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AN EFFECTIVE SEVEN CUBE THEOREM

R.J. Cook

It is well-known that every sufficiently large positive integer
is the sum of seven cubes. Both proofs of this result, due to
Linnik and Watson, are ineffective. Here we show that Watson's

proof may be made effective.

1. Introduction

It is well-known that every sufficiently large positive integer
may be represented as the sum of seven cubes of positive integers. This
was first proved by Linnik [3] in 1943, and a much simpler proof was
provided by Watson [4]. Recently Hooley [Z2] has announced a conditional
proof of the asymptotic formula for the number of representations, his

proof depending on conjectured properties of the Hasse-Weil L-functions.

The methods of Linnik and Watson are ineffective, incapable of

providing an explicit value no such that all »n > no are the sum of

seven cubes. The purpose of this note is to show that Watson's proof can
be modified to give an effective result. Thus it may now be possible, with
sufficient diligence and computer time, to prove that every integer

n > 454 is representable as the sum of seven cubes of positive integers.

I am grateful to Professor Watson for pointing out to me that no effective
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proof of the result was known.
THEOREM. There exists an effectively computable number n, such that

every integer n > n_ 18 the sum of seven cubes of positive integers.

o

2. Primes in arithmetic progressions

We use the notation of Davenport {1], on p. 123 of which is the
following effective version of the prime number theorem for an arithmetic

progression a mod q¢ , where (a, q) =1 .

LEMMA 1. Let &8 >0 and

(1) q = (log :Jc)l-6

then, for some absolute constant c¢ ,

(2) ¥(x, g, a) = 5{%7'+ 0{z exp[-c(log x)%]}
or equivalently
(3) m(x, q, a) = ;&23 + 0{x exp[-c(log x)]%} .

The range (1) is inadequate for our purposes and the restriction is
caused by the possible existence of Siegel zeros. However the moduli ¢
for which Siegel zeros exist are scarce and we can avoid them. Then, from

{1, p. 123, equation (9)] we obtain a version of Lemma 1 effective and

uniform for

(%) q = (10g )0 |

or indeed over a larger range.
Let ql, q2, ... be the (possible) sequence of positive integers for

which there exists a real primitive character X (mod q) for which

L(s, X) has a real zero B satisfying
(5) B>1-1T/logqg, T>0.
Choosing T > 0 as a suitably small constant we have, see [I, p. 94],

q

g+ > q§ and so at most log & values qj <= x . We shall call a modulus

g "good" if g and all its divisors are not in the sequence {qj} .
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Then the characters mod ¢ , primitive or imprimitive, do not have Siegel
zeros and the corresponding term in equation (9) on p. 123 of Davenport [1]

may be omitted. Hence we obtain

LEMMA 2. For any good modulus q satisfying (4) we have (2) and (3)
holding effectively and wniformly in q .

From this we obtain, as in Lemma 2 of Watson [4],

LEMMA 3. If X is sufficiently large, q <8 a good modulus
satisfying (4) and (a, q) = 1 then for some absolute constant A > 0
there are at least A 1li(z)/¢(q) primes p = a mod q in the interval
X<p<1.00 X .

In the case q =6 we can deduce Lemma 3 from Lemma 1.

3. Proof of theorem
We begin by quoting Lemma 3 of Watson [4].

LEMMA 4. et N be a positive integer, and suppose there exist
distinet primes p, q, r such that

(6) p=q=r=-1mdb6,
(7 r<g<1.0lr,
(8) %q18p3 <N < q18p3 ,
(9) N = 3p mod 6p ,
(10) ww = 2183 moa ¢
(11) 2N = ql8p3 mod r6

Then N 18 representable as the sum of six positive integral cubes.

LEMMA 5. For some constant B > 0 and n > nO(B) there are at

least B{log n)u/(log log n)2 pairs of primes q, r , neither of which
divides n and which satisfy (6), (7) and

(12) %(log n)2 <q, r < (log rl)2 .
Proof. We apply Lemma 3 with a=-1, g=6 and X = (log n)2 and

100(1log n)2/101 successively. This gives
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C(1log n)2/log logn (C > 0)
primes p = -1 mod 6 , any two of which satisfy (9) and (14). Now the
number of primes p > %(log n)2 which divide 7 is at most

log n/log logn , for n = 10 . Thus we can choose B(log n)h/(log log n)2

pairs of primes q, r , neither of which divides n .

For each such pair g, r consider the number

(13) k = 64°¢° < 6(10g M2 .

Each such k has 196 divisors and the number of moduli ¢q < 6(log n)2h

with a real primitive character X having a Siegel zero is O(log log n)
Thus we can choose a pair g, » , and so k , such that k and its
divisors are not moduli corresponding to Siegel zeros. Thus Kk is a good

modulus. Let

(1W) X = nl/3q-6

b
then log X > % logn if n 1is sufficiently large. Thus

k < (log X)lOO . Now every number prime to ¢g» is congruent to a cube to

the modulus q6 and also the modulus r6 , S0 we can find a number 1

such that
(15) bn = r1813 mod q6 , 2n = q1813 mod r6

. 100 .
Now we apply Lemma 3 with the good modulus k < (log X) . There exists

a prime p satisfying

(16) pE-lmdé6, p =1 mod q6r6 .

S (17) X<p<1.01 X.

The remainder of the proof follows Watson exactly, but we include it

for completeness. By (15) we have

hn = r18p3 mod q6 , on = q18p3 mod r6

Since every integer is congruent to a cube mod 6p there is an integer ¢

satisfying
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0 < t < 6pg°r® ,

3 2,

n-3p = mod 6p , t Z 0 mod q2r

Now N =n - t3 satisfies (9), (10) and (11). Also

m_t3<n= q18X3 < q18p3 ,
n-t3z=n- 216p3q6r6 = q18X3 - 2l6p3q6r6

5 (1.01)—3q18p3 _ 216(761,,6133 5 %q18p3 .

Thus all the conditions of Lemma 4 are satisfied, since (14) and (17) show

that p is different from q¢ and r . Hence N =n - 3 is the sum of

six cubes and so 7n 1is the sum of seven cubes.
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