Extensions of Continuous and Lipschitz Functions

Eva Matoušková

Abstract. We show a result slightly more general than the following. Let K be a compact Hausdorff space, F a closed subset of K, and d a lower semi-continuous metric on K. Then each continuous function f on F which is Lipschitz in d admits a continuous extension on K which is Lipschitz in d. The extension has the same supremum norm and the same Lipschitz constant.

As a corollary we get that a Banach space *X* is reflexive if and only if each bounded, weakly continuous and norm Lipschitz function defined on a weakly closed subset of *X* admits a weakly continuous, norm Lipschitz extension defined on the entire space *X*.

1 Introduction

The classical theorem of Tietze and Urysohn says that given a continuous function f on a closed subset F of a normal space T, there is a continuous extension \tilde{f} of f to all of T so that $\inf_F f \leq \tilde{f} \leq \sup_F f$. Kirszbraun's theorem ensures that any Lipschitz function defined on a subset of a metric space M can be extended to a Lipschitz function on M with the same Lipschitz constant (see e.g., [WW]). Given a normal space (T,τ) with some metric d on it, we examine when it is possible to extend every τ -continuous function Lipschitz in d defined on a τ -closed subset of T to a τ -continuous function Lipschitz in d defined on a τ -closed subset of T can be extended to a τ -continuous function Lipschitz in d defined on the entire space T with the same supremum and Lipschitz norm if and only if for each τ -closed subset T of T and T0 the set

$$\{x \in T : d\text{-dist}(F, x) \le \varepsilon\}$$

is au-closed. We give also an "in between" version of this result; strict one in the case when (T,τ) is countably paracompact. As a corollary we get that if (K,τ) is a compact Hausdorff space, d a lower semi-continuous metric on K, F a τ -closed subset of K, c>0 and f a τ -continuous function on F which is c-Lipschitz in d then f admits a τ -continuous and c-Lipschitz extension \tilde{f} on K such that $\inf_F f \leq \tilde{f} \leq \sup_F f$. A special case of this result with f taking only values 0 and 1 and the extension \tilde{f} being "almost" c-Lipschitz appears in [GhMa] and [JNR].

As another corollary we get that each bounded, weak*-continuous and norm-Lipschitz function f defined on a weak*-closed subset of the dual X^* of a Banach space X admits

Received by the editors July 9, 1998.

The author was partially supported by the Czech Academy of Sciences grant GAAV-V1019705, and by a grant of the Austrian Ministry of Education.

AMS subject classification: Primary: 54C20; secondary: 46B10.

Keywords: extension, continuous, Lipschitz, Banach space.

[©] Canadian Mathematical Society 2000.

a weak*-continuous norm-Lipschitz extension on X^* which has the same supremum and Lipschitz norm as f.

It is easy to see (e.g., p. 214) that if each continuous Lipschitz function defined on a closed subset of a normal space (T, τ) with a metric d can be extended as above, then necessarily the metric d has to be lower semi-continuous with respect to τ . We give an example of a normal topological space (T, τ) with a lower semi-continuous metric on it (any separable nonreflexive Banach space with the weak topology and norm metric) and of a bounded, τ -continuous and 1-Lipschitz function f on a closed subset of T such that no τ -continuous extension of f is c-Lipschitz for any c>0. Namely, we show that if X is a nonreflexive Banach space, there exists a weakly closed subset F of the unit ball B and a weakly continuous, norm Lipschitz function f on F, such that no weakly continuous extension of f on B is norm Lipschitz. Thus we get that a Banach space X is reflexive if and only if each bounded, weakly continuous and norm Lipschitz function defined on a weakly closed subset of X admits a weakly continuous, norm Lipschitz extension defined on the entire space X.

The functions in the hypotheses of Tietze-Urysohn and Kirszbraun's theorems do not have to be bounded; in our setting, they do have to be bounded. We give an example of an unbounded, weakly continuous and norm-Lipschitz function f defined on a weakly closed subset of the separable Hilbert space ℓ_2 such that no weakly-continuous extension of f on ℓ_2 is c-Lipschitz for any c > 0.

We consider only Hausdorff topological spaces. In the following, if (T, τ) is a topological space and d is some metric on T, if we do not specify which topology we mean, we always mean the topology τ , not the one defined on T by the metric d.

2 Extensions

Let X be a set and d a not necessarily symmetric pseudometric on X. By this we mean that $d: X \times X \to \Re$, $d \ge 0$, d(x, x) = 0, $d(x, y) \le d(x, z) + d(z, y)$ for all $x, y, z \in X$, but not necessarily d(x, y) = d(y, x). If c > 0, we say that a function $f: X \to \Re$ is c-Lipschitz in d if $f(x) - f(y) \le c d(x, y)$, for all $x, y \in X$. If Y and Z are subsets of X, then

$$d$$
-dist $(Y, Z) = \inf\{d(y, z) : y \in Y, z \in Z\},$

whereas

$$d\text{-dist}(Z,Y) = \inf\{d(z,y) : y \in Y, z \in Z\}.$$

By a slight abuse of notation we denote for $A \subset X$ and $\alpha > 0$

$$d-B(A,\alpha) = \{x \in X : d\text{-dist}(A,x) \le \alpha\},$$

$$d-B(\alpha,A) = \{x \in X : d\text{-dist}(x,A) \le \alpha\}.$$

The specification "*d*-" will sometimes be omitted.

Suppose now that (X, τ) is a topological space, d is a (nonsymmetric) pseudometric on X and $f: X \to \Re$ is τ -continuous and 1-Lipschitz in d. Then the function $d': X \times X \to \Re$ defined as d'(x, y) = d(x, y) - (f(x) - f(y)) is clearly also a nonsymmetric pseudometric on X. Suppose that d has the property that if $A \subset X$ is τ -closed and $\alpha > 0$ then both

the sets d- $B(A, \alpha)$ and d- $B(\alpha, A)$ are τ -closed. Then d' also has this property. Indeed, let $x \in X \setminus d'$ - $B(A, \alpha)$ be arbitrary. Then there is some $\varepsilon > 0$ so that $d'(a, x) = d(a, x) - (f(a) - f(x)) > \alpha + \varepsilon$ for all $a \in A$. Choose an open set $U_1 \subset X$ so that $x \in U_1$ and $|f(x) - f(y)| < \varepsilon/4$ for each $y \in U_1$. Let $\beta = \sup_{a \in A} \{0, f(a) - f(x) + \alpha + \varepsilon/2\}$. If $\beta = 0$ put $U_2 = X \setminus A$, otherwise let $U_2 = X \setminus d$ - $B(A, \beta)$; in both cases $x \in U_2$. Let $y \in U = U_1 \cap U_2$ and $a \in A$ be arbitrary. Then

$$d'(a, y) = d(a, y) - (f(a) - f(y)) \ge \beta - (f(a) - f(x)) - (f(x) - f(y))$$

> \alpha + \varepsilon/4.

This means that $U \cap d'$ - $B(A, \alpha) = \emptyset$, and the set d'- $B(A, \alpha)$ is closed. Similarly we get that the set d'- $B(\alpha, A)$ is closed.

The following Urysohn-like lemma is a mild extension of a result contained in [JNR]; we give only an outline of the proof. We use the following elementary property of F_{σ} sets: let X be a normal space and $A, B \subset X$ be F_{σ} sets such that $\bar{A} \cap B = A \cap \bar{B} = \emptyset$. Then there exists an open set $U \subset X$ so that $A \subset U$ and $\bar{U} \cap B = \emptyset$.

Lemma 2.1 Let (X, τ) be a normal space and d be a (nonsymmetric) pseudometric on X with the property that if $A \subset X$ is τ -closed and $\alpha > 0$ then both the sets d- $B(A, \alpha)$ and d- $B(\alpha, A)$ are τ -closed. Suppose F_0 and F_1 are τ -closed disjoint nonempty subsets of X with

$$d(x_1, x_0) \ge 1$$
 for $x_1 \in F_1$ and $x_0 \in F_0$.

Then there exists $f: X \to [0, 1]$ continuous in τ and 1-Lipschitz in d, taking the value 0 on F_0 and the value 1 on F_1 .

Proof First observe that if $F \subset X$ is closed and $\alpha > 0$ then the set

$${x \in X : \operatorname{dist}(F, x) < \alpha} = \bigcup_{\frac{1}{n} < \alpha} B\left(F, \alpha - \frac{1}{n}\right),$$

hence it is an F_{σ} set. Similarly the set $\{x \in X : \operatorname{dist}(x, F) < \alpha\}$ is F_{σ} .

Let Q be the set of all rational numbers in (0,1). Enumerate $Q \cup \{0,1\}$ so that $r_0 = 0, r_1 = 1, r_2, \ldots$. We use the convention that $U_0 = \bar{U}_0 = F_0$ (this means that unlike the other U's U_0 is a closed set; it can have even empty interior) and $U_1 = X \setminus F_1$. We construct a family of open sets $\{U_r : r \in Q\}$ in X so that:

(i) for
$$s, t \in Q \cup \{0, 1\}$$
, $s < t$, and any $x \in \overline{U}_s$, $y \in X \setminus U_t$, we have $d(y, x) \ge t - s$.

Suppose that for some $n \ge 1$, the sets U_{r_i} , $0 \le i \le n$, have been chosen so that (i) holds for all choices of s, t from $\{r_0, r_1, \ldots, r_n\}$. The set $U_{r_{n+1}}$ will be chosen in the following way. Write $r = r_{n+1}$ and

$$S = \{r_j : 0 \le j \le n, r_j < r\},\$$

$$T = \{r_j : 0 \le j \le n, r < r_j\}.$$

Put

$$A = \bigcup_{s \in S} \{x \in X : \operatorname{dist}(x, \bar{U}_s) < r - s\}$$

$$A' = \bigcup_{s \in S} B(r - s, \bar{U}_s)$$

$$B = \bigcup_{t \in T} \{x \in X : \operatorname{dist}(X \setminus U_t, x) < t - r\}$$

$$B' = \bigcup_{t \in T} B(X \setminus U_t, t - r).$$

Both A and B are F_{σ} sets; the sets A' and B' are closed and $A \subset A'$ and $B \subset B'$. By (i) we have that $A' \cap B = A \cap B' = \emptyset$. Therefore there exists an open set U_r so that

$$A \subset U_r$$
 and $\bar{U}_r \cap B = \emptyset$.

If we define a function f on X by taking f to be 1 on F_1 , and

$$f(x) = \inf\{r : x \in U_r, r \in Q\} \quad \text{for } x \in U_1$$

then f is continuous by the proof of Urysohn's lemma [K, p. 114]. If $x, y \in X$ and f(x) = a < b = f(y) then for all a < s < t < b we have $x \in U_s$ and $y \in X \setminus U_t$. Hence

$$d(y, x) \ge \operatorname{dist}(X \setminus U_t, U_s) \ge s - t$$
,

and $d(y, x) \ge b - a = f(y) - f(x)$, which means that f is 1-Lipschitz in d.

Theorem 2.2 Let (K, τ) be a normal topological space, and d be a metric on K such that the set $B(A, \varepsilon)$ is τ -closed for each τ -closed $A \subset K$ and $\varepsilon > 0$; c > 0. Let $g \le h$ be bounded functions on K so that $g(x) - h(y) \le c d(x, y)$ for each $x, y \in K$. If g is upper semi-continuous in τ , and h is lower semi-continuous in τ then there exists a function f on K which is τ -continuous, c-Lipschitz in d, and $g \le f \le h$.

Proof By adding a constant and multiplying by a constant of g and h we can suppose that $-1 \le g \le h \le 1$; by multiplying the metric by a constant we can suppose that c = 1. Put $g_0 = g$, $h_0 = h$, and $d_0 = d$. As in the proof of Tietze's theorem we proceed by induction. Suppose that d_k is a (nonsymmetric) pseudometric on K satisfying the assumptions of Lemma 2.1 and $g_k \le h_k$ are functions on K so that $g_k \le 2^k 3^{-k}$, $h_k \ge -2^k 3^{-k}$, $g_k(x) - h_k(y) \le d_k(x, y)$ for each $x, y \in K$; g_k is upper semi-continuous in τ , and h_k is lower semi-continuous in τ . Put

$$G_k = \left\{ x \in K : g_k(x) \ge \frac{2^k}{3^{k+1}} \right\}$$

$$H_k = \left\{ x \in K : h_k(x) \le -\frac{2^k}{3^{k+1}} \right\}.$$

It is $d_k(x,y) \geq 2^{k+1}3^{-(k+1)}$ for any $x \in G_k$ and $y \in H_k$ and by Lemma 2.1 there exists a τ -continuous function ψ_k which is 1-Lipschitz in d_k , $-2^k3^{-(k+1)} \leq \psi_k \leq 2^k3^{-(k+1)}$, $\psi_k = -2^k3^{-(k+1)}$ on H_k and $\psi_k = 2^k3^{-(k+1)}$ on G_k . (If one of the sets G_k , H_k , say G_k , is empty, we put $\psi_k = -2^k3^{-(k+1)}$; if $G_k = H_k = \varnothing$, we set $\psi_k = 0$.) Put $g_{k+1} = g_k - \psi_k$, $h_{k+1} = h_k - \psi_k$, and $d_{k+1}(x,y) = d_k(x,y) - (\psi_k(x) - \psi_k(y))$ for $x,y \in K$. By the remarks preceding Lemma 2.1, d_{k+1} is a pseudometric which satisfies the assumptions of Lemma 2.1. Clearly, $g_{k+1} \leq h_{k+1}, g_{k+1} \leq 2^{k+1}3^{-(k+1)}, h_{k+1} \geq -2^{k+1}3^{-(k+1)}, g_{k+1}(x) - h_{k+1}(y) \leq d_{k+1}(x,y)$ for each $x,y \in K$; g_{k+1} is upper semi-continuous in τ , and h_{k+1} is lower semi-continuous in τ . Put $f = \sum_{k=0}^{\infty} \psi_k$. Then f is well defined and τ -continuous; $-1 \leq f \leq 1$. From the construction it follows that

$$g - \sum_{i=0}^{k} \psi_i = g_{k+1} \le 2^{k+1} 3^{-(k+1)}$$
 and

$$h - \sum_{i=0}^{k} \psi_i = h_{k+1} \ge -2^{k+1} 3^{-(k+1)},$$

for $k \in \mathbb{N}$, hence $g \leq f \leq h$. By induction we have also that $d_{k+1}(x, y) = d(x, y) - \sum_{i=0}^{k} (\psi_i(x) - \psi_i(y))$ for $k \in \mathbb{N}$ and $x, y \in K$. Since

$$\psi_{k+1}(x) - \psi_{k+1}(y) \le d_{k+1}(x,y) = d(x,y) - \sum_{i=0}^{k} (\psi_i(x) - \psi_i(y))$$

we have

$$\sum_{i=0}^{k+1} (\psi_i(x) - \psi_i(y)) \le d(x, y)$$

for $k \in \mathbb{N}$ and $x, y \in K$ which means that f is 1-Lipschitz in d.

If (K, τ) is a normal space and d is a discrete metric on K (that is d(x, y) = 1 if $x \neq y$), then d satisfies the assumptions of Theorem 2.2 and any function φ on K with $0 \leq \varphi \leq 1$ is 1-Lipschitz in d. Therefore by a theorem of Dowker and Katětov (see [E, p. 428]) if we wish to have sharp inequalities in Theorem 2.2 we have to assume that (K, τ) is countably paracompact. Also, we have to assume that both g and h are c-Lipschitz as the example of $c = 1, K = \{-1\} \cup (0, 1], g(-1) = 1, h(-1) = 2$, and $g(x) = 0, h(x) = x^2$ for $x \in (0, 1]$ shows.

Proposition 2.3 Let (K, τ) be normal and countably paracompact, and d be a metric on K such that the set $B(A, \varepsilon)$ is τ -closed for each τ -closed $A \subset K$ and $\varepsilon > 0$; c > 0. Let g < h be bounded functions on K, both c-Lipschitz in d. If g is upper semi-continuous in τ , and h is lower semi-continuous in τ then there exists a function f on K which is τ -continuous, c-Lipschitz in d, and g < f < h.

Proof First we show that there is a τ -continuous function f_1 on K which is c-Lipschitz in d and for which $g < f_1 \le h$. Similarly one shows that there is f_2 with $g \le f_2 < h$, and $f = \frac{1}{2}(f_1 + f_2)$ is the required function.

For each pair of rational numbers r < s put

$$U_{r,s} = \{ x \in K : g(x) < r < s < h(x) \}.$$

The lower semi-continuity of g and h implies that each $U_{r,s}$ is open (possibly empty). Since g < h, $\mathcal{U} = \{U_{r,s}\}$ is a countable open cover of K. Let $\mathcal{V} = \{V_{r,s}\}$ be a closed cover of K with $V_{r,s} \subset U_{r,s}$; it exists since (K, τ) is countably paracompact (see *e.g.*, [E, p. 393]). Put

$$g_{r,s}(x) = \begin{cases} g(x), & \text{if } x \in X \setminus V_{r,s} \\ g(x) + s - r, & \text{if } x \in V_{r,s}. \end{cases}$$

Then $g \leq g_{r,s} \leq h$ and $g_{r,s} > g$ on $V_{r,s}$. If $\alpha \in \Re$, then

$$\{x \in K : g_{r,s}(x) \ge \alpha\} = \{x \in K : g(x) \ge \alpha\} \cup \{x \in V_{r,s} : g(x) \ge \alpha - (s - r)\};$$

since g is upper semi-continuous these sets are closed and $g_{r,s}$ is also upper semi-continuous. If $x, y \in K$ then $g_{r,s}(x) - h(y) \le h(x) - h(y) \le c d(x, y)$. By Theorem 2.2 there is a τ -continuous function $\varphi_{r,s}$ on K which is c-Lipschitz in d with $g_{r,s} \le \varphi_{r,s} \le h$. Re-index the functions φ by natural numbers and put $f_1 = \sum_{i=1}^{\infty} 2^{-i} \varphi_i$. Then f_1 is τ -continuous, c-Lipschitz in d and $g \le f_1 \le h$. Since $\mathcal V$ covers K it is even $g < f_1$ on K.

Theorem 2.4 Let (K, τ) be a normal topological space, and d be a metric on K such that the set $B(A, \varepsilon)$ is τ -closed for each τ -closed $A \subset K$ and $\varepsilon > 0$; let c > 0. Let $F \subset K$ be closed, f be a bounded and τ -continuous function on F which is c-Lipschitz in d. Then there is a τ -continuous function \tilde{f} on K such that $\tilde{f} = f$ on F, $\inf_F f \leq \tilde{f} \leq \sup_F f$, and \tilde{f} is c-Lipschitz in d.

Proof Define functions g and h on K so that g = h = f on F, $g = \inf_F f$ on $K \setminus F$, and $h = \sup_F f$ on $K \setminus F$. It is easy to see that g and h satisfy the conditions of Theorem 2.2, hence there exists a continuous function \tilde{f} defined on K which is c-Lipschitz in d and $g \le \tilde{f} \le h$.

There is a converse to the above theorem. Namely suppose there exists a closed set $A \subset K$ and r > 0 such that B(A, r) is not closed. Choose some $z \in \overline{B(A, r)} \setminus B(A, r)$, and put $R = \operatorname{dist}(A, z)$. Then r < R and the function

$$g(x) = \begin{cases} 0, & \text{if } x \in A \\ R, & \text{if } x = z. \end{cases}$$

is a continuous 1-Lipschitz function on the closed set $F = A \cup \{z\}$. Suppose g admits a continuous 1-Lipschitz extension f to K. If $u \in B(A, r)$, and $\varepsilon > 0$ then there exists $v \in A$ so that $d(u, v) < r + \varepsilon$, hence

$$f(u) = f(u) - f(v) < d(u, v) < r + \varepsilon.$$

Since *f* is continuous, $f \le r$ on $\overline{B(A, r)}$, which is a contradiction.

A metric d on a topological space K is *lower semi-continuous*, if d is lower semi-continuous as a real valued function on $K \times K$, that is, the set

$$\{(x, y) \in K \times K : d(x, y) \le \varepsilon\}$$

is closed for all $\varepsilon > 0$. Notice that the metric d in the previous theorem is necessarily lower semi-continuous. Indeed, given any two points $s, t \in K$, by Theorem 2.4 there exists a continuous function $f = f_{s,t}$ on K such that $0 \le f \le d(s,t)$, f(s) = 0, f(t) = d(s,t), and f is 1-Lipschitz in d. If we put

$$\rho(s,t) = \sup\{|f_{u,v}(s) - f_{u,v}(t)| : u, v \in K\}$$

then clearly $d = \rho$ and ρ is lower semi-continuous on $K \times K$ as a pointwise supremum of a family of continuous functions. If K is a compact Hausdorff space, we get by the following corollary that a metric d on K is lower semi-continuous if and only if it has the property required in Theorem 2.4.

Corollary 2.5 Let K be a compact Hausdorff space, d a lower semi-continuous metric on K, $F \subset K$ closed and c > 0. Let $g \in C(F)$ be c-Lipschitz in d. Then there exists $f \in C(K)$ such that f = g on F, $\min_F g \le f \le \max_F g$, and f is c-Lipschitz in d.

Proof Let $A \subset K$ be closed, and $\varepsilon > 0$. If $z \in K$ than $dist(A, z) = \inf_{A \times \{z\}} d$, and since $A \times \{z\}$ is compact and d is lower semi-continuous, the infimum is attained. Hence

$$B(A,\varepsilon) = p_2((A \times K) \cap \{(x,y) \in K \times K : d(x,y) \le \varepsilon\}),$$

where p_2 is the projection on the second coordinate. Since A and K are compact and p_2 is continuous, the set $B(A, \varepsilon)$ is closed.

Corollary 2.6 Let X be a Banach space and F a weak*-closed subset of the dual X^* of X; c > 0. Let g be a bounded, weak*-continuous function on F which is g-Lipschitz in the normmetric on g. Then there exists a weak*-continuous function g on g on g, g in g is g and g is g and g is g in the normmetric on g.

Proof Since $(X^*, \text{ weak}^*)$ is σ -compact, it is Lindelöf. From the definition of the weak* topology it follows easily that it is regular. By a theorem of Tychonoff (see *e.g.*, [K, p. 113]) $(X, \text{ weak}^*)$ is normal. Let $A \subset X^*$ be weak*-closed and $\varepsilon > 0$. Observe that $B(A, \varepsilon) = A + B(0, \varepsilon)$; the latter set is closed since it is a sum of a weak*-closed set and of a weak*-compact set. Indeed, if $z \in X^*$ and $\operatorname{dist}(A, z) \leq \varepsilon$, then $C = A \cap B(z, 2\varepsilon)$ is a nonempty weak*-compact set with $\operatorname{dist}(C, z) \leq \varepsilon$. The function $h(x) = \|x - z\|$ is weak*-lower semi-continuous, hence it attains its minimum at some point $y \in C \subset A$. Then $\|y - z\| \leq \varepsilon$, and $z \in (y + B(0, \varepsilon))$.

3 Examples

As we have seen above, τ -lower semi-continuity of the metric d is a necessary condition for the conclusion of Theorem 2.4 to be valid. It is not sufficient, though; the next theorem shows that each separable nonreflexive Banach space equipped with the weak topology and norm metric provides an example. Indeed, the norm-metric on any Banach space is lower semi-continuous in the weak topology; weak topology is easily seen to be regular, separable Banach spaces are Lindelöf and therefore normal in the weak topology (see *e.g.*, [K, p. 113]).

Theorem 3.1 Let X be a Banach space. Then X is not reflexive if and only if there exists a bounded, weakly closed subset F of X and a weakly continuous function g on F which is 1-Lipschitz in norm such that no continuous extension of g on X is g-Lipschitz for any g on g.

Proof If X is reflexive then X is a dual of X^* and the weak and weak* topology are the same; every weakly-continuous f which is Lipschitz in norm admits an extension by Corollary 2.6.

Suppose that X is not reflexive. Fix $0 < \delta < 1$. We will construct a weakly closed set $F_{\delta} \subset B(0,2)$ such that $\operatorname{dist}(F_{\delta},0) \geq \frac{1}{2}$, and $0 \in \overline{F_{\delta} + B(0,\delta)}^{\text{weak}}$. Recall that since X is nonreflexive by a result of James [Ja] there exists a sequence $\{u_n\}_{\mathbb{N}}$ in the unit ball of X so that for each $n \in N$

(1)
$$\operatorname{dist}(\operatorname{span}\{u_i\}_{i=1}^n, \operatorname{conv}\{u_i\}_{i=n+1}^{\infty}) > 1 - \frac{1}{3}\delta.$$

Put

$$F_{\delta} = \{u_i - (1 - \delta)u_i : i, j \in \mathbb{N}, i < j\}.$$

Then clearly $F_\delta \subset B(0,2)$, and by (1) $\operatorname{dist}(F_\delta,0) \geq \frac{1}{2}$. Let $z \in \overline{F_\delta}^{\operatorname{weak}}$ be given. Then z is contained in the norm-closure of span $\{u_i\}_{i=1}^\infty$. Choose $n \in \mathbb{N}$ so that

$$\operatorname{dist}\left(\operatorname{span}\left\{u_i\right\}_{i=1}^n,z\right)<\frac{1}{3}\delta,$$

and $v \in \text{span } \{u_i\}_{i=1}^n$ so that $\|v - z\| < \frac{1}{3}\delta$. By the Hahn-Banach theorem choose z^* from the unit ball of X^* so that $z^* = 0$ on span $\{u_i\}_{i=1}^n$ and

$$\langle z^*, x \rangle > 1 - \frac{1}{3}\delta$$

for all $x \in \text{conv}\{u_i\}_{i=n+1}^{\infty}$. Then for each for each $i, j \in \mathbb{N}$ such that i < j and n < j

$$\begin{split} \langle z^*, u_j - (1 - \delta)u_i - z \rangle &= \langle z^*, u_j \rangle - (1 - \delta)\langle z^*, u_i \rangle + \langle z^*, v - z \rangle - \langle z^*, v \rangle \\ &> 1 - \frac{1}{3}\delta - (1 - \delta) - \frac{1}{3}\delta - 0 = \frac{1}{3}\delta. \end{split}$$

Since the set $\{u_j - (1 - \delta)u_i : i, j \in \mathbb{N}, i < j \le n\}$ is finite, $z \in F_\delta$.

To show that $0 \in \overline{F_{\delta} + B(0, \delta)}^{\text{weak}}$, let x_1^*, \dots, x_n^* in the unit ball of X^* and $\varepsilon > 0$ be given. Observe that

$${u_i - u_i : i, j \in \mathbb{N}, i < j} \subset F_{\delta} + B(0, \delta).$$

Since for each $1 \le l \le n$ the sequence $(\langle x_l^*, u_i \rangle)_{i \in \mathbb{N}}$ is bounded, there exist $a_1, \dots, a_n \in \Re$ and a subsequence $(u_{k_i})_{i \in \mathbb{N}}$ of $(u_i)_{i \in \mathbb{N}}$ such that

$$|\langle x_l^*, u_{k_i} \rangle - a_l| < \frac{\varepsilon}{2}$$

for each $1 \le l \le n$ and $i \in \mathbb{N}$. Consequently

$$|\langle x_l^*, u_{k_2} - u_{k_1} \rangle| < \varepsilon$$

for each $1 \le l \le n$, and 0 is in the weak closure of $F_\delta + B(0, \delta)$. Now choose a bounded sequence (z_n) in X such that

$$dist(span \{z_i\}_{i=1}^{n-1}, conv\{z_i\}_{i=n}^{\infty}) > 5$$

for each $n \in \mathbb{N}$. Put $F = \{z_n\}_{n=2}^{\infty} \cup \bigcup_{n=2}^{\infty} F_{\frac{1}{n}} + z_n$. The set $\bigcup_{n=2}^{\infty} F_{\frac{1}{n}} + z_n$ is weakly closed since each $F_{\frac{1}{n}} + z_n$ is weakly closed and

$$\operatorname{dist}\left(\operatorname{conv}\bigcup_{i=2}^{n-1}F_{\frac{1}{i}}+z_{i},\operatorname{conv}\bigcup_{i=n}^{\infty}F_{\frac{1}{i}}+z_{i}\right)\geq1$$

for each $n \ge 3$. Since $\{z_n\}_{\mathbb{N}}$ is weakly closed, F is weakly closed as well. Define

$$g(x) = \begin{cases} 0, & \text{if } x \in \bigcup_{n=2}^{\infty} (F_{\frac{1}{n}} + z_n) \\ \frac{1}{2}, & \text{if } x \in \{z_n\}_{n=2}^{\infty}. \end{cases}$$

It is readily seen that g is a weakly continuous and 1-Lipschitz function. Suppose $n \in \mathbb{N}$ and f is a weakly continuous, n-Lipschitz extension of g on X. Let $x \in B(z_{4n} + F_{\frac{1}{4n}}, \frac{1}{4n})$ be arbitrary; choose $y \in (z_{4n} + F_{\frac{1}{4n}})$ so that $||x - y|| \leq \frac{1}{3n}$. Then

$$f(x) = f(x) - f(y) \le n||x - y|| \le \frac{1}{3}$$
.

Hence $f \leq \frac{1}{3}$ on $B(z_{4n} + F_{\frac{1}{4n}}, \frac{1}{4n})$, and since $z_{4n} \in \overline{B(z_{4n} + F_{\frac{1}{4n}}, \frac{1}{4n})}^{\text{weak}}$, this is a contradiction.

The following example shows that unlike Tietze-Urysohn and Kirszbraun's theorems, the function in the hypothesis of Theorem 2.4 has to be bounded.

Example 3.2 There exists a weakly closed subset F of the Hilbert space ℓ_2 and an unbounded, weakly continuous function g on F which is 1-Lipschitz in norm, such that no continuous extension of g on ℓ_2 is c-Lipschitz for any c > 0.

Let $(e_i)_{\mathbb{N}_o}$ be the canonical basis of ℓ_2 . Define

$$x^{n} = n^{\frac{1}{4}}e_{0} + n^{\frac{1}{2}}e_{n}$$
$$v^{n} = n^{\frac{1}{2}}e_{n};$$

observe that zero is in the weak closure of the set $\{y^k\}_{k\geq n}$ for each $n\in\mathbb{N}$. Indeed if $\alpha=(\alpha_i)\in\ell_2$, $\varepsilon>0$ then there exists $k\geq n$ so that $|\langle y^k,\alpha\rangle|=|k^{\frac{1}{2}}\alpha_k|<\varepsilon$: otherwise $|\alpha_k|\geq\varepsilon k^{-\frac{1}{2}}$ for $k\geq n$ and $(\alpha_i)\notin\ell_2$. Similarly one can argue for finitely many α 's.

Put $F = \{x^n\}_{\mathbb{N}}$, $F_n = \{x^m : n \le m\}$. Since $\lim_{m \to \infty} x_o^m = \infty$, each of the sets F_n is weakly closed, and the function $g \colon F \to \Re$ defined by $g(x^n) = n^{\frac{1}{2}}$ is continuous. Since for n > m

$$|g(x^n) - g(x^m)| = n^{\frac{1}{2}} - m^{\frac{1}{2}} \le (n+m)^{\frac{1}{2}} \le ((n^{\frac{1}{4}} - m^{\frac{1}{4}})^2 + n + m)^{\frac{1}{2}} = ||x^n - x^m||,$$

the function g is 1-Lipschitz. Suppose f is a weakly continuous, c-Lipschitz extension of g on ℓ_2 ; denote a = f(0). Choose $n \in \mathbb{N}$ so that if $m \ge n$ then

$$m^{\frac{1}{2}} - cm^{\frac{1}{4}} > a + 1.$$

Then for $m \ge n$

$$f(y^m) \ge f(x^m) - c||y^m - x^m|| = m^{\frac{1}{2}} - cm^{\frac{1}{4}} \ge a + 1.$$

Since zero is in the closure of the set $\{y^m\}_{m>n}$, $f(0) \ge a+1$ which is a contradiction.

Acknowledgment I would like to thank Yoav Benyamini and Luděk Zajíček for stimulating discussions on the subject of this paper, and David Preiss for explaining a simplification of the proof of Theorem 2.2 to me.

References

[E] P. Engelking, General Topology. PWN, Warszawa, 1977.

[GhMa] N. Ghoussoub and B. Maurey, H_{δ} -Embedding in Hilbert space and optimization on G_{δ} sets. Mem. Amer. Math. Soc. **62**, Providence, 1986.

[Ja] R. C. James, Weak compactness and reflexivity. Israel J. Math. 2(1964), 101–119.

[JNR] J. E. Jayne, I. Namioka and C. A. Rogers, Norm fragmented weak* compact sets. Collect. Math. (1) 41(1990), 133–163.

[K] J. L. Kelley, General topology. D. Van Nostrand Comp., New York, 1968.

[WW] J. H. Wells and L. R. Williams, Embeddings and extensions in analysis. Springer-Verlag, Berlin, 1975.

Mathematical Institute Czech Academy of Sciences Žitná 25 CZ-11567 Prague Czech Republic

email: matouse@matsrv.math.cas.cz