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DISTANCE TRANSITIVE GRAPHS WITH SYMMETRIC

OR ALTERNATING AUTOMORPHISM GROUP

MARTIN W. LIEBECK, CHERYL E. PRAEGER AND JAN SAXL

The paper classifies all distance transitive graphs V such

that A ^ Aut r ̂  Aut An for some alternating group A , and

Aut T acts primitively on the vertices of T . This result

forms part of our programme for determining all finite primitive

distance transitive graphs.

1. Introduction and statement of results

In this paper we classify the finite distance transitive graphs whose

automorphism group is a symmetric group S or an alternating group A

for some n , acting primitively on the set of vertices. This forms a part

of the programme for the classification of all finite primitive distance

transitive graphs begun in [76]; for in [76] this classification is

reduced to the determination of all such graphs whose automorphism group G

is either almost simple (that is, T o f f S Aut T for some nonabelian simple

group T ) or affine (that is, V < G<AGL(V) , the group of affine

transformations of a finite vector space V ). Thus in this paper we deal

with part of the almost simple case, namely the case where T = An . When

T is a linear group of dimension at least 7 , a classification is

obtained in [7]; discussion of the remaining almost simple cases can be
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2 Martin W. Liebeck, Cheryl E. Praeger and Jan Saxl

found in [70]. The case where G is affine and | V| is large is treated

in [72]. Note that the primitivity of G is a natural assumption, since

by [79] (see also [3]), there is a simple procedure for obtaining a

primitive distance transitive graph from an imprimitive one.

I t i s well known that the permutation character of the automorphism

group G of a distance transitive graph acting on vertices must be

multiplicity-free, since a l l the suborbits are self-paired (see [74,

Theorem 8]) . Our proof is based on [7 7, Theorem, p340], where al l such

characters are determined for G = S with n > 18 .

Before stating our result , we describe some classes of distance

transit ive graphs T . Denote by Vr the set of vertices of r , and by

°. a set of n points, where n £ 5 .

{k}
(1.1) Johnson graphs J(n,k). Here FT = fi , the set of k-subsets of

Q, , where k < n/2. Two vertices A and B are joined if and only if

\AriB\ = k - 1. (Note that J(.n,l) is just the complete graph K .)

(1.2) Graphs J(n,2). These are the complements of the rank 3

graphs J(n32) .

{k}
(1.3) Odd graphs 0, . Here n = 2k + 1 and W - ft ; two vertices

A and B are joined if and only if A n B = 0 .

(1.4) Graphs J(2k,k) \ k Z 4. These are the derived graphs of the

antipodal graphs J(2k,k) (see [7, pl52]) . They can also be described as

follows: n = 2k , VY is the set of partitions of fi into two subsets

{A,A} of size k , and two vertices {A,A},{B,B} are joined if and only

if ei ther \AriB \ = k - 1 or UnB| = k - 1 .

(1.5) Graphs J(2k,k) ' , k = 4,5. These are the complements of the rank 3

graphs ^ (8 ,4 ) ' , ^(10,5)' .

(1.6) Graphs Z,2p' ^120' H e r e £120 i s t h e r a n k 3 9raPh o f valency 56

on 120 vertices obtained from the rank 3 action of A^ on the 120 cosets

of a subgroup PFZ^8) <see [4])- (Note that there are two conjugacy

classes of subgroups PrL2(8) i n ^q • b u t t n e corresponding actions of

n' °f degree 120 are conjugate in S,9f) ; hence E1?n is unique.)
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(1.7) Graph E . This is a rank 4 graph of valency 5 on 36 vertices;
36

its vertices are the 36 subgroups of order 20 in S , and two
D

vertices A,B are joined if and only if \AvB\ = 4 . Another description
can be found in [7, pl53].

i t s vertices are the 45 Sylow 2-subgroups of Aut A& , two vertices A,B

being joined if and only if |j4aB| = 8 . The graph E.,- can also be

described as the line graph of the trivalent Tutte 8-cage (see [20,
Chapter 8]).

THEOREM. Let G be the group An or S {n > 5) and suppose that

G acts distance transitively on a graph T and is primitive on VT .
Then T is one of the graphs in (1.1)-(1.6) above. Further, if T is in
(1.1)-(1.5) and T is not a complete graph, then Aut T — S ; and in

(1.6), G = Aa < Aut r = 0*(2) .

The statement that G acts distance transitively on r means that

whenever O,B,Y,6 e VT with the distance (= length of shortest path)

between a and 6 being the same as the distance between y and 6 ,

there is an automorphism g e G such that a^ = y » 6^ = 6 . Note that we

exclude complete graphs V in the last sentence of the theorem in view of

the 2-transitive actions of J4C,/4,,/1 and A of degrees 6,10,15 and 15

respectively.

Our classification result follows immediately from the theorem,

together with the observations on Aut A^ in Section 5:

COROLLARY. Suppose that T is a distance transitive graph with full

automorphism group G , where A < G < Aut A {n t 5) . Then either

(i) G = S and T is as in (l.l)-(1.5) above, or

(ii) n = 6 , G = Aut A^ and X is as in (1.7) or (1.8).

Proof of the theorem. Let G and T be as in the statement of the

theorem. For a,0 e VT let d(o,3) be the distance between a and 3 ,

and put d = max{d(a,B)|a,3 £ VT} , the diameter of r . Choose ae IT and

for 1 < i < d let T.(o) = {6|d(a,B) = i) , so that r.(ct) are the orbits
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of G on VT\{a} . Define k- = |r .(a) I . Some well-known properties of

the integers k^ are given in [76, 1.1]; in particular,

(1.9) k, < k- for all i such that 2 < i < d - 1

so that I\ (a) is one of the shortest two orbits T • (a) .

Let f! = { l , . . . ,n} be a set of n points permuted naturally by G ,

and write H = G , a maximal subgroup of G . The proof is carried out in

three sections, according as H is intransitive (Section 2), transitive

and imprimitive (Section 3), or primitive (Section 4). As remarked above,

the permutation character ir = !„ is multiplicity-free, and hence

(1.10) \ G : H \ < I x ( D ,

where the summation is over all irreducible characters x of G .

2. The intransitive case

In this section we deal with the case where H is intransitive, so

that by the maximality of H in G , we have H = (5, x S ,) n G for some
K. Yl~K.

ik]
k with 1 S k < n/2 . We can therefore identify VT with ft f the set

of fe-subsets of fi . If k = 1 then r is the complete graph

ffe)Kn = J(n,l) • and i f k = 2 then G has rank 3 on Si , so I1 i s

Jin,2) or Jin,2) , as in (1.1) and (1.2). Thus we assume that k > 3 .

If a = A e. JT then the ff-orbits on fi are

A. (A) = {Sen : \A n B| = k-i}

for 0 < i s, k . Let T, (a) = A. (4) for some i > 1 . I f •£ = 1 then
1 t-

i s J(n,k) , so assume that i >2 . Let A = {l, . . . ,fe} and

B = BQ u {fe+1,... ,k+i} , where 5Q i s !2 i f i - k and {!,...,k-i] i f

i < k . Then B e 1^(4) . Also

C = {A\ik}) u {fe+i+1} e T1(S) n &1(il) ,

and, provided t h a t n > k + i + 2 ,
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D= (A\{k-l,k}) u {k+i+1, k+i+2} e T^B) n A2(A) ,

and, provided that i < k ,

E = W\{l,k-l,k}) u {fe+l,fe+i+l,?c+i+2} e T^B) n A^A) .

This shows that T is not distance transitive unless i = k and

n = 2k + 1 ; in this latter case F is the odd graph 0̂ , as in (1.3) .

To complete the proof in the intransitive case, we show that

Aut r =Sn for the graphs T in (1.1), (1.2) and (1.3). For suppose that

this is false, so that Aut V > G = 5 for some such graph T . Then

Aut F is given by [6]; in each case we see that Aut V has smaller rank

on W than G , which is impossible since G acts distance transitively

on T .

3. The imprimitive case

We next deal with the case where If is transitive and imprimitive,

so that by the maximality of H in G , we have H = {S, wr SA n G with

kSL = n ,k>l and SL > 1 . For a partition X = (A, ,A_,...) of n we

denote by Q the set of cosets of the subgroup 5, x 5, x ... in 5 ,

\ X
2
 n

and by Tr the permutation character of 5 on fl , as in [7 7]; we also

denote by x the irreducible character of 5 corresponding to A , as

in [17].

LEMMA 3.1. One of the following holds:

(i) 1=2 ;

(ii) k = 2 ;

(iii) (k}l) is one of (3,3),(3,4),(4,3) and (5,3).

Proof. I t i s well-known (see [ J 7 ] , 2.1) tha t for 1 £ r <, n/2 the
(yi—%> j>) {2?T

permutation character IT of C on II is given by

Consequently since T\ = !„ is multiplicity-free,
ti
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the last equality holding since H is transitive on Q . In particular H

{r}
has at most v orbits on Q

If fe>4,£>4 then it is easy to see that H has at least five

orbits on ft, which is not so. If I = 3, k > 6 or k = 3, i> 6

then H has seven orbits on fi , which is again false. Finally, let

(9 4 2) G
k = 3, £ = 5 . We claim that if G = S then . X appears in !„

with multiplicity 2 , which is a contradiction. For by the determinantal

rule [9, 2.3.15], we have

^(.9,4,2) (9,4,2) + ^(9,5,1) +ir(10,3,2) + ^(11,4) . ,,(10,5) _ ̂ (11,3,1)

and so, if n, denotes the number of orbits of H on Q , the

multiplicity of x
( 9'4'2) in i^ £s

"(9,4,2) " "(9,5,1) ~ n(10,3,2) " "(11,4) + "(10,5) + "(11,3,1) '

A straightforward calculation shows that this number is 2 , as claimed.

REMARK. In fact 3 is multiplicity-free on (S : S, wr S.) with k, I

as in (i) , (ii) or (iii) of Lemma 3.1; this is [17, 2.2 and 2.3] in cases

(i) and (ii) , and can be verified by calculation in case (iii) .

We deal separately with cases (i) , (ii) and (iii) of Lemma 3.1.

(3.2) Case I = 2 . Here n = 2k and H = (5fe wr S2) n G . We identify

VT with the set of partitions of £2 into two subsets {A,A] of size k .

If a = {A,A} then the H-orbits on VT are

Z.{a) = {{B,B}eVT : \BnA\ = i or \S n A\ = i}
Is

for 0 < i < [fc/2] . if fe S 5 then G has rank 2 or 3 on VT and T

is as in (1.1), (1.4) or (1.5). Thus we assume that k > 6 . Now

|E.(a)| = L , so the shortest two H-orbits on lT\{a} are ̂ (a) and

E (a) . Hence by (1.9) , 1̂ (01) is one of these. If T^a) = ̂ (a) then T
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is J(2k,k)' as in (1.4), so assume that 1̂ (00 = E2(a) . Write

A = {i,...,k} , B = {l,...,k-2,k+i,k+2} , C = {l,...,k-i,k+3} ,

D= {l,...,k-3,k+l,k+3,k+4] . Then

B = {B,B} e I^Ca) ,

{C,C} e ̂ (B) n E^a) ,

{D,D} e 1^(6) n Z3(a) .

Hence r_(a) contains E.(a) u E (a) and so T is not distance

transitive, a contradiction.

(3.3) Case k = 2 . Here n = 21 and H = (52 wr S.) n G . First let

£ = 3 . Here G has rank 3 on the 15 points (G : H) . Now G has just

one other primitive action of degree 15 , namely that on Q . I n each

of these actions, N~ «?) = N. (G) s S , and it follows that the two
515 4l5 6

actions of G are conjugate in S._ . Hence the graphs F on (G : H)

here are ^(6,2) and its complement.

Thus we assume now that SL > 4 . We identify VT with the set of

partitions of fi into I blocks of size 2 . Let a = {A1,...,A.} e VT

(with \A.\ =2 for all i), and for each Be VT define the graph A(B)

to have as vertices A., ,J40 , with A. and A. (i^j) adjacent whenever

some block of B consists of a point of A . and a point of A • . For

1 < i < i, let a- be the number of connected components of size i of

A(B) . Note that each such component is just a cycle of length i . Thus
al a2 a%

B corresponds to the partition Pg = (1 ,2 ,...,& ) of % = \ia. . It

is easy to check that if G = S then the orbits of H = G on VT are
n a,

the sets

Z(p,a) = {BeVT|pg = p}

where p is a partition of $, . If G = A , the sets E(p,cO may split

into two H-orbits of equal size - however, no such splitting occurs if, for

example, a s 1 or a^ £ 1 (since in these cases, for B e E(p,cx) , there
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is an odd permutation of S fixing both 01 and 3 ) . Note that

Z((l ) ,ot) = {a} . Write

|Z(p,a) | = a^(p) .

ai aQ
LEMMA 3.3.1. For p = (1 ,...,£ ) a partition of £ , we have

lia.(p) = £:2 V n (a.'.i
i l

Proof, we count the number of 3 in E(p,ot) :

( l)( l)
(a) Choose a. common blocks for a and 3 , in ways.

(b) For i > 2 , at the i step choose ia • blocks from the

1

i-1
remaining £ - / ja • blocks of a , and distribute the 2ia. points of

1 3 ^

Q. which they contain into ia • blocks of 3 in such a way that a.
"V Is

components of size i in A (3) are obtained. The number of ways in which

this can be done is

[3=1
(ji-l) . . . {ji-i+D

(i-D a.
. 2

i - 1 (i-l)a. i q.

= a- I da.) 12 %/(l - ijaJla.H v

Note that this formula is valid even if a- = 0 • The result follows.

LEMMA 3.3.2. For I > 3 , the smallest value of a^fp) with p / (l£)

is £(£-l) . Further, a.(p) = £(£-1) if and only if p = (l4"2^1) , unless

£ = 4 , when a4(l
2,21) = CT4(2

2) = 12 .

Proof. The result is true for £ s 4 by 3-3.1. Now assume that

£ > 5 . We proceed by induction on £ . If p = (£ ) then

5.-1 ai aQ i

O£(P) = (£-D!2 > £(£-1) . So suppose that p = (!,...,£) ft (£ ) .
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Let i < £ be the smallest integer for which a. ? 0 . Then £ - i 5 3

* l̂ *̂ tL—i
Define p = (1 , ,(£-£) ) to be the partition of £ - i with

« [a. , if i * j

Then, using (3.3.1) and induction, we have

(l) a£(p) = a£i(p*).2'
z'~:L.

Since a0 .(I*""1"2 , 21) = (£-£)(£-i-l) , we have

(2)

If i> 2 then the right hand side is greater than £(£-1) , since

ia.< I. And if i = 1 , it is £(£-1)(£-2)/a. > 1(1-1) , with equality if
Lr -L

and only if p = (l^"2,21) .

COROLLARY 3.3.3. (a) Jf £ s 5 t^en the urciqwe shortest orbit of E

on l-T\{a} is I(p,a) t̂ ifĉ  p = (l^"2^1) ; it has size £(£-1) .
(b) If £ = 4 awd G = 5 O then the shortest two

O

orbits of H on VT\{a} are E(p,a) with p = (l2^1) or (22) , each of

size 12 .

Proof. This follows from 3.3.2 if G = S^ , so assume that G = A^ .

For £ = 4 it is easy to check that (b) holds, so we take £ S 5 . Suppose
ai a£

that (a) is false, so that there is a partition p = (1 ,...,£ ) of I

£ £—2 1
different from (1 ) and (1 ,2 ) , and an ff-orbit A £ E(p,a) such

that |A| <, £(£-1) . If a1 ± 0 then A = E(p,a) , so |A| > £(£-1) by

3.3.2. Hence a. = 0 and so i > 2 in the notation of the proof of 3.3.2.

But now (2) of that proof shows that |A| > O,(p)/2 > £(£-1) , a

contradiction.

LEMMA 3.3.4. (a) If £ > 7 then E((l*'~3,31) ,a) is the unique second

shortest orbit of H on I*T\{ct} , and has size 4£(£-l) (£-2)/3 .
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(b) If 1=6 and G = S then £((2 ),a) is the unique

second shortest orb-it of H on FT\{a} , of size 120 ; if £ = 6 and

G = A., the shortest three orbits of H have sizes 30,60,60 and their

union is E ( ( l 4 , 2 1 ) , a ) u E ( ( 2 3 ) , a ) .

(c) If £ = 5 then £((1,2 ),a) is the unique second

shortest orbit of H on VY\{a} , of size 60 .

Proof. We first check the result for £ < 7 , using 3.3.1. The only

point here which is not immediate is that for £ = 6 and G = A.- , the

set E((2 ) ,a) splits into two ff-orbits of length 60 , since no odd

permutation in S _ fixes both a and $ with B e E((2 ),a) . Thus

we take £ S 8 . Suppose that (a) is false, and choose H minimal such

that there is a partition p = (1 ,...,£ ) of H with

p ̂  (1 ) ,(1 ,21),(1 J31) and an ff-orbit A £ E(p,a) such that

|A| ^ 4SK.H-D U-2)/3 . As in the proof of 3.3.2 we have p J- (I1) , and
*

define I to be minimal such that a. ̂  0 . Now define p as in 3.3.2.

First suppose that i = 1 , so that A = E(p,a) and a < I - 3 .

A 9 ~\ P I T

Then p is not (1 ) or (1 ,2 ) , so by the minimality of Z we

have °n_1(P*'> - 4(£-l) (£-2) (£-3)/3 (note that £ - 1 £ 7) . Hence, using

(1) in 3.3.2,

|A| = a£(p) > a£_1(p*).Ji:/a;L.

> U{l-l) (1-2) U - ±

and so |A| > 4£(&-l)(£-2)/3 since a. < I - 3 ; this is a contradiction.

Next assume that i>3 . Then by (2) of 3.3.2,

|A| > a.(p)/2 s 2^ 2£U-D ... (l-i-D/ia.

2 2(2,-1) (£-2) (£-3) (£-4) > 4£(£-l) (£-2)/3 ,

again a contradiction.

Thus i - 2 , and again by (2),
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| £ > £(£-1) («,-2) (£-3)/2a2 .

Consequently a > 3 (2,-3)/8 . In particular, a^ > 2 . Now define

** S 2 a3** S 3 4
p = (2 ,3 ,4 ,...) , a partition of 2, - 4 . By (1) of 3.3.2

*applied to p , we have

°£-2(P*) = V 4 ( P " 1 > 2

Hence, noting that £ - 4 > 4 and using 3.3.2, we have

<J2,-2(P*) - 2(2-2) (2,-3) (2,-4) (2,-5)/2(a2-l)

and so by (1) again, using the fact that 2a^ S 2, ,

> (2,-2) (2,-3) (£-4) (£-5) .2£.(£-l)/2a2(2a2-2)

(£-3)(£-4)(£-5) > 4£C£-1)(£-2)/3 ,

a contradiction. This completes the proof.

Now we consider the distance transitive graph V . First suppose that

1̂ (01) = £((1*'~2,21) ,a) . Then it is easily seen that T (a) contains both

E( (l^"3^1) ,a) and E((l ,22),a) , contrary to distance transitivity.

Similarly, if 1̂ (01) = Z((l 3,31),a) then Y2 (a) contains E((l ~2,21),a)

and E((l ,4 ),a) , a contradiction. Hence, since by (1.9), T (a) is

one of the shortest two ff-orbits on VT\{a] , it follows from 3.3.3 and

3.3.4 that I is 4,5 or 6.

Let £ = 4 . since (S_ ur S.) n Ao < AGLA2) < Ao , we have G = So
£. *± O J O O

here, so by 3.3.3(b), ^(a) =E((22),a) . Then F2(a) contains

Z((X2,2X),a) and I((41),a) , which is false.

Next let £ = 5 . By 3.3.3 and 3.3.4, 1^ (a) = Z ((l1^2) ,a) and we

see that 1^(00 contains E ((l3^1) ,a) and Z( (l1^1) ,a) , which is not

so.
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Finally, let I = 6 . If G = S then T (a) = E((23),a) and

4 1 2 1

F (a) contains Z((l ,2 ),a) and Z((l ,4 ),a) , a contradiction; and if

G = A12 then by 3.3.4, ll^Ca) | = 60 . This is impossible by (1.9), as H

has further orbits of sizes 30 and 60.

(3.4) Case (iii) of Lemma 3.1. Here n = kH and (k,SL) is one of (3,3),

(3,4), (4,3) and (5,3) . It is convenient to describe the orbits of H on

VT as follows. We identify VT with the set of partitions of fi into &

blocks of size k . Let a = {A ,... ,AA e VT (with all \A.\ = k) . For
B = {B1 , ,B.} e VT define Mo to be the I x £ matrix with (i,J)-entry

-L X» p

l^nB^I . If

M = {M\td an Si x I matrix over H u {0} with all

row- and column-sums equal to k}

then MQ € M . Define an equivalence relation ~ on M by

W ~ A/ «• M = PW Q for some I x £ permutation matrices P,§ .

Clearly all the possible choices for M~ (for a given 3 ) are equivalent,

and moreover, 3, and B_ lie in the same (5^ wr 5^)-orbit if and only if

A/_ ~ Mr, . For M e U , let W be the equivalence class containing M ,

Thus the (S, ur> 5») -orbits on W are the sets

We observe that if Mo has an entry which is at least 2 then there is an
P

odd permutation in S-, 0 fixing a and & , and hence £ (AL) is also an

tea p

orbit of (Sj, wr S^) n A^ .
(3.4.1) Case (fc,&) = (3,3). Here the rank of G on (G : H) is 5 , and

the suborbits are E(S.) , 0 < i < 4 , with A/, and |E(A?.}| as follows:
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M.

27

36

54

162

Note that E(A/_) is indeed an orbit of (5 wr S ) n J4 : for let
^ j -i y

a = {{123},{456},{789}} , &2 = {{147},{258},{369}} .

Then B2eE(»2) and the odd permutation (14)(25)(36) fixes both a and

Now by (1.9), 1̂ (00 is either E(M.) or Z(M) . First suppose

&1 = {{123},{457},{689}} , Y_L = {{457},{126},{389}} ,

Y2 = {{457},{128},{369}} .

Then &x e r̂ t̂a) , y± e 1^(6

T2(a) contains Z (M ) and

= £(M2) we see that ^(cc) contains

n T.WJ and Y2 e ri(61> n Z(«4) , so that

) , a contradiction. Similarly, if

and KM^) , which is

again false.

https://doi.org/10.1017/S0004972700012995 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700012995


14 Martin W. Liebeck, Cheryl E. Praeger and Jan Saxl

(3.4.2) Case (k,l) = (3,4) . In this case the rank of G on (G -. H) is

12 , and the shortest two orbits of H on W\{a} are

sizes 54, 144 respectively, where

, E(#2) , of

Ml = 2 1
1 2

1 1 1
1 1 1
1 1 1

Hence by (1.9), I^dx) is E (A^) or E (Â ) . As in (3.4.1), we see that in

each case F_(a) contains more than one //-orbit, contrary to distance

transitivity.

(3.4.3) Case (k,l) = (4,3). Here the rank of G on (G : H) is 9 and

the shortest two H-orbits on PT\{a} are

where

) , Z (M ) of s i z e s 48 , 54,

3 1
1 3

2 2
2 2

We obtain a contradiction as above.

(3.4.4) Case (k, I) = (5,3). The rank of G here i s 13 , and the

shortes t two fl-orbits on F r \ { a } are E (A? ) , I (M ) of sizes 75, 250,

where

4 1
1 4

This gives the usual contradiction.

To complete the proof of the theorem in the imprimitive case, it

remains to show that Aut T= S for V as in (1.4) or (1.5). Let T be

such a graph. Clearly Aut V contains a subgroup G= S ; moreover, it

follows from [6] that for n> 8 , G is a maximal subgroup of either

Alt(W) or Sym(W) (since G contains the subgroup S acting on

(fe-l)-sets) , and hence G = Aut T , as required.
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4. The primitive case

In this section we complete the proof of the theorem by dealing with

the case where /f is primitive and H % A . It is stated in [7 7,

Remark, p341] that for n large enough. If must be 2-transitive. We give

a proof here for completeness:

LEMMA 4.1. The group H is 2-transitive on Q. provided that n > 6.

Proof. If n < 11 the assertion is easily checked using [IS]. Thus

we take K > 1 2 . Write n. for the number of orbits of H on fi . I f
1.

n~ = 1 then H is 2-transitive: for if not then \E\ is odd and hence,

by the maximality of H in ff , we have H = AGL.(p) n G with n = p , a

prime. Then the bound (1) below is violated. Now suppose that H is not

2-transitive. Then by (*) in the proof of Lemma 3.1, we have n = 2 ,

n £ 3 and n < 4 . We shall obtain a contradiction.

We colour the complete graph on fi with two colours r , b so that

two edges have the same colour if and only if they lie in the same ff-orbit

{2}
on f2 . The monochrome subgraphs are both regular and connected and have

valency at least 3 (see ['4, Lemma 3 and Theorem 5]). By Ramsey's Theorem,

there is a monochrome triangle, say of colour r . Since the r-monochrome

subgraph is connected, there must also be triangles of type rrb . And

since the valency of the &-graph is at least 3 , there must also be

triangles with at least two sides coloured b . It follows that n = 3

and the three types of triangles are rrr , rrb and rbb .

For u e Q, and e e {r,b} , set

E (w) = {p|{a),3} has colour a], and VQ = l^fWl .

Then Q = {to} u E (w) u E, (a>) . Since there are no bbb-triangles,

counting the fc-edges between E, (u) and I (a)) gives vAv,-X) < v V, .
b r b b r b

Hence v > V, - 1 , whence i n f a c t y > v , ( s e e 114, Theo rem 3 ] ) . A l s o
r D r v

W 1 } - Vr •
Suppose first that v = V-, . Now H is 2-homogeneous on E, (GO)

since H is transitive on £>£>r-triangles. Also H cannot be 2-transitive
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on E, (to) by 114, Theorem 4]. Hence by 114, Theorem 1], \H | is odd and

so \H\ is odd since n = 2v + 1 . As in the first paragraph of this

proof, this is impossible by the bound (1) below.

Hence V > V-, . We next consider tetrahedra, that is, subgraphs of

the complete graph on Q. isomorphic to K. . Firstly, since y, > 3 and

there are no 2>Z>fc-triangles, there is an rrr-triangle in E^ (<D) , so there

is a tetrahedron with three i-edges and an irr-triangle. Secondly, since

V s 6 , by Ramsey's Theorem there are rrr-triangles in Z (u) , so there is

a monochrome z»-tetrahedron. Thirdly, there is a tetrahedron with three r-

and three £>-edges but no rrr-triangle: for let B £ U u ) , y e Z^tf)

with y 7* u (so that y e E (co)) ; then E, (io) £ %(Y) » so we can choose

5 £ L (a)) n E (Y) - then {o),3fY/<5} is the required tetrahedron.

Fourthly, there is a tetrahedron with only one or two non-incident £>-edges:

for if 3 € E, (w) , there are two points Yr^ e sr(
u) n £ (2) (since as

V > V, , there are at least two r-edges from (5 into E (u))) . Finally,

there is a tetrahedron with a total of two fc-edges, these being incident:

for if 3 e E (w) then as v > V, , there are points y,& e £,(3) n E, (u>) .

All these five tetrahedra are of distinct types and so must lie in

distinct ff-orbits, contradicting the fact that n- £ 4 . This completes

the proof.

Now by (1.10) we have

CD \G :E\ < tn(G) ,

where t (G) = £ X(!)' ^ile s u m being over all irreducible characters

of G . By a theorem of Schur, we have

(2) tnlSn) =

(see [77, p.341]). By [9, p.66], if X is a partition of n and X1 the

X X'
conjugate partition, with X ^ X1 , then XA ~ XA is an irreducible

n n

character of An ; and if X = X1 then x^ is a s u m o f t w o distinct
n

irreducible characters X-, X, o f ^n
 o f equal degrees. Hence
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(3) t (.A ) = itlS) + I X A U > ) / 2 •
n n n n x = x ,

Note that of course t {A ) < t (S ) . For a given value of n , the
n n n n

degrees x (D f o r A = A1 can be calculated using [9, 2.3.15].

Now |fi| < 4M by [75] and hence, as in [77, p.342], the bound (1)

forces n < 60 . Also If is 2-transitive by 4.1, so it is either

contained in an affine group or it is one of the groups listed in [2, 5.3].

Using (1), (2) and (3), we see that in fact n is at most 12 .

(4.2) Case n = 12. The 2-transitive groups which are maximal in A^~ o r

S1 2 are L2(ll).2 and «1 2 (see [2], or [78]). If #=L2(11).2 then

G = 5 and (1) gives a contradiction. Hence H = AL- and G = A.^ .

We sketch a description of the action of G on £=((?: H) , and refer

the reader to [5] for further details. The group G has rank 4 on Z

(see 14,p.91]) and, taking a = H e E , the orbits of H on E\{a} are

£ = {Hx\x a 3-cycle in ^ } , of size 440 ,

E_ = {Hx\x a 2 -element in A } , of size 495 ,

E. = {Hx\x a 5-cycle in ^-\j} > o f size 1584 ;

for clearly H fixes these sets, and hence they are fl-orbits since the

rank of G is 4 . We may pick 3-cycles a,b,a and 2 -elements d,e,f

in A such that ab is a 2 -element, ac and df are 5-cycles and

de is a 3-cycle.

Now by (1.9), r^a) is 1^ or E2 . If T^a) = Z1 then

B = Ha e ri(a) and Hob e ̂ (B) n E2 , Hoc e I^CB) n E3 , contrary to the

distance transitivity of T . And if F.(a) = E then y = Hd e r.(a)

and #cfe e T (y) n E , fld/" e T (y) n E , again a contradiction.

(4.3) Case n = 11. Here, by (1) and H&1, we have H = M±1 and G = A^ .

By [4, p. 75] the rank of G on A = (G : H) is 5 . Taking M±2, X12 to

act naturally on the set {l, ,12} , we regard H,G as the stabilizers
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in *(„, A^j of the point 1 . There is a G-isomorphism

Ex -*• M x (xeA..) between A and £ = (J4 : AT.) , and we identify A

and Z via this isomorphism.

Since H fixes the set {&c|x a 3-cycle in ^ } of size 330 , we

see that the set £.. described above in (4.2) must break up into two H-

orbits, of sizes 110 and 330 . Thus if a = H e A , the orbits of H

on A\{a} are

A = {M^2y\y a 3-cycle in A^~ involving l} , of size 110 ,

A = {Hx\x a 3-cycle in A }, of size 330,

A = {Hx\x a 2 -element in A .} , of size 495,

A = {Hx\x a 5-cycle in A } , of size 1584.

By (1.9), rx(a) is Ax or A2 . If 1̂ (00 = A2 we obtain a

contradiction as in (4.2). Thus let I\(a) = A, . Pick 8 = M (1,2,3) .

Then g corresponds to the coset M g(l,2,3) , where g e. M^ and

^(1,2,3) fixes 1 (so that 1^ = 3) . Since M^2 is 5-transitive on

{l,...,12} , we may choose h,k e M such that 1 = 4, 2 = 5, 3 = 3

and lk = 4, 2k = 5, 3fe = 2. Let $1 = ̂ ^ 2 ^ ^

Then $x,$2
 e T^a) . Applying the elements fr(l,2,4) and fed,2,4) of

A.. to the edge between a. and & , we see that fL is joined to

S?J (1,2,4) and & is joined to Bfe(l,2,4) . Now

.2,3)ha,2,4) = Mugfc(4,5,3) (1,2,4) ,

Bk(l,2,4) = Mlxgk(4,5,2) (1,2,4) = ̂ ^ ( 1 , 2 ) (4,5) .

Since gh, gk e M , we see that g/i(l,2,4), Bk(l,2,4) correspond to the

cosets M12(l,2,4,5,3) , M%2 (1,2) (4,5) , and hence BMl,2,4) e A4 ,

3?c(l,2,4) e A3 . This means that T2(a) contains A3 and A4 , a

contradiction.
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(4.4) Case n = 10. Here, by [J8], we have either H = M , G = A^Q or

fl = PrL2(9), G = S1Q .
n

(4.4.1) Suppose first that H = Af,rt, G = A.. . We claim that 1^ is not
XU 1U /I

multiplicity-free, a contradiction. Write X = A _, M = M^o , acting on

{1,...,12} . Since the rank of Z on {X : M) is 4 and the rank of X

on M. is 5 , by the Schur branching law ([9, 2.4.3]), there is an
X X al ai2

irreducible constituent y of 1,. with X = (1 , ,12 ) such that

at least two of the a. , say a and a , are non-zero. Using the Schur
1* 2? S

branching rule again twice, we see that the character X °f G appears

in lj. with multiplicity at least 2 , where y is the partition of 10

obtained from X by decreasing one part of size V and one part of size

s both by 1 . Hence lr, is not multiplicity-free, as claimed.
a

(4.4.2) Now let H = PFL-O) , G = S . With X,M as above, we may take

G = Xr^ _•, and H = M n G. There is a G-isomorphism between (G : H) and

(X : M) , and we identify these sets via this isomorphism. Calculation shows

that the orbit £., of X as in (4.2) splits into the three ff-orbits

Z = {Afe|x a 3-cycle involving 1 and 2} , of size 20 ,

Z.. = {A/x|x a 3-cycle involving one point of {1,2}} , of size 180,

E = {Mx\x a 3-cycle in G] , of size 240 .

The orbit E splits into three ff-orbits

Z21 = {Mx\x = (1,2) (,a,b)} , of size 45 ,

Z22 = {Mx\x = (I,a) (2,b)} , of size 90 ,

Z23 = {Mx\x = (i,a) (b,a) with i e {1,2}} , of size 360 ,

where a,b,o range over triples of distinct elements of {3,...,12} . The

orbit Z3 splits into three ff-orbits of sizes 144 , 720 , 720 .

Thus by (1.9), Yy (a) is E n or Z2 1 . If 1^ (a) = l^ then

T2ta) contains W(l,2,3) (1,2,4) and #(1,2,3) (1,4,2) , and hence contains
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I2 2 and E12 , which is a contradiction. We obtain a similar contra-

diction if r (a) = t .

( 4 . 5 ) C a s e n = 9 . B y [ / S ] , (H,G) i s (PTL2(8) , A^) , (ASL2(3), AQ) o r

UGL2(3) , Sg) . In the f i r s t case G has rank 3 on (G : H) , giving the

graphs ^ 1 2 n ' **i20 u n d e r t 1 - 6 ) • I n fact A here i s contained in the

la rge r rank 3 group 0o(2) of degree 120 (see [4 , p .85] ) ; since by
o

[ H ] , the only group lying between 0 (2) and A is the 2-transitive

group Spo(2) , we have Aut(I.nr.)— 0o(2) , as claimed in the theorem .
/••

(4.5.1) Now let H = ASL2{3) , G = A . We claim that lfl is not

multiplicity-free here. By C/3, Appendix] the permutation character of

S on (S : AGL (3)) contains both X<4 '1) and X(3'2 ' . Since these

restrict to the same character of A , our claim follows.

(4.5.2) To complete (4.5), let H = AGL2(3) , G = Sg . Let P be the

affine plane corresponding to H , and for distinct a,b e £2, let H(a,b)

be the line in P containing a and b . We describe the orbits of H

on (G : H)\{H} . First, we have the fl-orbit

$ = {Hx\x a 2-cycle in G} , of size 36 .

The set {Hx\x a 3-cycle in G] splits into the two ff-orbits

$ = {H(abc) \cel(a,b) } of size 8 ,

$3 = {mabc)\cf/l(a,b)} of size 144 .

The set {Hx\x a 2 -element of G} splits into three ff-orbits:

writing x = (ab) (ad) , we have ^ = {Hx\ l(a,b) n Z(o,d) = 0} . For the

the other two orbits $.,§ , write {e} = SL(a,b) n Z(c,d) . Then

$ = {Hx\ei{a,b,c,d}} of size 27 ,

$5 = {Hx\ee{a,b,c,d}} of size 216 .

In this fashion it can be seen that there are precisely three further H-
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o r b i t s , of s izes 48, 144 and 216 .

We now argue with the parameters k-,b.,c. of the distance t r a n s i t i v e
Is Is is

graph T , as defined in [79]. Here k. = \T^(a)| , and if d"(a,3) = i ,

then the number of vertices adjacent to 6 and at distance i - 1 or

i + 1 from a is e. or b. , respectively. From [79], we have
"Z- t'

(4) L > 2) > ... > J, . and 1 = e. < e < ... S o , .
1 ± a— 1 1 *z a

Some consequences of this for the k- are given in [76, 1.1].

Now by (1.9), k± is 8 or 27 . If ̂  = 8 then k2 must be 48 ,

so by [76, 1.1] we must have kn - 27 , ka = 36 and fe_ e {144,216} .

This forces i>7 = 1 and 2> > 1 , contradicting (4) . Hence k-^ = 27 . By

[76, 1.1], &2 is 36 or 48 . First let fe = 48 . Then

(b^ej = (16,9) . Now k3 is 144 or 216 . If k3 = 144 then

(2>2,e3) must be (6,18) or (3,9) (using (4)); and k^ is 144 or 216,

so (2>3>e4) is (a,a) or (3a, 2a) for some integer a . Neither of

these is possible by (4). Hence fe3 = 216 . Then (&2,e3) is (9a,2a)

for some integer a , whence by (4) we have b-, = 16 > 9a and

a = 9 < 2a , an impossibility.

Thus ky - 36 and so ib-.,c~) = (4a,3a) for some integer a .

Then k3 is 48 or 144 . If fe3 = 144 then Ib2,c2) = (42>,2>) for

some b , and so by (4) , we have 4 a S 4 Z > , 3 a ^ i > , a contradiction.

Hence k^ = 48 and so k^ is 144 or 216 . In both cases (4) is again

violated. Thus no distance transitive graph arises in (4.5.2).

(4.6) Case n = 8 . If G = AQ then H must be AGL3(2) by [7£]

(since L2<
7) o f degree 8 is contained in AGL3(2)) . But then G is

2-transitive on (G •• H) , so r is the complete graph K = J(15,l) .

Hence we may take G = SQ , and by [7S], H = I2(7).2 . We consider H as

L3(2).2 embedded in G = I4(2).2 , with y = F4(2) the natural module for
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G' . Then H is the s tabi l izer of a pair a = {UQI^Q} o f subspaces of V

satisfying V = UQ ffi WQ , dim UQ = 1 , dim WQ = 3 . Regarding VT as the

set of a l l such pairs {U,W} of subspaces, the orbits of H on lT\{a}

are

h± = {{U,W}\V = UQ or W = V0}\{a} , of size 14 ,

A 2 = {{y,f/}|£/Q < W , U < WQ} , of size 28 ,

A3 = {{U,W}\UQ < W , U i WQ or UQ $ W , U < WQ} , of size 56 ,

A4 = {{U,W}\UQ i W and 1/ * VQ} , of size 21 .

Thus by (1.9), r,(a) is A1 or A4 . If r,(a) = A-̂  it is easily seen

that r_(a) contains A, U A. ; and if T-^(a) = A4 then T2(a)

contains A, u A- . This contradicts the distance transitivity of r .

(4.7) Case n = 7 . If G = 4 ? then fl = L2(7) by C/S], and G is 2-

transitive on (G : R) , so T = K . Thus we take G = 5 ? , whence by

[7S], S = F-2 , a Frobenius group of order 42 . By [73, Appendix], G

has rank 7 on (G : B) . Elementary calculation shows that the orbit

sizes of H on (G : H) are 1,7,14,14,21,21,42 . Hence by [16, 1.1] we

have ?c = 7, fe. = 14 and fe- = 21 . Since H is 2-transitive on

r, (a) we have b, = 6 , and hence c~ = 3, b2 = 3 and c = 2 . But then

e_ > c3 , contradicting the inequalities (4) .

(4.8) Case n = 6 . By [JS], ff is L2(5) or L2(5).2 and \G : H\ = 6 ;

moreover G is 2-transitive on (G : H) , so T is Xg .

(4.9) Case n = 5 . Here |G:#| = 6 and T is again K& .

This completes the proof of the theorem.

5. Final remarks on Aut Ag

To conclude, we complete the proof of the corollary to the theorem by

dealing with the case where G < Aut 4 , and G £ 5, (in the notation of

the statement of the corollary) . Let a e VT and H = G . From [4] we
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see that \G : E\ i s 10,36 or 45 . If \G : H\ = 10 then G i s 2-

t r a n s i t i v e on VT , so r = X . Thus we suppose that \G : H\ i s 36

or 45 .

F i r s t l e t \G-. H\ = 36 , so tha t H n A& = £>10 . I t i s easy to see

tha t the permutation character of A^ on (A^-.D.J) i s

1 + X ^ D + X O 2 ) + x ( 4 . 2 ) + x ( 3 , 2 , l ) + x ( 3 , 2 , l ) ?

a sum of irreducible characters of i4fi of degrees 1,5,5,9,8,8 . Thus

(see 14, p.5]) if C = Aut 4 6 then lg = 1 + x9 + Xlo + X16 , where x^

is an irreducible character of G of degree i . Then <7 has rank 4

on (G-. H) , and the subdegrees must be 1,5,10,20 . Hence by (1.9), k^

is 5 or 10 . If k-^ = 5 then Y is the distance transitive graph

E36 as in (1.7) (see [7, p.153]); and if Z^ = 10 then r is the graph

obtained by joining vertices at distance 3 in E_, , which is easily seen

not to be distance transitive. And if G < Aut A^ then the subdegrees of

G on (G : H) are either 1,5,10,20 or 1,5,10,10,10 ; in the first case

F is Z , again, and in the second fe. = 5 by [76, 1.1], whence

ra £ and G is not distance transitive on r , a contradiction. Thus
JO

in all cases r = £., . Finally we remark that Aut l^ — Aut A , as is

well known (see [I, p.153]).

Now let |G:ff| =45 . The permutation character of A^ on the

cosets of H n A& = DQ is

1 + x<5.« + x <
2 3> + 2 X C « . » +x(3.2.1> +x(3.2,l) f

a sum of characters of degrees 1,5,5,2 x 9,8,8 . If G = Aut A& then (7

has rank 5 on (G : H) , and hence has subdegrees 1,4,8,16,16 . Then by

(1.9), kx is 4 or 8 . If kx = 4 then r is Z45 as in (1.8), the

line graph of the 8-cage (see [20, Chapter 8]); and if ^ = 8 then r

is the graph obtained from £.,- by joining vertices at distance 2 ,
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which is easily seen not to be distance transitive. If G < Aut Ar then

b

G has subdegrees 1,4,8,8,8,16 , so T i s not distance t r ans i t i ve by

[76, 1 .1] . Final ly , i t i s well known tha t Aut Z = Aut Ar .
45 o
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