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Convergence and applications of
reproducing kernels for classes
of discrete harmonic functions

C. Wayne Mastin

This paper gives convergence properties and applications of the
discrete analogs of reproducing kernels for various families of
harmonic functions. From these results information is obtained
on the solution of interpolation problems, the convergence of the
discrete Neumann's function, and the solution to problems

involving the discrete biharmonic operator.

1. Introduction

Three Hilbert spaces of harmonic functions are considered, each
possessing a reproducing kernel. A discrete analog for each of these

reproducing kernels is developed.

One of the reproducing kernels studied is the discrete harmonic kernel
of Deeter and Springer [5]. They established convergence on regions
bounded by rectangles. Later convergence was established on regions
bounded by edges and diagonals of some h-net [9]. Our work extends
convergence to iegions with curved boundary components. It is shown that
the discrete harmonic kernel will converge to the ordinary harmonic kernel
under certain conditions on the boundary of the region. Using this result
and the known convergence properties of the discrete Green's function, we
are able to make some remarks on the convergence of the discrete Neumann's

function. Some numerical data were generated and typical results are given
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on the approximation of the Neumann's function for a circular region. The
second kernel considered is similar to the discrete harmonic kernel

mentioned above.

Another reproducing kernel studied is the discrete analog of the
kernel developed by Aronszajn [1] and Zaremba [15] which was used to
represent solutions of particular problems involving the biharmonic
operator. These problems arise in the theory of elasticity. Convergence
of the discrete kernel is established and it is shown that this discrete
kernel can be used to represent solutions of analogous discrete biharmonic

problems.

The final results deal with the approximation of solutions of inter-
polation problems in any of the three Hilbert spaces of harmonic functions.
We conclude that for small net widths, the solution of an analogous inter-
polation problem for discrete harmonic functions can be expressed using
reproducing kernels, and this solution will converge to the solution of the
original problem. This interpolation problem was discussed for arbitrary
Hilbert spaces with reproducing kernels in Meschkowski [13]. A development
of essentially the same problem for a class of analytic functions appears
in Meschkowski [13] and Epstein [7].

2. Some reproducing kernels

Several results from the theory of Hilbert spaces with reproducing
kernels are used, all of which may be found in Meschkowski [713] and

Aronszajn [1].

ILet R be a bounded region with a piecewise smooth boundary. For
each A, 0 <h <1, an h-net may be formed in the plane by the inter-
sections of the families of lines x=mh +a and y =mh + b where m
is an integer and a + tb is a fixed point in R . 1In this report we only
consider values of %k such that the h-nets form an increasing collection
of subsets of the plane. If 2z is a point in an h-net, the points
z+h, z+ih, z-h,and z - ih are calléd neighbors of 2z . Let
I be the set of all net points 2z in R such that all the neighbors of
z are also in R . Suppose now that A is sufficiently small so that
I £ @ . The set of net points in R which have at least one neighbor in

I and at least one neighbor in the complement of R will be denoted by
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B . We call R=1I uB the discrete region associated with R . We refer
to B as the boundary of R and to I as the interior of R .

A function U defined on R 1is discrete harmonic on I if

MU(z) = <5 (U(a+h)+U(z+ih)+U(z-h)+U(z-ih)-4U(z)] = O
h
for every 2z in I . Let Hl be the class of all functions U on R

which are discrete harmonic on I and which are normalized by

R ) s(a)Uu(z) =0,
2€B

where g(z) is the nunber of neighbors of z in I . Let Ux and Ué

be the partial differences of U defined at =z € R by

G% [U(z+h)-U(z)] , if zth € R and z or z+h € I ,
U (z) = 4
x
\0 , otherwise;
p
%—[U(zﬂlh)-u(z)] ,if z+ih €R and 2z or aztih €I ,
U (z)=
y( 1
\0 , otherwise.

With the inner product of two functions U and V in Hl defined by

2

(2.1) U, M =h ZER [Ux(z)Vx(z)+Uy(z)Vy(z)] ,

Hl is a Hilbert space with & reproducing kernel. This reproducing kernel

is cailed the discrete harmonic kernel and is denoted by Kl(z, z) . The

norm of a function U in H, is defined by i = (, v) .

Let Hl be the completion of the space consisting of the functions u

harmonic on R , continuous on f', with finite Dirichlet integral, and for
which
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Iék u(z)ds =0 .

H1 is a Hilbert space with the inner product of two functions u and v

defined by

(2.2) oy 90 = [ [ Brtedn(arm (s, ()] sy .

The norm of a function u is defined by ||u||2 = (u, u) . Here u, and

uy are partial derivatives. The reproducing kernel of Hl is called the

ordinary harmonic kernel and is denoted by kl(Z, z) .

A related kernel was discussed by Bergman [2, p. 59]. Let ' be

some point of R . Let H2 be the Hilbert space of harmonic functions u

on R with finite Dirichlet integral for which u(Z') = 0 ; the inner
product is defined by (2.2). The reproducing kernel of H2 . ke(z, ),

is related to that of Hl by the equation
_ '
(2.3) kz(Z, L) = kl(Z, z) - kl(C, g') .

If 7' belongs to I , then the class H2 of functions U discrete

harmonic on I with U(Z') = 0 is a Hilbert space with inner product
(2.1). Its reproducing kernel, Ke(z, T) , is related to that of Hl by

the equation
(2-h) Kz(z’ C) = Kl(z’ C) - Kl(c’ C') .

Thus far we have considered classes of harmonic functions with finite
Dirichlet integral and the corresponding classes of discrete harmonic

functions. We will now consideér the class of harmonic functions with

finite square integral. Let H3 denote the Hilbert space consisting of

these functions with the inner product of two functions u and v defined

by
(u, v) = IR f u(z)v(z)dxdy .

Note that no normalization is required for this class of functions as was
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necessary in the previous cases.

The norm of a function u will be denoted by flulll . The Hilbert

space H3 has a reproducing kernel k3(z, ) . For the discrete analog of

this reproducing kernel we let H_ denote the Hilbert space of all

3
discrete harmonic functions on I with the inner product of U and V

given by

2 1 uwava) .

Z€R

(y, V) ="

3. Convergence of the kernel Kx,(z, t)

Henceforth, we will let f and 7' be fixed points in R belonging

to some discrete region R with T # C' . Suppose h is sufficiently
small so that § and §' are in I . Again we denote by H2 the class
of discrete harmonic functions on I which vanish at ' . The function
M given by

K,(2,2)

SR X )

is the unique function with minimum norm among all functions U in H2

satisfying U(Z) = 1 . The following theorem establishes convergence of
the solution of this discrete minimum problem. The convergence of the

kernel 'K2(z, L) 1is obvious since

K (z, 7) = Hz)

2 il
THEOREM 3.1. If the Hilbert space H, has a complete orthomormal

system consisting of functions harmonic on R , then the minimizing
funetion M converges wniformly on compact subsets of R as h >0 to

the unique function m 1in H2 with minimum norm among all u <in H2
with u(g) =1 . Purthermore M| ~ |Iml] as h >0 .
Proof. let u' be the solution of the minimum problem in H2 . If

q 1is any linear combination of elements of the complete orthonormal system
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for H2 consisting of functions harmonic on R , then ¢q is harmonic on

R. Let 0 be a region with smooth boundary such that Rc 0 and q is
harmonic on O . By approximating the solution of the Dirichlet problem on
0 with the boundary values of q using discrete harmonic functions, we
can obtain functions {@ : 0 < h < 1} which are discrete harmonic on I

and such that @, Qx , and Qy converge uniformly on R to 9, q, > and

qy » respectively, as h + 0 . For the details of the approximation of gq

by discrete harmonic functions, we refer to the book by Epstein [6, pp.
199-211]. If q is a function for which ¢q(Z) =1 and 4q(z') = 0 , then
we may assume @Q(Z) =1 and @(z') =0 . In this case, Q] » llgll as
h->0 and M| <= |@l for each % . This implies that { M : 0 < h <1}
is bounded. Thus {M : 0 < A <1} is equicontinuous and umiformly bounded
on compact subsets of R . The proof of this also follows from results in
Epstein [6]. Furthermore, any sequence in {M : 0 < A < 1} will have a

subsequence {Mp} such that Mp and its partial differences Mpx and

M converge uniformly on compact subsets of R to a harmonic function m

py

and its partial derivatives mx and my , respectively.

We will now show that m = u' . Let {Ci} be an exhaustion of R by

compact sets. Let

. _ .2 2 2
(1) M, = » Mzrci [(Mx(z))/+(My(z>) ] ,
and
(3.2) Il = fc f [(mx(z)]2+(my(z))2]dxdy :

7

Now IIMPIIi = ||Mp|| ,which is bounded for all p , and since IIMplli - ||m||i

as p + o , we have |[ml|. > |Im}] < » . Since m(g') = 1lim M (') =0 ,
i po P
m € H, . Also m(g) =1 and thus |lu'll < |m|] . Let g be any linear

combination of elements of the complete orthonormal system of functions
harmonic on R which has q(t) =1 . As discussed earlier, we can

construct a sequence {Qp} of discrete harmonic functions such that
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(z) =1 Q(t'Y=0,8nd @, Q , and - converge unifo on -R
Qpc s p(c) o> i pr_ ge roly on -
to q,q, , and qy , respectively. Now ”Qp“ > ”Mp” »which implies that
lig = llmll . We conclude that |lml = llull for all u in H2 with

u(g) =1 . Therefore m = u' . By the same argument, any other convergent

sequence in {M : 0 < B < 1} will converge to u' =m .. Thus - M

converges uniformly on compact subsets of R to m_as h~>0 .

It remains to show that M| + llmll as 2 +0 . Let € >0 be given.
Let q Ve a linear combination of elements of the complete orthciqomal
system of functions harmonic on R such that q(t) =1 and Ilq‘-m” < gfe .
let {@ : 0 <h <1} be the family of functions described above. There
exists an hl >0 such that

Hiall-ligh| < e/2

and thus
Ml = el < llmll + € _

whenever h < hl .  Again {C,L} denotes an exhaustion of R by compact

sets. lLet IIMIIi and ]Imllz be defined by (3.1) and (3.2). Choose <

such that

llimll =l | < /2 .
There exists an h2 >0 such that k < hg implies

|1 =l | < e/2
Thus we have

o

v

IIMIIi > llmll; - e/2 > |iml| - €
for all h <h, . If h< min{hl, h2} , then

HiMl-limll| < e .
Thus ||M]| + |im|| as & + 0, which completes the proof of the theorem.
THEOREM 3.2. If the Hilbert space H2 has a complete orthonormal

system of functions harmonie on R , then Kz(z, r) converges to kz(z, z)
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wniformly in 2 on compact subsete of R as h + 0.

4.,  Convergence of the kernel Kl(z’ T)

The Hilbert space Hl will have a complete orthonormal system of
functions harmonic on R if and only if the same is true for the space
H2 . "By equations (2.3) and (2.14), ||K2(z, o)l = ||Kl(2, o)l for
0<h<1 and ||k2(z, o)l = IIkl(z, )l . These observations lead to the
next theorem.

THEOREM 4.1. If H1 has a complete orthonormal system of functions
harmoniec on R , then Kl(z, L) converges to kl(z, ) wniformly in =z
on compact subsets of R as h~+0.

Proof. Note that [|K2(z, o)l = 1/lM| and I|k2(z, oMt = 1/imll .

Furthermore, IIKl(z, C)”z = Kl(C %) and ||kl(z, C)||2 = kl(c, z) . Since
M > lim] as h >0, Kl(C, ) F kl(g’, ) as h + 0 . Therefore
K (g, ¢') = K (g, ) - K(z, ©) > k,(g, T) - k,(z, €) = Kk, (g, T') as
h >0 . We conclude that Kl(z, r) = Kg(z, z) - Kl(c, z') converges to
kz(z, L) - kl(C, g') = kl(z, z) uniformly in 2 on compact subsets of R
as h=+>0 .

The next corollary follows from known results on when the space Hl
will have a complete orthonormal system of functions harmonic on R (see
[73]). 1In the first case the system can be taken as polynomials in & and

Yy . In the second case it can be taken as rational functions with one

singular point in each component of the complement of R.

COROLLARY 4.2. If R 1is either bounded by a simple closed contour
or i8 a finitely connected region bounded by analytic curves, then
Kl(z, t) converges to kl(z, z) uniformly in z on compact subsets of R

as h-+0.

5. Convergence of the discrete Neumann's function

For 0 < h <1 , the discrete Green's function for R is defined to
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be the function G(z, ¢) which vanishes on B , the boundary of R , and
vwhich is a discrete harmonic function of 2z on I except at 2z = [ where
1
AG(Z, C) = - _E .
. h
For each 2z in B , let &(2) denote the number of neighbors of 2 in

I . Let 2, =1, ..., s(38) , be the neighbors of 2 in I . The

discrete Neumann's function for R is the function N(2, [) satisfying

the conditions:

s(3)
(1) s(aW(z, 8) = § W, 0) = - 522 forall 5 in
=1 2€8

B

(ii) WN(z, ) 1is a discrete harmonic function of 2 except

at 2 = where

and

(iii) WN(=z, ) is normalized by the condition

h Y s(z)N(z,z)=0.
2€B

It was shown by Deeter and Springer [5, p. 421] that

Kl(z’ C) = N(Z, C) - G(Z, C) .

Under the hypothesis of Corollary 4.2, there exists an ordinary
Green's function and Neumann's function for the region R . If g(z, )
is the Green's function and 7(z, T) is the Neumann's function for R ,
then kl(z, z) =n(z, t) - glz, £) . It is well known that as h + 0 ,

G(z, t) converges to g(2, z) wuniformly in 2 on any compact subset of
R which does not contain Z . Combining this result with Corollary 4.2,

the following theorem is proved.

THEOREM 5.1. If R is bounded by a simple closed contour or is a
finitely comnected region bounded by analytic curves, them as h » 0 ,

N(z, ¢) converges to n(z, r) wniformly in 2z on any compact subset of
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R which does not contain. ¢ .

From the discussion of the discrete Green's function in Forsythe and
Wasow [ 8, pp. 314-318] it is known that if the boundary of the region is
sufficiently smooth, then G(z, ¢) - g(=z, T) = 0(h) uniformly on the
region provided 2 1is bounded away from T by a cgnstant multiple of

hl/2 For regions bounded by edges and diagonals of some net, Huddleston

[9] obtained an error of the order O(hz) on compact subsets not

containing T .

Results so far on the discrete Neumann's function indicate convergence
may be much slower. The discretization error given by Deeter and Springer
[5] and Huddleston [9] is O(hlogh) . We note that there are some
differences between the associated discrete regions and the definitions of

the discrete. Green's and Neumann's function in [5], [§],and [91.

In an attempt to shed some light on the rate of convergence of the
discrete Neumann's function, and hence the discrete harmonic kernel, the
following computations were made. The region was taken to be the interior

of the unit circle. The #A-nets contained the origin and the values of h

used were h = 1/4k, 1/8 , and 1/16 . For the continuous function we have
= _ L
n(z, 0) = - o log|z|

The discrete function N(z, 0) was calculated by solving the system of
equations which arise from the definition in Section 5. Since the
continuous and discrete functions are both symmetric with respect to the x
and y axes and the line y = x , only values of 2z with 0 <=y =z are
considered. The computed discrete functions and the continuous function
are compared at points of the 1/b-net in Table 1. This table also
contains the values obtained by extrapolation to A =0 [§, p. 307] using
the values of the discrete functions for % = 1/8 and h = 1/16 . Table 2
presents a comparison of the continuous and discrete function along the

nonnegative real axis when h = 1/16

All computations were executed on a UNIVAC 1106 computer using
gaussian elimination to solve the system of equations. Some calculations
were made using C # 0 and the observed error was approximately the same.

Since there is considerable error in our approximation even after extra-
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TABLE 1

N(z, 0) ~and n{z, 0) at some points in |z| <1

21 21 -1 " extrapolated
z h=3 h=%- h =38 value n(z, 0)
0 .4skoo .57665 .69383 .81101 + 00
% .20400 .21333 .21688 .20043 .2206
> .09400. 10075 10642 ..11209 11032
£ .04%00 .04043 .0LL62 .04881 .04579
-i— + % i .13%00 .15191 .16012 .16833 .16548
-% + % i .06400 .08007 .08741 09475 .09256
2ege .01k00 .02738 .0335 .03970 .03740
% + % i .01400 .03850 .OLUTT2 .0569k .05516
% + % i .03600 -.00L32 .00682 .01796 .01652
-TABLE 2
N(z, 0) and n(z,.0) where h =1/16 and 0 =<3z <1
z Nz, 0) - n(z, 0) - Tz N(z, 0) n(z, 0)
0 .69383 +o0 % .106k2 .11032
1 9 , )
% .h4383 L4126 37 .08803 09157
3 .3305 .33095 % .07181 . .07480
3 1 »
T3 .26356 .266Lk2 T3 .05742 .05963
% .21688 .22064 % .0bkk62 - 04579
2 13 .
2 .18103 .18512 T .03329 .03305
% .15192 .15611 % .02333 .02125
L 15 . ;
T .1274%6 .13158 T .01471 .01027
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polation (a maximum of 0.00385 in Table 1), the possibility of using
smaller values of h along with some iterative method arises. However,
the coefficient matrix is not diasgonally dominant and it is unclear whether
the standard iterative methods for solving linear systems will converge in
this case. An alternative method for improving accuracy might be the
inclusion of certain points on the unit ecircle in the diécrete region. The

preceding development would have to be modified accordingly.

6. Convergence and applications of the kernel K3(z, z)

The proof of the convergence of K3(Z, g) is similar to the proof for
Kz(z, Z) in Section 3. As before, we begin by considering the unigue

function M of minimum norm among all functions in H assuming the value

3
1 at 7 . Appealing to the work of Laasonnen [10], if C is any compact
subset of R there is a constant K , independent of % , such that

max |M(z)| = & ljimill
z€C

This inequality, together with the assumption that H3 has a complete

orthonormal system of functions harmonic on R , implies that

{M : 0 < h <1} is uniformly bounded on compact subsets of R . Hence,
from Verblunsky [14:], {M: 0 <h <1} is equicontinuous on compact
subsets of R and any sequence will have a subsequence which converges
uniformly on compact subsets of R . An application of the results stated
thus far, and an examination of the proof of Theorem 3.1, establishes
convergence of the function M to the solution of the analogous minimum
problem in H3 . The convergence of the kernel K3(z, ) to k3(z, z)
follows directly.

THEOREM 6.1. If H3 has a complete orthonormal system of functions
harmonic on R , then K3(z, g) converges to k3(z, r) wniformly in =z
on compact subsets of R as h +0 .

The hypothesis of this theorem will be satisfied, as with Hl and
H2 s if the region R is bounded by a simple closed contour or is a
multiply connected region bounded by analytic curves.

https://doi.org/10.1017/50004972700043975 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700043975

Discrete harmonic functions 351

The techniques used to establish convergence of K3(z, t) do not lend

themselves to an analysis of the rate of convergence. Although it would
not be difficult to calculate K3(z, r) for particular associated discrete

regions, we could conclude little about the error since no easily

computable expression is known for the function k3(z, ) even for simple
regions.

It was noted by Aronszajn [1] and Zaremba [15] that the reproducing
kernel k3(z, ) could be used to obtain integral representations of
solutions of particular problems involving the biharmonic operator. We

consider analogous problems for the discrete biharmonic operator A2

defined by A2U = A(AU) . This operator was discussed by Courant,
Friedrichs and Lewy [4],who also developed the following discrete Green's
formula which we now state. If U and V are functions defined on the

discrete region R with interior I and boundary B , then

(6.1) K Y [U(3)AV(2)-V(2)AU(z)] = h | [U(z)Vn(z)-V(z)Un(z)] .
3€r z€B

vwhere

2

8(z)
Un(z), =% [a(z)ll(z) - '21 U(zi)]

with 2 i=1, ..., 8(2) , the neighbors of 2 in I .

In order for the quantity A2U(z) to be defined at a point 2z , it is
necessary that U be defined at each point which is a neighbor of 2z and
also at each point which is the neighbor of a neighbor of 2z . Let R' be

the set of points in the h-net which belong to R or have a neighbor in'

R . The boundary points of R' will be denoted by B' . Now A2U is
defined at every point of I when U is defined on R' .

The kernel K3(z, z) _and the Green's function Glz, r) give the
solution to the problem of finding & function U satisfying:

(i) u(z) = Un(z) =0 for z €B',
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(ii) 22U(z) = &(z) for z €1,

where ‘§ is a given function defined on I . Suppose ¥ is a function
such that A¥ = & on I . Then the function U which solves the above
problem is given by
2 v NN 0 omyeram]
(6.2) Ulz) = -h Z G(z, 2")|¥(z") - K3(z , 3 (z")]| .
z €R z"eRr

To vérify this equation we note that if U solves the above problem, then

AU - ¥ is discrete harmonic on I ,which implies

2

h K (', 2")[(aU-¥)(2")] = AU(z') - ¥(a") ,

z"€R :
by the reproducing property of the kernel. Thus

Y(z') -lh

2.‘ Z K (z,.z")W(z") = AU(z') - WP Y K. (z', 2")AU(z")
it 3 o S35

z"€r
With this substitution and an application of (6.1) together with (i), the
right hand side of (6.2) becomes

-H? L 6z, 2Mau(z") .
2 €R

A second application of (6.1) reduces this expression to U(z)

One possible choice for the function Y appearing in (6.2) is given
by

2

¥(z) = h° } L(z'-2)%(z')

z'erl
where L is the "free space” discrete Green's function of McCrea and
Whipple [12]. The function L 1is defined at every péint of the h-net in

the plane and satisfies the equation

0 for 2 #0 ,

L(z) =

L for 2z =0 .

h2
Estimates for the function L , along with known integral representations,

are found in the paper by Mangad [17].
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Now if we let the function ¢ in (ii) be defined by

0 for 2#CT,

o(z) =
Lz for 2=70r ,
h
then the solution to (i) and (ii) becomes the discrete analog of the
biharmonic Green's function for the region R . If we let ¥(z) in (6.2)
be -G(z, ) , then the discrete biharmonic Green's function 02(3’ z)

satisfies

Gz(z, r) = W Y o(z, z')[G(z', r) - W i G(z", ;)K3(z', z")] .
z'€R z"€R

7. Applications to interpolation problems

In this last section we will let H- denote one of the Hilbert
spaces of harmonic functions Hl’ H2 , or H3 defined in Section 2. The
space H will be the analogous space of discrete harmonic functiomns. -

Inner products will be (+, *) eand norms || .
Let 2., Z,, ..., 2, be distinct points (different from ' in the

case of H2 } belonging to the region R and let Wys Wy eees W, be real

nunbers. By considering linear combinations of the harmonic polynomials

Re(zk] , k=0,1, ..., n , and Im(zk) , k=1,2, ..., n, (suitably
normalized in the case of Hl and H2 } it is possible to comstruct a

harmonic function p in H such that p(zj) ="’j for §=1,2, ..., n .

Since the set of all functions u in H with u(zj) =us

J=1,2, ..., n , is a nonempty closed convex subset of H , this set will

contain a wnique function with minimum norm.

THEOREM 7.1. 1In the Hilbert gpace H , the unique funetion u with

minimm norm satisfying u(zj) =us, j=1,2, ..., n, has the form

n
u(z) = ] ak(z, z;) .

1=1
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The determinant
k(zl, zl) k(zl, zn)
D= . .
k(zn, zl) k(zn, zn)
does not vanish and the constants a, are determined by the system of

equations

n
(7.1) ) aik(zj, zi) = wj s d=1,2, i, n.

1=1

Proof. We follow the proof of a similar result in Epstein [7, p. 24]
for a Hilbert space of analytic functions. Let S denote the closed
subspace of linear combinations of Xk(z, zJ), k(z, 22) s e, k(z, zn) .

Let u be the solution of the stated minimum problem. Now wu can be

L &
uniquely expressed in the form u=v +w, v €S, w €S , vhere S
is the orthogonal complement of S . Since w belongs to s* ana
k(=, zi) and v belong to S , we see that w(zi) = (w(z), k(z, zt)) =0

. 2 2 2

for £=1,2, ..., n, and [lul® = [|o)" + [l . Thus [vll < llull end
v(z 1) =, . Since u is the unique solution of the minimum problem, this

implies that # = v and hence u belongs to S . The function u can be

written as

u(z) =

Ie~3

. aik(z, zi) .

i
The constants a; must satisfy the system of equations (7.1) since this is

equivalent to u(zj) = wj s d=1,2, ..., n . The determinant 0 cannot

vanish, for otherwise the rows of the matrix would be linearly dependent,

which asserts that for certain choices of the w, our minimum problem

would be unsolvable. This contradicts the remarks preceding this theorem.

Thus the constants ai are determined by the system of equations.

The problem of solving an analogous minimal interpolation problem in

the space H 1is quite different. If =z_, 2 belong to AR , then

10 Bps vees By
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it is possible that for certain choices of wl’ w2, veey wn there is no

function U in H satisfying U(zi] =w, , £=1,2, ..., n . Thus the

problem would be unsolveble. There is a umique solution, for any choice of

the w,’: , if the determinant

K(zl, zl) K(zl, zn]

D= . .

K(zn, zl) oo Kz, zn]

does not vanish, for then there will be a unique function U of the form

n
Uz) = ] AK(z, z;)
=1

satisfying U(zi] =w,, £=1,2, ..., 7. Asin the continuous case
this function solves the minimum problem.

THEOREM 7.2. Suppose H has a complete orthonormal system of

functions harmonic on R . Let 2z --.» z, be points of R

1° %o

belonging to some h-net and let w_, v,

1’ 2
i8 sufficiently small, there is a unique function U in H with minimum

s eees W be real numbers. If h

norm satisfying U(zi) =0, 2=1,2, ..y Nn.. Purthermore, as h >0 ,

the function U converges wniformly on compact subsets of R to the

unique function u in H with minimem norm satisfying u(zi] =w,,

£1=21,2, toas .

Proof. From the previous results on the convergence of discrete

harmomic kernels (Theorems 3.2, 4.1, and 6.1)
K(zi, zj) +> k(zi, zj]

as h+0 for 1271, g=<n. Thus lim D =D # 0 which implies that
h-0
D#0 for all h sufficiently small. Therefore the minimm problem in &

has a unique solution. The solution U can be expressed in the form
n

U(z) = Z AiK(z, zi]
=1
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with the Ai satisfying the system

n
izlAiK(zj’ 31‘) =wJ‘ ’ j =125 ceey .

Using Cramer's rule to solve for the Ai , we see that the solution U
can be written as

‘ o X(=, zl) K(z, zn)
wy K(zl, zl] K(zl, zn)

Ua) = -5 | . : :

v, K(zn, 2.) ... K(zn,‘zn)

The function U converges wniformly on compact subsets of R to a
function u defined by

o k(z, zl) k(z,zn]
w) k(zl, 2) ... k(2,5 2,)

. .
. - .
. . .

w k(zn, zl) oo k(z,, zn] .

-

u(z) = -

Upon solving for the coefficients in (7.l1) we recognize u as the solution

to our minimum problem in H .

It can now be concluded that the minimal interpolation problem in #
can be solved provided h 1is small enough, and this solution approximates
the solution of the analogous problem in H . The work of Chalmers [3] on
reproducing kernels and minimum problems in subspaces of Hilbert spaces

motivated the results in this section.
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