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1. I n t r o d u c t i o n . In this section we fix some notat ions and give a definition 
of an area measure on a d i f fe ren t ia te manifold, where th roughout the paper the 
word differentiable implies differentiability of class C°°. Let M denote a differ­
e n t i a t e manifold of dimension n and call a set of m linearly independent 
vectors {ei, . . . , em\ a t a point of M an m-frame of M. T h e set E' of all such 
m-frames can be given the s t ruc ture of a differentiable fibre bundle over M and 
we denote the projection of E' onto M by ir'. 

E' is acted on by the group Lm
+ of non-singular m X m matrices with positive 

de terminants according to the rule 

e = {ea} - » ep ypl = e\p (a, 13 = 1, . . . , m) 
where e denotes the frame of vectors ea and \p is a matr ix of components \pj 
contained in Lm

+. T h e repeated index 13 implies summat ion , and this convention 
is used throughout the paper. T h e quot ient space of E' by this action of Lm

+ is 
the space E of oriented m-planes of M. I t is a differentiable fibre bundle over M 
and we denote the projection of E onto M by ir. 

Let <£: M —» M be a local differentiable mapping between differentiable 
manifolds M, M. T h e derived mapping on tangent vectors is denoted by </>*, and 
the dual mapping on differential forms by </>*. </>* extends to exterior differential 
forms. T h e mapping 4>* induces a mapping E' —+ Ë! and we shall denote this by 
the same symbol 0*. We can now give some definitions. 

An area measure of dimension m (1 < m < n — 1) on M is a positive 
differentiable function L on E' such t h a t L (exf/) = de t \pL (e) for all \p G ^>m+-

A local equivalence of two area measures L, L on manifolds M, M is a local 
diffeomorphism </> of a neighbourhood [/ of M onto a neighbourhood of Af, such 
t h a t L (</>* e) = L (e) for all e in TT^1 ( U). 

An automorphism of an area measure is a diffeomorphism of AT onto itself 
which is a local equivalence on all neighbourhoods. 

We now explain some known ideas in the subject and summarize the results 
obtained in the present paper. We use the word intrinsic to mean " invar ian t 
under all local equivalences of the area measure ." 

In §3 we impose a regularity condition on the area measure; with this condi­
tion imposed the extreme cases m = l,m = n — 1 are known as the geometries 
of Finsler and E. Car t an respectively (3, 4 ) . T h e area measure for a general m 
(also known as an areal space) has been studied by E. T . Davies, R. Debever, 
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H. Iwamoto, and A. Kawaguchi and his pupils. In the geometries of Finsler and 
E. Cartan a very important step was the introduction of an intrinsic metric 
tensor or, equivalently, the introduction of an intrinsic positive definite scalar 
product in the vector bundle T' = ir~l(T(M)) where T(M) is the tangent 
bundle to M. This metric tensor was extended to the regular area measure of 
dimension m by H. Iwamoto (8) but the formula given is very complicated. In 
the present paper we show the existence of intrinsic positive definite scalar 
products in the differentiable case by using the theory of fibre bundles and some 
results of R. S. Palais (13). Then, by integrating over the fibres of E we obtain a 
Riemannian metric on M intrinsically associated with the regular area measure. 
One immediate consequence of the existence of this metric is that the group of 
automorphisms of a regular area measure is a Lie group, and the metric can also 
be used to extend some known theorems of Finsler geometry to a regular area 
measure of dimension m. 

2. A theorem on fibre bundles. In the following we shall call an w-frame 
of a differentiable manifold M of dimension n a frame of M\ the set of all such 
frames forms a principal bundle P over M. It is known that the fibre bundle E 
is associated with P , the fibre being the Grassmann manifold Gm,n-m of oriented 
m-planes in the w-dimensional number space Rn, and the action of Ln being 
induced by its usual action on Rn. We shall need a theorem concerning E which 
is true for general bundles associated with P . Thus, for the moment, let E 
denote a general bundle associated with P , with fibre F = Ln/H of dimension N 
and, as before, let w denote the projection E—*M. We use p,f to denote 
general elements of P , F respectively and/0 to denote the particular element H. 
Now we recall that, by definition (10, p. 54), E is the set of pairs (p,f) modulo 
the equivalence relation (p,f) ~ (pi, l~lj~) where / £ Ln. We shall write {p,f} 
for the equivalence class of (£, / ) . It is known (10, Prop. 5.4) that the elements 
of P can be identified with a set of diffeomorphisms of F onto the fibres of E, the 
diffeomorphism corresponding to p being given b y / —> pf = {p,f}. It is obvious 
that 

(2.1) (P»f = P(ff). 

We are now concerned with two principal bundles over E. The first is the 
induced bundle T"1(P), which is, by definition, the set of pairs (p, u) where u is 
an element of E and p is a frame at TTU\ we shall call such a pair an induced 
frame at u. Secondly we consider the bundle Q of iV-frames of E whose vectors 
are tangent to the fibres of E. It is sometimes convenient to use an identification 
of the m-frames of a differentiable manifold M with the vector space isomor­
phisms of Rm into the tangent spaces to M, a frame e being identified with the 
isomorphism which takes the canonical basis of Rm into e. With these pre­
liminaries we can now state 

THEOREM 2.1. (i) TT~1 (P) has a reduced structure P' with group H. 
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(ii) Q has a reduced structure Qf with group the linear isotropy group R' of F 
at H. 

(iii) There is a bundle homomorphism ($', <j>") of P! onto Qf with $" the 
canonical homomorphism of H onto H'. 

Proof. To prove (i) consider, for a given point u of E, the induced frames 
(g, u) such that qf0 = u, and define P' to be the union of these frames for all 
u € -E. I t is clear from (2.1) that H acts freely and transitively on the elements 
of P' at u\ we omit the remainder of the detail involved in proving that P' is a 
reduced structure of ir~l (P). 

To prove (ii) it is convenient to identify RN with the tangent space to F at/0-
Then consider the iV-frames at u defined by g# (restricted to RN) where q is an 
element of P such that qfo = u, and define Qf to be the union of these frames 
for all u G E. Clearly Q C Q and further, if two elements of Q dit u are defined 
by g*, g'* respectively, we must have q = q'h for some h G H and hence 
g* = g'* A*. Since H' consists of the isomorphisms h* restricted to RN, this 
shows that H' acts freely and transitively on the elements of Qf at u ; again we 
omit the rest of the detail involved in proving that Qf is a reduced structure of 

Q-
Finally we define 0': P ' —> Qf by </>' (g, u) = g*. Then 

4>'(qh,u) = g * ^ * = <j>'(q)<t>" {h) 

so that the pair (0r, <j>") gives a bundle homomorphism with <j>" the canonical 
projection of H onto H'. 

We now obtain H and Hf in case E is the bundle of oriented tangent m-planes 
of M. Then F is the Grassmann manifold Gmtn-m of oriented w-planes through 
the origin in Rn, and we take/ 0 to be the m-plane defined by the first m vectors 
of the canonical basis of Rn. Thus H is the subgroup of Ln defined by matrices of 
the form 

where r is of order m X m and has positive determinant. The reduced structure 
P' is formed by the set of induced frames at the elements of E such that the 
first m vectors of the frame lie in the plane u. 

In order to obtain Hf we have to identify RN (N = m(n — m)) with the 
tangent space to F a t /o . In fact we shall use the tensor product Rm ® Rn~m 

instead of RN. Let ei, . . . , en be the canonical basis for Rn and consider the 
m-planes defined by the m-irames 

{ea + ua
aea} (a = m + 1, . . . , n) 

where the ua
a are arbitrary real numbers. There is a unique m-frame of the above 

form corresponding to each such m-plane and the functions thus defined give a 
coordinate system on a neighbourhood of /0 . We identify the tangent space to F 
ât f0 with Rm ® Rn~™ by identifying the basis d/dua

a with the basis ea 0 ea. 
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A calculation shows that the homomorphism §" is 

LO l\-*'*®s 

where r* = (r_1)T. 

3. Transversality, angular metric, and a scalar product in T'. The 
purpose of this section is to define an intrinsic scalar product in Tf. In order to 
do this we use some ideas from the Calculus of Variations. The proofs of our 
statements are omitted but they are easy consequences of the definition of an 
area measure; we refer to (2, 6) for more detail. 

We first introduce some local coordinate functions on E''. Let U denote a 
coordinate neighbourhood on M with coordinate functions xi (i = 1, . . . , n), 
and let e = {ea} be an m-frame £ (n'^iU). Coordinate functions x\ pj on 
7r/_1 ( U) are then defined by the equations 

xi(e) = x^w'e), ea = pa
i(e)d/dxi. 

The symbol xl now has two meanings but, whenever it is used, the particular 
meaning will be clear from the context. 

The local differential form on Ef, coa = (dL/dpa^dx*, is independent of these 
local coordinates and so is defined globally on Ef. Further, the forms co1, . . . , œm 

are linearly independent, and we consider the non-zero form of degree m, 
(\/Lm~l)o3l A . . . A com. Let p denote the projection of E' onto E; then this 
form is the image, under p*, of a form 12 on E. For a given point u of E, Q,(u) is 
the image, under 7r*, of a form Q,u at iru. We define the concepts of transversality 
and angular metric in terms of flM. 

Transversality. The (non-oriented) plane transversal to an w-plane u is the 
plane spanned by the vectors X satisfying i(\)Q,u = 0 (i denotes the interior 
product). This plane is of dimension n — m and intersects u in the zero vector 
only. 

Angular metric. For a given point u in E we define a function Fu on the fibre 
of E through u by 

Fu(v) = ttu(eh . . . , em)/ttv(eh . . . , em) 

where {ea\ is any frame in the m-plane v. Fu has a critical point at v — u, and the 
Hessian at u (12, p. 74) is a quadratic differential form on the fibre at u. This 
form is differentiable in u and is called the angular metric or the Legendre form. 

An area measure is said to be regular if the angular metric is positive definite. 
In this case the angular metric is a Riemannian metric on the fibres of E. 

In order to define an intrinsic positive definite scalar product in the vector 
bundle T' it is sufficient (and necessary) to obtain an intrinsic reduced structure 
of the principal bundle 7r_1(P) with an orthogonal group. We have already 
obtained a reduced structure Pf by restricting the discussion to the set of 
induced frames at the elements u of E such that the first m vectors of the frame 
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lie in the plane u. We obtain a further reduced structure P" by restricting the 
discussion to those induced frames {eu . . . , en\ such that 

(i) L({eh . . • , em}) = 1, 
(ii) em+u • • • J £n he in the plane transversal to u. I t is clear that the group of 

P" is the subgroup of H formed by the matrices 

We call this group G. The bundle homomorphism (<//, 0") introduced in 
Theorem 2.1 gives a reduced structure Q" = <t>'' (Pn) of Qf with group <j>n'(G). 

An element q* of Qf is an isomorphism of Rm <g> pw-™ into the tangent space 
to the fibre of E through some point u. In the case of a regular area measure the 
angular metric defines a positive definite scalar product on the tangent space to 
the fibre at u. Using the isomorphism g# -1 we obtain, for each element of Q', a 
positive definite scalar product in Rm ® Rn~m

 a n c i hence a symmetric positive 
definite N X N matrix 

Xaa,Pb = (ea ® ea, e$ ® gft). 
Let 3̂ denote the space of symmetric positive definite matrices of order N X N; 
the above procedure defines a differentiable mapping p' of Qf into $, and the 
mapping is equivariant if a right action of H' on ty is defined by 

X-* YT XY 

for F G ^ . Thus , defining a r ight act ion of g Ç G on Q" and $ by the act ion of 
4>" (&) » w e have differentiable equivariant mappings 

We now use the following theorem, which we shall prove in §5. 

THEOREM 3.1. There exists a differentiable map r of ^ into the space of right 
cosets K\G, where K is the orthogonal subgroup ofG, such that 

(i) r is equivariant, 
(ii) r(IN) = K, where IN is the identity matrix of order N X N. 

THEOREM 3.2. There exists a positive definite scalar product in T' intrinsically 
associated with a regular area measure. 

Proof. The mapping a = rp'tf is a differentiable equivariant mapping of P" 
onto K/G; it is easy to show that the subset a~l(K) of P" is a reduced structure 
with the orthogonal group K. As we have mentioned, this defines a positive 
definite scalar product in T' and, since all our constructions are intrinsic, the 
scalar product is intrinsic. 

Remarks. In the geometries of Finsler and E. Cartan (m = 1, n — 1) ty 
consists of a single orbit under the action of G and there is clearly a unique 
differentiable map r satisfying the conditions of Theorem 3.1. I t can be shown 
that the scalar products given by Theorem 3.2 coincide with those given in 
(3, 4). 
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For a particular area measure, r has only to be defined on the image of p'. 
Thus, if the image of p' consists of the single orbit containing INj r is uniquely 
defined on this orbit. However, except for the cases m = 1, n — 1, the theorem 
of K. Tandai (14) then implies that the area measure is obtained from a 
Riemannian metric on M. For a direct proof of this result see (1, Theorem 6.2). 

4. An intrinsic Riemannian metric and some applications. We have 
introduced an intrinsic positive definite scalar product into the vector bundle 
T' = TV~1{T{M)) where T(M) is the tangent bundle to M. 

Tf is the set of pairs (v, X) where v £ E and X is a tangent vector at irv. Thus, 
given a tangent vector X to M of origin x0 we can define vectors Xv = (v, X) at 
all points v in 7r_1(x0) = E(x0). Now orientate the fibres E(x) continuously in a 
neighbourhood of x0 and choose the volume element d V of the angular metric to 
agree with this orientation. Then we define a positive definite Riemannian 
metric in T(M) by 

(X, id) = jE(x) Ow, Vv)dV/JE(X) dV. 

This metric is differentiate and, since it is independent of the chosen local 
orientation, is defined globally on M. It is also intrinsically associated with the 
area measure and we call it the associated Riemannian metric. 

THEOREM 4.1. The group of automorphisms of a regular area measure is a Lie 
transformation group with respect to the compact-open topology. 

Proof. It is well known that the group of isometries of a Riemannian manifold 
is a Lie transformation group with respect to the compact-open topology. The 
group of automorphisms of a regular area measure is clearly a closed subgroup 
of the group of isometries of the associated Riemannian metric and is thus a Lie 
transformation group. 

Remark. In E. Cartan's treatment of the cases m = 1 and m = n — 1 the 
area measure was not required to be defined for all m-frames but only on some 
open set of E' covering M. An example due to E. Cartan (4, p. 3) shows that 
Theorem 4.1 is not in general true in this situation. However it is still valid in 
the case m = 1 ; this follows from S. Chern's solution of the local equivalence 
problem (5) and a theorem of S. Kobayashi (9). 

In §3 we expressed the function L in terms of local coordinates x\ pj and now 
we use this expression to define the concept of local triviality. An area measure 
is said to be locally trivial if each point of M lies in the domain of a local 
coordinate system xi such that L is a function of the coordinates pj only. 

THEOREM 4.2. A manifold which admits a regular, locally trivial, area measure 
also admits a locally Euclidean metric. 

Proof. By following through the computations one sees that, if the function L 
depends only on the coordinates pa\ then the associated Riemannian scalar 
product is independent of the coordinates x\ Thus the associated Riemannian 
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metric is locally Euclidean. Since a regular, locally trivial, area measure of 
dimension one is the same as a locally Minkowskian space, this theorem general­
izes a remark of Lichnerowicz (11, p. 297). 

THEOREM 4.3. Let A be the group of automorphisms of a regular area measure on 
a connected differentiable manifold M of dimension n, and suppose that either 
n T^ 4 and dim A > \n{n — 1) + 1, or n = 4 and dim A > 8. Then the area 
measure is that defined by a Riemannian metric of constant curvature. 

Proof. A is a subgroup of the group of isometries of the associated Riemannian 
metric and thus the isotropy group A 0 at a point 0 of M is isomorphic with the 
linear isotropy group A0'. Choose an w-frame Po at 0, which is orthonormal 
with respect to the associated Riemannian metric. Using this frame as basis, A0' 
is represented by a group B of orthogonal matrices. For n = 4 we have 

dim B = dim A0 > \{n - \){n - 2) 

and, for n = 4, dim B = dim Ao > 4. It is well known that these inequalities 
imply that B is either the orthogonal group 0n-\ or the rotation group SOn-u 
and thus A0' is transitive on the directions at 0. The argument given on pp. 
262-263 of (17) shows that A is transitive on M and has dimension \n{n + 1). 

We now take all images of the frame Po under the action of A and thus 
obtain a reduced structure of the bundle P with group B. Since A 0' is transitive 
on oriented m-planes, the area measure must take the form 

L(e) = w(x) (sum of the squares of all m X m minors of the matrix PJY 

where e is any m-frame at x whose vectors ea have components PJ with respect 
to a frame of the reduced structure. L is invariant under the action of A and 
this implies that w(x) is constant on M. Thus the area measure coincides with 
that derived from a constant multiple of the associated Riemannian metric and, 
as this metric admits a group of isometries of dimension %n(n + 1), it must 
have constant curvature. We remark that this theorem is well known for Finsler 
geometry and is due to H. C. Wang (15). A similar theorem for Cartan geometry 
is stated by Y. Tashiro (15, Theorem 8.1) but is proved under different 
hypotheses. 

5. Proof of Theorem 3.1. It is convenient to identify G with SLm X Ln_m 

so that K is identified with S0m X 0n-m. We recall that $ is the space of positive 
definite matrices of order N X N and that G acts on $ according to the rule 
X -> YTXY where Y = r* <g> <> = 0"(r X s) and r X s £ G. We write 
G" = <i>"(G). 

Our aim is to construct an equivariant map of ty into the space of right 
cosets K\G. We shall use some general results, due to R. S. Palais (13), con­
cerning a differentiable manifold on which there is a differentiable action by a 
Lie group G. We remark that Palais' results are formulated in terms of a left 
action but are also true for a right action. In order to be able to apply these 
results we must prove 
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LEMMA 5.1. The space ty is proper under the action ofG. 

Proof. For the definition of proper see (13, Definition 1.2.2). Since the space $ 
is locally compact, it is sufficient to prove (13, Theorem 1.2.9) that, if SB is any 
compact subset of $, then the set of elements g of G such that SBg intersects SB 
is compact. Let 91 denote the set of matrices F such that YTWY £ SB for some 
W Ç SB; we have to show that (<t>")~l($l C\ G") is compact and, since <j>" is at 
most a double covering, it is sufficient to show that 9Î Pi G" is a compact 
subset of G". The correspondence X —» X1 is a homeomorphism of ^ onto itself 
and we denote the image of SB by SB'. Then 9î is the set of matrices Y such that 
YTP2 Y = Q2 for some P , Q in the compact set SB'. This means that 9t is the set 
( S B ' ) - 1 ^ SB' and is thus a compact subset of LN. Since G" is a closed subset of 
LN, 9Î r\ G" is compact in G". 

LEMMA 5.2. Let Gi, G denote two Lie groups', then every compact subgroup C of 
the direct product Gi X G2 is contained in a direct product C\ X G where G and G 
are compact subgroups of G± and G2 respectively. 

Proof. Define G to be the subgroup of G formed by those elements g\ such 
that gi X g2 is contained in C for some g2. Define C2 as a subgroup of G2 in a 
similar way. Now consider a sequence g\r in G ; the sequence g\T X g2T lies in C 
and, by compactness, has a convergent subsequence g\T X gf2T in C. Thus the 
sequence gir has a convergent subsequence g'ir in G so that G is compact. 
Similarly G is compact and C is contained in G X G. 

LEMMA 5.3. Each orbit of $ z/^der G contains an element whose isotropy group is 
a subgroup of K. 

Proof. By Lemma 5.1 the isotropy group Gx of an element X of $ is compact 
and, by Lemma 5.2, is contained in a direct product C\ X G where G, C2 are 
compact subgroups of SLmi Ln-m respectively. I t is well known that G and C% 
are conjugate to subgroups of S0m and 0n-^n so that Gx is conjugate to a 
subgroup of K. This completes the proof. 

To continue with the proof of our theorem, we consider an orbit of $ under G 
and choose a point X in this orbit so that the isotropy group Gx of X is a sub­
group of K. Since Gx is compact, we can choose a Riemannian metric on 5̂ 
invariant under G^. Let S(X, a) be the union of all geodesic segments of length 
<a at X orthogonal to the orbit of X. Because of our Lemma 5.1, Section 2.2 
and Proposition 2.1.7 of (13) show that, for a sufficiently small, S(X> a)G is 
open in $ and the correspondence xg —> Gx g is a well-defined equivariant map 
of S (X, a)G onto GX\G. Combining this with the canonical mapping of GX\G 
onto K\G we have an equivariant differentiate map of S(X, a)G onto K\G. 

We wish to show that we can glue local equivariant maps together to give a 
global one. Our first step is to show that we can choose a countable, locally 
finite, covering of $ from those sets S(X, a)G which admit equivariant maps 
onto K\G. Since these sets are open, their projections U(X, a) onto the orbit 
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space ty/G are open. ^ is locally compact and proper by Lemma 5.1, so that 
Theorem 1.2.9 of (13) applies to show that ty/G is Hausdorff. Then, since the 
projection ^ of ^ onto %/G is open, it follows that ^ / G is locally compact. 
Further, because % is the union of a countable number of compact subsets, the 
same is true for ty/G and, as shown in (7, Theorem 2-65), 

%/G= U Wt 

where the Wt are open sets with compact closures Wt such that Wt C Wi C Wi+i 
for all i. For every point w of the compact set Wt — Wi-\ we can choose sets 
U(X, a), U{X, a') with a! < a and \(/X = w such that both are contained in the 
open set Wi+i — W*_2. Since Wt — W t-\ is compact, we may cover it by a 
finite number of sets U(X, a'), and doing this for each i gives two countable, 
locally finite, coverings of ty/G. The corresponding sets in $ will be denoted by 
U'i = S(Xi, a'\)G, Ui = S(XU di)G and both these coverings of $ are locally 
finite. 

We shall glue the local equivariant mappings together by non-negative 
differentiable functions (j>t on ^ which are invariant under G and have the 
additional properties: 

(i) <t>t > Oon U'u 
(ii) the support of <^ is contained in Ut. 

The following is one method of constructing the functions </>*. With the in­
variant Riemannian metric used to construct S{XU at) define <j>t on S(XU aO, 
as a function of the geodesic distance from Xiy so that it is positive on S(XU a't) 
and has support in S(XU at). Then extend it to Ut by <\>i(xg) = <t>i(x) for 
x G S(XU a,i) and to the whole of ^ by defining it to be zero on 3̂ — Ut. 

So far the argument is rather general but the gluing together depends on the 
special nature of K\G. We can identify K\G (as a differentiable manifold with a 
right action by G) with the space P X Q where P is the space of positive 
definite m X m matrices with unit determinant and Q is the space of positive 
definite (n — m) X (n — m) matrices. The right action of G on P X Q is 
defined by 

p X q—> rTpr X sTqs 

for r X s in G, and the identification is 

coset (r X s) —> rTr X sTs. 

Let ft be the local equivariant map Ut—>PXQ and write/* (X) = h i(X) Xk t(X). 
Then we define an equivariant map ty -+ P X Qby 

fix) = {(HX)/(detHX)y"*) x k(x)}, 
where 

h(X) = £ 4>i{X)ht{X) and k(X) = £ <t>t(X)kt(X). 
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In order to complete the proof of Theorem 3.1 we shall show that any 
equivariant map/ : $ —> K\G can be modified to satisfy condition (ii). 

LEMMA 5.5. f(IN) = coset (Im X nln-m) where pis a positive scalar. 

Proof. Suppose that /(IN) = coset A X B with A £ SLm, B £ Ln_m. IN is 
invariant under K so that A belongs to the normalizer of S0m in SLm and B to 
the normalizer of 0w_m in Ln_m. Since these normalizers are, respectively S0m 

and nOn-rn (/x > 0), the result follows. 

We now write a = ImX filn-m and define r{X) = f(X)orl. Obviously r (IN) = K 
so that the proof of Theorem 3.1 is completed by showing that r is equivariant. 
This follows because, for g £ G, 

r{Xg) =f(Xg)ori = f(X)gori = f(X)a-ig = r(X)g 

since a commutes with all elements of G. 
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