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Some New Results on L
2 Cohomology of

Negatively Curved Riemannian Manifolds

M. Cocos

Abstract. The present paper is concerned with the study of the L2 cohomology spaces of negatively

curved manifolds. The first half presents a finiteness and vanishing result obtained under some curva-

ture assumptions, while the second half identifies a class of metrics having non-trivial L2 cohomology

for degree equal to the half dimension of the space. For the second part we rely on the existence and

regularity properties of the solution for the heat equation for forms.

1 Introduction

The study of L2 harmonic forms on a complete Riemannian manifold is a very in-
teresting and important subject; it also has numerous applications in the field of
Mathematical Physics (see for example [15, 11]). For topological applications of L2

harmonic forms on noncompact manifolds see [2, 17].

There is another, probably more compelling reason for considering the study of
harmonic L2 forms on noncompact manifolds. Namely, it can be used to obtain

topological information about compact quotients of M. In particular as Dodziuk and
Singer show in [4, 16] the study of the L2-cohomology of negatively curved spaces
may be used to prove one of Hopf ’s famous conjectures.

One of the first results on the vanishing and finite dimensionality of the space of
harmonic L2 forms was obtained by E. Vesentini in [18]. Throughout this paper M

is a connected Riemannian manifold, IM(R) denotes a positive quantity depending
on the curvature operator acting on k-forms (see Definition 3.4), λ1 is the Poincaré

constant of the manifold (i.e. λ1 is the infimum of the spectrum of the Laplace oper-
ator acting on functions, see [13] for the precise definition), Br is the geodesic ball of
radius r > 0 and Hk is the space of square integrable harmonic k-forms.

The main result of the first part of this paper is:

Theorem 1.1 Let M be a complete manifold of infinite volume, bounded curvature

operator, and λ1 > 0. Then we have the following:

(a) If λ1 > IM(R) then H
k
= 0,

(b) If λ1 > IM\Br
(R) for some r > 0, then dim Hk <∞.

As a more practical application of Theorem 1.1, we also prove vanishing and finite-
ness of the Hk spaces if the sectional curvature is appropriately pinched outside some
compact set (see Corollary 3.7).
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In the last section of the paper we prove a few consequences of the existence and
regularity of the solution to the heat equation for forms proven by Gaffney [8].

Among these we find a sufficient condition for the nonvanishing of H
n/2 of an

n-dimensional (n even), simply connected manifold of negative curvature.

2 Preliminaries

Let M be a smooth, complete and oriented Riemannian manifold. Let C∞
Ω

k de-
note the space of smooth k-forms. The metric on M induces a natural pointwise
scalar product on forms and let us denote this by 〈α(x), β(x)〉 where x ∈ M and

α, β ∈ C∞
Ω

k. Thus we obtain the length at a point x ∈ M of a form α ∈ Ω
k as

〈α(x), α(x)〉 ≥ 0. This leads to the definition of a norm of a form (if finite) by

|α|2 =

∫

M

〈α(x), α(x)〉 dV (x),

where dV is the volume form of the manifold and x represents the variable of inte-
gration.

By completing this space with respect to the above mentioned norm we obtain a

Hilbert space, henceforth denoted by L2
Ω

k. The inner product in this space will be
denoted by

(1) (α, β) =

∫

M

〈α(x), β(x)〉 dV (x),

whereα, β ∈ L2
Ω

k. With the help of the metric one could naturally define the Hodge
Laplacian of the manifold ∆ : C∞

Ω
k → C∞

Ω
k, ∆ = dδ + δd. In the above formula,

d is the exterior derivative and δ the formal adjoint. More details of the definition of
∆ can be found in [12, 14].

One of the goals of this paper is to study the space of L2 harmonic forms (i.e.,

∆α = 0 and α ∈ L2
Ω

k). The heat equation will provide an injection from the space
of compactly supported de Rham cohomology classes into the space of L2 harmonic
forms. This will be shown in more detail in what follows.

The definition of the reduced L2 cohomology groups is a slight modification of
de Rham groups. Next we give the precise definition of these groups as well as the
definition of the space of L2 harmonic forms.

Definition 2.1

Hk(L2M) = Zk(L2M)/Bk(L2M)

where
Zk(L2M) = {α | α ∈ C∞

Ω
k ∩ L2

Ω
k, dα = 0},

and

Bk(L2M) = {β | β ∈ C∞
Ω

k ∩ L2
Ω

k, µ ∈ C∞
Ω

k−1 ∩ L2
Ω

k−1, β = dµ}.

Bk(L2M) is the closure in Zk(L2M) with respect to the L2 norm.
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Definition 2.2

H
k
= {α | α ∈ C∞

Ω
k ∩ L2

Ω
k,∆α = 0}.

The following decomposition theorem due to de Rham is well known.

Theorem (de Rham) Let M be a complete Riemannian manifold. Then we have the

following decomposition:

L2
Ω

k
= dC∞

c Ωk−1 ⊕ H
k ⊕ δC∞

c Ωk+1.

Using the heat flow method, which will be presented shortly, one can show:

Theorem 2.3 If M is a complete Riemannian manifold then Hk ≃ Hk(L2M).

It is well known (cf. [9]) that for the hyperbolic space H
2n, Hn is infinite dimen-

sional (see also [5]). Since H
2n is diffeomorphic to R

2n, on which Hn
= 0, the Hk’s

are not topological invariants. Thus, the H
k’s usually depend on the metric.

What is also known is that in the compact case a form is harmonic (∆α = 0)
if and only if dα = 0 and δα = 0, and this is a consequence of Stokes’ Theorem
and the very definition of δ operator. The same result remains valid for an L2 har-

monic form (possibly an Lp form) on a complete manifold. The next proposition is
due to Andreotti and Vesentini, and its proof can be found in the classical book by
de Rham [3].

Proposition 2.4 Let α be an L2 harmonic form on a complete Riemannian manifold.

Then dα = 0 and δα = 0.

The following proposition will be used in the following sections and it essentially
asserts that d and δ are formally adjoint operators on L2 forms on a complete man-
ifold. The proof is a typical application of a cut-off function argument. We give the

proof in detail.

Proposition 2.5 Let M be a complete Riemannian manifold and α, β, dα, δβ be

square integrable forms. Then

(dα, β) = (α, δβ).

Proof Let α and β as above and let 0 ≤ ψn ≤ 1 be a sequence of smooth, compactly
supported functions with the following two properties: |dψn| ≤ C

n
for some positive

constant C > 0 and ψn(x) → 1 for every x ∈ M.
We have the pointwise identity

(2) 〈d(ψnα), β〉 = 〈dψn ∧ α + ψndα, β〉,

and integrating the left-hand side we get

∫

M

〈d(ψnα), β〉 dV =

∫

M

〈ψnα, δβ〉 dV.
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Since ψn → 1 pointwise we have, according to the Lebesgue Dominated Convergence
Theorem

(3) lim
n→∞

∫

M

〈ψnα, δβ〉 dV = (α, δβ).

Now integrating the right hand side of (2) and using the pointwise estimate

〈dψn ∧ α, β〉 ≤ |dψn| |α| |β| ≤
C

n
|α| |β|

together with Lebesgue’s theorem, we get

(4) lim
n→∞

∫

M

〈dψn ∧ α + ψndα, β〉 dV =

∫

M

〈dα, β〉 dV.

Using (2), (3), and (4), we get the desired result.

In what follows we state the existence and regularity of the solution to the (ab-
stract) heat equation. This result is mainly due to F. Browder [1]. We consider a sec-
ond order elliptic operator A acting on smooth sections of a vector bundle endowed

with a smooth scalar product. Suppose the operator fulfills the following conditions:

(i) (Aα, β) = (α,Aβ) for any compactly supported α, β,
(ii) (Aα, α) ≥ 0 for any compactly supported α.

We are interested in finding a regular solution to the Cauchy problem:







∂α

∂t
= −Aα,

α(0) = α0 ∈ L2.

More precisely we are interested in finding a path α : [0,∞) → L2
Γ such that the

two above conditions are fulfilled. Here Γ denotes the space of sections of the vector

bundle. The most important result is contained in the following proposition and it
is due to the efforts of Browder and Gaffney [8]:

Proposition 2.6 There is always a unique solution to the Cauchy problem of the heat

equation for forms and the solution has the following properties:

(a) limt→∞ α(t) ∈ Hk,

(b) α, δα, dα, δα are all in L2 at any time t > 0,

(c) the solution is C∞ for all t > 0,

(d) if the initial data α0 is closed then α is closed for all t > 0,

(e) the cohomology class is preserved by the flow.
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3 The Finite Dimensionality of Hk’s and Some Vanishing Results

This section is concerned with finding sufficient geometric conditions on the mani-

fold M which will guarantee the finite dimensionality of the L2 cohomology spaces.
The techniques are based on the classical Weitzenböck formula and a few standard
PDE techniques. Throughout the whole section, all the operators acting on forms are
assumed to act on k forms (i.e., forms of arbitrary degree) if not specified otherwise.

Proposition (Weitzenböck formula) Let M be a Riemannian manifold (not necessar-

ily complete). Let ei be a local orthonormal frame and ηi the associated coframe. Then

we have the identity

(5) ∆α = ∇∗∇α + R(α),

where ∇ represents the covariant derivative acting on forms, ∇∗ represents its formal

adjoint and R(α) =
∑

i, j η
i ∧

(

ie j
R(ei , e j)α

)

.

For a proof of this formula see [12].

Definition 3.1 The R(α) operator defined by the identity in the previous proposi-
tion is called the Weitzenböck curvature operator. We say R is positive (negative) if
and only if g

(

R(α), α
)

> 0 (< 0) for all α 6= 0 where g is the Riemannian metric
of M.

We also need the following simple lemma. Here

W 1,2
Ω

k
=

{

α ∈ Ω
k
∣

∣ ‖α‖L2 + ‖dα‖L2 + ‖δα‖L2 <∞
}

.

Lemma 3.2 Let M be as above and (αn)n≥1 be a bounded sequence in W 1,2
Ω

k and ψ
be a smooth compactly supported function. Then the sequence ψn = ψαn is bounded in

W 1,2
Ω

k and is compactly supported.

The proof of the lemma is trivial.
The following proposition is essential in proving the main result of this section.

Proposition 3.3 On a complete manifold M, dim Hk < ∞ if and only if there exist

p ∈ M, r > 0 and C > 0, such that

∫

Br(p)

|α|2 dV ≥ C

∫

M

|α|2 dV

for every α ∈ H
k. Here Br(p) denotes the geodesic ball centered at p and having radius

r > 0.

Proof For the “only if” part we observe that both the quantities involved in the above
mentioned inequality are norms on a finite dimensional vector space, hence, equiva-
lent. To see that the left hand side of the inequality is a norm, one should note that if
a harmonic form is zero on an open ball, it has to be zero everywhere.
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For the “if” part, let r > 0 and C > 0 as in the hypothesis. Let ψ be a cut-off
function such that ψ ≡ 1 on Br and ψ ≡ 0 on B2r . Assume dim Hk

= ∞ and let αn

be a countable L2-orthonormal sequence of harmonic forms in H
k. Then, according

to Lemma 3.2, the sequence ψn = ψαn satisfies the conditions of Rellich theorem,
hence, we can extract a subsequence convergent in L2. We will use the same notation
for the subsequence ψn. Let us now estimate the distance between members of this

sequence, namely d(ψn, ψm) (here d( , )denotes the L2 distance). We have

d(ψn, ψm) =

∫

M

〈ψn − ψm, ψn − ψm〉 dV

=

∫

M

(|ψn|2 + |ψm|2) dV − 2

∫

M

〈ψn, ψm〉 dV.

Hence,

d(ψn, ψm) ≥
∫

Br

(|αn|2 + |αm|2) dV − 2

∫

M

〈ψn, ψm〉 dV.

Now applying the inequality from the hypothesis we can estimate the first term of the
right-hand side as follows:

∫

Br

(|αn|2 + |αm|2) dV ≥ 2C.

So finally we get

d(ψn, ψm) ≥ 2C − 2

∫

M

〈ψn, ψm〉 dV.

But the sequence ψn is obtained by multiplying an orthonormal sequence in L2 by a
cut-off function, so it is weakly convergent to zero in L2 and using a diagonal argu-
ment we can see that the second term on the right-hand side of the inequality above

can be made arbitrarily small (as n,m → ∞). By the Rellich theorem, so is the
left-hand side. It then follows that 2C ≤ 0, a contradiction.

As this proposition shows, in proving the finite dimensionality of Hk one could

try to get an estimate as above. In fact, Vesentini in [18] obtained the first result of
this kind. More precisely he proved that if the curvature operator is positive outside
some compact subset of the manifold then the desired inequality holds. In a similar
fashion he also proved that if the curvature operator is nonnegative then Hk

= 0.

In what follows we will give other geometric conditions that imply the required
estimate and also will obtain another useful vanishing result. Before going to the
main result we need to make a definition:

Definition 3.4 Let M be a complete manifold and let R be the curvature operator

acting pointwise on k-forms. Let D ⊆ M be a subset. Let

Λ = − sup
{

c
∣

∣ 〈Rα(p), α(p)〉 ≥ c|α(p)|2, α ∈ Ω
k
p, p ∈ D

}

.

Then
ID(R) = max(Λ, 0).
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Remark Obviously, if D1 ⊂ D2 then ID1
(R) ≤ ID2

(R).
For the proof of the main theorem we will first need to prove one technical lemma.

Lemma 3.5 Let M be a complete manifold whose Weitzenböck curvature operator on

Ω
k is bounded. Then for any α ∈ H

k we have
∫

M
|∇α|2 < ∞. Hence, in this case the

Weitzenböck formula gives

∫

M

|∇α|2 dV +

∫

M

〈Rα, α〉 dV = 0.

Proof Letψ ∈ C∞
0 Ω

k be a compactly supported form. According to the Weitzenböck
formula we have

∆ψ = ∇∗∇ψ + Rψ.

Multiplying both sides by ψ and integrating by parts (we can do this because ψ is
compactly supported) we get

(∆ψ, ψ) = ‖∇ψ‖2 + (Rψ, ψ).

We can rewrite the left-hand side of the above identity in terms of d and δ as follows

(6) ‖dψ‖2 + ‖δψ‖2
= ‖∇ψ‖2 + (Rψ, ψ).

In all of the above formulas ‖ψ‖ denotes the L2 norm of ψ. But the curvature oper-

ator is bounded from below, i.e., 〈Rψ, ψ〉 ≥ −c|ψ|2 and this is pointwise, or equiva-
lently −〈Rψ, ψ〉 ≤ c|ψ|2. Hence, we get

(7) ‖∇ψ‖2
=

∫

M

|∇ψ|2 dV ≤ c

∫

M

|ψ|2 dV + ‖dψ‖2 + ‖δψ‖2

for any ψ compactly supported in M.

Now let α ∈ H
k and φ be a smooth, compactly supported function such that

φ ≡ 1 on Br and zero outside B2r for arbitrary r > 0, and also |∇φ| ≤ 1. Applying
(7) (taking into account that 0 ≤ φ ≤ 1) to the compactly supported form φα we get

(8)

∫

M

|∇(φα)|2 dV ≤ c

∫

M

|α|2 dV + ‖d(φα)‖2 + ‖δ(φα)‖2.

In order to estimate the last two terms of (8) we proceed as follows:

|d(φα)| = |dφ ∧ α| ≤ |dφ| |α| ≤ |α|

hence,
‖d(φα)‖2 ≤ ‖α‖2

and also

|δ(φα)| = | ∗ d ∗ (φα)| =
∣

∣d
(

φ(∗α)
)
∣

∣ = |dφ ∧ (∗α)| ≤ | ∗ α| = |α|.
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Integrating the above inequality yields

‖δ(ψα)‖ ≤ ‖α‖.

The two previous estimates depend on the facts that α ∈ H
k and that ∗ is a pointwise

isometry. Also, taking into account that

∫

Br

|∇α|2 dV =

∫

Br

|∇(φα)|2 dV ≤
∫

M

|∇(φα)|2 dV

we get

(9)

∫

Br

|∇α|2 dV ≤ c‖α‖2 + 2‖α‖2.

Since r > 0 was arbitrarily chosen, letting r → ∞ we get

(10)

∫

M

|∇α|2 dV ≤ c‖α‖2 + 2‖α‖2.

Furthermore, since by assumption R is bounded from above and below it follows

from (5) that both ∇∗∇α and Rα are square integrable, and using a standard density
argument we can integrate by parts and obtain

∫

M

|∇α|2 dV +

∫

M

〈Rα, α〉 dV = 0.

Proof of Theorem 1.1 As a result of Lemma 3.5 we have

(11)

∫

M

|∇α|2 dV +

∫

M

〈Rα, α〉 dV = 0.

By the definition of IM(R) we have

〈Rα, α〉 ≥ −IM(R)|α|2

or equivalently
−〈Rα, α〉 ≤ IM(R)|α|2.

This together with (11) gives

(12)

∫

M

|∇α|2 dV ≤ IM(R)

∫

M

|α|2 dV.

Assume there is a nonzero harmonic L2 form α. Since the volume of M is infinite, it
follows that |α| is nonconstant so we may apply the Poincaré inequality (see [13]) to
|α|. Hence

∫

M

|∇α|2 dV ≥ λ1

∫

M

|α|2 dV ;
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here we made use of the pointwise inequality: |∇α|2 ≥
∣

∣∇|α|
∣

∣

2
. This together with

(12) implies

λ1

∫

M

|α|2 dV ≤ IM(R)

∫

M

|α|2 dV.

Since α is nonzero we have
λ1 ≤ IM(R)

which contradicts the assumption of part (a) of the theorem.
For part (2) of the theorem let us observe first that there exists constant C > 0

such that

(13) 〈Rα(p), α(p)〉 ≥ −C|α(p)|2

for any α ∈ Ω
k and p ∈ Br . To see this, one should consider the continuous function

f (p, v) = 〈Rpv, v〉 defined on the sphere bundle of Ω
kBr (since this set is compact, f

attains its infimum).
Using Lemma 3.5 we have

∫

M

|∇α|2 dV +

∫

M\Br

〈Rα, α〉dV +

∫

Br

〈Rα, α〉 dV = 0.

This together with (13) gives

∫

M

|∇α|2 dV +

∫

M\Br

〈Rα, α〉 dV ≤ C

∫

Br

|α|2 dV.

Using the definition of IM\Br
(R) we have

∫

M

|∇α|2 dV − IM\Br
(R)

∫

M\Br

|α|2 dV ≤ C

∫

Br

|α|2 dV.

Now using the Poincaré inequality as in part (1) we get

λ1

∫

M

|α|2 dV − IM\Br
(R)

∫

M\Br

|α|2 dV ≤ C

∫

Br

|α|2 dV.

And finally,

λ1

∫

M

|α|2 dV − IM\Br
(R)

∫

M

|α|2 dV ≤ C

∫

Br

|α|2 dV.

By the hypothesis of part (b)

(14)

∫

M

|α|2 dV ≤ C

λ1 − IM\Br
(R)

∫

Br

|α|2 dV

But this is exactly what Proposition 3.3 requires. Hence dim Hk <∞.
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Remark Examples of manifolds with bounded curvature operator R are the mani-
folds with bounded Riemannian curvature tensor (i.e. for which the sectional curva-

ture is bounded).

Next we will show that IHn (R) = nk − k2. This follows easily from the following
lemma:

Lemma 3.6 Let ei be an orthonormal frame at some point and ηi its associated coframe.

Then the following formula holds

(15) 〈R(η1 ∧ η2 ∧ · · · ∧ ηk), η1 ∧ η2 ∧ · · · ∧ ηk〉 =

k
∑

i=1

n
∑

j=k+1

K(ei , e j).

For a proof of this formula, one should consult [14].

By the homogeneity of H and since K ≡ −1 we get the desired formula, namely

IHn (R) = nk − k2.

This together with the well-known fact that

λ1(H
n) =

(n − 1)2

4
,

imply the vanishing of the Hk whenever nk − k2 < (n−1)2

4
.

As a direct application of Theorem 1.1 we obtain the following result:

Corollary 3.7 Let Mn be a complete, simply connected, negatively curved manifold

with sectional curvature K. If −1 ≤ K outside some compact set and K ≤ −1 + ǫ
everywhere, for some ǫ > 0. Then the following hold:

(i) If n ≥ 6 and ǫ < 1 − 4
n−1

, then dim H1
= dim Hn−1 <∞,

(ii) If n ≥ 1 + 2k +
√

2k, k 6= 1, n − 1, and

ǫ <
(n − 1)2 − 4k(n − k)

(n − 1)2 + 4k2(n − k)2[ 1
2

+ 1
3
(k − 1)(n − k − 1)]

,

then dim Hk <∞.

Proof For the proof of the first part we shall use (15) to estimate IM\Br
(R). Let α

be a unit length 1-form at a point outside Br where the pinching condition is satis-

fied. There exist α2, . . . , αn ∈ T∗M such that α, α2, . . . , αn form an orthonormal
coframe. Then according to (15) we have

〈Rα, α〉 =

n
∑

i=2

K(α, αi).
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It follows that R is bounded from above and below, and

IM\Br
(R) ≤ (n − 1),

and, by McKean’s estimate of the Poincaré constant of a negatively curved manifold
[13], we have

λ1 ≥
(n − 1)2(1 − ǫ)

4
.

Hence, if ǫ < 1 − 4
n−1

we have

IM\Br
(R) < λ1,

which means, according to Theorem 1.1, dim H1 < ∞. This concludes the proof of
part one.

For the proof of part two we have to employ more subtle estimates of the curvature

operator in terms of the sectional curvature. We shall use the estimates obtained by
Elworthy, Li, and Rosenberg in [7]. Let α be a unit length k-form (k 6= 1, n − 1).
According to the proof of Theorem 3.1 in [7] we have

(16) 〈R(α), α〉 ≥ B − (A − B)k(n − k)
[ 1

2
+

1

3
(k − 1)(n − k − 1)

]

,

Where

A = sup
{

k
∑

i=1

n
∑

k+1

K(vi , v j)
∣

∣

∣
v1, . . . , vn orthonormal frame

}

and

B = inf
{

k
∑

i=1

n
∑

k+1

K(vi , v j)
∣

∣

∣
v1, . . . , vn orthonormal frame

}

.

Outside of the compact set the pinching condition is satisfied, so we have

A ≤ k(n − k)(−1 + ǫ) and B ≥ −k(n − k),

it follows that, outside Br

〈R(α), α〉 ≥ −k(n − k)
{

1 + ǫk(n − k)
[ 1

2
+

1

3
(k − 1)(n − k − 1)

]}

,

which is equivalent to

IM\Br
(R) ≤ k(n − k)

{

1 + ǫk(n − k)
[ 1

2
+

1

3
(k − 1)(n − k − 1)

]}

.

Using the same estimate of McKean [13] and the hypothesis of the second part of the
corollary we obtain again

IM\Br
(R) < λ1,
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which by the conclusion of the Theorem 1.1, implies dim Hk < ∞. This concludes
the proof of the corollary.

Remarks

(a) If in the hypothesis of Corollary 3.7 one asks for the curvature to be pinched
everywhere, then one gets vanishing of the corresponding spaces. However, the ǫ
required is much smaller than the one obtained by Donnelly and Xavier in [6].

(b) This result relies heavily on being able to estimate the lower bound of the

curvature operator in terms of sectional curvature. A better understanding of this
relationship, not easy in general, may lead to new results for the vanishing or finite
dimensionality of the L2 cohomology spaces.

4 On the Heat-Flow Method of Gaffney

As we have seen in Proposition 2.6 the heat flow takes an L2 form and transforms
it into a harmonic L2 form preserving its cohomology class. A nice differential-
topological corollary of the above mentioned fact is the following proposition:

Proposition 4.1 Let Mn be an n-dimensional noncompact manifold. Then any degree

n compactly supported form is exact.

The proof relies on the following geometric lemma, which is of independent in-
terest:

Lemma 4.2 Any noncompact manifold admits a complete metric of infinite volume.

Proof Imbed the manifold into some large Euclidean space R
N such that the image

of the imbedding is closed. This is always possible due to Whitney’s Imbedding the-
orem. We denote this metric by g. If the volume of the manifold with respect to this
metric is infinite, we are done. If not, let us fix a point p ∈ M and let r(x) = d(x, p)
be the geodesic distance to the fixed point. Since the image of the imbedding is closed

and noncompact, it cannot be bounded, hence r → ∞.

Now choose f ∈ C∞ such that

(17) f (x)n ≥ 1

Vm+1 −Vm

+ 1 for m ≤ r(x) ≤ m + 1.

(In (17), Vr denotes the volume of the geodesic ball of radius r). This is always possi-
ble.

Let us consider now the metric g̃ = f 2g and denote the corresponding volume
elements by dṼ and by dV . Then we have the following identity dṼ = f ndV where n

represents the dimension of the manifold.
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Now, obviously,

(18)

∫

M

1 dṼ ≥
∞
∑

m=0

∫

B(p,m+1)\B(p,m)

f n dV

≥
∞
∑

m=0

( 1

Vm+1 −Vm

+ 1
)

(Vm+1 −Vm)

≥
∞
∑

m=0

1 ≥ ∞.

In the inequalities above B(p, r) denotes the geodesic ball with respect to the metric g.
As a conclusion we see that (M, g̃) has infinite volume. On the other hand, g̃ ≥ g

which implies that any Cauchy sequence with respect to g̃ is Cauchy with respect
to g, hence a convergent sequence. This concludes the proof.

Proof of Proposition 4.1 Let us assume the contrary. Endow the manifold Mn with
a complete metric of infinite volume. Let α ∈ C0

∞
Ω

n and [α] 6= 0, then let α(t) be
the solution to the heat equation with initial data α and let [α∞] = limt→∞ α(t).
Then we obtain α∞ a harmonic L2 n-form which is nontrivial, a contradiction.

Observations

(a) It is well known that on a noncompact manifold every top-degree form must

be exact. For example see [10]. The proof we offered above makes no use of algebraic
topology techniques.

(b) The fact that the existence of a compactly supported nontrivial de Rham class

induces a nontrivial L2 harmonic form was used by Segal in [15] and by Hitchin in
[11]. The method used by Segal to prove this is not based on the heat flow method
initiated by Gaffney.

Proposition 4.3 Let M be a complete Riemannian manifold. The following two con-

ditions are equivalent:

(i) Hk
= {0},

(ii) closed L2 forms are orthogonal to coclosed L2 forms.

Proof Suppose Hk 6= 0. Then there exists α ∈ Hk and α 6= 0. But α ∈ L2, dα =

0, δα = 0 and by assumption (α, α) 6= 0. For the converse, let us assume there
exist α, β ∈ L2, dα = 0, δβ = 0, and (α, β) 6= 0. Let µ denote the solution to the

heat flow having as initial data µ(0) = α. Now consider Q(t) = (µ(t), β). Due to
the properties of the solution to the heat equation this is a smooth function in t , for
t > 0 and continuous for, t ≥ 0.

Differentiating Q we get:

Q̇(t) = (µ̇, β) = −(∆µ, β).
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Since µ is closed for all t > 0 it follows

Q̇(t) = −(dδµ, β) = −(δµ, δβ) = 0.

This means Q(t) = Q(0) and (α∞, β) 6= 0. Therefore Hk 6= 0.

Next we will introduce the concept of the heat-flow map.

Proposition 4.4 Let M be a manifold as before and α in L2Z a closed form on M. Let

µ̇ = −∆µ be the solution to the heat equation having initial data α. Then the following

map H : L2Zk → Hk, H(α) = limn→∞ µ(t) = µ∞ is well defined and linear.

Proof Obvious from the uniqueness of the heat flow.

Remarks

(a) It is obvious that the heat-flow map is nothing other than the Hilbert projec-

tion onto the space of harmonic forms, although it is preferred to interpret this map
as a continuous transformation when proving the results of this section.

(b) When considering different metrics on the same manifold we will indicate
that the spaces or operators are taken with respect to the metric g by an appropriate

index. For example the space of harmonic L2 forms with respect to the metric g will
be indicated as Hk

g , the Laplacian with respect to the metric g will be denoted by ∆g ,
the Hodge-star operator by ∗g , etc.

The next theorem is another immediate application of the principle we used to
prove Proposition 4.3.

Theorem 4.5 Let M be a noncompact manifold and let g and g̃ be two complete met-

rics on M such that

(19) L2
Ω

k
g̃ ⊂ L2

Ω
k
g and L2

Ω
n−k
g̃ ⊂ L2

Ω
n−k
g .

Then the map Hg̃ : Hk
g̃ → Hk

g is linear and injective.

Proof All we have to prove is that ker Hg = 0. Let α ∈ H
k
g̃ such that Hg(α) = 0.

Since α ∈ Hk
g̃ , it implies α is closed and coclosed with respect to the g̃ metric. This

means ∗g̃α is also closed, hence ∗g ∗g̃ α is coclosed with respect to the g metric. All

the forms here are also L2 since the ∗-operator preserves length. Let β = ∗g ∗g̃ α. We
have

0 = (Hg(α), β) = (α, β)g =

∫

M

α ∧ ∗gβ.

But ∗gβ = ± ∗g̃ α. In conclusion we have
∫

M

α ∧ ∗g̃α = (α, α)g̃ = 0.

Hence α = 0. Therefore Hg is injective.

In order to give an interesting application of Theorem 4.5 we need to make the
following definition:
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Definition 4.6 Let V be a finite dimensional real vector space and let g and h be
two positive definite inner products on V . Let G : V → V ∗ and H : V → V ∗ denote

the metric isomorphisms induced by g and h respectively. Let A : V → V denote the
composition A = H−1G. It is well known that A is orthogonally diagonalizable with
respect to the metric h and hence let 0 < µ1 ≤ µ2 ≤ · · · ≤ µn be its eigenvalues. We
will call these positive numbers the eigenvalues of g with respect to h.

Corollary 4.7 Let (Mn, g) be an even dimensional, complete, simply connected Rie-

mannian manifold of negative sectional curvature. Let h denote the complete metric of

constant −1 sectional curvature. Let 0 < µ1 ≤ µ2 ≤ · · · ≤ µn be the eigenvalues of g

with respect to h as functions on the manifold (i.e., µi = µi(x), x ∈ M).

If supx∈M
µn

µ1

<∞ then

dim H
n/2(M, g) = ∞.

Proof Let us fix a point x ∈ M and let e1, e2, . . . , en be a set of eigenvectors for g

which are orthonormal with respect to h. Let e1, e2, . . . , en be the associated dual
coframe. It follows that

ηi =
1√
µi

ei

is an orthonormal frame with respect to g having associated coframe

ηi
=

√
µie

i.

Hence, if we denote by ωh and ωg the volume forms for the two metrics respectively,
we have

ωg = η1 ∧ η2 ∧ · · · ∧ ηn
=

√
µ1 · · ·µnωh.

Let α be an n/2-form expressed at x ∈ M as

α = αi1···in/2
ei1 ∧ · · · ∧ ein/2 = αi1···in/2

1
√
µi1

· · ·µin/2

ηi1 ∧ · · · ∧ ηin/2 ,

it follows that

|α|2h =

∑

i1<i2<···<in/2

α2
i1···in/2

and |α|2g =

∑

i1<i2<···<in/2

α2
i1···in/2

1

µi1
· · ·µin/2

.

Next we compare the L2 norms, we have

|α|2gωg =

∑

i1<i2<···<in/2

α2
i1···in/2

1

µi1
· · ·µin/2

√
µ1 · · ·µnωh,

hence

(20) |α|2gωg ≤
µ

n/2
n

µ
n/2

1

|α|2hωh.
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Using the hypothesis that supx∈M
µn

µ1

<∞ and integrating we obtain forα ∈ C∞
0 Ω

n/2

sup
x∈M

( µn

µ1

) n/2

‖α‖2
h ≥ ‖α‖2

g ,

hence
L2

Ω
n/2

h ⊂ L2
Ω

n/2
g

and applying the conclusion of Theorem 4.5 we get

dim H
n/2
g = dim H

n/2

h = ∞.

This concludes the proof of the corollary.
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