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ON FAMILIES OF MEROMORPHIC MAPS INTO
THE COMPLEX PROJECTIVE SPACE

HIROTAKA FUJIMOTO

§1. Introduction.

In [10], P. Montel defined the notion of a quasi-normal family of
meromorphic functions and obtained several results relating to this.
Afterwards, in [13], H. Rutishauser generalized some of them to the case
of meromorphic functions of several variables. By definition, a quasi-
normal family of meromorphic functions on a domain D in C™ is a family
& such that any sequence in % has a subsequence which converges com-
pactly outside a thin analytic subset of D. We introduce in this paper
the notion of a meromorphically normal family of meromorphic maps into
the N-dimensional complex projective space Py(C), which is defined as
a family & satisfying the following condition:

Any sequence {f®’} in & has a subsequence {f*¥} with the property
that, on some neighborhood U of each point in D, each f® can be
written

f(l’k) — fo(l’k) . fl(Pk): . :f&l’k)

for fixed homogeneous coordinates on Py(C) so that {f{"”} (0 <i<N)
converges compactly on U to a holomorphic function f; and at least one
f: does not vanish identically.

The main purpose of this paper is to give some sufficient conditions
for a family of meromorphic maps of a domain D (C C®) into Py(C) to
be meromorphically normal.

After some preparatory considerations (§2 and §3), by the full use
of the results of W. Stoll in [16] we shall show in §4 the following im-
provement of H. Rutishauser’s result.

For a family & of meromorphic maps of D into Py(C), if there exist
2N + 1 hyperplanes H; (0 < j < 2N) in Py(C) located in general position
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such that f(D) ¢ H(f € #) and for any compact set K C D the areas of
STUH) N K inclusive of multiplicities are bounded above by a fixed con-
stant, then F is meromorphically normal (Theorem 4.3).

We can define the characteristic function I'(r, f) 0 <r < R) of a
meromorphic map f defined on a sphere B(R) in C* with center at
the origin and radius R and give some elementary properties on the
analogy of H. Cartan’s work [1]. It will be shown that, for a family
F, Tlr,f) O0<r<R,feZF) are bounded above by a constant depend-
ing only on # if and only if % is meromorphically normal and normal
at the origin (§5). The fundamental inequality given in [1] will be also
generalized to the case of meromorphic maps of several variables under
suitable assumptions (§6). As its consequence, we shall give in §7 a
defect relation for meromorphic maps of several variables and its appli-
cation.

In the last section, using the fundamental inequality, we shall give
the proof of the following theorem, which was firstly stated in the case
of n =1 by G. Valiron.

Let F be a family of meromorphic functions on a domain in C* with-

out indetermination points. Suppose that for mutually distinct values a,,
Uy v+, 0 MY 0(2) — a; (peF) has no zeros of multiplicity < m; and

. 1

j=1

<q—-2.

J
Then, F. is ‘& mormal family.
For a family of meromorphic maps into P,(C), we shall give also

an analogous sufficient condition for &# to be meromorphically normal
(Theorem 8.1) and a Schottky-Landau type theorem (Theorem 8.7).

§ 2. Preliminaries.

Let G be a domain in C* and f a not identically zero holomorphic
function on G. For a point a = (a,a,, ---,0,) € G we expand f as a
compactly convergent series |

f(ul + Wyy ovvy Uy + an) :Z;oz:opm(un “"un)

on ‘a neighborhood of @, where P, is either identically zero or a homo-
geneous polynomial of degree m. The number
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v,(@): = min {m; P,(w) = 0}

is said to be the zero multiplicity of f at a. By definition, a divisor
on G is an integer-valued function v on G such that for every acG
there are holomorphic funections ¢g(z) (s 0) and 7(z) (= 0) on a neighbor-
hood U of a with v(2) = y,(2) — v,(») on U. The carrier of a divisor v
is defined as an analytic set

vl: ={zeG; vz) # 0}

in G. As is easily seen, for a holomorphic function f (= 0) on G, v,(?)
equals the zero multiplicity of f at z in the sence of Definition 2.1 in
[7] whenever z is a regular point of |v]

Let us consider next a meromorphic maps f of G into Py(C). For
any ¢ € G, f has a representation

J@ = fo@): fil@): -0 fy(?)

on some neighborhood U of a with fixed homogeneous coordinates

Wy: W, -+ wy on Py(C) and holomorphic functions f;(z) (0 <i< N) on
U, where we can choose them so as to satisfy the condition
codim {f,(2) = fi(®) = -+ = fy(&) = 0} = 2.

A representation of f satisfying this condition is referred to as an admis-
sible representation of f on U in the following sections.
Take a hyperplane H in Py(C) with f(G) ¢ H defined by

H:ow, + aw, + -+ + a"wy=0.

For every a e G, taking an admissible representation f = fy: fi: -+ : fn
on a neighborhood U of a, we consider a holomorphic function

F:=af +afi + - +a"fy.

Then, the divisor v(f, H) (2): = vz(2) (zc U) is determined independently
of a choice of admissible representations and hence is well-defined on
the totality of G. A meromorphic function ¢ on G induces a meromor-
phic map ¢* of G into P,(C) defined by ¢*(2): = fy(2): fi(z) on a connected
open set U if ¢ = f(2)/f,(z) for holomorphic functions f,, f,(# 0) on U.
In this case, »): = (p*, H) and »j: = (¢*,H,) are nothing but the
divisors of zeros of ¢ and of poles of ¢ respectively, where H; = {w; = 0}
(z=0,1).
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Let v be a non-negative divisor on a sphere B(R): = {|z|| < R}
(0 <R 4 00), where for z = (z,,%2,, - -+, %)
lzll: = (2F + 2P + - + (2.

DEFINITION 2.1. Suppose that 0 <m < +o00 and 0 <s <r <R.
We define

Ve, v): :j  min (z), mw,_,(z)  in case of n > 1
[viNB(r)

= D=, min (2), m) in case of n =1

and

N, (r,s;v): = J Vulr, ) —m 2 7 dt,
w

tZ’n, 1

where v, = (4/2) D2, dz, N dZy, Vo, =Q/(R—D DV, AN - Ao, (B—1)-
times), W: = (z"!/(n — 1)!) and the integral over |v|N B(r) means the
integral over the manifold consisting of all regular points of |v|N B().
And, we put V(r,v) = V. (r,v), N@,s;v) = N_(r,s;v) and N,(r,v): =
lim,_,,N,(r,s;v) for the case 0|y

Since B(R) is a Cousin-II domain, any given divisor » on B(R) can
be written

V=y, —

with holomorphic functions g (% 0) and A (% 0) on B(R). Consider holo-
morphic functions g¢%(u) = g(au) and hi(u) = h(ou) of u for each a =
(@, gy -+ 0) € SV : = {||2|| = 1}, where au = (au, a,u, - - -,a,u). The set

={aeS); gt(w) = 0 or Ri(w) = 0}
is obviously a set of measure zero in S(1). Define
vlel(w): = vr(w) — vaz(w)
for each ae S(1) — E. We have then

(2.2) There exists a subset F (2 E) of measure zero in S(1) such that
vlal(w) = v(aw) (0 <|u| < R) for any ac SA) — F (c.f., [7], Proposition 2.7).

Following W. Stoll [16], we put &(r): = @2a™/(n — 1) 1)»**~! and denote
by o, the Euclidean volume element of S(»): = {||z| = r}. As was shown
in [16], pp. 162-164, it holds that
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@2.3) Vil ) = f Vo, vlaDa,(@)
or aes8()
and
No(r,s;v) = Lf N, (r, s vlale,(@) .
?Q) Jaesw

We have also the following Jensen’s formula ([16], Proposition 1.6).
(2.4) Let ¢(#0) be a meromorphic function on B(R). Then

1

lo s
O(s) Jsw glelo

1
N » S5 ) =N y S5y, —‘—I 1 r
(r,85%) (r8507) + O(r) Jsm oglelo
where 0 <s <r <R. For the case 0¢ V)| U |v;|
N, ) = NG, v7) + _J_I log [p|a, — log|e(0)] .
O(r) Jsmn

DEFINITION 2.5 (c.f., [16], p. 176). Let {v,; 1€ 4} be a directed set
of non-negative divisors on a domain G(C C®). It is said to converge
to a non-negative divisor v on G if and only if any @< G has a neigh-
borhood U such that, for suitable holomorphic functions 2% (% 0) and
h(£0) on U, v, =vsw, v=1yv, and {h?:2¢e 4} converges compactly to
on U.

The space 2%(G) of all non-negative divisors on G has a Hausdorff
topology which is compatible with this notion of convergence.
In the following sections, we need

(2.6) A subset & of 2*(B(R)) is relatively compact if and only if
Vir,v) 0<r<R,veN) are bounded above by a constant depending only
on r ([16], Theorem 2.24).

(2.7) Let H(B(r)) be the space of all holomorphic functions on B(r)
endowed with the compact convergence topology, where 0 < r < R. Then,
there exists a continuous map.

7:97(BR): = {ve 92*(B(R)); v(0) = 0} — H(B(1)
0 <7 <R) such that v = y,,, for any ve 27 (B(R)) ([16], Theorem 3.6).

(2.8) If a sequence {v,} converges to v in 2*(B(R)), then {v,[} con-
verges to |v| in the sense that |v| coincides with the set of all z such that
every neighborhood U of z intersects |v,| for all but finitely many p and,
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simultaneously, with the set of all z such that every U intersects |v,| for
infinitely many p ([16], Theorem 4.10).

Let S be an analytic set of codimension > 2 in G. By the well-known
Thullen-Remmert-Stein’s theorem (c.f., [17]), any divisor ve 2*(G — S)
can be uniquely extended to v ¢ 2*(G). Moreover, we have

2.9 If {vp,ip=12,---} in 2(G — S) converges to v on G — S,
then {9,} converges to 9 in 2*(G), where o, and 9 are the extensions of
v, and v to G respectively.

In fact, according to [11], Theorem II, {bp} is normal i.e., relatively
compact in 2*(G) because any pseudoconvex domain which includes
G — S includes necessarily the totality of G. On the other hand, the
limit of any convergent subsequence of {9,} is obviously equal to . There-
fore, {9,} itself converges to » on G.

§ 3. Definition and some properties of m-convergent sequences.

Let {f”;p=1,2,---} be a sequence of meromorphic maps of a
domain G (C C*) into Px(C).

DEFINITION 3.1. We shall call {f®} to converge meromorphically
(or simply wm-converge) on G to a meromorphic map f if and only if,
for any ae G, each f® has an admissible representation

SP@R: = fP@: fP@): -1 fPR)

on some neighborhood U of @ such that {f{”} (0 <i< N) converge com-
pactly to holomorphic functions f,(2) with the property

J@) = fu&): fu@): - fu(?)

on U, where f;(2) = 0 for some 4,
We note first the following fact.
(8.2) Consider another system of admissible representations
SO =gPgP: 9P

of each f® on U such that lim, .. g® = g, exists for any ¢ and ¢g,;, %0
for some j,. Then, there is a nowhere zero holomorphic function h on
U such that
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9:(2) = @) f,(2) (zeU)

for any i (0 <1< N).

In fact, by the definition of admissible representations, we can
describe g = A2 f® (0 <1 < N) with a nowhere zero holomorphic fune-
tion A®. Then, I(z) = lim,_..h?(2) exists evidently on U — {f;, = 0}
and, hence, on the totality of U by the maximum principle. Accord-
ing to the clagssical Hurwitz theorem, we have then either o =0 or 2 0
everywhere. On the other hand, the assumption g,, = 0 implies that
h #= 0. This leads to (3.2).

For a meromorphic map f into P,(C) we denote by I(f) the set of
all points of indetermination of f, which is given by the condition

INNU={elU: [ = fiz) = -+ = fyz) = 0}

if f has an admisgible representation f = f,: fi: ---: fy on an open sub-
set U of G. So, we have codim I(f) = 2.
Now, following H. Rutishauser ([13]), we give

DEFINITION 3.3. A sequence {f®} of meromorphic maps of G into
Py,(C) is said to be quasi-regular if any a € G has a neighborhood U with
the property that {f®’} converges compactly on U outside a thin analytic
subset S of U, i.e., for any domain D with D e U — S there is some
P, such that I(f?)ND =¢ (p =p,) and {f ‘1’)|D ;D =P, converges com-
pactly to a holomorphic map of D into P,(C). And, we shall call {/®}
to be regular at ae G if {f®} converges compactly on some neighbor-
hood of a.

Let {f®} be an m-convergent sequence of meromorphic maps defined
on G whose limit f has representations

J=Jui S v

on open sets U, satisfying the condition in Definition 3.1, where G =
. U,. By (8.2) we can define an analytic set S with

SNU,={zeU; fo(?) = -+ = fyl2) = 0}

for any 4. Obviously, {f®} converges compactly on G — S. So, we see

(3.4) An m-convergent sequence is always quasi-regular.
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Take a hyperplane
H:aow, +a'w, + -+ + 0wy =0
in Py(C) with f(G) ¢ H. Put
Foo=0afy+afut+ - +0"fx

on U, and define a divisor v¥ on G by v¥ =z, on each U, which is
well-defined by (3.2). Then, {v(f®, H)} converges to »” in the sense of
Definition 2.5.

For example, a sequence

<p>(z):iz+ 1>p r»=12...)
% 7 » )
is not m-convergent on C because {»)»} has no limit, though it is quasi-
regular and the limit is of constant.

PROPOSITION 3.5. Let {f®} converge to a meromorphic map f on G
excluding o thin analytic set S. If there exists a hyperplane H such
that (G — 8) ¢ H and {(f?,H)} converges in 27(G), then {f?} is m-
convergent.

Proof. Without loss of generality, we may assume that H = {w,= 0},
G = B(R), 0¢ S and {f‘®} converges compactly on B(R) — S to a holomor-
phic map f with f(0)¢H. By (2.7, for any r (0 <r<R), we can
choose holomorphic functions A? (% 0) and h(x 0) on B(r) such that
w(f?, H) = vpm, v =1y, for the limit v of {¥(f?, H)} and {r‘®} converges
compactly to & on B(r). Then, each f® has an admissible representation

f(p) — h(p):f§1’): PP :f}}’)

with suitable holomorphic functions f® (0<i< N) on B(r). For our
purpose, it suffices to show that {f/?} converges compactly on B(r). The
problem is of local. For any ac B(r), take neighborhoods U and V of
a such that Vc Uec B(r), (U—-V)N(ES U {k =0} = ¢ and

(3.6) sup {p(@)|; ze U — V} = sup {{o()|; 2 U}

for any holomorphic function ¢(z) on a neighborhood of U. It may be
assumed that 2® (p =1,2,...) has no zeros on U — V. We have thus
representations
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PR L
Cpe : p
and, moreover,
SJ=1r¢p: oy

with holomorphic functions ¢;: = lim,_., (f®/h®) on U — V Dbecause
lim,... f® = f on U — V. On the other hand, since f» = h®(f®[h?),
{F{"} converges compactly on U — V. Then, by the use of (3.6), we can
easily conclude that {f{»} converges compactly on the totality of U. This
completes the proof.

COROLLARY 3.7. If a sequence {f'®} is regular at every point in o
domain G except an analytic set S of codimension = 2, then {f®} is m-
convergent on the totality of G.

Proof. Put f:=Ilim,..f® on G — S and take a hyperplane H in
Py(C) with f(G — S) & H. Then, {(f®,H)} converges to v(f,H) on G
— S. By the assumption and (2.9), it converges also on the totality of
G. Proposition 3.5 gives Corollary 3.7 directly.

For later use, we give here

PROPOSITION 3.8. Let {f®} be an m-convergent sequence of meromor-
phic maps of B(R) into Py(C) with the limit f. Then, for any r
0 <r<R), each f? has an admissible representation

f<p> — fo(p) :fl(p): e :f}\(fp)

on B(r) such that {f{®} converge compactly to holomorphic functions f;
on B(r) satisfying the condition

S=rf:fiv i,
where f;(2) =0 for some 4,

Proof. By Definition 3.1, B(r) can be covered by finitely many
open sets U, such that each f® has admissible representations

TP TP S

on U, and lim,_., f = f;, exist, where we may assume f,,(0) # 0, f#(0)
# 0 for any ¢ and p. Then, {u(f?, H,)} converges to a divisor v (= v,
on each U,), where H,= {w,=0}. By (2.7), there are holomorphic
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functions 2® and » on B(r) such that v, = v(f'?, Hy), v, = v, and {r?}
converges compactly to 2 on B(r). Since h‘®/f{P are nowhere zero
holomorphic functions and fP/fP = 2/ on U,NU,, we obtain
admissible representations

f(:m — fo(p) : fl(p); . ;f]&p)
on the totality of B(r) with holomorphic functions
h(p) . h(p)
f(()?)fg)’ "‘rf%))' - fé}”
on each U,. On the other hand, {A®/f®} converges compactly to h/f,
on U, — {f,, =0} and, hence, on the totality of U, to a holomorphic
function %/f,, by the maximum principle. Therefore, {f{?} (0 <i< N)

converges on B(r) to holomorphic functions f;: = (&/f)fiw (0 <1< N),
which satisfy the condition f = f,: fi: ---: fy. This completes the proof.

« — h(p) Lp—
@ = po =

S

-§4. An improvement of H. Rutishauser’s result.
Let us consider a family % of meromorphic maps of a domain G in
C* into Pn(C).

DEFINITION 4.1. We shall call # to be meromorphically normal (or
simply m-normal) if any sequence in & has an m-convergent subsequence
and to be normal at a (e G) if any sequence in & has a subsequence
which converges compactly on some neighborhood of a, maybe, depending
on each sequence.

The definition of m-normalcy coincides with the definition given in
§1. Because, we can assert

(4.2) Let {f®} be a sequence of meromorphic maps of B(R) into
Py(C). Suppose that each f® has a (not necessarily admissible) repre-
sentation

I =J@ P TP

such that {f{®} converge compactly to holomorphic functions f; on B(R),
where f,, = 0 for some i,. Then, {f‘} has an m-convergent subsequence.

To see this, take a hyperplane

H:aw, + a'w, + -+ + a’wy =0
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with f(B(R)) ¢ H, where f: = fy: ---: fy. Since {f®} is obviously quasi-
regular, by Proposition 3.5 we have only to show that {v(f®,H)} has a
convergent subsequence. Consider holomorphic functions

F®: = afp + @f + oo+ 0,

Then, since {vym} converges, by (2.6) V(r,vrw») are uniformly bounded
for any fixed 7(0 < < R). On the other hand, v(f®,H) < vy» on B(R)
and so

Vir,v(f®, ) < V0, vpm)

(0 <r <R). Therefore, V(r,v(f®,H)) are also uniformly bounded. By
(2.6), we obtain the desired conclusion.

We give now the following improvement of H. Rutishauser’s result.

THEOREM 4.3. Let & be a family of meromorphic maps of B(R)
mto Py(C) and H; (0 <7< 2N) be 2N + 1 hyperplanes in Py(C) located
i general position such that for any fe F f(BR)) ¢ H;. If V(r,u(f,H,)
(0 <7< 2N) are uniformly bounded for any fixed (0 <r < R), then F
18 m-normal.

Proof. Take an arbitrary sequence {f*’} in &#. By the assumption
and (2.6), choosing a subsequence and changing indices if necessary, we
may assume that {v(f®, H,)} converges to a non-negative divisor v; on
B(R) (0 <7<2N). Then, each {{v(f?,H;)|;p=1,2, .-} converges to
lv;] as a sequence of closed subsets of B(R). We put S: = (U%,|v;|, which
is a thin analytic subset of B(R). Let D be an arbitrary domain with
D e B(R) — 8. Since I(f®) C|u(f®,H,)| for any p and every ac B(R)
— S has a neighborhood U such that U N[uw(f®,H;)| = ¢ for all but
finitely many p, taking a sufficientlly large p,, we see that every f® is
holomorphic on D and

SPD) < Py(O) — U, H;

for any p = p,. Then, {f®|D} has a compactly convergent subsequence as
a sequence of holomorphic maps of D into P,(C) because of J. Dufresnoy’s
theorem (c.f., [3], Critére fondamental [6] and [9], Corollary 3). There-
fore, by the usual diagonal argument, we can find a subsequence of {f®}
which converges on B(R) — S in the sense of Definition 3.3. From the
beginning, {f*’} itself may be assumed to converge to a holomorphic
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map f of B(R) — S into P,(C). We can take here some j, with f(B(R)
—8) ¢ H;, because H, (0 < j < 2N) are located in general position. On
the other hand, {v(f®,H,)} is convergent in 2*(B(R)). Thus, the as-
sumptions of Proposition 3.5 are satisfied. We can conclude that {f®}
is m-convergent on B(R). The proof is complete.

COROLLARY 4.4. In the same situation as in Theorem 4.3, if, for
any complex line ¢ in B(R) through the origin, either ¢ C f~(H,) or
the number of elements in ¢ 0 f~'(H;) counted with multiplicities are
bounded above by a constant q; not depending on each ¢ and each feF,
then F is m-normal.

Proof. For any fixed fe %, take an arbitrary a e S(1) such that
¢: = {ou;|u| <R} & |u(f,H,). By the assumption, we have

V(r,o(f, HplaD < g,
(0<7<2N,0<r<R). By (2.3) we conclude
V(r,u(f,H)) < q;Wrn—2,
This gives Corollary 4.4 as a result of Theorem 4.3.

Remark. H. Rutishauser proved that, under the assumption of
Theorem 4.3 or of Corollary 4.4, any sequence in &% has a quasi-regular
subsequence in the case n =2 and N =1 (c.f., [13], Satz 18).

COROLLARY 4.5. For & and H; with the property as in Theorem 4.3
and an arbitrarily fixed s(0 <s < R), if N(r,s;v(f,H,)) are bounded by
o constant depending only on r(s <r < R), then F is m-normal.

Proof. This is a consequence of the inequalities

N(P’S;V(f,Hj)) = :—Vﬁt—’uj—i{%}&)—)—dt

= clp, NV(r,v(f, Hy) ,
where p(r < p < R) is arbitrarily fixed and

clo,7): :rw;;iTo 0.

§ 5. Characteristic functions for meromorphic maps into P,(C).

We shall give first the definition and elementary properties of the
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characteristic functions of meromorphic maps of B(R) into Py(C) along
the lines of H. Cartan’s work [1]. For brevity, we assume all meromor-
phic maps treated in the following sections to be holomorphic at the
origin unless otherwise stated.

Let f be a meromorphic map of B(R) into P,(C) with an admissible
representation f = f,: fi: ---: fy on B(R). We put

u(2) : = max log | f;(?)] .
0SiEN
DEFINITION 5.1. The characteristic function is defined by

1 _
T(r, f): = WLM W@)a, — u(0) .

Remark. (i) T(r,f) is monotone increasing and convex as a function
of logr, because u(z) is plurisubharmonic.
(ii) In [14], W. Stoll called the function

= .1 1
T = W 8(r) log ./ o, D(s) fsu) log .7llos

the characteristic function of f, where 0 < s<r <R and ||f|} = |f,} +
[fif + --+ + |fx} for an admissible representation f = fy: fi: ---: fy. As
is easily seen,

TG, f) — T £ K

for some constant K.

(5.2) T(r,f) is uniquely determined independently of a choice of
admissible representations of f.

In fact, this can be proved in the same manner as in [1], p. 8 by
the use of (2.4).

Let E be the set of all points @ in S(1) such that {ua;|u| < R} C I(f),
which is of measure zero in S(1). For any a < SA) — E consider a mero-
morphic map ft(w): = flow) of {u;|u] < R}(C C) into Py(C). Since

T(r, f1) = zin j ware)ds — u(0) ,

for any ae S(1) — E, we have by Lemma 1.1 and Lemma 1.2 in [16]
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(5.3) T, ) = T(r, fioa) .

1
o) .[aesm

Take a non-singular matrix ((¢%; 0 <¢,7 < N)) and consider a mero-

morphic map g = g,: ¢,: ---: gy defined by holomorphic functions g, =
¥,aif;. Then,
(5.4) [T, f) — T(r,9| = K

for some constant K depending only on af (c.f., [1], pp. 7~ 8).
DEFINITION 5.5. Let ¢ (% 0) be a meromorphic function on B(R).
Define

m(r,p): = log* ()| a,(2) ,

el
o) Jsm
where log* 2 = max (log «,0) for any « = 0.

(5.6) If 0e)|U|v| for @ meromorphic function ¢(z) on B(R), then

T, ¢) = 1(r, %) = N, oE) + mir, ¢) — log* [¢(0)] .

This is an immediate consequence of Jensen’s formula (2.4) as in
1], p. 9.

DEFINITION 5.7. Let f = f,: fi: ---:fx be an admissible represen-
tation of a meromorphic map f of B(R) into P,(C). Take a hyperplane

H:ao'w, + a'w, + -+ + 0wy =0

with f(0) ¢ H, where we assume > .Y |a!f = 1. Putting F: = a'f, + a'f;
+ -+« + a”fy, we define

U(f,H): =log|F(0)] — max log |f3(0)] .
Take another hyperplane
H :bw, + bw, + +-+ + d"wy =0
with f(B(R)) ¢ H’ and put F’: = b°f, + --- + b¥fy. We define

F
F

(5.8) Suppose that f(0)e HU H'. Then,
T(r,o(f; H,H)) < T(r, /) = ¥(f,H) + K

olf; H,H): =
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where K is a constant depending only on H and H’.

This will be shown by giving the precise estimation of constant terms
of inequalities obtained in [1], p. 10. By (5.4) it may be assumed that
H={w,=0} and H = {w, = 0}. We can write ¢: = o(f; H,H') = g,/ 9,
with holomorphic functions g; such that codim{g, =g, =0} =2 and
u,(0) = 0 for u,(2):= max,_,, log|g,(2)|. Then, putting & = f,/g9, (= 11/ 9,
we have

1
O(r) Jso
= T(r,¢) + u,(0) + log |(0)| + N(r,v,) — u(0)
= T, ¢) + log|h(0)] — u(0) .

On the other hand,

T, f) = )(ul(Z) + log |1(2) Do, (2) — u(0)

log [1(0)| = log |/,(0)| — log|9,(0)| = log | /,(0)]
because log|g,(0)| < u,(0) = 0. This leads to (5.8).
(5.9) Let H be a hyperplane with f(0)g H. Then,
N@,o(f, ) = T(, /) = ¥(,H) + K,
where K is a constant depending only on H.
To see this, refer to [1], p. 11.

Asg is easily seen, a family % of holomorphic functions on the unit
disc is normal if m(r,f) (fe%) are uniformly bounded. We ghall
generalize this to the case of meromorphic maps into P,(C).

THEOREM 5.10. Let & be a family of meromorphic maps of B(R)
to Py(C) each of which is holomorphic at the origin. The characteristic
functions T(r, f) (fe F,0 <r < R) are bounded by a constant depending
only on v if and only if F is m-normal and normal at the origin.

Proof. Suppose that
I, /) = K, (S eF)

for a constant K, (0 <r < R). Take an arbitrary sequence {/?} in F.
Replacing it by a suitable subsequence, we may assume that lim,_., /' (0)
= v exists in Py(C). Choose 2N + 1 hyperplanes H; (0 <j=<2N) in
general position such that ve( 2, H; and consider the quantities ¥'(f*',H ;)
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as in Definition 5.7 for arbitrarily fixed homogeneous coordinates. Then,
Y=, H):p=1,2,.--} are all convergent and so we can find a con-
stant K’ (> 0) such that

__]p‘(f(p),Hj) é K’
for any p and j. Therefore, by (5.9)
N@,u(f»,H) <K, + K’ + K ,

where K is a constant not depending on each p. Now apply Corollary
4.5 to the family {f”}. We can choose a subsequence {f®®} of {f®}
which is m-convergent on B(R). To show that f is normal at the origin,
we have only to prove that there exists a neighborhood U of the origin,
such that U N|[u(f*,H)| = ¢ for all but finitely many k. In fact, in
this case, choosing homogeneous coordinates w,: w,: ---: wy with H, =
{w, = 0}, we can take admissible representations

f(l’lc) =1 . S0{1%) . Soépk): el SD%],C)

with holomorphic functions ¢ on U such that lim,_. ¢{"™ exist, which
leads to the desired conclusion. Assume the contrary, i.e., for any
0 > 0 let infinitely many p, satisfy the condition

B@® N |u(f@,H)| + ¢ .
Then, for such p;, by Lemma 1.10 in [16]
Vi, v(f %, H)) = W(t — o)y?,

where 6 < ¢t < R. Therefore, we have

% " V(t9 ”(f(pk)aH )) T (t — 3)2"'—2
NG, w0, By) 2 [ T gy 2 [T 02 g

On the other hand,

r 2n—2
lim [ & — 8"
500 J s r-1

dt = o .

This shows that, for a fixed », N(r,v(f??, H))) becomes larger than any
given number if a sufficiently large k is taken, which is a contradiction.

Conversely, suppose that # is m-normal and normal at the origin
and, moreover, there exists some 7(0 < r < R) such that, for each p, at
least one fe %, say f?, satisfies the condition
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I(r,f®) zp.

After a suitable change of indices, it may be assumed that {/®’} converges
meromorphically on B(R) to a meromorphic map f and converges com-
pactly on B(9) for some 6 > 0. In this situation, using Proposition 3.8
we can choose admissible representations

SO = J S

on B(»’) such that lim,_. f{¥ = f, exists on B(*') and f = fo: fi: -+ : fx
and, moreover, {f, = fi = - = fy = 0} N B@) = ¢, where ' (r <7 < R)
is arbitrarily fixed. Put

u,(2) : = max log | f{"(2)]

and
u(z): = max log | f,(2)] .
0=i=N
Obviously, {u,(2)} converges compactly to w(z) on B(r) — {u(z) = — oo}
and, particularly, on the totality of B(6). There is a positive constant
M such that
up(0) = —M
for any p. On the other hand, since S: = {u(z) = — oo} is a thin analytic

subset of B(r’), we can find a compact set C in B(#') — S such that
sup {v(2): z € B(r)} < sup {v(2): 2z C}

for any plurisubharmonic function v(2) on B(+’). This concludes that
{u,(); 2 B(r), p =1,2,---} are bounded above by a constant M’ uni-
formly. In conclusion, we have

T(r, f?) = “@% Is(r) up(2)o,(2) — u,(0)
=M+ M,

which is a contradiction. The proof of Theorem 5.10 is complete.

§ 6. The fundamental inequality.

Let H, 1<j<q be q(=N + 2) hyperplanes in general position
and f a meromorphic map of B(R) into P,(C) satisfying the condition
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SO e Ui, H;, We may take homogeneous coordinates w,: w;: ---:wy
on Py(C) such that H,,, ={w, =0} O<i<N). Let f=/fo:fi: - :fn
be an admissible representation f on B(R), where f;(0) =0 (0 <7< N).
We expand each f; as

Ji®) = 2 im0 P(2)
on B(R), where P™(z) is either identically zero or homogeneous polynomial
of degree m. Consider the function
Pg! P(l)’ ""ng

1 1 .« e 1
WI(Z): — POPO 1 Po Por Pu » 4N
1Y - SCICITRY 2 " I

which is a homogeneous polynomial of degree N(N + 1)/2 and uniquely
determined independently of a choice of admissible representations.

DEFINITION 6.1. We define

w. 1
W¥: = B Jso log | W (2)] 0,() .

Remark. (i) The quantity W% is determined only by the values
of < N-th derived functions of f; at the origin. For the particular case
n =1, W;Q1) is nothing but the values of the Wronskian of a system of
holomorphic functions f,,fi,  --,fy at the origin divided by a constant

multiple of f,(0)£1(0) - - - fx(0).
(ii) Put fi(w) = f(au) for almost all a € S(1). As is easily seen,

1
% * .
Wi = (1) faes(l) Wite(@

Now, we give the following fundamental inequality.

THEOREM 6.2. In the above situation, it holds that, for any r
0 <r<R),

(@ — N — DT, ) < 25 Na(r,o(f, Hp) + S,

where, for any given ¢(>0) and p (r <p<R), S(r) is evaluated as
follows;
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S(r) £ K, + K, log" p + K, log* 1 + K;log* 1
o—1 r

+ K4 Zg:l 10g+ lw(f’HJ)l + Z?=N+2 W(f,H])
+ eTp, f) — W

with constants K, depending only on ¢, H;(1 £j < @) and with constants
K(1 < k<4 depending only on N.

We consider first Theorem 6.2 for the case n =1. In [1], it was
proved that the quantity S(») in Theorem 6.2 is evaluated as

-1 /
©.3) S@) < L g T mlr, 4 (1)) + Ly
‘ © &

with some constants L, and L,, where ¢;: = o(f; H;, H,) (c.f. Definition
5.7) and, as its consequence,

S@) = 0 og* T(r, )) + O (1og+ 1 )
R—7r
outside some sufficiently small set of » in the case # =1 and R < co.
For the proof of Theorem 6.2, we have to obtain more precise estimation
of S(r). By observing H. Cartan’s proof of (6.3) ([1], pp. 12-15) carefully,
it is not difficult to ascertain that the constant L, of (6.3) can be chosen

independently of each r, f/ and, moreover, the constant L, can be replaced
by

(6-4) M + Z§=N+2 w(f) Hj) - W? 4

where M is a constant depending only on H; 1 <j=<¢q). To estimate
the other terms, we need

LEMMA 6.5. Let o(z) be a meromorphic function on {z| < R}(C C)
with ¢(0) # 0,00, Forany r,p (0 <r <p<R) and a positive integer ¢,
there are some constants K. (0 < ¢ < 5) depending only on £ such that

1
o—T
+ Kilog* |log|e(0)]] + Kzlog* T(p, o) .

+ K log* -
r

m(r, ;;:l( 9;((:)) )) < K, + K,log* p + K} log*

Proof. We can prove Lemma 6.5 along the same lines of the proof of
Lemma 2.3 in [8] by adding some considerations. We describe here only
the outline of the proof. At first, suppose that ¢(z) # 0,0 on {z|= 7}
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U{z] = p}. We denote by a, 1 < ¢ < n,) all zeros of ¢(2) in {{z| < p} and
by b, A <v < n.) all poles of ¢(2) in {{z| < p}. By differentiating the
well-known Poisson-Jensen’s formula (e.g., [8], p. 1) £ times, we have

- ( e ) =4 rt log |g(pet)| —— 20"
0

A2\ o2) 2z (et =
— — ! ol 1 - af’
(g 1) : Z,,:l( (al‘ — z)e (‘02 —_ d#z)‘?)
— 1> 1 - Bﬁ
+ (¢ D! Z,,=1 ( (bu — 2) (pz — B”Z)l ) s

where 0 <7 =12|<p. Put d():=min,,{z—a,,|z — b} and n(p): =

7, + N.. As in the proof of Lemma 2.3 in [8], by the inequalities
a, ¢ << 1 )‘ 1 < 1
—az| " \p—7r/)" o, —zf T 8r*

and

1 21 i . 1
E;Jo |log [p(re*®)|| df = m(r, ) + m(r, ;)
< 2T(r, ) + [log |e(0) ]|

ete., we get

dz'\ o) /|~ (o — P!
# MG )+ )

Since log* z,a, - - - ¢, < > 7, log* &; and log* G, 2,) < logn + 37, log* @,
for any z, = 0, we obtain by the use of Lemma 2.2 in [8]

e ( gD’(Z) )l < 20 {2T(p, ) + |log |(0)|]}

dl—-l (go/(x) )) _ i 2::1 + dl—l ( SDl ) 06 dﬁ
m(fr, dz"' \ o(2) T 2x o o8 dz"'\ ¢ re)
(6.6) < K* 4 log* p + ¢log*r + (2¢ + 1) log* 1 + ¢log* 1
— r

+ log* [log [p(0)|] 4 log* T(p, ¢) + (24 + 1) log* n(p)

for an absolute constant K*. We note here that (6.6) remains valid with-
out the assumption ¢(z) # 0,00 on {{z| = r} U {|z] = p}, because the both
sides of (6.6) are continuous functions of » and upper semi-continuous
functions of p.
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Now, for arbitrarily given » and p (0 <r <p<R), replace p in
(6.6) by o't =(p + /2. As in [8], p. 37,

e < — £ 72T, 9) + llogleO)

and hence

2

o—r

+ log* |log [p(0)|| + K

log* n(p) < log* p + log* + log* T(p, @)

for some constant K. By substituting this into (6.6) and using the mono-
tone property of functions log* p and T(p,¢), we can easily obtain the
desired conclusion.

Proof of Theorem 6.2. By (6.3),(6.4) and Lemma 6.5, we can write

1

1 + K3 log* —
r

o—7
+ Kil CJI'=2 10g+ |10g l§01(0)|| + Z?=N+2 Z[f(f, H])
+ Ky Y4, log* T(p,0,) — W

S(r) = Ki' + K{' log* p + K log*
(6.7)

with some constants K” (0 < £ <5). On the other hand,

log* [log |¢,(0)|| < log* |¥(f, H)) — ¥(f, H)|
< log"|¥(f,H)| + log* [¥(f, H)| + log 2
by Definition 5.7 and
log* T(p, ¢y) < log* T(p, /) + log* [¥(f,H)| + K
for some constant K by (5.8). We can rewrite (6.7) as

1
o— 7
+ K, 2 log |[U(f, H) + 2w U(F5 Hy)
+ K;log* T(p, f) — W¥

Str) < K, + K, log* p + K, log* + K, log* -
r

with suitable constants K, (0 < £ <£5). Then, replacing the above K, by
a new constant, maybe depending on ¢, we can conclude the desired
fundamental inequality, because there is a positive constant K(e) such
that K,log* z < ex 4+ K(¢) for any z = 0.

Now, we proceed to the proof of Theorem 6.2 for the general case.
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Consider the meromorphic map (f){(w): = f(zu) for any =z e S(1) except
a set of measure zero. Using the above shown result for the case n =

1, we have
(@ — N —DT(r, /) < 224 Nylr,o(f% Hp) + K,
L 4 Koogr L

p—7 r

+ K4 Z?=1 10g+ 'qf(f’ H])I + Z?=N+Z w(f, Hj)

+ eT(p, 1) — Wy
for any 7, p with 0 <r <p<R. We calculate the mean values of S(1)
of both sides of (6.8). By (5.8),(2.3) and Remark (ii) to Definition 6.1,
we conclude Theorem 6.2.

+ K, log* p + K, log*

Remark. In Theorem 6.2, if R = co and f is rational, i.e., f has
a representation f = f,:fi:---: fy with polynomials f;, then we can
show easily S(r) = O(1).

§7. A defect relation for meromorphic maps into P,(C).

Let f be a meromorphic map of B(R) into P,(C) which is assumed
to be holomorphic at the origin and H a hyperplane with f(B(R)) ¢ H.

DEFINITION 7.1. We define the modified deficient function as

. 1 Nm(/r’ V(f) H))
o, H):=1—1lim"m 22227
(/, H) TG )

where 0 <m £ co. And, we put o(f, H): = é.(f, H).

’

As is easily seen, we have 0 < o(f,H) <1, if lim,_z T(r, ) = oo.

DEFINITION 7.2. We shall call f to be transcendental if and only if

limM=oo in case of R = o
e, lOog T

and

TCr, f) — o  in case of R < oo
700 log (1/(R - 7'))

(7.3) For a meromorphic map f of C" into Py(C), f is not trans-
cendental if and only if f is rational.
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This is a result of W. Stoll ({14], Satz 24.1). Because, according to
Remark (ii) to Definition 5.1 the transcendency of f is equal to what
was defined by W. Stoll in [14].

Now, we give a defect relation for a meromorphic map.

THEOREM 7.4. Let f satisfy the condition W% # —oco and H; 1< j<q)
be arbitrarily given hyperplanes in the Py(C) located in general position
such that f(0)e\JiooH;. If R =00 or R< oo and f is transcendental,
then

Zg=16N(f’Hj) <N+1.
Remark. Since 6(f, H,) < d5(f, H;), we have

250, H) SN +1

as a consequence of Theorem 7.4. This is a special case of a defect
relation given by W. Stoll in [14], §23.

Proof of Theorem T.4. We shall prove Theorem 7.4 in the case
R < oo only, because the analogous argument can be applied for the
case R = co too with some simple modifications. Since lim,., T(r, f) = o
by the assumption and T'(r, f) is a monotone increasing continuous func-
tion of r, we have by Lemma 2.4 in [8]

R—17»r
z(¢4-;ﬁzg75,f);;2Twuf)

outside a set F, of r with

-[ dr < oo
B R—17r

Therefore, we can choose some r¢ E, (0 <r < R) which is arbitrarily
close to R. Substitute p = r + (R — ) /eT(r, /)] into the fundamental
inequality in Theorem 6.2. Then, for any ¢ > 0,

R —17r

.+ eTlr, 1)
eT(r, f)

S(r) £ L, + L, log* (r +
R—7r

) + L, log
+mmy%+wmﬂ

by the assumption W% # —oco, where S(r) is the quantity given in
Theorem 6.2 and L, (0 < x < 3) are constants not depending on each .
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It can be rewritten

1
-7

+ 2eT(r, )

S(r) < Ly + Lilog* T(r, ) + Ljlog 7

with new constants L. (0 < £ < 2) if » is sufficiently close to R. Thus,
we;have

because f is transcendental. Consequently,

q Y =1 — S7gq Ny(r,v(f, H;)
Y5000/ H)) = lim (4 — X TCr, 1) )
S()

<N+1+lim
T(r, f)

=R

<N+1+4 2.

Since ¢ is arbitrary, we conclude the desired defect relation.

We examine here the meaning of the condition W# = —oco in the
case R = co. Consider first the case n = 1. In this case, W§ = —o
means that the Wronskian W(f,, f,, ---,fy) of a system of holomorphic
functions f,, f1, - - -, fx vanishes at the origin for an admissible represen-
tation f = fo: fi:---:fy on C* If W(fy fi, > fn) =0, namely, the
image of f are not included in any hyperplane in P,(C), then we can
choose global coordinates on C* such that f satisfies all assumptions of
Theorem 7.4. Let us consider next the case n = 2. Since log|W(2)| is
a plurisubharmonic function of z,

1
M(r): = 1 ,
(7) B Jeesen og | W,(2)] 0,(2)
is a monotone increasing function of ». Therefore, W¥ = M(1) = — o

implies that M(r) = —oco for any r > 0 and hence W,(2) = 0. And, this
holds if and only if W((fp)t (fi - - -, (f¥)P) vanishes at the origin for
any z¢ S(1), where we put (f)i(w): = fi(2uw) for an admissible represen-
tation f= f,: fi:---:fy. If there exists at least one complex line ¢
such that ¢ ¢ f~Y(H) for any hyperplane H in Py(C), then the assump-
tions of Theorem 7.4 are all satisfied after a suitable change of global
coordinates on C®. In the particular case N = 1, this means that f is
not of constant.
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COROLLARY 7.5 (c.f., [1], p. 19). Let f be a meromorphic map of
C™ into Py(C) such that, for some complex line ¢ in C*, f is holomorphic
at a point in £ and f(4) cannot be included in any hyperplane in Py(C).
Suppose that there exist ¢ (=N + 2) hyperplanes H; (1 < j < q) in general
position such that, for some positive integers m; 1 < j < q), o(f, H)) = m;
everywhere on |v(f,H;)| for any j. Then

g, 1 >a=-N-1
m; N

Proof. As is stated above, after a suitable change of global co-
ordidates we may assume that f(0)e (i, H; and W¥ = —co. We have

Ny(r,u(f, H)) < N-N\(r,v(f, Hy) < %N(T, Y 0)

J

< N aa, 5+
m;

by (56.9) for some constant M not depending on 7 and so

w(nHyz1- N

m;
This gives Corollary 7.5 as a consequence of Theorern 7.4.
We can give also another application of Theorem 7.4.

COROLLARY 7.6. For a meromorphic map [ with the same property
as in Corollary 1.5, suppose that there exist N + 2 hyperplanes H; 1 < j
< N + 2) in general position such that each f~'(H,) is an algebraic set
in C". Then [ is necessarily rational.

Proof. Assume that f is transcendental. As is well-known, for a
divisor v on C™|y| is algebraic if and only if there exists some constant
K not depending on each r such that

.M Vi) g

7ﬂZn—Z

(c.f., [18], Satz 23, for the case n = 2 and [15], Theorem 7.15, for the
general case). We can easily conclude from the assumption that

lim M ULH)) ) 1<i<N+2).
7o log 7

https://doi.org/10.1017/50027763000024570 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024570

46 HIROTAKA FUJIMOTO

Therefore,

Tim Na(r, »(f, Hy) < Nlm N(r,v(f,H)) logr
roe T(r, /) e log r T(r.f)

which means 6(f,H;) =1 for any j 1 <7< N + 2). We have thus a
contradiction

’

N+1=23326(f,H) =N+ 2.
This completes the proof.

Remark. Theorem 7.6 was firstly shown by P. Thullen ([17]) for
the case N = 1.

§8. A sufficient condition for m-normal families.

Let # be a family of meromorphic maps of B(R) into P,(C) each
of which is assumed to be holomorphic at the origin. As a consequence
of Theorem 6.2, we can give the following sufficient condition for &# to
be m-normal.

THEOREM 8.1. Suppose that there exist q (=N + 2) hyperplones
H, A1 £j<q in Py(C) satisfying the condition that

(i) the values f(0) (f € F) are contained in a fired compact subset
of Py(C) — Ui Hy,

(ii) Wi(f e #) are bounded below by a fixred constant and

(i) u(f, H;) = m; everywhere on |v(f, H;)| for some fixed positive in-
tegers m; (1 £ 7 < q) with

g 1 cg=-N-1
.7

m, N '
Then, F is m-normal and normal at the origin.
Proof. As in the proof of Corollary 7.5,

Nl o(f, H) < mﬁm, N+ K,
J

for some constant K;(1 < j < q) because |¥(f, H)|(fe #) are uniformly
bounded by the assumption (i), where 0 < » < R. Therefore, we have

((q N—1 =39, ;nN—)T(r,f) < S0 + 3K,

J
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where S(r) is the quantity given in Theorem 6.2. Put é: =¢q—- N —1 —
>4, (N/my), which is positive by the assumption. Taking some ¢ with
0 < 3¢ < 6 and using the assumptions (i) and (ii), we can estimate S(r) as

8.2) S(r) £ L, + L, log* o+ L, log* ‘0_1—’)“ + L, log* % + ST(P,f)

for some constants L, (0 < x < 3). By virtue of Theorem 5.10, we have
only to show that T(r,f) (fe %) are bounded above by a constant not
depending on each fe%#. Without loss of generality, we may assume
that T(r,f) = 1 for any » and fe%#. Apply here Lemma 2.4 (ii) in [8].
For any given r (0 <7 < R), taking some s with R — (R —7)/e®) <s <R
arbitrarily, we can find a real number » with » < < s such that

, R — v
T(r + —ﬁTW’f),f) < 2T(", 1) .

Replace » and p in (8.2) by # and p =19 + (R — #)/eT(+, f)) respec-
tively. We have then

1 1
Lilogt =
R—W+ 30g7J

+ Lilog* T(r', f) + 2:T(7, f)
for new constants L. (0 < £ < 4). On the other hand, it holds that

1 , log‘f—17§10g+—1—
— 8 T r

S(#) < L + Ljlog* v + Ljlog*

log* v < log* R, log™* 7 1

< log*

; =

and
log* T(r', f) < T(, ) + K(e)
for some constant K(¢) depending only on «. Therefore,
oT(, f) = Ly + 3eT(r, f)

for a new constant L{ not depending on each fe%. This shows that
T, ) (L T, f)) are bounded above by a constant (1/(d — 3¢))L; not
depending on fe%#. The proof is complete.

Remark. As is easily shown by the above proof, the assumptions
(i) and (ii) of Theorem 8.1 can be replaced by the condition that

K4 Zg=1 10g+ 'w(f’ Hj)l + Z?=N+2 w(f’ Hj) - W}‘
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are uniformly bounded, where K, is a constant given in Theorem 6.2.
For the case N = 1, we have more precise conclusion (c.f., [18], p. 21).

THEOREM 8.3. Let & be a family of meromorphic functions on B(R)
each of which gives a holomorphic map into P,(C). Suppose that there
exist mutually distinct values a,,a,, - -+, 0, (¢ = 3) such that, for any ¢ € &,
o(2) £ a;,0(2) — a; has no zeros of multiplicities <m; (1 < j < q) and

1 1

____+____|_...+_l_<q_2,
m, m, m,

Then, F is a normal family.

Proof. For our purpose, we may assume that » = 1. In fact, ac-
cording to T. Nishino’s result ([11]), a family of meromorphic functions
is normal if and only if it is normal with respect to each variable sep-

arately. On the other hand, if a holomorphic function ¢(z,, ---,2,) has
a zero of multiplicity m at a = (ay,a,, - - -, a,), then ¢(2,,a,,---,a,) has a
zero of multiplicity >m at z, = a, as a holomorphic function of z, when-
ever o2, @, -+, 0, % 0.

We shall prove Theorem 8.3 for the case » = 1 by the analogous
argument as in the proof of Theorem 2 in [2]. The domain B(R) may
be assumed to be 4: = B(1) = {|#| < 1}. For suitable homogeneous co-
ordinates w,: w, on P,(C), we can write aj: a} (1 <7 < ¢), wherea, =1:0,
a,=0:1 and [aif +{aif=1B =7 < ¢q. In this case, if ¢(0) # 0, oo,
the quantity W} is given by log|¢’(0)/¢(0)| and we have

U(p, a;) = loglaj — ajp(0)| — log* [p(0)],

particularly, ¥(p,a,) = —log*|p(0)] and ¥(p,a,) = log|e(0)] — log* |p(0)],
where ¥(p,a;) = ¥(p,H,) for H; = {ajw, — ajw, =0} (1 <j< q@. On the
other hand, as in [2], p. 236,

log |u| + A log* log*

l’glog+|u1+AlogA
u

if A > e. Therefore, we obtain
8.9 K, Z(J1‘=1 log* |¥ (e, aj)l + Z(JI'=3 U(p,a;) < M, + M, |log [0(0)]|

for some constants M, and M,, where K, is a constant given in Theorem
6.2 which may be assumed to be larger than e. For our purpose it
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suffices to show that % is normal at any 2z,e4. There is no loss of
generality in assuming that z, is the origin. Take an arbitrary sequence
{p”} in #. Firstly, we assume that there exists a positive constant
M* such that, for some sequence {«;} in 4 and a subsequence {p*®} of
e, lim, ., a;, = 0, 0P(a) # 0(=1:0), o0 (=0:1) and

(8.5) log (o)

09" (ary) + M, |log o™ (a)|| = M,

where M, is a constant given in (8.4). As in [2], put ¢,(2): =
P (){(z — ap)/(@z — 1)} and consider a family &’: = {¢;}. Then, by
Remark to Theorem 8.1 and (8.5), &’ is normal at the origin. So, by
virtue of Lemma 1’ in [2], we can conclude that {p”®(2)} has a subse-
quence which converges compactly on a neighborhood of the origin.

Now, let us consider the case that (8.5) does not hold. Then, we
can find some 7, (> 0) and M(r,) (> 0) such that

8.6 @U@ <y,
(8.6) T omp = ()

on {z:|2| =< r)}, where ¢ is an arbitrarily chosen integer with ¢ = M,. In
fact, by the assumption, there is some r, > 0 such that

1og[ 70|+ elloglp™ (@) = L
0P (2)

on {z:|z| £ ro} for all but finitely many ¢*¥. Then, since

1 + |§0(p")(2) Iu
lgo(pk)’(z) I lgo(pk)(z) l/}—l

PPP(2)
PP’ (2)
<log2,

llog ' + ¢|log|p?¥(2)|| — log

we have

L+[p7@F 59 jog2(>0).
,go(pk)'(z)l ,¢(pk)(z) ,l-—l -
which gives (8.6). The inequality (8.6) means that {(¢"*¥)?} satisfies the
condition in Theorem 6.3 in [8]. Consequently, {(¢**)?} is normal. Then,
{p®} itself is obviously normal. We have thus Theorem 8.3.

We shall prove lastly a generalized Schottky-Landau type Theorem.

THEOREM 8.7. Let H;(1<j < q) be q(= N + 2) hyperplanes in gen-
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eral position. Suppose that there is a meromorphic map f of B(R) into
Py(C) such that f(0) e\ Ui, H;, W§ #= —oco and w(f,H;)) = m; on |u(f, H,)|

for some positive integers m; with Zgﬂﬁl_ < _‘I_—_x‘;}
J

Then,
R < R,

for a fixed constant R, depending only on H;, m; (1 < j < q), the value f(0)
and the quantity W¥.

Proof. Assume the contrary. Then, we can find a sequence of
positive numbers

R<R, < -+ <R,<-:--

with lim,_.. R, = co such that for each p there exists a meromorphic
maps f® of B(R,) into Py(C) with f®(0) = v, and W¥,, = K satisfying
the condition that v(f®,H,) = m; on |v(f*®, H,)|, where a point v, P,(C)
— Ui H; and a constant K are fixed. By Theorem 8.1, a sequence
{f®:p = p,} is an m-normal family of meromorphic maps of B(R,) into
Py(C) and, moreover, normal at the origin. By the diagonal argument,
we can find a subsequence {f**} which converges compactly on a neigh-
borhood of the origin and converges meromorphically on B(R,) for any
p. The limit f is a meromorphic map of C” into P,(C) which is
holomorphic at the origin and satisfies the condition that f(0) = w,,
W% =K and v(f, H;) =2 m; on [v(f, H;)|, because lim,_.. v(f?, H;) =v(f, H)).
This contradicts Corollary 7.5. We have Theorem 8.7.
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