J. Functional Programming 2 (3): 323-343, July 1992 © 1992 Cambridge University Press 323

Higher-order functions for parsing*
GRAHAM HUTTON

Department of Computing Science, University of Glasgow
(graham@ cs. chalmers. se)

Abstract

In combinator parsing, the text of parsers resembles BNF notation. We present the basic
method, and a number of extensions. We address the special problems presented by white-
space, and parsers with separate lexical and syntactic phases. In particular, a combining form
for handling the ‘offside rule’ is given. Other extensions to the basic method include an ‘into’
combining form with many useful applications, and a simple means by which combinator
parsers can produce more informative error messages.

Capsule review

This paper is a fine example of the use of higher-order functions in a real application: parsing.
The viewpoint of parsing that is presented is simple: parsers are functions, and big parsers are
made from little parsers by combining functions. The framework thus centres on the design of
the combinators that serve as the ‘gilue’. A variety of combinators are defined — ones for
sequencing, alternation, repetition, etc. — and it is clear from the methodology how to create
new combinators to serve one’s particular parser application. The simple parser design
presented at the outset is gradually refined to handle more and more complex situations,
including such things as good error propagation. Qverall the paper serves two roles: it describes
an interesting, elegant framework for building parsers; and it demonstrates the utility of
higher-order functions

1 Introduction

Broadly speaking, a parser may be designed as a program which analyses text to
determine its logical structure. For example, the parsing phase in a compiler takes a
program text, and produces a parse tree which expounds the structure of the
program. Many programs can be improved by having their input parsed. The form
of input which is acceptable is usually defined by a context-free grammar, using BNF
notation. Parsers themselves may be built by hand, but are most often generated
automatically using tools like Lex and Yacc from Unix (Aho et al. 1985).

* An earlier version of this article appeared at the Glasgow Workshop on Functional Programming (Hutton,
1989). The author’s current address is Informationsbehandling, Chalmers University of Technology,
S-412 96 Goteborg, Sweden.

https://doi.org/10.1017/50956796800000411 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000411

324 G. Hutton

Although there are many methods of parsing, one in particular has gained
widespread acceptance for use in lazy functional languages. In this method, parsers
are modelled directly as functions: larger parsers are built piecewise from smaller
parsers using higher-order functions. For example, we define higher-order functions
for sequencing, alternation and repetition. In this way, the text of parsers closely
resembles BNF notation. Parsers in this style are quick to build, and simple to
understand and modify. In the sequel, we refer to the method as combinator parsing,
after the higher-order functions used to combine parsers.

Combinator parsing is considerably more powerful than the commonly used
methods, being able to handle ambiguous grammars, and providing full backtracking
if it is needed. In fact, we can do more than just parsing. Semantic actions can be
added to parsers, allowing their results to be manipulated in any way we please. For
example, in Section 2.4 we convert a parser for arithmetic expression to an evaluator
simply by changing the semantic actions. More generally, we could imagine
generating some form of abstract machine code as programs are parsed.

Although the principles are widely known (due in most part to Wadler, 1985), little
has been written on combinator parsing itself. In this paper we present the basic
method, and a number of extensions. The techniques may be used in any lazy
functional language with a higher-order/polymorphic style type system. All our
programming examples are given in Miranda®; features and standard functions are
explained as they are used. A library of parsing functions taken from this paper is
available by electronic mail from author. Versions exist in both Miranda and Lazy
ML.

2 Parsing using combinators

We begin by defining a type of parsers. A parser may be viewed as a function from a
string of symbols to a result value. Since a parser might not consume the entire string,
part of this result will be a suffix of the input string. Sometimes a parser may not be
able to produce a result at all. For example, it may be expecting a letter, but find a
digit. Rather than defining a special type for the success or failure of a parser, we
choose to have parsers return a list of pairs as their result, with the empty list []
denoting failure, and a singleton list |(v,xs)] indicating success, with value v and
unconsumed input xs. As we shall see in Section 2.2, having parsers return a list of
results proves very useful. Since we want to specify the type of any parser, regardless
of the kind of symbols and results involved, these types are included as extra
parameters. In Miranda, type variables are denoted by sequences of stars

parser x xx = = [¥] > [(++, [*])].

For example, a parser for arithmetic expressions might have type (parser char expr),
indicating that it takes a string of characters, and produces an expression tree. Notice
that parser is not a new type as such, but an abbreviation (or synonym); its only
purpose is to make types involving parsers easier to understand.

1 Miranda is a trademark of Research Software Limited.

https://doi.org/10.1017/50956796800000411 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000411

Higher-order functions for parsing 325

2.1 Primitive parsers

The primitive parsers are the building blocks of combinator parsing. The first of these
corresponds to the € symbol in BNF notation, denoting the empty string. The succeed
parser always succeeds, without actually consuming any of the input string. Since the
outcome of succeed does not depend upon its input, its result value must be pre-
determined, so is included as an extra parameter

succeed :: xx —> parser x xx*

succeedv inp = [(v,inp)].

This definition relies on partial application to work properly. The order of the
arguments means that if succeed is supplied only one argument, the result is a parser
(i.e. a function) which always succeeds with this value. For example, (succeed 5) is a
parser which always returns the value 5. Furthermore, even though succeed plainly
has two arguments, its type would suggest it has only one. There is no magic, the
second argument is simply hidden inside the type of the resuit, as would be clear upon
expansion of the type according to the parser abbreviation.
While succeed never fails, fail always does, regardless of the input string

fail:: parser x xx*
Sailinp = [].

The next function allows us to make parsers that recognize single symbols. Rather
than enumerating the acceptable symbols, we find it more convenient to provide the
set implicitly, via a predicate which determines if an arbitrary symbol is a member.
Successful parsers return the consumed symbol as their result value

satisfy :: (x - bool) - parser *
satisfy p|| = fail[]
satisfy p (x: xs) = succeedx xs,px
= fail xs , otherwise.
Notice how succeed and fail are used in this example. Although they are not strictly
necessary, their presence makes the parser easier to read. Note also that the parser
(satisfy p) returns failure if supplied with an empty input string.
Using satisfy we can define a parser for single symbols
literal :: — parser * x
literal x = satisfy (= x).
For example, applying the parser (literal ‘3’) to the string "345” gives the result [(‘3’,
“45")]. In the definition of literal,(= x) is a function which tests its argument for

equality with x. It is an example of operator sectioning, a useful syntactic convention
which allows us to partially apply infix operators.

https://doi.org/10.1017/50956796800000411 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000411

326 G. Hutton

2.2 Combinators

Now that we have the basic building blocks, we consider how they should be put
together to form useful parsers. In BNF notation, larger grammars are built piecewise
from smaller ones using | to denote alternation, and juxtaposition to indicate
sequencing. So that our parsers resemble BNF notation, we define higher-order
functions which correspond directly to these operators. Since higher-order functions
like these combine parsers to form other parsers, they are often referred to as
combining forms or combinators. We will use these terms from now on.

The alt combinator corresponds to alternation in BNF. The parser (p1 3altp2)
recognizes anything that either pI or p2 would. Normally we would interpret either
in a sequential (or exclusive) manner, returning the result of the first parser to
succeed, and failure if neither does. This approach is taken in Fairbairn (1986). In
combinator parsing, however, we use inclusive either —it is acceptable for both
parsers to succeed, in which case we return both results. In general then, combinator
parsers may return an arbitrary number of results. This explains our decision earlier
to have parsers return a list of results.

With parsets returning a list, alt is implemented simply by appending (denoted by
++4 in Miranda) the result of applying both parsers to the input string. In keeping
with the BNF notation, we use the Miranda $ notation to convert alt to an infix
operafor. Just as for sectioning, the infix notation is merely a syntactic convenience:
(x 3fy) is equivalent to (fxy) in all contexts

alt :: parser x xx — parser x xx —> parser * **
(p1 $alt p2)inp = plinp ++ p2inp.

Knowing that the empty-list [] is the identity element for ++, it is easy to verify
from this definition that failure is the identity element for alternation: (fail $alt p) =
(p 8alt fail) = p. In practical terms, this means that alt has the expected behaviour if
only one of the argument parsers succeeds. Similarly, alt inherits associativity from
++ (p 3alt q) $altr = p $alt (q 3altr). This means we do not need to worry about
bracketing repeated alternation correctly.

Allowing parsers to produce more than one result allows us to handle ambiguous
grammars, with all possible parsers being produced for an ambiguous string. The
feature has proved particularly useful in natural language processing (Frost and
Launchbury, 1988). An example ambiguous string from Frost and Launchbury
(1988) is * Who discovered a moon that orbits Mars or Jupiter?’ Most often, however,
we are only interested in the single longest parse of a string (i.e. that which consumes
the most symbols). For this reason, it is normal in combinator parsing to arrange for
the parses to be returned in descending order of length. All that is required is a little
care in the ordering of the argument parsers to alt. See, for example, the many
combinator in the next section.

The then combinator corresponds to sequencing in BNF. The parser (p1 $thenp2)
recognizes anything that pI and p2 would if placed in succession. Since the first parser
may succeed with many results, each with an input stream suffix, the second parser
must be applied to each of these in turn. In this manner, two results are produced for

https://doi.org/10.1017/50956796800000411 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000411

Higher-order functions for parsing 327

each successful parse, one from each parser. They are combined (by pairing) to form
a single result for the compound parser

then :: parser x %k — parser x **x — parser * (ks)
(pl $thenp)inp = |((v1,v2), 0ut2)|(vl,outl)<plinp;
(v2, out2) <- p2 outl).

For example, applying the parser (literal ’a’ $then literal ’b’) to the input “abed” gives
the result [((’a’,’h’),”cd”)]. Then then combinator is an excellent example of /ist
comprehension notation, analogous to set comprehension in mathematics (e.g. {x*| xe
N A x < 10} defines the first ten squares), except that lists replace sets, and elements
are drawn in a determined order. Much of the elegance of the then combinator would
be lost if this notation were not available.

Unlike alternation, sequencing is not associative, due to the tupling of results from
the component parsers. In Miranda, all infix operators made using the $ notation are
assumed to associate to the right. Thus, when we write (p $thenq Sthenr) it is
interpreted as (p Sthen(q Sthenr)).

2.3 Manipulating values

Part of the result from a parser is a value. The using combinator allows us to
manipulate these results, building a parse tree being the most common application.
The parser (p Susingf) has the same behaviour as the parser p, except that the
function fis applied to each of its result values

USING :: parser * +% — (%k —> %k *) — PAFSEr * *%x*

(p Susing f) inp = |(fv, out) | (v, out) < p inp).
Although using has no counterpart in pure BNF notation, it does have much in
common with the {...} operator in Yacc (Aho, 1986). In fact, the using combinator
does not restrict us to building parse trees. Arbitrary semantic actions can be used.
For example, in Section 2.4 we convert a parser for arithmetic expressions to an
evaluator simply by changing the actions. There is a clear connection here with
attribute grammars. A recent and relevant article on attribute grammars is that by
Johnsson (1987). A combinator parser may be viewed as the implementation in a lazy
functional language of an attribute grammar in which every node has one inkerited
attribute (the input string), and two synthesized attributes (the result value of the
parse and the unconsumed part of the input string.) In the remainder of this section
we define some useful new parsers and combinators in terms of our primitives.

In BNF notation, repetition occurs often enough to merit its own abbreviation.
When zero or more repetitions of a phrase p are admissible, we simply write p*.
Formally, this notation is defined by the equation p* = p p*|e. The many combinator
corresponds directly to this operator, and is defined in much the same way

many :: parser x x* — parser % [*x|
many p = ((p $Sthen many p) Susing cons) $alt (succeed|).

The actions cons is the uncurried version of the list constructor ‘:’, and is defined by
cons(x,xs) = x:xs. Since combinator parsers return all possible parses according to

https://doi.org/10.1017/50956796800000411 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000411

328 G. Hutton

a grammar, if failure occurs on the sth application of (many p), n results will be
returned, one for each of the 0 to n— 1 successful applications. Following convention,
the results are returned in descending order of length. For example, applying the
parser many (literal’a’) to the string “aaab” gives the list

[(//aaa/l’ //b//)’ //aa//’ //ab//), (//a//, //aab//), (I/Il’ ”aaab”)].

Not surprisingly, the next parser corresponds to the other common iterative form
in BNF, defined by p* = pp*. The parser (some p) has the same behaviour as (many
P), except that it accepts one or more repetitions of p, rather of zero or more

some :: parser x xx — parser * x|
some p = (p Sthen many p) Susing cons.
Note that (some p) may fail, whereas (many p) always succeeds. Using some we define
parsers for number and words — non-empty sequences of digits and letters
number :: parser char |char]
word ::parser char |char]
number = some (satisfy digit)
wheredigitx =0’ <=x <’9’
word = some (satisfy letter)
where letter x = (Ca’ < x < T)\/(A’ < x < °Z)).

The next combinator is a generalization of the /literal primitive, allowing us build

parsers which recognize strings of symbols, rather than just single symbols

string :: |*] — parser « ||

string|] = succeed| |

string (x: xs) = (literal x 3then string xs) Susing cons.
For example, applying the parser (string “begin”) to the string "beginend” gives the
output [("begin”,”end”)]. It is important to note that (string xs) fails if only a prefix of
the sequence xs is available in the input string.

As well as being used the define other parsers, the using combinator is often used
to prune unwanted components from a parse tree. Recall that two parsers composed
in sequence produce a pair of results. Sometimes we are only interested in one
component of the pair. For example, it is common to throw away reserved words such
as ‘begin’ and ‘where’ during parsing. In such cases, two special versions of the then
combinator are useful, which throw away either the left or right result values, as
reflected by the position of the letter ‘x’ in their names:

Xthen :: parser » xx—> parser x **% — parser * xxx

thenx :: parser * x+ - parser * **x — parser * *x*

pl 3xthenp2 = (pl $thenp2) Susing snd
pl Sthenx p2 = (pl Sthen p2) Susing fst.

https://doi.org/10.1017/50956796800000411 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000411

Higher-order functions for parsing 329

The actions f5t and snd are the standard projection functions on pairs, defined by
fst(x,y) = x and snd(x,y) = y.

Sometimes we are not interested in the result from a parser at all, only that the
parser succeeds. For example, if we find a reserved word during lexical analysis, it
may be convenient to return some short representation rather than the string itself.
The return combinator is useful in such cases. The parser (p Srefurnv) has the same
behaviour as p, except that it returns the value v if successful

return :: parser x xx — kxk —> PArser * xxx

p Sreturnv = p $using (const v)

where constxy = x.

2.4 Example

To conclude our introduction to combinator parsing, we will work through the
derivation of a simpler parser. Suppose we have a program which works with
arithmetic expressions, defined in Miranda as follows:
expr::= Numnum)|expr 3Addexpr|expr $Sub expr
| expr $Mul expr | expr $Div expr.

We can imagine a function showexpr which converts terms of type expr to the normal
arithmetic notation. For example

showexpr (Num 3) SMul (Num 6) 34Add (Num 1))) = "3+ (6 + 1)".

While such pretty-printing is notionally quite simple, the inverse operation, parsing,
is usually thought of as being much more involved. As we shall see, however, building
a combinator parser for arithmetic expressions is no more complicated than
implementing the showexpr function.

Before we start thinking about parsing, we must define a BNF grammar for
expressions. To begin with, the definition for the type expr may itself be cast in BNF
notation. All we need do is include parenthesized expressions as an extra case

expn::= expn+expn|expn—exph|
expn * expn |expn/expn|
digit* | (expn).
Although this grammar could be used as the basis of the parser, in practice it is useful
to impose a little more structure. To simplify expressions, multiplication and division
are normally assumed to have higher precedence than addition and subtraction. For
example, 3+ 5+ 2 is interpreted as 3+ (5 *2). In terms of our grammar, we introduce
a new non-terminal for each level of precedence
expn = term+term|term—term|term
term = factor xfactor| factor/ factor| factor

Jactor ::= digit* | (expn).

https://doi.org/10.1017/50956796800000411 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000411

330 G. Hutton

While addition and multiplication are clearly associative, division and subtraction are
normally assumed to associate to the left. The natural way to express this convention
in the grammar is with left recursive production rules (such as expn:: = expn— term).
Unfortunately, in top-down methods such as combinator parsing, it is well known
that left-recursion leads to non-termination of the parser Aho (1986). In Section 4.1
we show how to transform a grammar to eliminate left-recursion. For the present,
however, we will leave the grammar as above, and use extra parenthesis to
disambiguate expressions involving repeated operations.

Now that we have a grammar for expressions, it is a simple step to build a
combinator parser. The BNF description is simply re-written in combinator notation,
and augmented with semantic actions to manipulate the result values

expn = ((term$thenliteral’+’ $xthen term) Susing plus) Salt
((term 3then literal’—’ $xthen term) Susing minus) 3alt
term
term = ((factor Sthen literal ’x’ $xthen factor) Susing times) Salt
((factor $then literal’|’ $xthen factor) Susing divide) 3alt
JSactor
SJactor = (number Susing value) $alt
(literal (" $xthen expn $thenx literal’)’).
Note that the parser makes use of the special sequential combining forms xthen and
thenx to strip non-numeric components from result values. In this way, the arithmetic
actions simply take a pair of expressions as their argument. In the definitions given
below for the actions, numwval is the standard Miranda function which converts a
string of digit to the corresponding number
value xs = Num (numval xs)
plus (x,y) = x$Addy
minus (x,y) = x $Suby
times (x,y) = x $Muly
divide (x,y) = x $Div y.

This completes the parser. For example, expn”2+(4—~1)* 3" gives

{(Add (Num 2) (Mul (Sub (Num 4) (Num 1)) (Num 3)),"")
(Add (Num 2) (Sub (Num 4) (Num 1)) %3),
(Num2 A (d—Dx3"))

More than one result is produced because the parser is not forced to consume all the
input. As we would expect, however, the longest parse is returned first. This
behaviour results from careful ordering of the alternatives in the parser.

https://doi.org/10.1017/50956796800000411 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000411

Higher-order functions for parsing 331

Although a parse tree is the natural output from a parser, there is no such
restriction in combinator parsing. For example, simply by replacing the standard
semantic actions with the following set, we have an evaluator for arithmetic
expressions

value xs = numval xs

plus (x,y)=x+y

minus (x,y) = x—y

times (x,y) = xxy

divide (x,y) = xdiv y.
Under this interpretation

expn”2+(d—1)*x 3" = [(11,""),(5,"+ 3"),(2,” + (d— D) x 3")].

3 Layout conventions

Most programming languages have a set of layout rules, which specify how white-
space (spaces, tabs, and newlines) may be used to improve readability. In this section
we show how two common layout conventions may be handled in combinator
parsers.

3.1 Free-format input

At the syntactic level, programs comprise a sequence of tokens. Many languages
adopt free-format input, imposing few restrictions on the use of white-space — it is not
permitted inside tokens, but may be freely inserted between them, although it is only
strictly necessary when two tokens would otherwise form a single larger token. White-
space is normally stripped out along with comments during a separate lexical phase,
in which the source program is divided into its component tokens. This approach is
developed in Section 4.3.

For many simple parsers, however, a separate lexer is not required (as in the case
for the arithmetic expression parser of the previous section), but we still might want
to allow the use of white-space. The nibble combinator provides a simple solution.
The parser (nibble p) has the same behaviour as the parser p, except that it eats up any
white-space in the intput string before or afterwards

nibble :: parser char » — parser char *

nibble p = white $xthen p Sthenx white

where white = many (any literal” \t\n").

The any combinator used in this definition can often be used to simplify parsers
involving repeated use of literal or string. It is defined as follows:

any :: (% — parser xx xx%) — [x] > parser xx xx»

any p = foldr (alt. p) fail.

https://doi.org/10.1017/50956796800000411 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000411

332 G. Hutton

The library function foldr captures a common pattern of recursion over lists. It takes
a list, a binary operator ® and a value a, and replaces each constructor ‘:” in the list
by ®, and the empty list |] at the end by a. For example, foldr(+)0[1,2,3] =
1+(2+(3+0)) = 6. As in this example, a is often chosen to be the right identity for
®. The infix dot ‘.’ used in any denotes function composition, defined by (f.g)x =
S(g x). It should be clear that any has the following behaviour:

anyplxl,x2,...,xn] = (px1) 3alt (p x2) 3alt ... 3alt (p xn).

In practice, nibble is often used in conjunction with the string combinator. The
following abbreviation is useful in this case:

symbol :: [char]| — parser char [char]

symbol = nibble . string.

For example, applying the parser (symbol”hi") to the string “hithere”, gives ("hi”,
” there”) as the first result.

There are two points worth noting about free-format input. First, it is good
practice to indent programs to reveal their structure. Although free-format input
allows us to do this, it does not prevent us doing it wrongly. Second, extra symbols
are usually needed in programs to guide the parser in determining their structure.
Classic examples are ‘begin’, ‘end’ and semi-colon from Pascal.

3.2 The offside rule

Another approach to layout, as adopted by many functional languages, is to
constrain the generality of free-format input just enough so that extra symbols to
guide the parser are no longer needed. This is normally done by imposing a weak
indentation strategy, and having the parser make intelligent use of layout to
determine the structure of programs. Consider, for example, the following program:

a=b+c
where
b=10
c=15-5
d=ax2.

It is clear from the indentation that @ and d are intended to be global definitions, with
b and c local to a. The constraint which guarantees that we can always determine the
structure of programs in this way is usually given by Landin’s (1966) offside rule,
defined as follows:

If a syntactic class obeys the offside rule, every token of an object of the class
must lie either directly below, or to the right of its first token. A token which

https://doi.org/10.1017/50956796800000411 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000411

Higher-order functions for parsing 333

breaks this rule is said to be offside with respect to the object, and terminates
its parse.

In Miranda, the offside rule is applied to the body of definitions, so that special
symbols to separate definitions, or indicate block structuring, are not required. The
offside rule does not force a specific way of indenting programs, so we are still free
to use our own personal styles. It is worth noting that there are other interpretations
of the offside rule. In particular, the proposed standard functional language, Haskell,
takes a slightly different approach (Hudak, 1990).

3.3 The offside combinator

In keeping with the spirit of combinator parsing, we would like to define a single
combinator which encapsulates the offside rule. Given a parser p, we can imagine a
parser offsidep with the same behaviour, except that it is required to consume
precisely those symbols which are onside with respect to the first symbol parsed.

At present, parsers only see a suffix of the entire input string, having no knowledge
of what has already been consumed by previous parsers. To implement the offside
combinator, however, we need some context information to decide which symbols in
the input are onside. Our approach to this extra information is the key to the offside
combinator. Rather than actually passing an extra argument to parsers, we will
assume that each symbol in the input string has been paired with its row and column
position at some stage prior to parsing.

To simplify to types of parsers involving the offside rule, we use the abbreviation
(pos %) for a symbol of type * paired with its position

pos x = = (x,(num, num)).

Since the input string is now assumed to contain the position of each symbol, the
primitive parsing function satisfy must be changed slightly. As row and column
numbers are present only to guide the parser, it is reasonable to have satisfy strip this
information from consumed symbols. In this manner, the annotations in the input
string are of no concern when building parsers, being entirely hidden within the
parsing notation itself. The other parsers defined in terms of satisfy need a minor
change to their types, but otherwise remain the same

satisfy :: (x - bool) — parser (pos x) *
satisfy p|} = fail[]
satisfy p(x: xs) = succeedaxs,pa
= fail xs , Otherwise
where(a,(r,c)) = x.
We are now able to define the offside combinator. The only complication is that
white space must be treated as a special case, in never being offside. To avoid this

problem we assume that white space has been stripped from the input prior to
parsing. No layout information is lost, since each symbol in the input is paired with

https://doi.org/10.1017/50956796800000411 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000411

334 G. Hutton

its position. In reality, most parsers will have a separate lexical phase anyway, in
which both comments and white-space are stripped

offside :: parser (pos +) xx — parser (pos) »*

offside pinp = |(v,inpOFF)| (v,|]) < pinpON|
where
inpON = takewhile (onside (hd inp)) inp
inpOFF = drop (3% inpON)inp

onside(a,(r,c)) (b, (r,c)=r'=2r&c’ = c.

The offside rule tells us that for the parser (offside p) to succeed, it must consume
precisely the onside symbols in the input string. As such, in the definition above it is
sufficient to apply the parser p only to the longest onside prefix (inpON). The pattern
(v,[]) in the list comprehension filters out parsers which do not consume all such
symbols. For successful parses we simply return the result value v, and remaining
portion of the input string (fnpOFF). It is interesting to note that the offside
combinator does not depend upon the structure of the symbols in the input, only that
they are paired with their position. For example, it is irrelevant whether symbols are
single characters or complete tokens.

For completeness, we briefly explain the four standard Miranda functions used in
offside. Given a list, the function (takewhile p) returns the longest prefix in which
predicate p holds of each element. The function Ad selects the first element of a list,
and is defined by Ad(x:xs) = x. The function (dropn) retains all but the first n
elements of a list. Finally, ‘ 4’ is the length operator for lists.

4 Building realistic parsers

Many simple grammars can be parsed in a single phase, but most programming
languages need two distinct parsing phases — lexical and syntactic analysis. Since
lexical analysis is nothing more than a simple form of parsing, it is not surprising to
find that lexers themselves may be built as combinator parsers. In this section we
work through an extended example, which shows how to build two-phase combinator
parsers, and demonstrates the use of the offside combinator.

4.1 Example language

We develop a parser for a small programming language, similar in form to Miranda.
The following program shows all the syntactic features we are considering:

fxy =addab
where
a=25
b=subxy

answer = mult (f37)5".

https://doi.org/10.1017/50956796800000411 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000411

Higher-order functions for parsing 335

If a program is well-formed, the parser should produce a parse tree of type script,
as defined below. Even though local definitions are attached to definitions in the
language, it is normal to have them at the expression level in the parse tree

script :: = Script |def]
def ::= Defvarfvar]expn
expn ::= Varvar| Numnum|expn $Apply expn|expn$Where |def]

var = =|char].

The context-free aspects of the syntax are captured by the BNF grammar below.
The non-terminals var and num correspond to variables and numbers, defined in the
usual way. Ambiguity is resolved by the offside rule, applied to the body of definitions
to avoid special symbols to separate definitions and delimit scope

prog ::= defn*

defn ::=var*“ =" body

body::= expr[“where” defnt]

expr ..= expr prim|prim

prim = var|num|“(“expr’)”.

As we would expect, application associating to the left in our language is expressed

by a left-recursive production rule in the grammar (expr). As already mentioned in
Section 2.4, however, left-recursion and top-down parsing methods do not mix. If we

are to build a combinator parser for this grammar, we must first eliminate the left-
recursion. Consider the left-recursive production rule

a=of|y

in which it is assumed that y does not begin with an o. The assumption ensures that
the production has a non-recursive base case. (For the more general situation when
there is more than one recursive production for a, the reader is referred to Aho, 1986.)
What language is generated by o? Unwinding the recursion a few times, it is clear that
a single v, followed by any number of s, is acceptable. Thus, we would assert that
a::= yB* is equivalent to a::= aff|y. The proof is simple

vB* = y(B*Ble) {properties of *}
= yB*B|ye {distributivity}

(yB*)B|y {properties of sequencing}
= af|y {definition of a}.

In our example language, this allows us to replace the left recursive expr production
rule with expr::= primprim*, which in turn simplifies to expr::= prim*. While the
languages accepted by the left-recursive and iterative production rules are provably
equivalent, the parse trees will in fact be different. This problem can be fixed by a
simple action in the parser: we return to this point at the end of Section 4.5.

https://doi.org/10.1017/50956796800000411 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000411

336 G. Hutton

4.2 Layout analysis

Recall that the offside combinator assumes white-space in the input is replaced by row
and column annotations on the symbols. To this end, each character is paired with
its position during a simple layout phase prior to lexical analysis. White-space itself
will be stripped by the lexer, as is normal practice

prelex = pl(0,0)
where
pl(r,0)l] =11
pl(r,0)(x:xs5) = (x,(r,c)): pl(r,tabc) xs,x = \t'
=(x,0,0):pl(r+1,0xs,x ="\n’
=(x,(r,c)) : pl(r,c+ 1) xs , otherwise
tabc = ((cdiv8)+ 1)« 8.

4.3 Lexical analysis

The primary function of lexical analysis is to divide the input string into its
component tokens. In our context, each token comprises a tag and a string. Two
strings have the same tag only if they may be treated as equal during syntax analysis

token = = (tag,|char]).

For example, we could imagine (Ident,”add’) and (Lpar,”(”) as tokens corresponding
to the strings “add” and “(”. According to the last sentence of the previous paragraph,
each reserved word or symbol such requires a unique tag. To avoid this tedium, we
choose to bundle them together as tokens with the tag Symbol

tag :: = Ident| Number | Symbol | Junk.

For example, the tokens (Number,”123”) and (Symbol,”where”) correspond to the
strings “123” and “where”. The special tag Junk is used for things like white-space and
comments, which are required to be stripped before syntax analysis.

Like all other parsers, lexers will ultimately be defined in terms of the primitive
parsing function satisfy. Earlier we decided that this was a good place to throw away
the position of consumed symbols. Now we actually need some of this information,
since the offside combinator requires each token to be paired with its position. Our
solution is to define a new combinator, tok, which encapsulates the process of pairing
a token with its position. Since tok will be applied once to each parser for complete
tokens, it is convenient to include the tag as an extra parameter to tok. We see then
that tok provides a means to change a parser with result type [char] into a parser with
result type (postoken)

tok :: parser (pos char) |char| > tag — parser (pos char) (pos token)
(p Stok t)inp = |(((¢, xs), (1, ¢)), out) | (xs, out) < p inp}
where (x,(r,c)) = hdinp.

For example, (string”where” Stok Symbol) is a parser which produces the pair
((Symbol,”where”), (r, ¢)) as its first result if successful, where (r, ¢} is the position of

https://doi.org/10.1017/50956796800000411 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000411

Higher-order functions for parsing 337

the “w” character in the input string. Notice that tek may fail with parsers which
admit the empty string, in trying to select the position of the first character when none
of the input string is left. It is reasonable to ignore this problem, however, since to
guarantee termination of the lexer, the empty-string must not be admissible as a
token.

We turn our attention now to lexical analysis itself. Thinking for a moment about
what the lexer actually does, it should be clear that the general structure is as follows,
where each pi is a parser, and ¢i a tag

many ((p1 $tok t1) $alt (p2 $tok t2) $alt ... Salt (pn Stok tn)).

We find it convenient then to define a combinator which builds parsers of this form.
Given a list [(pl,t]),(p2,12),...] of parsers and tags, the lex combinator builds a
lexer as above

lex ::|(parser (pos char)[char], tag)l - parser (pos char) | pos token]

lex = many .(foldr op fail)
where (p,t) Sop xs = (p Stok t) 3alt xs.

9

The standard functions ““.”” and foldr were explained in Section 3.1 Using lex, we now
define a lexer for our language

lexer :: parser | pos char) | pos token]
lexer = lex|(some (any literal” \t\n"), Junk),

(string "where” , Symbol),
(word ’ Ident)’
(number , Number),

(any string|"(",”)",” ="] , Symbol)).

A secondary function of a lexer is to resolve lexical conflicts. There are basically
two kinds. First, lexical classes may overlap; for example, reserved words are usually
also admissible as identifiers. Second, some strings may be interpreted as different
numbers of tokens; for example, “> =" could be seen either as a representation of the
operator ‘ >’, or as the separate operators ‘>’ and ‘=".

In our lexer, there is only one such conflict: the reserved word "where”. We arrange
for the correct interpretation by ordering the tokens according to their relative
priorities. In this case, for example, reserved words appear before identifiers in the
lexer. Ordering the remaining, non-conflicting, tokens by probability of occurrence
can considerably improve the performance of the lexer.

4.4 Scanning

[T 1)

Since there is no natural identity element for the list constructor ““:” used by many
to build up the list of tokens, white-space and comments are not removed by the lexer
itself, but tagged as junk to be removed afterwards. The strip function takes the
output from a lexer, and removes all tokens with Junk as their tag:

strip::| pos token] — | pos token]

strip = filter ((" = Junk).fst . fst).

https://doi.org/10.1017/50956796800000411 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000411

338 G. Hutton

The standard function (filter p) retains only those elements of a list which satisfy the
predicate p, and is defined by filterpxs = [x|x < xs;px]. For example, applying
Sfilter (> 5) to the list [1,6, 2,7] gives the list |6, 7].

4.5 Syntax analysis

Lexical analysis makes the initial jump from characters to tokens. Syntax analysis
completes the parsing process, by combining tokens to form a parse tree. For most
tokens, only the tag part is important during syntax analysis. Thus we define (kind
t) as a parser which recognizes any token with tag ¢, regardless of its string part. Once
a token has been consumed by a parser, its tag becomes somewhat redundant, in
much the same way as its position becomes redundant after being consumed by the
satisfy primitive. To this end, (kindt) returns only the string part of a consumed token

kind:: tag — parser (pos token) [char]

kindt = (satisfy (= t).f5t)) Susing snd.

Because all reserved words and symbols share the single tag Symbol, the kind
function is no use in these cases. We need a special function which matches on the
string part of a token. Thus, we define (/it xs) as a parser which only admits the token
(Symbol, xs). As for kind, the tag part of a consumed token is discarded

lit :: |char] - parser (pos token) [char}
lit xs = literal (Symbol, xs) Susing snd.
Recall now the BNF grammar for our example language
prog .. = defn*
defn .= var* =" body
body::= expr|[*“‘where” defn*]
expr .= prim*
prim .= var|num|*“(expr*)”’.
Just as in the arithmetic expression example of Section 2.4, we build a parser by
simply casting the grammar in combinator notation, and including semantic actions
to build the parse tree
prog = many defn $using Script
defn = (some (kind Ident) $thenlit” =" $xthen offside body) Susing defnFN
body = (expr Sthen ((lit"where” $xthen some defn) Sopt |) Susing body FN
expr = some prim Susing (foldll Apply)
prim = (kind (Indent $using Var) $alt
(kind (Number $using numFN) $alt
(lit”(” 8xthen expr Sthenx lit ’)").

Recall that the offside rule is applied to the body of definitions in our example
language. In direct correspondence, see that the offside combinator is applied to body

https://doi.org/10.1017/50956796800000411 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000411

Higher-order functions for parsing 339

in the defn parser above. The opt combinator used in the definition of body above
corresponds to the [...] notation in BNF, denoting an optional phrase

OptL.:parser ¥ x* — xx — parser x *x

p3optv = p$alt (succeedv).

Before defining the remaining semantic actions, the somewhat strange action
(foldll Apply) in the expr parser merits some explanation. Recall that the original
grammar in Section 4.1 used left-recursion to express the left associativity of
application. By applying a simple transformation, left recursion was eliminated in
favour of iteration. In combinator parsing, iteration corresponds to many and some.
These operators produce a list as their result. What we really want from the expr
parser is a left-recursive application spine: if the result were the list |x7,x2,x3,x4],
it should be transformed to (((xI @ x2)@ x3)@ x4), where @ denotes the
application constructor $A4pply. To do this, we use a directed reduction as for the any
combinator in Section 3.1, except that this time the operator should be bracketed to
the left instead of the right; i.e. foldl should be used instead of foldr. In fact, we use
JSoldll, which is precisely the same except it only works with non-empty lists, and
hence we don’t need to supply a base case.

Of the three remaining semantic actions the first two are straightforward, simply
converting results to the appropriate types. The final action takes into account that
local declarations are found at the expression level in the parse tree, while they are
attached to definitions in the grammar

defuFN(f:xs,e) = Deffxse
numFN xs = Num (numuval xs)
bodyFN(e,[]) =e

bodyFN (e,d:ds) = e $Where (d: ds).

4.6 The complete parser

The complete parser is obtained by simply composing four functions — prelex (pairing
symbols with their position), lexer (lexical analysis), strip (removing white-space and
comments), and prog (syntax analysis). We ignore the possibility of errors, assuming
that the lexical and syntactic analysis are always successful. The function (fst.hd)
selects the first result from lexical and syntactic phases

parse::|char] — script

parse = fst.hd.prog .strip.fst.hd.lexer .prelex.

5 More combining forms

We conclude our introduction to combinator parsing by presenting a few extra
combining forms that have proved useful, allowing us to make parsers more lazy, give
more informative error messages, and manipulate result values in some new ways.

https://doi.org/10.1017/50956796800000411 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000411

340 G. Hutton

5.1 Improving laziness

While combinator parsers are simple to build, some such parsers are not as lazy as
we would expect. Recall the many combining form from Section 2.3. For example,
applying the parser many (literal’a’) to the string “aaab” gives the list

l(//aaa//, //b//)’ //aa//, /Iab//), (//a//’ //aab//), (////, ”aaab”)].

Since Miranda is lazy, we would expect the @’s in the first result to become available
one at a time, as they are parsed in the input string. This is not, however, what
happens. In practice, the string “aaa” is not made available until it has been entirely
constructed. The implication is that parsers defined using many at the top level, such
as lexers, cannot rely on lazy evaluation to produce components of the result lists on
a supply and demand basis. We refer the reader to Wadler (1985) for a more detailed
explanation of the laziness problem with many; Wadler’s solution is a new
combinator which guarantees that a parser succeeds at least once.

5.2 Limiting success

Combinator parsers as presented in this paper return a list of results if successful.
Being able to return more than one result allows us to build parsers for ambiguous
grammars, with all possible parses being produced for an ambiguous input string.
Natural languages are commonly ambiguous. Programming languages are, for the
most part, completely unambiguous: at most one parse of any input string is possible.
When working with un-ambiguous grammars, it may be preferable to use a special
type for failure/success of a parser, rather than returning a list of results

maybe * :: = Fail| OK *
parser x xx = = [¥] > maybe (x,[x]).

Redefining the primitive parsers and combining forms is straightforward.

5.3 Error reporting

A simple extension of the maybe type above can be used to good effect in reporting
errors during parsing. If a combinator parser is applied to an input string containing
an error, the result will often be outright failure to parse the input. Sometimes,
however, a prefix of the input may be parsed successfully, in which case the
unconsumed suffix of the input is returned as part of the result from the parser. Using
the unconsumed input to produce an error message is likely to be uninformative; the
position in the input where the longest parse ends may be far away from the error.
The problem can be solved by distinguishing between failure and an error during
parsing: in both cases, we return a message giving the reason for an unsuccessful

parse
maybe * :: = Fail|char]| Error|char]| OK *.

Redefining the primitive parsers and combining forms is again straightforward: Fail
and Error values should be treated identically, except that in the definition of the alt

https://doi.org/10.1017/50956796800000411 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000411

Higher-order functions for parsing 341

combining form, the second parser may be applied if the first parser fails, but not if
it produces an error. Error values are created using nofail:

nofail:: parser * *% — parser * *

(nofail p)inp = f(pinp)

where
f(Fail xs) = Error xs
fother = other.

The parser (nofail p) has the same behaviour as the parser p, except that failure of p
gives rise to an error. Two common ways in which nofail is used are (p $then nofail
q) and (p 3alt q $alt nofailr). In the first case, failure of parser ¢ after success of parser
p gives an error rather than just failure. In the second case, failure of any alternative
to succeed gives rise to an error. Experience has shown that careful use of nofail can
result in reasonably informative reporting.

5.4 Result values

In parsers built using the then combining form, the right-hand parser has no access
to the result produced by the left-hand parser; the results produced by the two parsers
are paired within then. Sometimes it is useful to have a parser take not just a sequence
of symbols as input, but also the result from some other parser. A new combining
form proves very useful in building such parsers

into::parser * x* — (% — Parser * x**)— Parser * +kx

(p Sintof)inp = g (pinp)

where
g(OK(v,inp’)) = fvinp’
g other = other.

We assume for convenience now that Miranda is extended with A-expressions, written
as \v.e. The parser (p 3into\v.q) accepts the same strings as the parser (p Sthen q),
but the treatment of result values is different: if parser p is successful, its result value
is bound to variable v, and is thus available to parser ¢; if parser ¢ is in turn
successful, the result from the composite parser (p $into\v.q) is the result of parser
q. Contrast with the parser (p $then q), whose result is the pair of results from parsers
p and ¢. There are many interesting and useful applications of the into combining
form. For example, it can be used to define using and then

pSusing f = p Sinto\v.succeed (fv)
pSthenq = p Sinto \v.q Susing \w.(v,w).
Another application: imagine a parser of the following form
((p Sthen q) Susing f) Salt ((p Sthenr) Susing g).

If, on the left-side of the alf the parser p is successful but the parser ¢ fails, then on the
right-side of the alt the parser p will be re-applied to the same input string. This is

13 FPR 2

https://doi.org/10.1017/50956796800000411 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000411

342 G. Hutton

clearly inefficient. The standard solution is to factorize out p, giving a parser of the
form (p $then(q Saltr)) Susing h. The new action k is some combination of actions f
and g. A common application of such a grammar transformation is with language
constructs which have an optional component. Examples of such constructs are ‘if”
expressions, having an optional ‘else’ part, and definitions in Miranda, having an
optional ‘where’ part. A problem with the above transformation is that the action A
requires some means of telling which of parsers g and r was successful, to decide
which of actions fand g should be applied to the result. This may necessitate parsers
g and r having to encode their result values in some way. A much cleaner treatment
of the actions after factorization is to make the result of parser p available to the
parser (g $altr) using the into combining form:

p Sinto\v.((q Susing fv) $alt (r Susing g v)).

In the original parser, the actions fand g took a pair of results as their argument; in
the parser above, the actions must be curried to take their arguments one at a time.

Another application of into is parsing infix operators that associative to the left.
Consider a parser of the form some p. Such a parser produces lists as its result values.
Lists are an example of a right-recursive structure; a list is either empty, or comprises
a value and another list. Suppose we wanted a parser that admitted the same strings
as some p, with the results being returned in the same order, but in a left-recursive
rather than a right-recursive structure. Such a parser is

some p Susing foldll f,

where f is some left-recursive binary constructor. The use of foldll above was
explained towards the end of Section 4.5. A drawback of this approach is the building
of the intermediate list prior to applying the foldll operator. The need for such an
intermediate structure can be avoided by rewriting the parser using inte, accumulating
a left-recursive structure as the input is parsed

p Sinto manyp

where manyp v = (p Sinto \w.manyp (fv w)) 3alt succeedv.

We conclude by noting an interesting relationship between info and the Categorical
notion of a monad. Combinator parsers give rise to a monad; we refer the reader to
Wadler (1990) for a full explanation. In this context, the into combining form is very
closely related to the composition operator in the Kleisli category induced by the
monad of parsers. (The identity operator is succeed.) Being precise, the composition
operator is defined as follows:

(p $compose q) v = po Sinto q.
An equivalent definition is

(p 8compose q) v = succeed v Sinto p Sinto q.

Acknowledgements

Thanks to Paul Hudak and John Launchbury for their comments and suggestions.

https://doi.org/10.1017/50956796800000411 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000411

Higher-order functions for parsing 343

References

Aho, A., Sethi, R. and Ullman, J. 1986. Compilers — Principles, Techniques and Tools. Addison-
Wesley.

Fairbairn, J. 1986. Making Form Follow Function. Glasgow University.

Frost, R. and Launchbury, J. 1988. Constructing Natural Language Interpreters in Lazy
Functional Languages. Glasgow University.

Hudak, P. and Wadler, P. (eds). 1990. Report on the Programming Language Haskell. Glasgow
University—Yale University.

Hutton, G. 1989. Parsing using combinators. In Proc. Glasgow Workshop on Functional
Programming. August 1989, Springer Workshops in Computing, Springer-Verlag.

Johnsson, T. 1987. Attribute grammars as a functional programming paradigm. In Proc.
FPCA 87, Vol. 274 of Lecture Notes in Computer Science. Springer-Verlag.

Landin, P. 1966. The Next 700 Programming Languages. Comm. ACM, 9 (Mar.).

Wadler, P. 1985. How to Replace Failure by a List of Successes. In Proc. FPCA 85, Vol. 201
of Lecture Notes in Computer Science. Springer-Verlag.

‘Wadler, P. 1990. Comprehending Mondads. In Proc. FPCA 90.

13-2

https://doi.org/10.1017/50956796800000411 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000411

