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Summary

Monitoring wildlife populations in vast, remote landscapes poses significant challenges for
conservation and management, particularly when studying elusive species that range across
inaccessible terrain. Traditional survey methods often prove impractical or insufficient in such
environments, necessitating innovative technological solutions. This study evaluates the
effectiveness of deep learning for automated Bactrian camel detection in drone imagery across
the complex desert terrain of the Gobi Desert of Mongolia. Using YOLOVS8 and a dataset of 1479
high-resolution drone-captured images of Bactrian camels, we developed and validated an
automated detection system. Our model demonstrated strong detection performance with high
precision and recall values across different environmental conditions. Scale-aware analysis
revealed distinct performance patterns between medium- and small-scale detections, informing
optimal drone flight parameters. The system maintained consistent processing efficiency across
various batch sizes while preserving detection quality. These findings advance conservation
monitoring capabilities for Bactrian camels and other wildlife in remote ecosystems, providing
wildlife managers with an efficient tool to track population dynamics and inform conservation
strategies in expansive, difficult-to-access habitats.

Introduction

The Gobi Desert, spanning southern Mongolia and northern China, hosts diverse wildlife,
including significant populations of Bactrian camels (Hare 2008). As one of the world’s largest
desert ecosystems, the Gobi Desert presents unique challenges for wildlife monitoring and
conservation (Payne et al. 2020). Traditional wildlife observation methods in such vast, often
inaccessible terrains include ground-based vehicle surveys, observation posts at water sources,
camera traps and satellite collar tracking, all of which are time-consuming, resource-intensive
and prone to human error (Linchant et al. 2015). Recently, the integration of unmanned aerial
vehicles and artificial intelligence (AI) has opened new avenues for efficient and accurate wildlife
monitoring in remote habitats (Hodgson et al. 2018).

Bactrian camels exist as both wild (Camelus bactrianus ferus) and domestic (Camelus
bactrianus) populations in these landscapes. The wild Bactrian camel is Critically Endangered,
with fewer than 1000 individuals remaining (Hare 2008). Conservation efforts focus on
protecting key habitats and water resources, establishing protected areas and reducing human-
wildlife conflict (Reading et al. 2001, Yadamsuren et al. 2012). However, effective conservation is
hampered by the Gobi Desert’s vastness and the camels’ wide-ranging behaviour, which make
traditional field-based surveys with limited personnel challenging (Kaczensky et al. 2014).

Drone technology has revolutionized wildlife monitoring, offering non-invasive, quick
surveys with minimal disturbance (Hodgson et al. 2016). However, the volume of data from
drone surveys poses a new challenge: efficient and accurate image analysis (Weinstein 2018).
Machine learning, especially deep learning models for object detection, shows promise in
addressing this challenge. These algorithms can rapidly process vast amounts of visual data,
potentially surpassing human capabilities in speed and accuracy (Norouzzadeh et al. 2018,
Tabak et al. 2019).

Recent studies demonstrate the potential of combining drone imagery with machine learning
for wildlife monitoring in various ecosystems (Hodgson et al. 2018, Duporge et al. 2021). While
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these approaches have shown promise in other environments, their
application to desert ecosystems, particularly for wildlife detection
in the complex terrain of the Gobi Desert, remains largely
unexplored. Similar techniques have been applied to other large
mammals (Kellenberger et al. 2018, McCarthy et al. 2024), but the
Gobi Desert’s varied desert terrain and the specific challenges of
camel detection warrant dedicated research. Several factors make
camel detection in the Gobi Desert particularly challenging: the
camels’ coloration often blends with the desert background,
making visual distinction difficult, and the terrain requires robust
detection algorithms capable of performing across different
backdrops (Kaczensky et al. 2014). These challenges are
compounded by the need to process high-resolution imagery
efficiently while maintaining detection accuracy across different
scales and environmental conditions.

This study addresses these challenges by evaluating the
effectiveness of YOLOVS, a state-of-the-art object detection model,
for automated camel detection in drone imagery across the Gobi
Desert. Using a comprehensive dataset of 1479 high-resolution
drone-captured images of Bactrian camels, we assess the model’s
performance across different desert landscapes with the explicit
goal of enhancing current conservation practices. We test whether
automated detection can complement traditional survey methods
to develop more robust population monitoring protocols. By
establishing the technical feasibility and practical limitations of this
approach, we aim to provide conservation managers with
evidence-based guidance for integrating drone surveys and
machine learning into existing monitoring frameworks. This
integration is particularly important for the endangered wild
Bactrian camel population, for which improved survey efficiency
could significantly enhance conservation outcomes.

Methodology
Study area and data collection

This study on the Mongolian Gobi Desert encompasses four
aimags (provinces): Dornogovi, Omnégovi, Bayankhongor and
Govi-Altai (Fig. 1). The area features sandy and rocky deserts,
oases and sparse vegetation. Local herders and conservation teams
from the Mongolia Wild Camel Foundation helped identify key
Bactrian camel locations across these regions, providing valuable
knowledge about typical movement patterns and gathering areas
that informed our survey site selection and flight planning.

Data collection occurred between June and July 2024, during
peak summer camel activity, when the animals regularly visit water
sources. Our field methodology employed a targeted, expertise-
based approach rather than systematic transects. Knowledgeable
local guides helped direct us to known camel locations across the
region (Fig. 1). Upon locating camel groups, we conducted drone
flights to collect imagery, with flight sessions varying in duration
(typically 15-40 min) based on several factors: the number of
camels present in each group, the opportunity to capture images
under diverse lighting conditions (such as when passing clouds
created shadows) and drone battery limitations. Our field team
conducted drone surveys while maintaining a safe distance of
500-1000 m from the camels to minimize disturbance. Images
were captured across various daylight hours and weather
conditions, including early morning, midday and late afternoon,
and under different sky conditions ranging from clear to overcast.
This variation in lighting and atmospheric conditions provided a
more comprehensive dataset, helping us to develop a more robust
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model capable of performing under real-world monitoring
scenarios. While we collected data across these various environ-
mental conditions, our analytical approach focused on establishing
overall model performance rather than comparing effectiveness
across specific terrains or lighting scenarios, as this preliminary
study aimed to validate the fundamental capability of YOLOVS for
camel detection in the Gobi Desert environment.

We captured 1479 high-resolution aerial images using a single
DJI Mini Pro 4 drone equipped with a 1/1.3-inch CMOS sensor
(48 MP, /1.7 aperture, 24-mm equivalent focal length). The drone
operated at 100 m above ground level to minimize disturbance to
the camels while achieving a ground sampling distance of 2.5 cm/
pixel. All images were processed to a standardized 4096 X 2304
pixel resolution. Flight paths were designed to cover representative
samples of Gobi Desert terrain, including dunes, gravel plains and
areas near water sources.

The study area encompasses desert landscapes typical of the
Gobi Desert region (Fig. 2). These include, in approximate
percentages of our dataset, sparsely vegetated sandy dunes (31%),
gravel plains with desert shrubs (28%), semi-stabilized terrain with
saxaul (Haloxylon ammodendron) vegetation (24%) and bare
rocky outcrops (17%). These terrain types influence image contrast
and feature recognition for camel detection.

The DJI Mini Pro 4 was selected as it represents an accessible
and cost-effective platform for wildlife monitoring, offering the
necessary performance capabilities while remaining within the
budget constraints typical of conservation projects. Despite being a
consumer-grade drone, its high-resolution camera and stable flight
characteristics at an altitude of 100 m proved sufficient for reliable
camel detection.

We utilized Labellmg software (Tzutalin 2015) for object
detection annotation, choosing this tool for its offline capabilities
and direct compatibility with YOLO format annotations.
Following a standardized protocol, all 1479 images were annotated
using bounding boxes with a single class designation of ‘camel’,
focusing on fundamental detection capability rather than
demographic classification. The protocol specified that boxes
should encompass the entire visible body of each camel, excluding
shadows. For partially visible camels, boxes were drawn around the
visible portion if at least 50% of the animal was visible. In cases of
overlapping camels, individual boxes were drawn for each animal
where distinct boundaries could be determined. When camels were
too closely clustered to distinguish individuals, the entire group
was marked with a single bounding box and noted in our
documentation.

Machine learning model development, training and
optimization

The dataset was split into training (1035 images, 70%), validation
(222 images, 15%) and test sets (222 images, 15%), ensuring a
representative distribution of camel instances across all sets. We
employed YOLOv8 (Jocher et al. 2023) for camel detection,
utilizing a configuration optimized for processing aerial imagery at
4096 x 2304 resolution. Data augmentation techniques included
rotation (+15°), scaling (+20%), translation (+20%), horizontal
flipping (probability 0.5) and HSV colour space adjustments (hue:
+0.015, saturation: 0.7, value: £0.4) to enhance model robustness.
Training was conducted on Google Colab Pro+ using an NVIDIA
A100-SXM4-40GB GPU. The model was configured with a batch
size of 1 and standardized input dimensions of 4096 X 2304 pixels
using an AdamW optimizer with an initial learning rate of 0.01,
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Figure 1. Map of the study area in the Mongolian Gobi Desert. The map shows the boundaries of Dornogovi, Omnégovi, Bayankhongor and Govi-Altai aimags (provinces), with

black dots indicating camel survey locations.

final learning rate of 0.001, momentum of 0.937 and weight decay
of 0.0005. Training proceeded for 50 epochs with a cosine learning
rate schedule and 3 warmup epochs. We employed automatic
mixed precision training and RAM caching to optimize memory
usage, with two worker processes for data loading.

Evaluation metrics and performance analysis

For evaluation, we employed standard object detection metrics
including precision, recall, Fl-score and mean Average
Precision (mAP) at Intersection over Union (IoU) thresholds
ranging from 0.5 to 0.95. Model predictions were saved with
confidence scores and in YOLO-compatible text format for
detailed analysis. The Scale-Aware Performance Analysis
evaluated detection characteristics across different sizes,
categorizing detections based on their pixel area into small
(<64 x 64 pixels) and medium-sized (64 X 64-128 X 128 pixels)
instances. Model inference speed was evaluated on the NVIDIA
A100 GPU configuration, measuring processing time per image,
including pre-processing, inference and post-processing steps.
The test dataset was processed through the model using a batch
size of 1 to assess both detection accuracy and computational
efficiency under consistent conditions.
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Practical application assessment

Our assessment framework focused on two key aspects: detection
accuracy and processing efficiency. Detection accuracy was
measured through the comprehensive metrics suite, capturing
true positives, false positives and missed detections. Processing
efficiency was evaluated through detailed timing analysis of each
pipeline stage (pre-processing, inference and post-processing) and
GPU memory utilization during operation, informing real-world
deployment requirements.

Results
Model performance in desert environments

Our implementation of YOLOv8-large successfully detected
Bactrian camels across the Gobi Desert terrain and achieved
strong performance metrics. During the training process (Fig. S1),
the model showed systematic improvement, with training losses
decreasing steadily across all components: box loss (2.2 to 1.2),
classification loss (2.0 to 0.5) and Distribution Focal Loss (1.6 to
1.0). Validation metrics followed similar patterns, indicating
robust learning without overfitting.
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Figure 2. Representative landscapes from the study area in the Mongolian Gobi Desert captured at 100 m altitude with 4096 x 2304 resolution (2.5 cm/pixel ground sampling
distance). (a) Barren rocky terrain characteristic of upland areas; (b) ephemeral riverbed terrain in arid landscape; (c) semi-stabilized terrain with saxaul (Haloxylon ammodendron)
vegetation; and (d) oasis habitat with concentrated green vegetation. These diverse landscapes represent the range of backgrounds against which camel detection must function,

allowing for clear identification of individual animals against varying desert backdrops.

The model’s final performance exceeded our initial expect-
ations (Table 1). The high mAP indicates that the model could
reliably detect camels even in challenging desert conditions, where
animals often blend in with the terrain. The balanced precision and
recall values demonstrate the model’s ability to avoid both false
detections and missed animals.

Field application success rates

The confusion matrix analysis (Fig. S2) reveals the practical
effectiveness of our approach. From 2251 actual camel instances in
the test set, the model successfully identified 2120 (94.2% true
positive rate) while generating only 406 false positives. Perhaps
more importantly for wildlife monitoring applications, the model
missed just 131 camels, suggesting its reliability for population
surveys.

Impact of detection scale

The model’s performance varied notably with the size of the
detected camels in the images, with significant differences across
3108 total detections (Table 2). Medium-sized detections (64 X 64—
128 x 128 pixels) showed markedly higher confidence scores
(0.657 + 0.121) compared to small-scale detections (<64 X 64
pixels, 0.548 + 0.146), indicating optimal drone flight heights for
future surveys. This scale-dependent performance helps establish
practical guidelines for field applications.
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Table 1. Core performance metrics of the YOLOv8 model. mAP50
represents the mean Average Precision at the 50% Intersection over
Union (loU) threshold; mAP50-95 is the mean Average Precision
averaged across loU thresholds from 50% to 95%; Precision indicates
the proportion of detections that are correct; Recall shows the
proportion of actual camels that are detected; and Fl-score is the
harmonic mean of precision and recall. For all metrics, higher values
indicate better performance.

mAP50 0.907
mAP50-95 0.450
Precision 0.876
Recall 0.882
F1-score 0.879

Detection confidence analysis

Analysis of 596 detections across 50 test images revealed a mean
confidence score of 0.609 + 0.143. Confidence scores ranged from
0.250 to 0.811, demonstrating varying levels of detection certainty.
The distribution of confidence scores showed that 198 instances
(33.2%) were high-confidence detections, with scores above 0.7,
while 289 instances (48.5%) achieved medium confidence scores
between 0.5 and 0.7. The remaining 109 instances (18.3%) were
low-confidence detections, with scores below 0.5. This distribution
pattern indicates that the majority of detections (81.7%) achieved
medium to high confidence scores, suggesting reliable detection
performance across the test set.
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Table 2. Scale-based detection performance, comparing metrics between camels appearing as small objects (<64 x 64 pixels, typically more distant from the drone)
versus medium-sized objects (64 x 64-128 x 128 pixels, typically closer to the drone) in the images. No large-scale detections (>128 x 128 pixels) were present in our
dataset given the flight altitude. Confidence values represent the model’s certainty in its detections, not overall accuracy, which explains why these values are lower

than the overall precision/recall metrics.

Scale category Count Percentage Mean confidence SD Minimum confidence Maximum confidence
Small (<64 x 64) 1378 44.34% 0.548 +0.146 0.250 0.784
Medium (64 X 64-128 x 128) 1730 55.66% 0.657 +0.121 0.250 0.811

Computational performance and performance across terrain
types

The processing efficiency evaluation on our NVIDIA A100-SXM4-
40GB GPU, running CUDA 12.4 and PyTorch 2.5.1, demonstrated
consistent performance across batch sizes (Table S1). The model,
comprising 43.6M parameters, achieved efficient scaling as batch
size increased from 1 to 16, improving per-image processing time
while maintaining detection quality.

The model demonstrated performance across representative
terrain types characteristic of the Gobi Desert (Fig. 3). The
examples illustrate detection capabilities in saxaul shrub land-
scapes, where scattered vegetation creates complex backgrounds;
in vegetated and dry terrain, demonstrating adaptability to mixed
ground cover; along stream corridors with patches of green
vegetation; and in barren rocky landscapes with minimal
vegetation. These environments represent the range of detection
challenges encountered in the Gobi Desert ecosystem.

Discussion

Our study demonstrates the effectiveness of drone-based Bactrian
camel monitoring in the Gobi Desert, achieved through the
successful implementation of deep learning technology. Our
approach using YOLOVS achieved strong detection performance, a
level comparable to wildlife detection systems in other challenging
environments (Kellenberger et al. 2018, McCarthy et al. 2024).
The balanced precision and recall values, combined with the
confusion matrix analysis (Fig. S2) showing 2120 true positives and
only 131 false negatives from 2251 instances, indicate robust
detection capabilities that address key challenges identified in
traditional wildlife monitoring approaches (Linchant et al. 2015).
This performance level suggests that automated drone-based
surveys could reduce the resource intensiveness and human error
associated with conventional Bactrian camel population monitor-
ing methods in the Gobi Desert (Kaczensky et al. 2014).
Scale-aware analysis revealed distinct performance patterns
across different detection scales. Medium-sized detections con-
stituted the majority of total detections with higher confidence
scores, while small-scale detections showed lower confidence
scores (Table 2). This scale-dependent performance aligns with
findings from similar wildlife monitoring studies (Hodgson et al.
2018) and suggests that optimization of drone flight altitudes and
imaging parameters is needed for improved detection reliability.
The high input resolution proved crucial for achieving these
detection rates, particularly for smaller and distant camels. The
4096 x 2304 resolution ensured sufficient pixel density (2.5 cm/
pixel) to maintain detection confidence even for small targets while
remaining computationally feasible, as demonstrated by our
processing efficiency analysis.
The processing efficiency analysis (Table S1) demonstrates
rapid processing capability (c. 63 000 images per hour), which
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transforms how conservation teams can monitor Bactrian camel
populations across the vast Gobi Desert landscape. This efficiency
enables more frequent population assessments, allowing con-
servationists to detect population trends, identify critical habitats
and respond quickly to emerging threats. For the Critically
Endangered wild Bactrian camel, this enhanced monitoring
frequency could provide early warning of population declines or
habitat degradation.

This approach represents a complementary method to tradi-
tional camel monitoring rather than a replacement. While
traditional ground-based surveys provide valuable demographic
data and behavioural observations, they are limited by accessibility
constraints and observer fatigue in the vast Gobi Desert landscape.
The drone-based machine learning system excels at rapidly
covering extensive areas, serving as an efficient first-pass survey
tool to identify camel presence and distribution patterns. Optimal
monitoring strategies would probably integrate both approaches:
using automated drone surveys to locate camel groups across large
areas, followed by targeted traditional ground-based observations
for detailed behavioural and demographic assessment. This
integration would significantly improve survey efficiency while
maintaining the depth of information collected. During periods of
extreme weather or in particularly remote regions, the drone
system may serve as the primary monitoring tool when traditional
approaches are impractical or unsafe.

However, several limitations warrant consideration. The
confidence score distribution (mean 0.609 + 0.143) suggests room
for improvement in detection certainty. This limitation could be
particularly relevant for surveys of wild Bactrian camels, which
often inhabit more remote and challenging terrain (Hare 2008).
Additionally, while our model shows strong performance on the
test set, further validation across different seasons and lighting
conditions would be valuable for understanding the system’s year-
round applicability. Because we only collected images over a
2-month period during summer, the effectiveness of this method
may vary during other times of year. Seasonal changes in
vegetation, lighting conditions, camel behaviour and coat
appearance could influence detection performance. Bactrian
camels undergo significant seasonal coat changes, with thick
winter coats potentially altering their visual signature compared to
their summer appearance. Winter months bring additional
challenges, including potential snow cover in some regions that
may alter background contrasts, while spring dust storms could
reduce visibility and image quality. Further research across
multiple seasons would be valuable to develop a robust year-
round monitoring capability and to understand how model
performance might need to be calibrated for different environ-
mental conditions.

Our findings suggest several promising directions for future
research. First, integrating temporal analysis capabilities could
enhance the system’s ability to track camel movement patterns and
habitat use. Second, exploring multi-class detection to differentiate
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Figure 3. Representative detection examples from the test dataset across diverse Gobi Desert terrain types. (a) Camel detection in saxaul shrub landscape; (b) detection
performance in vegetated and dry terrain; (c) detection along a stream corridor with green vegetation; and (d) detection in barren rocky terrain. Detection confidence is visualized
through colour-coded bounding boxes, with yellow boxes indicating medium-confidence detections (0.5-0.8) and red boxes showing low-confidence detections (<0.5).

between wild and domestic Bactrian camels could provide valuable
data for conservation efforts focused on the endangered wild
Bactrian camel population. Finally, investigating transfer learning
approaches could extend the system’s utility to detecting other
desert-dwelling species.

The practical implications of this work are particularly relevant
for conservation efforts in the Gobi Desert. With a high true-
positive rate and validated accuracy levels, the system offers a
reliable tool for population monitoring, especially in areas that are
difficult or dangerous to access using traditional survey methods.
The demonstrated capability to process high-resolution imagery
efficiently addresses one of the key challenges in drone-based
wildlife surveys noted in previous research (Weinstein 2018): the
balance between coverage area and detection accuracy. This
achievement validates the effectiveness of the YOLOVS8 architec-
ture for wildlife detection in challenging environments, with the
model’s consistent performance across different terrain types
demonstrating the potential of modern deep learning approaches.
Our implementation advances the specific capabilities needed for
reliable camel detection in desert ecosystems, providing a
foundation for future automated wildlife monitoring applications
in similarly challenging desert environments worldwide.

Beyond the Gobi Desert context, our approach has significant
implications for wildlife monitoring practices in other arid regions.
Based on our model’s proven capability to distinguish camels from
desert backgrounds across different terrain types (Fig. 3), the
detection framework could be adapted for monitoring other camelid
species in similar arid regions. For instance, it could be transferred to
monitor dromedary camels in the Middle East, India and Australia’s
outback, where researchers face comparable challenges of vast
terrains and elusive populations. While our methodology focused
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specifically on Bactrian camels, the scale-aware performance
analysis provides insights for extending these principles to various
large mammals in challenging landscapes.

The higher detection confidence observed in medium-sized
objects compared to smaller objects suggests that for smaller
species such as alpacas in the Andes Mountains, adjustments to
drone flight altitude would be necessary to ensure adequate pixel
density for reliable detection. For larger species such as Arctic
caribou or other ungulates of the Gobi Desert, our current
parameters may already be suitable, as indicated by the
performance at our tested resolution and ground sampling
distance.

Although species-specific model adaptations would be neces-
sary, particularly regarding training datasets and class definitions,
the fundamental approach of combining drone imagery with deep
learning demonstrated in this study provides a versatile framework
for wildlife monitoring across diverse ecosystems and species. The
processing efficiency supports the practical applicability of this
approach for large-scale conservation surveys. By demonstrating
the feasibility of Al-powered wildlife detection in challenging
desert conditions with high detection accuracy, our work
contributes to the development of more efficient and accurate
ecological survey methodologies, ultimately supporting better-
informed conservation strategies not only for Bactrian camel
populations but potentially for many other wide-ranging species in
remote environments.

Conservation applications and future directions

Building on this technical validation, we propose a practical
conservation monitoring framework that integrates drone surveys
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with Al-based image analysis and traditional methods. Key
conservation applications include: (1) establishing baseline
population densities across protected areas through systematic
aerial surveys; (2) monitoring seasonal habitat use patterns to
inform the protection of critical water sources and migration
corridors; (3) rapid assessment of human-wildlife conflict zones
where camel-herder interactions occur; and (4) post-disturbance
population assessments following drought, disease outbreaks or
extreme weather events. The validated detection performance
provides the reliability needed for these conservation applications.

The next steps for such implementation include: (1) developing
systematic transect designs that optimize coverage of key habitat
areas, including both water sources and surrounding landscapes;
(2) establishing protocols for population estimation that account
for detection rates and spatial distribution patterns; and
(3) exploring the integration of this technology with ground-
based monitoring to create a comprehensive survey framework.
While drone battery limitations restrict single-flight coverage, our
approach envisions a network of strategic survey locations across
the landscape, integrating knowledge of camel movement patterns
to maximize detection probability. This network approach would
enable conservation managers to efficiently monitor vast areas
while focusing resources on critical habitats identified through
initial surveys.

For distinguishing between wild and domestic camels, future
research could focus on developing specialized computer vision
models trained on high-resolution imagery that captures distin-
guishing morphological features such as differences in body
conformation, coat texture and hump structure. Wild Bactrian
camels typically display smaller, more symmetrical humps and a
leaner overall body profile compared to their domestic counter-
parts, which often show more pronounced asymmetry in hump
development. Capturing these distinctions would probably require
lower-altitude imagery and specialized model training. This
capability would be particularly valuable for conservation efforts,
as accurate differentiation between wild and domestic populations
is essential for assessing the true conservation status of the
Critically Endangered wild Bactrian camel and for managing
potential hybridization risks.

Conclusion

This study demonstrates that drone surveys combined with Al
analysis can provide an effective approach for Bactrian camel
monitoring in the Gobi Desert. The YOLOv8 model achieved
detection performance sufficient for reliable population monitoring
across varied desert terrain. By identifying optimal flight parameters
through scale-aware analysis and establishing practical processing
workflows, we demonstrate an efficient approach to population
assessment. The integration of this technology with traditional
monitoring methods offers a pathway to more comprehensive
conservation strategies, which is particularly important for the
Critically Endangered wild Bactrian camel. These findings
contribute to the growing toolkit of technology-enhanced con-
servation approaches, with potential applications for monitoring
other wide-ranging species in remote ecosystems. Future develop-
ment of this approach, including multi-season validation and wild
and domestic camel differentiation, will further strengthen
conservation capacity in these challenging environments.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/50376892925100118.
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