.

COBOLLARY. Any polynomial f (X) of order r- less than n can be derived
jrom an earlier coefficient pm by an analogous operator gm (Q), whenever
m> r.

A similar theorem holds for the derivation of a polynomial f(X)
irom a coefficient hm of higher order. For example

'THEOREM IV. The operator QeXfi has the same effect upon pn= <f>(0),
that Q. has upon the characteristic function (f> (A).

Proof. We have Q e*" pn = ( Q + A £P + -^- + .. .. \pn

= Q (A» + Pl A"-1 + . . . . + pn), by (25),

= Q 4> (A),
-which proves the theorem.

We are not however entitled to deduce the equality of eXilpn and
</>(A), by operating with Q"1, since it by no means follows that when
D. Y = 0, 7 itself is zero.
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§ 4. Connection with invariant theory.

As has been pointed out in III (see Introduction), the Q process

is equivalent to polarization by use of a sum of symbolic operators

u —\(x — 1 =

where the matrix [a;y] is expressed in symbolic notation by various
equivalents

[Xij] = [0* aj] = \fii bj] = [y« c;] = etc. (29)

In fact Q. is given by

uQt=x(u i-Vf IV (30)

where the summation runs through the equivalent symbols, one term
for each pair a, a. The ijth element of D. is given by the coefficient
of Uigj in this expression (30); and uQx denotes the bilinear differen-

p.

tial form S ut — £, in the usual matrix product notation. The

quantities pr are now invariants of the bilinear form S w$ x^ ̂ ; namely

p1 = — (a\a), p2= —(ab\ap), p3 = - — {abc \ afiy) (31)

Since the effect of the right hand operation in (30) is to replace each
pair a, a in the operand by u, x, formulae (7) are now almost intuitive.
For example

((Ub\tf) + (au\a£)) = aau^-a^ua,

since the symbols a, a are equivalent to b, ft.

Translated back into the original notation this becomes

identically for all u and £. Whence

X + PlI

and similarly for all relations (7).
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Repeated Q operation now appears as repeated polarization.
For example

summed for all pairs of distinct equivalent symbols a, a and b, /J.
When this acts, for example, upon p3 it strikes out two symbols a, b
and two symbols a, jS in every possible way, replacing them by the
single u and £. This leads to the result

and similarly for other cases.
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