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Extensions of Continuous and Lipschitz
Functions

Eva Matouskova

Abstract. 'We show a result slightly more general than the following. Let K be a compact Hausdorff space,
F a closed subset of K, and d a lower semi-continuous metric on K. Then each continuous function f on F
which is Lipschitz in d admits a continuous extension on K which is Lipschitz in d. The extension has the
same supremum norm and the same Lipschitz constant.

As a corollary we get that a Banach space X is reflexive if and only if each bounded, weakly continuous and
norm Lipschitz function defined on a weakly closed subset of X admits a weakly continuous, norm Lipschitz
extension defined on the entire space X.

1 Introduction

The classical theorem of Tietze and Urysohn says that given a continuous function f on a
closed subset F of a normal space T, there is a continuous extension f of f to all of T so that
infr f < f < supj f. Kirszbraun’s theorem ensures that any Lipschitz function defined on
a subset of a metric space M can be extended to a Lipschitz function on M with the same
Lipschitz constant (see e.g., [WW]). Given a normal space (T, 7) with some metric d on
it, we examine when it is possible to extend every 7-continuous function Lipschitz in d
defined on a 7-closed subset of T to a 7-continuous function Lipschitz in d defined on the
entire space T. We show that every bounded, 7-continuous function Lipschitz in d defined
on a 7-closed subset of T can be extended to a T-continuous function Lipschitz in d defined
on the entire space T with the same supremum and Lipschitz norm if and only if for each
7-closed subset F of T and £ > 0 the set

{x € T:d-dist(F,x) <&}

is T-closed. We give also an “in between” version of this result; strict one in the case when
(T, ) is countably paracompact. As a corollary we get that if (K, 7) is a compact Hausdorff
space, d a lower semi-continuous metric on K, F a 7-closed subset of K, ¢ > 0 and f a
T-continuous function on F which is ¢-Lipschitz in d then f admits a 7-continuous and
c-Lipschitz extension f on K such that infr f < f < sup; f. A special case of this result
with f taking only values 0 and 1 and the extension f being “almost” c-Lipschitz appears
in [GhMa] and [JNR].

As another corollary we get that each bounded, weak*-continuous and norm-Lipschitz
function f defined on a weak*-closed subset of the dual X* of a Banach space X admits
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a weak*-continuous norm-Lipschitz extension on X* which has the same supremum and
Lipschitz norm as f.

It is easy to see (e.g., p. 214) that if each continuous Lipschitz function defined on a
closed subset of a normal space (T, 7) with a metric d can be extended as above, then
necessarily the metric d has to be lower semi-continuous with respect to 7. We give an
example of a normal topological space (T, 7) with a lower semi-continuous metric on it
(any separable nonreflexive Banach space with the weak topology and norm metric) and
of a bounded, 7-continuous and 1-Lipschitz function f on a closed subset of T such that
no 7-continuous extension of f is c-Lipschitz for any ¢ > 0. Namely, we show that if X
is a nonreflexive Banach space, there exists a weakly closed subset F of the unit ball B and
a weakly continuous, norm Lipschitz function f on F, such that no weakly continuous
extension of f on B is norm Lipschitz. Thus we get that a Banach space X is reflexive if and
only if each bounded, weakly continuous and norm Lipschitz function defined on a weakly
closed subset of X admits a weakly continuous, norm Lipschitz extension defined on the
entire space X.

The functions in the hypotheses of Tietze-Urysohn and Kirszbraun’s theorems do not
have to be bounded; in our setting, they do have to be bounded. We give an example of an
unbounded, weakly continuous and norm-Lipschitz function f defined on a weakly closed
subset of the separable Hilbert space ¢, such that no weakly-continuous extension of f on
£, is c-Lipschitz for any ¢ > 0.

We consider only Hausdorff topological spaces. In the following, if (T, 7) is a topological
space and d is some metric on T, if we do not specify which topology we mean, we always
mean the topology 7, not the one defined on T by the metric d.

2 Extensions

Let X be a set and d a not necessarily symmetric pseudometric on X. By this we mean that
d: XxX —=%R,d>0,dx,x) =0,d(x,y) < d(x,z) +d(z, y) for all x, y,z € X, but not
necessarily d(x, y) = d(y,x). If ¢ > 0, we say that a function f: X — R is ¢c-Lipschitz in d
if f(x) — f(y) <cd(x,y),forallx, y € X. If Y and Z are subsets of X, then

d-dist(Y,Z) = inf{d(y,z) : y € Y,z € Z},

whereas
d-dist(Z,Y) = inf{d(z,y) : y €Y,z € Z}.

By a slight abuse of notation we denote for A C X and a > 0

d-B(A, ) = {x € X : d-dist(A, x) < a},
d-B(a, A) = {x € X : d-dist(x,A) < a}.

The specification “d-" will sometimes be omitted.

Suppose now that (X, 7) is a topological space, d is a (nonsymmetric) pseudometric on
Xand f: X — Ris 7-continuous and 1-Lipschitz in d. Then the functiond’: X x X — R
defined as d’(x, y) = d(x, y) — ( flx)— f( y)) is clearly also a nonsymmetric pseudometric
on X. Suppose that d has the property that if A C X is 7-closed and o > 0 then both
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the sets d-B(A, «) and d-B(«, A) are T-closed. Then d’ also has this property. Indeed, let
x € X\ d’-B(A, ) be arbitrary. Then there is some ¢ > 0 so that d'(a,x) = d(a,x) —
(f(a) - f(x)) > a+ ¢ foralla € A. Choose an open set U; C X so that x € Uy and
|f(x) — f(y)| < e/4foreach y € Uy. Let B = sup,,{0, f(a) — f(x) + a +¢/2}. If
B = 0put U, = X \ A, otherwise let U, = X \ d-B(A, 3); in both cases x € U,. Let
y € U =U; NU, and a € A be arbitrary. Then

d'(a,y) = da,y) — (f(a) = f(»)) = B~ (f(@) — f) — (f&) — f())

> a+e/4d.

This means that U Nd’-B(A, a) = &, and the set d’-B(A, ) is closed. Similarly we get that
the set d’-B(a, A) is closed.

The following Urysohn-like lemma is a mild extension of a result contained in [JNR];
we give only an outline of the proof. We use the following elementary property of F, sets:
let X be a normal space and A, B C X be F, sets such that AN B = AN B = &. Then there
exists an open set U C X sothat A C U and U NB = @.

Lemma 2.1 Let (X, T) be a normal space and d be a (nonsymmetric) pseudometric on X
with the property that if A C X is 7-closed and o« > 0 then both the sets d-B(A, «) and
d-B(a, A) are T-closed. Suppose Fy and F, are T-closed disjoint nonempty subsets of X with

d(x1,x0) > 1 forx, € Fyandx, € F.

Then there exists f: X — [0, 1] continuous in T and 1-Lipschitz in d, taking the value 0 on F
and the value 1 on Fy.

Proof First observe thatif F C X is closed and o > 0 then the set

. 1
{x e X:dist(Fx) < a} = U B(F,Oé* ;>,

1
<«

hence it is an F, set. Similarly the set {x € X : dist(x, F) < a} is F,.

Let Q be the set of all rational numbers in (0,1). Enumerate Q U {0, 1} so that ry =
0,7 = 1,75, ... . We use the convention that U, = U, = F, (this means that unlike the
other U’s Uy is a closed set; it can have even empty interior) and U; = X \ F;. We construct
a family of open sets {U, : r € Q} in X so that:

(i) fors,t € QU{0,1},s<t,andanyx € U, y € X \ U;, we have d(y,x) >t —s.

Suppose that for some n > 1, the sets U,,, 0 < i < 1, have been chosen so that (i) holds
for all choices of s, ¢ from {rg, 71, ...,r,}. The set U, ,, will be chosen in the following way.
Write r = 1,41 and

Tn+1

S={rj:0<j<nrj<r},

T={rj:0<j<mnr<rj}
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Put

A= U{x € X : dist(x,Uy) < r—s}
seS

Al = U B(r — s, U,)

sES
B= U{xEX:dist(X\U,,x) <t-—r}
teT

B' = JBX\U,t—r).
teT

Both A and B are F, sets; the sets A’ and B are closed and A C A’ and B C B’. By (i) we
have that A’ " B = A N B’ = @. Therefore there exists an open set U, so that

ACU, and U,NB=2.
If we define a function f on X by taking f to be 1 on F;, and
f(x) =inf{r:x € U,,r€ Q} forxe U,

then f is continuous by the proof of Urysohn’s lemma (K, p. 114]. If x, y € X and f(x) =
a<b= f(y)thenforalla < s <t < bwehavex € Us;and y € X \ U,. Hence

d(y,x) > dist(X \ U;, Us) > s — t,
and d(y,x) > b—a= f(y) — f(x), which means that f is 1-Lipschitz in d. [ |

Theorem 2.2  Let (K, T) be a normal topological space, and d be a metric on K such that
the set B(A, €) is T-closed for each T-closed A C Kande > 0; ¢ > 0. Let g < h be
bounded functions on K so that g(x) — h(y) < cd(x, y) for each x,y € K. If g is upper
semi-continuous in T, and h is lower semi-continuous in T then there exists a function f on K
which is T-continuous, c-Lipschitzin d, and g < f < h.

Proof By adding a constant and multiplying by a constant of g and h we can suppose that
—1 < ¢ < h < 1; by multiplying the metric by a constant we can suppose that ¢ = 1.
Put g = g hy = h, and dy = d. As in the proof of Tietze’s theorem we proceed by
induction. Suppose that dy is a (nonsymmetric) pseudometric on K satisfying the assump-
tions of Lemma 2.1 and g < hy are functions on K so that gz < 2k3=k . > —2k3—k
ge(x) — he(y) < di(x,y) for each x, y € K; g is upper semi-continuous in 7, and hy is
lower semi-continuous in 7. Put

2k
Gy = {xEK:gk(x)Z %}

k
Hk:{xEK:hk(x)< 2 }

- 3k+1
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It is dy(x, y) > 2K13=%*D for any x € Gy and y € Hy and by Lemma 2.1 there exists a
T-continuous function v which is 1-Lipschitz in di, —2k3=*1D < g < 2k3= (KD gy =
—2k3=(+1) on Hy and 1 = 283~V on Gy. (If one of the sets Gy, Hy, say Gy, is empty, we
putyy = —283=* D5 if Gy = Hy = @, we set iy = 0.) Put geut = gk — i Mt = h — i
and diy(x, y) = di(x,y) — (wk(x) — 1pk(y)) for x,y € K. By the remarks preceding
Lemma 2.1, dy,; is a pseudometric which satisfies the assumptions of Lemma 2.1. Clearly,
et < iy genn < 281370 p > oRHI3=RD g (%) — hiaa () < dia(x, y) for
each x, y € K; giy1 is upper semi-continuous in 7, and hyy; is lower semi-continuous in
7. Put f = > ¥ Then f is well defined and 7-continuous; —1 < f < 1. From the
construction it follows that

k
g— > Wi =g <2137 %D and

i=0
k
h— Zwl — hk+1 > _2k+13—(k+1)’
i=0
for k € N, hence ¢ < f < h. By induction we have also that di,(x,y) = d(x,y) —
Zi‘{:o (1/11'(36) — w,'(y)) fork € Nand x, y € K. Since

k

Yt () = Yen () < diena (x, ) = dx, y) = > (i(x) — ¥i(y))

i=0

we have
k+1
> (i) — i(y)) < dx,y)
i=0
for k € Nand x, y € K which means that f is 1-Lipschitz in d. ]

If (K, 7) is a normal space and d is a discrete metric on K (that is d(x, y) = 1 if x # y),
then d satisfies the assumptions of Theorem 2.2 and any function ¢ on K with 0 < ¢ < 1
is 1-Lipschitz in d. Therefore by a theorem of Dowker and Katétov (see [E, p. 428]) if we
wish to have sharp inequalities in Theorem 2.2 we have to assume that (K, 7) is countably
paracompact. Also, we have to assume that both g and 4 are c-Lipschitz as the example of
c=1,K={-1}U(0,1],g(—1) = 1, h(—1) = 2, and g(x) = 0, h(x) = x* for x € (0, 1]
shows.

Proposition 2.3  Let (K, T) be normal and countably paracompact, and d be a metric on K
such that the set B(A, €) is T-closed for each T-closed A C K ande > 0;¢c > 0. Letg < h
be bounded functions on K, both c-Lipschitz in d. If g is upper semi-continuous in 7, and
h is lower semi-continuous in T then there exists a function f on K which is T-continuous,
c-Lipschitzind, and g < f < h.

Proof First we show that there is a 7-continuous function f; on K which is ¢-Lipschitz in
d and for which ¢ < f; < h. Similarly one shows that there is f, with ¢ < f, < h, and

f=1(fi + f2) is the required function.
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For each pair of rational numbers r < s put
U ={x€eK:g(x) <r<s<h(x)}.

The lower semi-continuity of ¢ and h implies that each U, is open (possibly empty). Since
g < h, U = {U,s} is a countable open cover of K. Let V = {V,} be a closed cover of K
with V., C U,; it exists since (K, 7) is countably paracompact (see e.g., [E, p. 393]). Put

gal) = g(x), ifxe X\ V,
” gx)+s—r ifxeV,,.

Theng < g, < hand g, > gonV,,. Ifa € R, then
{xeK:ig,x)>al={xeK:glx) >alU{xeV,:glx) >a—(s—1}

since g is upper semi-continuous these sets are closed and g, , is also upper semi-continuous.
If x,y € K then g.(x) — h(y) < h(x) — h(y) < cd(x,y). By Theorem 2.2 there is a 7-
continuous function ¢,; on K which is c-Lipschitz in d with g, < ¢,; < h. Re-index
the functions ¢ by natural numbers and put f; = > ;= 27'¢;. Then f; is T-continuous,
c-Lipschitzindand g < f; < h. Since V covers K itis even g < f; on K. ]

Theorem 2.4  Let (K, T) be a normal topological space, and d be a metric on K such that
the set B(A, €) is T-closed for each T-closed A C K ande > 0; letc > 0. Let F C K be
closed, f be a bounded and T-continuous function on F which is c-Lipschitz in d. Then there
is a T-continuous function f on K such that f = fon F, infr f < f < supg f, and f is
c-Lipschitz in d.

Proof Define functions g and hon K sothatg = h = fonF, ¢ = infp f on K \ F, and
h = supp f on K \ F. It is easy to see that g and h satisfy the conditions of Theorem 2.2,
hence there exists a continuous function f defined on K which is c-Lipschitz in d and
g<f<h m

There is a converse to the above theorem. Namely suppose there exists a closed set
A C K and r > 0 such that B(A, r) is not closed. Choose some z € B(A,r) \ B(A,r), and
put R = dist(A, z). Then r < R and the function

(x) = 0, ifxeA
g0 = R, ifx=z

is a continuous 1-Lipschitz function on the closed set F = A U {z}. Suppose g admits a
continuous 1-Lipschitz extension f to K. If u € B(A, r), and € > 0 then there exists v € A
so that d(u,v) < r + ¢, hence

flu) = fu) — f(v) <d(u,v) <r+e.

Since f is continuous, f < r on B(A, r), which is a contradiction.

https://doi.org/10.4153/CMB-2000-028-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2000-028-0

214 Eva Matouskova

A metric d on a topological space K is lower semi-continuous, if d is lower semi-continu-
ous as a real valued function on K x K, that is, the set

{(x,y) e K xK:d(x,y) < e}

is closed for all € > 0. Notice that the metric d in the previous theorem is necessarily lower
semi-continuous. Indeed, given any two points s,# € K, by Theorem 2.4 there exists a
continuous function f = f;; on K such that 0 < f < d(s, 1), f(s) = 0, f(t) = d(s,t), and
f is 1-Lipschitz in d. If we put

p(s,t) = sup{|fu,(s) — fur(®)] : u,v € K}

then clearly d = p and p is lower semi-continuous on K X K as a pointwise supremum of a
family of continuous functions. If K is a compact Hausdorff space, we get by the following
corollary that a metric d on K is lower semi-continuous if and only if it has the property
required in Theorem 2.4.

Corollary 2.5  Let K be a compact Hausdorff space, d a lower semi-continuous metric on K,
F C K closed and ¢ > 0. Let g € C(F) be c-Lipschitz in d. Then there exists f € C(K) such
that f = gon F, minp g < f < maxgpg, and f is c-Lipschitz in d.

Proof Let A C K be closed, and € > 0. If z € K than dist(A,z) = infy, ;) d, and since
A x {z} is compact and d is lower semi-continuous, the infimum is attained. Hence

B(A,e) = p2((Ax K)N{(x,y) € K x K : d(x,y) < €}),

where p, is the projection on the second coordinate. Since A and K are compact and p, is
continuous, the set B(A, ) is closed. ]

Corollary 2.6  Let X be a Banach space and F a weak*-closed subset of the dual X* of X;
¢ > 0. Let g be a bounded, weak™-continuous function on F which is c-Lipschitz in the norm-
metric on X*. Then there exists a weak™-continuous function f on X* such that f = gon F,
infp g < f <suppg, and f is c-Lipschitz in the norm-metric on X*.

Proof Since (X*, weak™) is o-compact, it is Lindel6f. From the definition of the weak*
topology it follows easily that it is regular. By a theorem of Tychonoff (see e.g, [K, p. 113])
(X, weak™) is normal. Let A C X* be weak*-closed and € > 0. Observe that B(A,¢) =
A + B(0, €); the latter set is closed since it is a sum of a weak*-closed set and of a weak*-
compact set. Indeed, if z € X* and dist(A, z) < ¢, then C = A N B(z, 2¢) is a nonempty
weak*-compact set with dist(C, z) < e. The function h(x) = ||x — z|| is weak*-lower semi-
continuous, hence it attains its minimum at some point y € C C A. Then ||y —z|| < ¢,
andz € (y+B(0,5)). [ |

https://doi.org/10.4153/CMB-2000-028-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2000-028-0

Extensions of Continuous and Lipschitz Functions 215

3 Examples

As we have seen above, T-lower semi-continuity of the metric d is a necessary condition for
the conclusion of Theorem 2.4 to be valid. It is not sufficient, though; the next theorem
shows that each separable nonreflexive Banach space equipped with the weak topology and
norm metric provides an example. Indeed, the norm-metric on any Banach space is lower
semi-continuous in the weak topology; weak topology is easily seen to be regular, separable
Banach spaces are Lindel6f and therefore normal in the weak topology (see e.g., [K, p. 113]).

Theorem 3.1  Let X be a Banach space. Then X is not reflexive if and only if there exists
a bounded, weakly closed subset F of X and a weakly continuous function g on F which is
1-Lipschitz in norm such that no continuous extension of g on X is c-Lipschitz for any ¢ > 0.

Proof If X is reflexive then X is a dual of X* and the weak and weak* topology are the
same; every weakly-continuous f which is Lipschitz in norm admits an extension by Corol-
lary 2.6.

Suppose that X is not reflexive. Fix 0 < § < 1. We will construct a weakly closed set

— weak
Fs C B(0,2) such that dist(Fs;,0) > %, and 0 € Fs +B(O,(5)Wea . Recall that since X is

nonreflexive by a result of James [Ja] there exists a sequence {u, }n in the unit ball of X so
that foreachn € N
(1) dist (span {u; }/_;, conv{u;}7°,,,) > 1 — 16.

Put
Fs ={uj — (1= 08)ui:i,j € N,i <j}.

Then clearly F5 C B(0,2), and by (1) dist(Fs,0) > % Letz € F_gweak be given. Then z is
contained in the norm-closure of span {u;}7°,. Choose n € N so that

dist (span {u; }}_;,2) < 16,

and v € span {u;}/, so that ||v — z|| < 34. By the Hahn-Banach theorem choose z* from
the unit ball of X* so that z* = 0 on span {u;}/ | and

(z,x) >1— 136
forall x € conv{u; }°,,,. Then for each for each i, j € Nsuch thati < jandn < j

(" uj — (1= 0u; —z) = (2", u;) — (1 = 0)(z", u;) + (2", v —z) — (z",v)

>1—-36—(1—-6)—30—0=30.

Since the set {u; — (1 — &)u; : i, j € N,i < j < n} is finite, z € F;.

— weak
To show that 0 € Fjs+ B(0, 5)wea , let x¥, ..., x} in the unit ball of X* and ¢ > 0 be
given. Observe that

{uj —wi:i,j€N,i < j} C F5+B(0,9).
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Since for each 1 < I < n the sequence ((x]', u;))ien is bounded, there exist a;, ...,a, € £
and a subsequence (uy, )ien of (14;);en such that

|57 ue) — an| < 5
foreach 1 <! < mnandi € N. Consequently
|<x7,1/lk2 - uk1>| <e¢

for each 1 <1 < n,and 0 is in the weak closure of F5 + B(0, §).
Now choose a bounded sequence (z,,) in X such that

dist (span {z}/~!, conv{z;}{°,) > 5

foreachn € N. Put F = {z,}32, U2, F1 + z,. The set |J.2, F1 + z, is weakly closed
since each F1 + z, is weakly closed and

n—1 oo
dist(conv U F1 +z,',c0anF; +zi) >1
i=2 i=n

for each n > 3. Since {z, }y is weakly closed, F is weakly closed as well. Define

) 0, ifxe U2, (F1+z,)

x) = "

g 3, ifx e {z,}32,.

It is readily seen that g is a weakly continuous and 1-Lipschitz function. Suppose n € N
and f is a weakly continuous, n-Lipschitz extension of g on X. Let x € B(zs, + F%, ﬁ) be

arbitrary; choose y € (24, + F.1) so that [|x — y[| < 5. Then

F) = fG) ~ fy) < nllx— 5| < L.

weak
Hence f < % on B(z4,+F 1, ﬁ), and since z4, € B(zy, + F 1, 4%1) , this is a contradiction.
4n 4n

|
The following example shows that unlike Tietze-Urysohn and Kirszbraun’s theorems,
the function in the hypothesis of Theorem 2.4 has to be bounded.

Example 3.2  There exists a weakly closed subset F of the Hilbert space ¢, and an un-
bounded, weakly continuous function g on F which is 1-Lipschitz in norm, such that no
continuous extension of g on ¢, is ¢-Lipschitz for any ¢ > 0.

Let (e;)n, be the canonical basis of £,. Define
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observe that zero is in the weak closure of the set { yk}an for each n € N. Indeed if
o = (a;) € €y, & > 0 then there exists k > n so that |(y*,a)| = |k2ox| < e: otherwise
lax| > ek~ 2 for k > nand () ¢ £,. Similarly one can argue for finitely many o’s.

Put F = {x"}n, F, = {x™ : n < m}. Since W}me X" = o0, each of the sets F, is weakly

closed, and the function g: F — % defined by g(x") = n? is continuous. Since for n > m
lg(x™) — g(=x™)| = nt—mi: < (n+m): < ((n% —mi)+n+ m)? = [x" —x",

the function g is 1-Lipschitz. Suppose f is a weakly continuous, c-Lipschitz extension of g
on 4,; denote a = f(0). Choose n € N so that if m > n then

Dl
i

m2 —cm* > a+1.

Thenform > n
fO™) > (&™) —c||y™ — <" = mi —cmi > a+ 1.
Since zero is in the closure of the set {y” },;>,, f(0) > a + 1 which is a contradiction.
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