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Introduction. It is shown in (6) how to represent certain sets of ortho­
gonal Latin squares as a group together with a set of permutations of the 
group elements. The correspondence between 3-nets and loops is well known; 
for example, see (8). We shall consider a loop G together with a certain set 
of permutations on the elements of G and shall interpret such a structure as 
an incidence system in which the 3-net of the loop is embedded. Specifically, 
the permutations or "adjoints" will give rise to lines which may be adjoined 
to the 3-net of G in the sense of (3). The group of autotopisms of the loop 
determines a group of automorphisms of its 3-net analogous to collineations 
in an affine plane. We shall study the problem of extending these incidence 
preserving mappings to the adjoined lines. By analogy with the study of 
loops with operators, we shall consider homomorphisms of loops with adjoints 
and examine geometric consequences. Particular attention will be paid to the 
case where G has the inverse property and the adjoints are "linear." The 
special case in which G is an abelian group is of geometric interest in that the 
corresponding incidence systems include the Veblen-Wedderburn affine planes. 

1. Nets, loops, and adjoints. A net 91 is a set of undefined objects 
called "points" and "lines," together with a symmetric incidence relation 
(point on line, line through point), such that the lines can be partitioned 
into non-empty, disjoint subsets called "parallel classes" and the following 
incidence axioms hold: 

(i) Any point of 91 lies on exactly one line of each parallel class, 
(ii) Any pair of lines from distinct classes have exactly one point in com­

mon. 

(iii) There are at least three distinct parallel classes. 
An affine plane is a net which satisfies 
(iv) Given two distinct points of 91, there is a unique line containing both 

of them. 
(v) There exists a set of four distinct points of 91, no three of which lie on 

the same line. 
If a net 9Ï possesses a finite number k of parallel classes, one refers to 91 

as a &-net. 
Suppose L is a set of points of the net 91 such that if M is any line of 91, 
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then L contains exactly one point of M. We say that L may be "adjoined as 
a line to •Jl." 

Let (G, + ) be a loop. By the 3-net associated with G we mean the net 31(G) 
whose points are ordered pairs (x, y), x and y in G, and whose three classes of 
lines are given by x = c, y = c, and y = x + c where c ranges over G and 
incidence means satisfaction of the equation. 

Let e be the identity map on the loop G. An adjoint of G is a permutation 
a on G for which there exists a permutation r on G such that e + r = a, 
where addition of mappings is defined by adding images. The permutation 
T is a ' 'complete mapping" in the sense of (6) and will be called the companion 
Of (7. 

THEOREM 1. A line L can be adjoined to 31(G) if and only if G possesses an 
adjoint a. 

Proof. Suppose a is an adjoint of G with companion r. Define L to be the 
set of points (x, xa)} x G G. If c G G then L contains exactly the point (c, car) 
of the line x = c, the point (or-1, c) of the line y = c, and the point (cr""1, 
cr~la) of the line y = x + c. Thus L may be adjoined to 31(G). 

Conversely, let L be a set of points which is adjoined as a line to 31(G). If 
(a, b) G L, define aa = b. Since L contains exactly one point from each line 
x = c and each line y = c, we see that a- is a permutation on G. Define the 
mapping r of G into G by the equation aa = a + ar, a Ç G. For each c G G, 
the line y = x + c passes through exactly one point (a, aa) of L. Hence r is 
a permutation and a is an adjoint of G. 

The incidence system consisting of 31(G) together with the adjoined lines 
associated with a set S of adjoints of G will be called the quasinet 0 ( G , 2) . 

A set S of adjoints of G is said to be compatible if, for every distinct pair 
ci, (72 in 2, there is at most one x Ç G such that xo-i = xov, that is, the corre­
sponding lines of 0 ( G , 2) share at most one point. 

2. Adjoints under isotopy. The loops (G, + ) and (G, 0 ) defined on 
the same set G are said to be isotopic if there exists an ordered triple (a, yf 0) 
of permutations of G such that xa 0 y y = (x + y)/3. We write (G, + ) = 
(a, 7, /3)(G, 0 ) . If 0 is the same operation as + then (a, y, ft) is called an 
autotopism of (G, + ) . Isotopy is an equivalence relation on the set of all 
loops and the autotopisms of a loop form a group which contains the auto­
morphism group of G. We refer the reader to (2) for a discussion of the alge­
braic properties of isotopy and autotopy. 

A homomorphism of a net 31 onto a net 31' is a mapping of points onto 
points and lines onto lines which preserves incidence and parallelism and is 
one-one on classes of lines. If the homomorphism is one-one on points and 
lines, it is called an isomorphism. 

The proofs of the following two well-known theorems may essentially be 
found in (8). 
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THEOREM 2. The mapping 

(x, y) -» (xa, y$) 
[x = c] —> [x = ca] 

b = c] -> b = cfi] 
[y = x + c] —> [y = x ® cy] 

is an isomorphism of 91 (G, + ) onto 91 (G, ©) if and only if (G, + ) = (a, 7, /3) 
(G, 0 ) . 

THEOREM 3. Let 91 be an arbitrary 3-net and let 0 be a point of 91. Let the 
designations x = c, y = c, and y = x + c be assigned to the three classes. Then, 
for some appropriate loop G, 91 = 91(G), 0 is the point (0,0), and the three 
classes are as designated. Moreover, if a different point 0' is chosen and the class 
designation remains the same, then 91 = 91 (G) for some G isotopic to G. 

It is clear that isomorphic nets have corresponding adjoined lines; thus 
isotopic loops have corresponding adjoints. The correspondence is given in 
the proof of 

THEOREM 4. Let (G, + ) be a loop with an adjoint a. Suppose (G, + ) = (a, 
y, /3) (G, ©). Then (G, ©) possesses a unique adjoint a' so that the isomorphism 
of Theorem 2 can be extended to an incidence preserving mapping of the associated 
adjoined lines. 

Proof. The set of images of the points (x, xa), x G G is a line adjoined 
to yi(G, ©) if and only if (xa, xafi) = (xa, xaaf) for each x where a is an 
adjoint of (G, ©). If the condition holds,then <jr = a~laf3 and we show that 
this u is an adjoint for (G, ©). Let a have companion r. Then, for all x Ç G, 

x(e © a~1ry) = xa~la(e © a~lry) = (xa~l)a © (xa~lr)y = 

(xa~l + xa~lr)/3 = xa~l(e + T)/3 = xa~1aff. 

Thus the companion of a^afi is a~lry. 

If V = (a, 7, jS) is an autotopism of a loop G and S is a set of adjoints of 
G, then we say that V is extensible relative to S if of-12/3 = 2. From the proof 
of Theorem 4, we see that the extensible autotopisms are exactly those for 
which the automorphism of 91(G) given by Theorem 2 induces a line onto 
line, incidence preserving mapping of 0 ( G , 2). 

An example of an extensible autotopism is furnished by a projective plane 
with a collineation which leaves fixed every point of some line -Sf Let 3? be 
used as the line at infinity and construct a co-ordinate system as in (4). Take 
G to be the additive loop of the ternary and let 2 be the set of mappings 
x —> x . m o b where m assumes some set of values exclusive of 0, 1, °°, and 
where b takes on all values from the ternary for each m. The collineation then 
induces an automorphism of 91(G) corresponding to an autotopism of G which 
is extensible relative to 2 by virtue of the fact that adjoined lines are mapped 
into adjoined lines. 
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3. H o m o m o r p h i s m s . Let H be a. normal subloop of G and let rj be the 
natura l homomorphism of G onto G/H. Then we may define a homomorphism 
of 31 (G) onto 31 (G/H) by a mapping of the same form as t h a t used in Theorem 
2 with a = fi = 7 = 77 and © taken as + , the operation in G/H. Fur ther ­
more, it follows easily from Theorem 3 t h a t every homomorphism of a 3-net 
onto a 3-net can be viewed in this way for appropriate G and H. 

Suppose a is an adjoint of G with companion r. A normal subloop H of G 
is a (T-subloop provided any one of the following implies the other two: (i) 
x = y mod H, (ii) xa = y a mod H, (iii) xr = yr mod iJ . If 2 is a set of 
adjoints, then H is a normal 2-subloop if iZ" is a normal c-subloop for each 
a G 2 . This definition states t ha t or* defined by (x + H)a* = xa + H is a 
permuta t ion of G/H. The same s ta tement applies to r* and, moreover, 
(x + H) (e* + T*) = (x + H) + (x + H)T* = (x + H) + (xr + H) = 
(x + XT) + H = xa + H = (x + H)a* for all x and thus 0-* is an adjoint 
of G/H. Fur thermore , the point (x, xa) maps into (x + H, (x + H)a*) so the 
adjoined line of 9Î(G) defined by a maps onto the adjoined line of 31 (G/H) 
defined by o-*. 

Suppose, conversely, t ha t H is normal in G, t h a t a is an adjoint of G, and 
t h a t the images (x -\- H, xa -\- H) form a line adjoined to 31 (G/H). Then 
the mapping x + i 7 —» xo- + i l is an adjoint of G/-H". Hence, x + i 7 = y + i 7 
if and only ii xa -\- H = ya -\- H. Also, if x' + H is the unique solution of 
(x + H) + (xr + i7) = xa + i7, then x + I ^ - ^ x ' + U i s a permutat ion of 
G/H so x + H = y + H if and only if x' + i J = / + H. But xa + H = 
(x + x') + H = (x + xr) + i J so xf + H = XT + H. Therefore, i f is a 
normal cr-subloop of G. 

4. Linear a d j o i n t s a n d extens ib i l i ty . If a G G, the permuta t ion p(a) 
is defined by xp(a) = x + a. A permutat ion of G is linear if it has the form 
a = ôp (a) where b is an automorphism of G. We say t h a t a is strongly linear 
if a is in the associator (see 2) of G. An adjoint a of G is linear (strongly linear) 
if both a and its companion are linear (strongly linear) as permutat ions . If a 
linear adjoint a has a = 0, a is an automorphism adjoint. 

L E M M A 1. (i) If a = àp(à) is a linear adjoint with companion yp(b) then 
a = b. If a is strongly linear, then 5 is a strongly linear adjoint with companion y. 

(ii) If a is any adjoint on G with companion r and a is in the associator of G 
then ap(a) is an adjoint with companion rp(a). 

Proof, (i) 0(e + yp(b)) = 0ôp(a) gives a = b. Under strong linearity, 
xô + a = x + (xy + a) = (x + xy) + a for every x G G and thus ô — e + 7. 

(ii) x(e + rp(a)) = x + (xr + a) = (x + xr) + a = xap(a). 

A set S of strongly linear adjoints of G will be called complete if, for every 
automorphism 8 such t h a t <5p(a) G 2 , ôp(ô) G 2 for every 6 in the associator 
of G. Lemma 1 guarantees t ha t dp(b) is an adjoint. 

Bruck (2, ch. 11, § 4) has studied three types of autotopisms of a com-
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muta t ive loop G with the inverse proper ty and has shown t h a t these au to -
topisms generate the autotopism group of G. T h e following theorem shows t h a t 
certain subclasses of types (1) and (2) and all au to topisms of type (3) are 
extensible relative to a complete set of strongly linear adjoints. 

T H E O R E M 5. Suppose G is a commutative loop with the inverse property and 2 
is a complete set of strongly linear adjoints of G. 

(i) If U = (a, a, a) where a is an automorphism of G, then U is extensible 
relative to 2 if and only if a~lAa = A where A is the set of automorphisms in 2 . 

(ii) If V = (p(a), p(a), p(a)2) where a is in the associator of G, then V and 
all the autotopisms obtainable from V by Bruck's Lemma 4^4 are extensible 
relative to 2 . 

(iii) If W = (e, p(a), p(a)) where e is the identity and a is in the associator 
of G, then W and all the autotopisms obtainable from W by Bruck's Lemma 
4/1 are extensible relative to 2 . 

Proof, (i) Suppose U is extensible. Le t dp(b) 6 2 . Then , for all x £ G, 
xa~18p(b)a = xa~l8a + ba = xy + c for some y Ç A, c an associator element. 
If x = 0, ba = c and a~18a = y. Similarly aAa~l C A. 

Conversely, assume a~1Aa = A. Then , if x £ G, xa~l8p(a)a = x(a~l8a)p(aa) 
and xa8p(a)a~l = x(ada~1)p(aa~1). Since the associator is a character is t ic sub-
loop of G, U is extensible. 

(ii) Consider xp(a)~1ôp(b)p(a)2 — [(x — a)8 + b] + 2a = x8p(c) where c 
is in the associator. Similarly, p(a)8p(b)p(a)~2 G 2 . 

Extensibil i ty for the autotopisms obtained by using Bruck 's L e m m a 4A 
may be verified with a certain amoun t of similar computa t ion . 

(iii) We compute xe_1ôp(6)p(a) = (xô + b) + a = xôp(c) and xedp(b)p(a)~'1 

= (x8 + b) — a = x8p(d) where c and d are in the associator. 
Again, it is s traightforward to verify t h a t the l'derived" au to topisms are 

extensible. 

T H E O R E M 6. Let G be an abelian group and let 2 be a complete set of [strongly) 
linear adjoints of G. If A is the set of automorphisms in 2 , let <5i — 82 be a per­
mutation (and hence an automorphism) of G for every pair ôi, 82 G A, 81 ^ <52. 
Then, the quasinet 0 ( G , 2) is a net each of whose parallel classes, besides those 
of yi(G), consists of the set of adjoined lines given by the adjoints 8p(c) where 8 
is fixed and c ranges over G. Moreover, the automorphisms of 0 ( G , 2) are 
exactly given by (x, y) —> (xa + r, ya + s) where a is an automorphism of G 
in the centralizer of A and r, s are in G. 

Proof. T h e point (a, b) Ç 0 ( G , 2) is on exactly the line determined by 
8p(c), c — b — a8, in the class corresponding to 8. Any line from an adjoined 
class contains exactly one point in common with each line of 31(G) and thus 
we need only consider lines determined by 8ip(a), 82p(b) where 81 ^ 82. I t is 
easy to see t h a t these lines share exactly the point (x, y) where x = (b — a) 
(81 — c^) -1, y = x8ip(a) = x82p(b). Hence 0 ( G , 2) is a net . 
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Every automorphism of the net Q(G, 2) induces an automorphism of 31(G) 
which, by virtue of Theorem 2, corresponds to an autotopism of G. By Bruck's 
Theorem 4D (2, ch. II, § 4), this autotopism is of the form UVW where 
U, V, and W are of types (i), (ii), (iii) respectively, as described in Theorem 5. 
I t is easy to check that V and W and hence VW correspond to "translations" : 
(x, y) —» (x + r, y + s). Thus, the autotopism UVW corresponds to (x, y) —* 
(xa + r, ya + s) where a is an automorphism of G. Moreover, UVW is 
extensible in that it gives an automorphism of Q(G, 2). Furthermore, by 
Theorem 5 (ii), (iii), VW is extensible and thus p(r)2p(s)_1 = 2. Therefore, 

aZa-1 = a[p(r) Xp(s)-1]a~1 = [apMlZfcpfc)] - 1 = 2 , 

showing that (a, a, a) is extensible and giving, by Theorem 5 (i), aka~l = A. 
But, even more, the translations, the automorphisms of Q(G, 2), and hence 
also the mappings (x, y) —> (xa, ya) preserve parallel class. If we note the 
proof of Theorem 5 (i), we see that a~lôa = 8 for each ô 6 A. 

To prove the converse, suppose we have a mapping of Q(G, 2) as described 
in the statement of the theorem. The translations are automorphisms of 31(G) 
and the corresponding autotopism is a product of autotopisms of types (ii) 
and (iii): 

(p(r), p(s - r), p(s)) = (p(r), p(r), p(rY) (e, p(s - 2r), p(s - 2r)). 

Thus the translations correspond exactly to such products and, by Theorem 5 
(ii), (iii), are extensible. In fact, they preserve parallel class. Also, by the 
proof of Theorem 5 (i), (a, a> a) is extensible and preserves parallel class in 
the extended net. Thus our mapping corresponds to the autotopism (ap(r), 
ap(s — r), ap(s)) which is extensible and preserves parallel class and therefore 
gives an automorphism of Q(G, 2). 

The translations (x, y) —» (x + r, y + s) are transitive on the points of 
0 ( G , 2) and we see that if 0 ( G , 2) is an affine plane, it is Veblen-Wedder-
burn (8). 

5. Linear adjoints and homomorphisms. 

LEMMA 2. Let G be a loop and a — 8p(c) be a linear adjoint with companion 
yp (c). Then a normal subloop H of G is a a-subloop if and only if Hô = Hy = H. 

Proof. Assume Hô = H. Then xô + c = (yô + c) + h for h 6 H if and 
only if xô + c = (yô + h') + c for h! G H if and only if xô = yô + h'. But 
yô + h' = yô + h"ô = (y + h")Ô for h" Ç H. Thus xôp(c) = yÔp(c) + h if 
and only if x = y + h". Similarly, Hy = H implies x = y mod i7 if and 
only if xyp(c) = yyp(c) mod iJ. 

Now assume that H is a normal or-subloop. Then h = 0 mod i J if and only 
if hôp(c) = Oôp(c) mod H if and only if hô + c = c mod H if and only if 
hô = 0 mod 77; that is, h e H if and only if hô Ç # . Similarly, # 7 = i l . 

We remark that Hô Q H if and only if # 7 C i ï ; for, iî h £ H, hô + c = h 
+ (Â7 + c) = (h' + Â7) + c for some A' G i l . Hence hô = h' + hy and thus 
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h8 Ç JL if and only if hy 6 H. Therefore, if G is an abelian group with descend­
ing chain condition or if G is a finite loop, we need only assume either H8 Ç II 
or Hy C i J in order to prove t h a t a normal subloop i ï is a normal o--subloop. 

In any loop G, multiplication of mappings of G into G is left dis t r ibut ive 
over addit ion of mappings. If G has the inverse proper ty , one readily verifies 
t h a t the mappings of G into G form a loop (under addit ion) with the inverse 
proper ty where — a is defined by x(— a) = —(xa). Therefore, — (a + fi) 
= (— P) + ( " " « ) . Also, — a is one-one (onto) if and only if a is one-one 
(onto). 

L E M M A 3. Let G be a loop with the inverse property and let ai = 8\p(ci) and 
o"2 = 82p(c2) be strongly linear adjoints on G where di — <52 is one-one on G. Then 

(i) o"i and a2 are compatible, 
(ii) if H is a normal {ai, a2}-subloop, the induced adjoints c*i and <r*2 are 

strongly linear on G/H. If H Ci H(8i — 82), then <5*i and <5*2 are compatible. 

Proof, (i) Assume xôi + Ci = x82 + c2. Then — (xô2) + (x8\ + Ci) = c2 

and — (x<52) + xôi = x(— d2 + ôi) = c2 — Ci. T h e solution is unique if 
— d2 -\- di is one-one. Since <5i — <52 is one-one so also is — (<5i — <52) = <52 — <5i. 
Define the mapping 6 on G by xd = — x. We see t h a t 6 is a permuta t ion of 
G and t h a t if a is an automorphism of G, then da = — a. Therefore, 

0(<52 - ôi) = 6Ô2 + 0 ( - ôi) = - <52 + 0(0ôi) = - 82 + (66)0! = - ô2 + 5i 
is one-one. We note t h a t if di — d2 is a permuta t ion then xôi + C\ = x82 + <c2 

possesses a (unique) solution. 
(ii) For i = 1, 2, (* + i 2 > * * = ^ < + H = (x8t + ct) + H = (*ô* + H) 

+ (c* + JET). Clearly, d -\- H is in the associator of G/H and, by Lemma 2, 
ô*< : x + H —>xôt + i 7 is an automorphism of G/H. In the same way, the 
companion of <r* f is a strongly linear permuta t ion and thus cr*̂  is a strongly 
linear adjoint. 

Next , assume (x + H)8*i = {x + H)8*2. Then , for some h f H, x8i = h 
+ x<52 and thus xch — x<52 = x(8i — 52) = h = h' (5i — ô2) for some &' Ç / / . 
Since <5i — <52 is one-one, x ^ H and hence 0 + i ? is the unique solution of 
Xô*! = X<5*2. 

T H E O R E M 7. Le/ G fo aw abelian group satisfying the descending chain con­
dition. If 2 is a complete set of compatible linear adjoints and H is a H-subgroup, 
then the quasinets 0 ( G , 2) and £l{G/H, 2*) are nets in the sense described 
in Theorem 6. 

Proof. Let A be the set of au tomorphisms in 2 and suppose 8\ and <52 are 
dist inct elements of A. Now ôi — <52isan endomorphism of Gandx(c>i — <52) = 0 
implies x8± = x82. Since 8\ and 82 are compatible and since 0<5i = 052 we see 
t h a t x = 0; t h a t is, the kernel of <5i — <52 is 0 and 81 — 82 is one-one and has 
a r ight inverse. By the descending chain condition, G(81 — 82)

T+1 = G(81 — 82)
r 

for some r and thus G(81 — 82) = G showing, by Theorem 6, t h a t Q ( G , 2) 
is a net . 
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The set 2* of induced adjoints of G/H is certainly complete. Let ô*i and 
*3*2 be distinct elements of A*. Then 5*i — ô*2 is an endomorphism of G/H 
and (x + H)(ô*! - ô*2) = # implies (x + H)ô*1 - (x + H)ô*2 = (xd1 - xô2) 
+ 11 = x(Ô! - Ô2) + H = H. Thus x(ôi - Ô2) G H. But Hfa - ô2) ç # 
because i l is a 2-subgroup and, by the descending chain condition, there is 
an integer 5 such that iJ(<5i - <52)

s+1 = Hfa - d2)
s. As above, H(ôt - Ô2) = H 

giving x G H" and showing that <5*i — <5*2 is an isomorphism. Since G/H satisfies 
the descending chain condition, £l(G/H, 2*) is a net as before. 

If S is a set of strongly linear adjoints on a loop G, we have seen that the 
set A of automorphisms in 2 plays a special role in identifying normal 2-
subloops and in questions of compatibility and extensibility. We shall focus 
attention now on A and the normal A-subloops, realizing that, for every 
ô G A and every a in the associator of G, there is an adjoint ôp(a) whose 
normal subloo.ps are exactly the normal ô-subloops. 

LEMMA 4. Let G be a finite loop of order n > 1 and suppose A is a set of 
automorphism adjoints such that every pair in A is compatible. Then the number 
of elements in A is not more than n — 2. 

Proof. The lines x = 0, y = 0, and y = x of 31(G) have exactly the point 
(0, 0) in common. Further, (0, 0) is the point shared by each of these three 
lines and the adjoined line determined by ô Ç A. Moreover, by compatibility, 
every pair of adjoined lines shares exactly this point. Let d be the number 
of elements in A. 31(G) has n2 points and we count the points on the above 
d + 3 lines: 

(d + 3 ) 0 - 1) + 1 <n2. 

Rejecting n = 1, we have d < n — 2. 

Definition. A compatible triple (G, A, H) consists of a loop G with the inverse 
property, a set A of automorphism adjoints on G and a normal A-subloop 
H of G such that, for every distinct pair <5i and è2 in A, ôi — ô2 is one-one on 
G and is a permutation on H. The degree of A (deg A) is the number of ele­
ments in A. (G : H) denotes the index of H in G. 

THEOREM 8. If (G, A, H) is a compatible triple where A has finite degree, then 
either (G : H) = 1 or (G : H) > deg A + 2. 

Proof. Suppose (G : H) > 1. By Lemma 3 (ii), G/H is a loop with auto­
morphism adjoints A* and every pair ô*i, ô*2 from A* is compatible. More­
over, deg A = deg A* for suppose (x + H)b*i = (x + H)b*2 for all x. Then, 
for each x Ç G, there is an h G H such that xôi = h + xô2 or x(ôi — ô2) = h. 
But èi — ô2 is a permutation on H and hence x G H, contradicting our assump­
tion that G 9e H. If (G : H) is finite, apply Lemma 4 to the loop G/H with 
adjoints A* to obtain deg A = deg A* < (G : H) - 2. 

COROLLARY 1. If the inverse property loop G contains a characteristic normal 
subloop H of index 2 then G has no automorphism adjoints. 
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Proof. If 8 is an automorphism adjoint, t ake A = 5 so deg A = 1. (G, A, / / ) 
is a compatible triple and thus 2 > 1 + 2, a contradict ion. 

Example. T h e symmetr ic group on n symbols has no automorphism adjoints. 

COROLLARY 2. Let G be a finite loop with the inverse property and let E be a 
characteristic normal subloop of G. Then, if (G, A, H) is a compatible triple for 
any H, deg A < (G : E) - 2. 

Proof. (G, A, E) is a compatible triple because E is a A-subloop since it is 
characterist ic and, by finiteness, di — d2 is a permuta t ion on E for every 
dist inct pair from A. 

6. Irreducible sets of linear adjoints. 

Definition. Le t G be a loop with a set 2 of adjoints. We say t h a t 2 is irre­
ducible if G has no proper normal 2-subloops. 

T H E O R E M 9. Let G be a loop with a set 2 of adjoints so that the quasinet C (G, 2 ) 
is aw affine plane. Then 2 is irreducible. 

Proof. Given x ^ 0, y ^ 0, x ^ y in G, there is a unique line of the plane 
through (0, 0) and (x, y). If the line is in 91(G), either x = 0, y = 0, or y = x 
b u t these are excluded. Therefore, there exists a £ 2 such t h a t OCT = 0 and 
X0- = 3>. Now suppose H" is a proper normal 2-subloop of G. Choose x = h 9e 0 
in i f and y $ H. Then Â = 0 mod H implies ha = OCT = 0 mod / / and thus 
ACT = 3> is in H, a contradict ion. 

L E M M A 5. Let G be a finite loop with an irreducible set 2 of strongly linear 
adjoints. Let A be the set of automorphisms belonging to the adjoints of 2 and 
let 0 be the centralizer of A in the semigroup of endomorphisms of G. Then the 
non-zero elements of & are automorphisms. If G is an abelian group, the finiteness 
restriction can be dropped. 

Proof. Le t K be the kernel of co G 12. Then k G K, 5 Ç A implies 
(&ô)co = (few)ô = 0ô = 0 and thus Ko C K. B u t co commutes also with ô~l 

giving Ko — K. Now e + 7 = h and since co is an endomorphism, multipli­
cation by co is dis t r ibut ive on both sides over mapping addit ion. Thus , 
co + 7co = ôco and co + coy = co5 showing C07 = 7C0. As before, Ky — K. By 
Lemma 2 and irreducibility, K = G or K = 0 and hence co is the zero endo­
morphism or is one-one on G. In the la t ter case, since G is finite, co is an 
automorphism. If G is an infinite abelian group, Geo = (G5)co = (Gco)<5 and 
Geo = (G7)co = (Gco)7 showing t h a t Geo is a (normal) 2-subloop. Therefore, 
either Geo = 0, in which case G = 0, or Geo = G. In either case co is an au to ­
morphism of G. 

T H E O R E M 10. Let G be a finite loop or an abelian group with an irreducible 
complete set 2 of strongly linear adjoints whose subset of automorphisms is A. 
Let 12 be the centralizer of A in the endomorphisms of G. Then the autotopism 
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(co, co, co) with co Ç 12, co wo/ sen?, w associated with an automorphism of 31(G) 
which leaves fixed every line in Q ( G , 2) through the point ( 0 ,0 ) . Conversely, 
every such automorphism of 31(G) is paired with an autotopism of the type 
described. Moreover, these autotopisms are extensible relative to 2 . 

Proof. T h e automorphism associated with (co, co, co) is (x, y) —> (xco, yoo). 
This obviously fixes the lines x = 0, y = 0, and y = x of 5ft (G). If ôp(a) £ S 
determines an adjoined line through the origin, evidently a = 0 and 
(x, xô) —» (xco, x<5co) = (xco, (xœ)ô). Thus the line determined by 5 maps into 
itself. 

Conversely, let (a, 7, /3) give an automorphism which fixes lines through 
(0, 0). Then, in particular, y = x is fixed and hence (x, x) —» (xa, x/3) for all 
x implies a = /3. Therefore, (x + y)a = xa + yi for every x and 3/. Since 
(0, 0) is fixed, 0a = 0 and we set x = 0 giving ya = 3^7. Therefore, the auto­
topism arises from an automorphism, a = 13 = y oi G. If ô £ A, the corre­
sponding line is fixed and hence (x, xô) —» (xa, x5a) = (xa, (xa)8) showing t h a t 
a is in the centralizer of A. 

Extensibil i ty follows immediately and, in fact, if G and 2 satisfy the 
hypothesis of Theorem 6, a gives an automorphism of the quasinet Q(c7, 2 ) . 

Suppose G is an abelian group and 2 , A, 0 are as in Theorem 10. Then 0 
is a ring and, in fact, a division ring by Lemma 5. Therefore, we may regard 
G as a vector space over 12 and we note t h a t the elements of 12 different from 
the zero and the identi ty are automorphism adjoints of G. If Q ( G , 2) is a 
Veblen-Wedderburn plane as in Theorem 6, one may verify t h a t 12 is Andre 's 
" K e r n " (1). 

7. A c lass of e x a m p l e s . The neofields of Paige (7) and their generaliza­
tions, the division neorings of Hughes (5), provide a class of examples of 
loops with adjoints. If (D, + , •) is a division neoring (see 5 for definition), 
take G to be (D, + ) and define the mapping Ra on G by xRa = xa where 
a (z D. Clearly, Ra is a permutat ion for every a 9e 0. Then , every Ra with 
a 9^ 0, a 7^ 1 is an automorphism adjoint on G because (x + y)Rc = xRc+yRc 

for every c 6 D and x(e + Rb) = x + xb = x ( l + b) = xRa where b ^ 0 is 
the unique solution of 1 + b — a. If E is any subdivision neoring for which 
(E, + ) is normal in (D, + ) , then (E, + ) is a normal A-subloop where A 
consists of the mappings Re, e Ç E, e 9e 0, e 9^ 1. Moreover, if (Z), + ) has 
the inverse property, then ((D, + ) , A, (E, + ) ) is a compatible triple. 
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