CONVERGENCE OF THE HAUSDORFF MEANS OF
DOUBLE FOURIER SERIES*
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In this paper we prove that if {sm 1rl(x, y)} is the sequence of

partial sums of the Fourier series of a function f(x,y), whichis

periodic in each variable and of bounded variation in the sense of

Hardy-Krause in the period rectangle, then {s n(x, y)} converges
m,

uniformly to f(x,y) in any closed region D in which this function
is continuous at every point. This result is then used to prove that
the regular Hausdorff means of the Fourier series of such a function
also converge uniformly in such a region.

A simple corollary of these results is that neither the partial
sums nor the regular Hausdorff means of the Fourier series of such
a function will display the Gibbs phenomenon at any point of continuity
of the function.

Let f(x,y) be periodic with period 2w in each variable, and

let S n(x, y) be the mn-th partial sum of the Fourier series of f(x,y).

Then
w/2,m/2 ) )
(1) S, =)= g(s,t) 2Pps sindl g5 g
mh 0,0
where
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(2) gls, t) = ‘42 E"f'n_é, —S_i—tﬁ {f(X +2s, y +2t) +1(x +2s, y- 2t)
™

+f(x - 2s, y +2t) +f(x - 2s, y - 2t)}
and
p=2m+1; gq=2n+1.

If g(s,t) is absolutely bounded, non-negative, and monotonically
decreasing in each variable, then a slight modification of the proof
given by Hobson [2, p. 705-709] leads to the result

(3) ISm,n(x, y) - f(xy)| < 2n% & (0, 0)
+g(0,0) {4m/r + zz‘f {V(v+r)}_1} +(2/r)gle, €) +6,
for p,q > k'=k'(5),

where 8§ >0 and ¢ are fixed but otherwise arbitrary,
0 <e<w/2, r =min {[pem ], [qe/m]} -3 and ¢(0,0) = g(0,0) - g(e, &),
taking (sin x)/x =1 when x = 0.

In (3), & may be chosen arbitrarily small. As for the other
terms, all but the first one tend to zero as r tends to infinity, that is,
as p and g tend to infinity. <Choosing k' large enough so that for
pP»q > k", the contribution of these terms is less than &, it follows
that

(@) [s_ Gyl - b y)] < 21% 6 (0,0) +25, p,q > max {k', k") .

If, in addition, f(x,y) is continuous at (x,y), then e may be taken

small enough so that ¢ (0, 0) < 6/21T2. Then we have that
(5) S, A Y) > ik y), m, no o,

Hobson's proof leading to the conclusion expressed in (4) is
also valid if only g(s,t) can be expressed as the difference of two
non-negative, bounded, monotonically decreasing functions. For
then the integral (1) may be expressed as the difference of two such
integrals and all the calculations carry through.

An examination of the foregoing indicates that the partial sums
of the Fourier series of f(x,y) will converge uniformly to f(x,y) in any
region over which g(s,t) may be expressed as the difference of two
non-negative, monotonically decreasing functions, provided that these
functions can be chosen in such a way that they are uniformly bounded
and equicontinuous at the origin. For then the inequality (4) will hold
uniformly for all points (x,y) in this region by the uniform boundedness,
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and ¢ may be chosen small enough so that ¢(0, 0) < 6/211'2 uniformly
by the equicontinuity.

THEOREM 1. Let f(x,y) be normalized, periodic with period
2m in each variable, and of bounded variation in the sense of
Hardy-Krause in the period cell. If f(x,y) is also continuous at
every point of a closed region D, then the partial sums of the Fourier
series will converge to it uniformly on D. Consequently, the partial
sums of the Fourier series of f(x,y) cannot exhibit the Gibbs
phenomenon at any point of continuity of f(x,y).

Proof. The assumptions on f(x,y) are sufficient to allow
us to assume that there exists a region D' such that D is contained
in the interior of D', both D and D' are rectangular with sides
parallel to the coordinate axes, and f(x,y) is continuous at every
point of D'. By the foregoing discussion, to prove the theorem, it
is sufficient to prove that for each (x,y) ¢D, g(s,t) canbe expressed
as the difference of two non-negative, monotonically decreasing
functions, g(s,t) = m(s,t) - p(s, t), such that the family
{m(s, t), p(s,t): (x,y) e D} is uniformly bounded and equicontinuous
at the origin.

Denote the cell determined by the coordinates (az, bZ), (az, b‘l)'
), a, <a_, b1 <b

17 #1% % 2 Py [ayb,
the cell [2m, 2m; - 2w, - 2m] into the nine subcells [X1,y1; - 2w, - 211].

(ai,bz) and (a1,b ;ai,b1]. Divide

[xz,yi; X - 2rl, [2m, vy Xy - 2m], [x,y,5 - 2m, v, [2m Yoi xz,yﬁ],
i H > H B ’ ’ H » d
[X'l’ 2mw; - 2m, yz] [x2 2m; %, yz] [2m, 2w x, yz] an

D' = [XZ’ Yo %y yi] . There is an overlap along the boundaries in some

of these cells., However, this difficulty is easily removed by defining
the cells so that they are open along the upper and right hand
boundaries whenever there is overlap otherwise.

Restrict f(x,y) to the cell [x S 2w, - 2m] and write

1
(6) e(x,y) = f(x,y) - £f(- 27, y) - f(x, - 2m) +£( - 2w, - 2m) .

Then e( - 2w, -~ 2mw) =e( - 27, y) = e(x, - 27) = 0. Since e(x,y) is of
bounded variation, it can be expressed as the difference of two
positively monotonic functions, namely, its positive and negative
variation functions. See McShane [3, p.250]. By considering the
negatives of these functions, it follows that e(x,y) canbe expressed
as the difference of two negatively monotonic functions,

e(x,y) = ni(x, y) - qi(x, y), and choosing these functions so that they

are zero along the lines x =- 27, y = - 2w, it is easy to show that
they are monotonically decreasing in each variable.

Now set ez(y) =f( - 2m, y) - (- 2m, - 2w) so that ez( -2mw) = 0.
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Then again e_(y) may be expressed as the difference of the negatives

2
of its negative and positive variation functions, ez(y) = nz(y) - qz(y),
where nZ(O) = qZ(O) = 0, and each of these functions is monotonically
decreasing, With e3(x) and its decomposition na(x) - q3(x) similarly

defined, we have

"

f(x, y) {n1(x, y) + nz(y) +n_(x) +1£(- 27, - 2m)}

3
- {q, G0 7) g,y * q,(x)}

n

n' (X’ Y) - Q'(X, Y) )

where n'(x,y) and q'(x,y) are each absolutely bounded and
monotonically decreasing in each variable.

In a similar manner, f(x,y) may be restricted to each of the
remaining eight subcells in turn, and expressed as the difference of
two absolutely bounded, monotonically decreasing functions in each
cell. The addition of a suitable constant to the decomposition functions
in each cell and a combination of the results then yields a
decomposition of f(x,y) into two non-negative, monotonically
decreasing, bounded functions on the cell [2w, 2m; - 2w, - 2w],

(7) f(x,y) = n(x,y) - q(x,y).

Note that n(x,y) and q(x,y) are continuous, hence uniformly
continuous on D', and that this implies the equicontinuity of the

family {n(x',y), n(x,y'), q(x,vy"), q(x',y): (x',y') e D'} on D'.

For (x,y)eD, let
(8) h(S, t) = g(s, t) - g(S, 0) - g(O, t) + g(oy 0) .

Then h(s, 0) = h(0,t) = h(0, 0) = 0, and again we may express h(s,t) as
the difference of the negatives of its negative and positive variation
functions, h(s,t) = mi(s,t) - pi(s, t), where these functions are

monotonically decreasing, and for 0 < s,t < w/2, they are bounded
absolutely and uniformly by V(f), where V(f) denotes the total
variation of f(x,y) in the period cell.

Now let

M = max{n( - 2w, -~ 2m), q( - 2w, - 2m)}.

Then g(s,0) = mz(s) - pz(s) and g(0,t) = m3(t) - p3(t), where
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2
(9) m,(s) = = {siz T {n(x+2x,y) - qlx - 25, y)} +M(n - s5)}
2

™
Pyls) = 2 {2

P {a(x +2s, y) - n(x - 2s, y)} + M(r - s)},
"

with m3(t) and p3(t) similarly defined, is a decomposition of g(s, 0)

and g(0,t). Then
(10) g(s, t) = m(s, t) - p(s, t)
where

(11)  m(s, t)
p(s, t)

n

m1(s,t) + V(f) +m2(s) +m3(t) + ,g(O, O)’
py(sit) V() +p,(s) +p,(t) +g(0,0) +[g(0,0)]

is the required decomposition of g(s,t).

To complete the proof, we examine the family
{m(s, t), p(s,t) : (x,y) e D} for the non-negative property, uniform
boundedness, monotonicity and equicontinuity at the origin. The
functions m1(s, t) + V({f) + ,g(O, 0)[ and pi(s, t) + V(f) + g(0,0) + [g(O, O)I

are clearly non-negative, monotonically decreasing and uniformly
bounded by 2V(f) +2 sup |f(x,y)|. As for the remaining functions
on the right side in (11), we consider mz(s) and remark that the same

argument holds for the others. The function mz(s) is bounded by M

in view of (9) and the definition of M. It is non-negative since the
functions {n(x +2s,y) - q(x- 2s,y) + 7M/2} and M(w/2 - s) are
non-negative. Also, the function {n(x +2s,y) - q(x - 2s,y) + TM/2}
is monotonically decreasing. To insure the monotonicity after
multiplying by the factor s/sin s, the function M(m/2 - s) has been
added.

We check equicontinuity at the origin. For this purpose, we
examine only mi(s,t) and mz(s), the argument for

pi(s,t), m3(t), pz(s) and p3(t) being similar, and the constants

V(f), g(0,0) and [g(O, 0)[ have no bearing on equicontinuity. Since

the variation functions for f(x,y) are continuous, hence uniformly
continuous on D', the equicontinuity of the family

{rni(s, t) : (x,y) e D} follows, since |m1(0, 0) - m(s, t)l, 0<s, t<e,

does not exceed the variation of f(x,y) in the cell [x +¢ y +e;x-¢ vy - €.
Also, by the earlier remarks, the family

{n(x', y), n(x,y"), q(x",y), qlx,y") : (x',y') ¢ D} is equicontinuous

on D', But this implies the equicontinuity of the family

{n(x + 2s,y), n(x, y +2t), q(x *+2s, y), q(x, y + 2t) : (x,y) e D} at

the origin., This completes the proof.
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THEOREM 2. Let f(x,y) be normalized, periodic with period
2w in each variable, and of bounded variation in the period cell. If
f(x,y) is also continuous in a closed region D, then the regular
Hausdorff means of the partial sums of the Fourier series of f(x,y)
converge to f(x,y) uniformly on D. Consequently, the regular
Hausdorff means of the partial sums of the Fourier series of f(x,y)
cannot exhibit the Gibbs phenomenon at any point of continuity of f(x,y).

Proof. If {sm n} is any sequence, then the mn-th regular

Hausdorff transform of this sequence is given by

1,1 Iy,

_ m-k k n- 2
(12) b (s )= 2 W]6) sk’ffo ST T e ),

where g(p, v) is of bounded variation in the cell [1, 1; 0,0], g(41,1)=1 and
+ +
g(0,0) = g(p, 0) = g(u, 0) = g(0,v) =¢g(0 ,v) =0, 0< p, v<A1.
As such, g(p,v) may be split up into two positively monotonic functions,

g(}"" v) = P(H’ v) - n(H' v),

where p(w,v) and n(y,v), being the positive and negative variation
functions of g(u,v) are of bounded variation in the unit cell and

V(g) = V(p) + V(n). The expression on the right in (12) may be then
split into two parts, one involving an integral with respect to n(w, v),
and the other an integral with respect to p(w, v). Doing this, we have

(x,y)} -f{x,y)=h

m, nUSk g (0 ) - 16 )}

hm, n{ Sk,l

m, n 1,1
-k k 4 4.2
= 020 c:)(f){ S (% y) - £lxy)} g . (- W™ - ™ e, )

’

m, n 1,1
- OEO (r;)(;){sk,ﬁ (x,y) - f(x,y)} { 0(1 - p.)m—kpk('l - V)n_gvldzn(p,v).

Set ¢k ’ = sup{ [sk . (x, y) - £(x, y),: (x,y) eD}. Thenby Theorem 1,

{¢k1} is a null sequence. Also, since p(p,v) and n(w,v) are of
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bounded variation in [1,1; O, 0], and, being the positive and negative
variation function of g(p,v), are zero along the coordinate axes, it
follows that the Hausdorff transform relative to them is convergence
preserving and regular for null sequences. See [1, pp. 17 and 33].

Thus

| By {8 09} - 1 y) |

m, 1,1

n
et
L T T T
m,n o n 11 m-k k L 1.2
- n-
= (e, /- T d%n, v)
0,0 0,0

) )

-0, m,n - o,

uniformly in D. This proves the theorem.

Remark. It is easy to show by example that the results expressed
in Theorems 1 and 2 are not the best possible. However, the derivation
of the best possible results appears to present some difficulties, so that
the widest class of functions for which these theorems hold is an open
question at the present time.
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