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THE ASYMPTOTIC BEHAVIOUR OF EQUIDISTANT
PERMUTATION ARRAYS

S. A. VANSTONE

1. Introduction. An equidistant permutation array (EPA) A(r, X; v) is a
v X rarray defined on a set V of » symbols such that every row is a permutation
of V' and any two distinct rows have precisely A common column entries. Define
R(r, \) to be the largest value of v for which there exists an 4 (r, \; v). Deza
[2] has shown that

R, \) S max{n*+n+1,\+ 2}

where n = r — \. Bolton [1] has shown that

) R\ =2+ [—Z——J
5]

In this paper, we show that equality holds in (*) for N > [#/3](n? -+ #). In

order to do this we require several more definitions.

An (7, N)-design D is a collection B of subsets (called blocks) of a finite set V'
of elements (called warieties) such that any two distinct elements of 17 are
contained in precisely N common blocks and every variety is contained in
exactly r blocks of D. An (r, N)-design D is said to be resolvable or contain «
resolution R if the blocks of D can be partitioned into classes (called resolution
classes) such that every variety of D is contained in precisely one block of each
resolution class. We say that an (r, N\)-design D is orthogonally resolvable
(denoted OD (7, N\)) if D contains resolutions R and R’ and Ry, Rs, . .., R, and
Ry, Ry, ..., R, are the resolution classes of R and R’ respectively such that
for all 2 and j (1 = 4¢,j = 7) R; and R, have at most one labelled block in
common. (Note: We consider all blocks of D as labelled so that a given subset
can occur repeatedly as distinct blocks.)

The following result of Deza, Mullin and Vanstone appeared in [3].

THEOREM 1.1. There exists an A(r, \; v) if and only if there exists an
OD (7, \)-design having v varieties.

Theorem 1.1 shows the connection between EPAs and (r, \)-designs. Using
results on (r, \)-designs, we will deduce asymptotic results for R(r, A).

Let D be an (r, \)-design defined on a set V of v symbols. A block of D is
said to be complete if it contains all of the varieties. D is said to contain a
complete set of singletons if D contains v blocks each of size one whose union is V.
An (r, N)-design which contains A complete blocks is called trivial. Let vo(r, \)
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be the smallest positive integer such that if D is any (r, \)-design on o > v,(7, \)
varieties then D must be trivial. It has been shown [2] that

vo(r, \) £ max {A + 2,0 + n + 1}.

For N > #n?> 4+ n — 1, Mullin [5] has proven that any (r, \)-design with
v = vy(7, N\) varieties only has block sizes 1, v — 1 and ». Such designs are called
near-trivial. We will make use of this result in the following section.

2. Main result. Let D be an OD(r, \)-design having v > n* 4+ #n + 1
varieties for » = 3 and such that v is a maximum. Since D is an (7, \)-design,
Mullin’s result implies that D is near-trivial. Hence, D contains only blocks of
size 1, v — 1, and v. Call the blocks of size v — 1 in D the body of the design.
Clearly, the body of the design can be partitioned into ¢ copies of all (v — 1)-
subsets of a v-set for some non-negative integer ¢.

Suppose D has no blocks of sizev — 1. Then D must be trivial and must con-
tain at least v complete sets of singletons if it is to be orthogonally resolvable.
This is impossible since v > n. We then deduce that ¢t = 1.

Since D is an OD (7, \)-design, it must be resolvable and thus, for each com-
ponent of the body there must be a complete set of singletons to form v resolu-
tion classes of D. (This follows since each block of cardinality v — 1 in the
body requires a singleton block to form a resolution class). Hence, D must have
at least ¢ complete sets of singletons and we easily deduce that ¢ < |n/2] where
lx] is called the floor function of x and denotes the greatest integer less than or
equal to x. Denote these ¢ complete sets of singletons by Sy, S, . .., .S, Sup-
pose D contains s other complete sets of singletons denoted 771, 7T, . .., 1y and
these are resolution classes in a resolution R of D.

Each component of the body of the design and each complete set of singletons
contributes one to n. However a complete block contributes zero to #. Thus,
n =2t +s.

Lemma 2.1, For 81,82, ...,S, T, Ts, ..., T and D as defined above we
have s = .

Proof. Since D is an OD (r, X\)-design, it contains a second resolution R’ which

is orthogonal to R. R’ must contain 7%/, Ty, . . . , Ty’ complete sets of singletons
and Sy, Sy, ...,S/ complete sets of singletons associated with the body of D.
Consider 7/, 1 = 1 £ 5. T/ can contain at most s blocks from
Ty, Ty, ...,T, (at most one from each). Thus 7'/ contains at least v — s
singletons from .Sy, Ss, . . ., S,. For this to be possible, for all 7, 1 = 7 < s,
s(v — s) = .
This implies
2
— SE — 4t
1) s= i+ﬂ or
v 0 — 4y
(2) 5z tEVL — 40
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Since ¢ = |n/2], it is easy to see that

Sincen = 2t + s, and t > 1,
s < m.
Thus, if (2) is true

which is impossible since » > n? + n 4+ 1. This completes the proof of the

lemma.
NOW, if we let Sll = '111, S2I = T«z, e ,Ssl = TS, SS+1/ = Sl, e ,S;I =
Sy IV =S g1,..., Ty =S, then it is easily seen that R and R’ are

orthogonal resolutions. Since ¢t = sand ! + s = 2, the above is always possible.
By Lemma 2.1, we have

n=2+s= 3t
which implies that ¢ = n/3. Since ¢t must be an integer
t = [n/31

where [x1is called the roof function of x and means the least integer greater than
or equal to x. It now follows that

@3) (/3121 = [n/2].

If D contains ¢ complete blocks then

1) r=t@v—1)4+n—t+c¢ and
N=1ikv—2)+c¢

where ¢ < t. The restriction that ¢ < ¢ follows from the fact v is maximum.
If ¢ > ¢ then it is possible to construct an OD (r, X\)-design having more than v
varieties.

Since r = n + A, (4) becomes

B) v—2=\—20¢)/t =|NL]

Since v is a maximum, (5) implies that ¢ must be a minimum and from (3) we
get that ¢t = [n/3]. Therefore,

©6) v=2+4|—=

|
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But (6) is true whenever v > n? + n 4+ 1 which implies that
N> [n/31(n? + n).

This proves the following theorem.
A
n
5]

3. Conclusion. Theorem 2.1 provides an asymptotic evaluation of R(r, \).
Thus, for any value of #, there are only a finite number of values ot R(r, \) to
determine. This appears to be a difficult problem. For some of the known results
in this area, the reader is referred to [4; 6; and 7].

THEOREM 2.1. R(r, \) = 2 +

whenever X > [n/31(n* + n).
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