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Extensions of Continuous and Lipschitz
Functions
Eva Matoušková

Abstract. We show a result slightly more general than the following. Let K be a compact Hausdorff space,
F a closed subset of K, and d a lower semi-continuous metric on K. Then each continuous function f on F
which is Lipschitz in d admits a continuous extension on K which is Lipschitz in d. The extension has the
same supremum norm and the same Lipschitz constant.

As a corollary we get that a Banach space X is reflexive if and only if each bounded, weakly continuous and
norm Lipschitz function defined on a weakly closed subset of X admits a weakly continuous, norm Lipschitz
extension defined on the entire space X.

1 Introduction

The classical theorem of Tietze and Urysohn says that given a continuous function f on a
closed subset F of a normal space T, there is a continuous extension f̃ of f to all of T so that
infF f ≤ f̃ ≤ supF f . Kirszbraun’s theorem ensures that any Lipschitz function defined on
a subset of a metric space M can be extended to a Lipschitz function on M with the same
Lipschitz constant (see e.g., [WW]). Given a normal space (T, τ ) with some metric d on
it, we examine when it is possible to extend every τ -continuous function Lipschitz in d
defined on a τ -closed subset of T to a τ -continuous function Lipschitz in d defined on the
entire space T. We show that every bounded, τ -continuous function Lipschitz in d defined
on a τ -closed subset of T can be extended to a τ -continuous function Lipschitz in d defined
on the entire space T with the same supremum and Lipschitz norm if and only if for each
τ -closed subset F of T and ε > 0 the set

{x ∈ T : d-dist(F, x) ≤ ε}

is τ -closed. We give also an “in between” version of this result; strict one in the case when
(T, τ ) is countably paracompact. As a corollary we get that if (K, τ ) is a compact Hausdorff
space, d a lower semi-continuous metric on K, F a τ -closed subset of K, c > 0 and f a
τ -continuous function on F which is c-Lipschitz in d then f admits a τ -continuous and
c-Lipschitz extension f̃ on K such that infF f ≤ f̃ ≤ supF f . A special case of this result
with f taking only values 0 and 1 and the extension f̃ being “almost” c-Lipschitz appears
in [GhMa] and [JNR].

As another corollary we get that each bounded, weak∗-continuous and norm-Lipschitz
function f defined on a weak∗-closed subset of the dual X∗ of a Banach space X admits
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Extensions of Continuous and Lipschitz Functions 209

a weak∗-continuous norm-Lipschitz extension on X∗ which has the same supremum and
Lipschitz norm as f .

It is easy to see (e.g., p. 214) that if each continuous Lipschitz function defined on a
closed subset of a normal space (T, τ ) with a metric d can be extended as above, then
necessarily the metric d has to be lower semi-continuous with respect to τ . We give an
example of a normal topological space (T, τ ) with a lower semi-continuous metric on it
(any separable nonreflexive Banach space with the weak topology and norm metric) and
of a bounded, τ -continuous and 1-Lipschitz function f on a closed subset of T such that
no τ -continuous extension of f is c-Lipschitz for any c > 0. Namely, we show that if X
is a nonreflexive Banach space, there exists a weakly closed subset F of the unit ball B and
a weakly continuous, norm Lipschitz function f on F, such that no weakly continuous
extension of f on B is norm Lipschitz. Thus we get that a Banach space X is reflexive if and
only if each bounded, weakly continuous and norm Lipschitz function defined on a weakly
closed subset of X admits a weakly continuous, norm Lipschitz extension defined on the
entire space X.

The functions in the hypotheses of Tietze-Urysohn and Kirszbraun’s theorems do not
have to be bounded; in our setting, they do have to be bounded. We give an example of an
unbounded, weakly continuous and norm-Lipschitz function f defined on a weakly closed
subset of the separable Hilbert space �2 such that no weakly-continuous extension of f on
�2 is c-Lipschitz for any c > 0.

We consider only Hausdorff topological spaces. In the following, if (T, τ ) is a topological
space and d is some metric on T, if we do not specify which topology we mean, we always
mean the topology τ , not the one defined on T by the metric d.

2 Extensions

Let X be a set and d a not necessarily symmetric pseudometric on X. By this we mean that
d : X × X → �, d ≥ 0, d(x, x) = 0, d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X, but not
necessarily d(x, y) = d(y, x). If c > 0, we say that a function f : X → � is c-Lipschitz in d
if f (x)− f (y) ≤ c d(x, y), for all x, y ∈ X. If Y and Z are subsets of X, then

d-dist(Y,Z) = inf{d(y, z) : y ∈ Y, z ∈ Z},

whereas
d-dist(Z,Y ) = inf{d(z, y) : y ∈ Y, z ∈ Z}.

By a slight abuse of notation we denote for A ⊂ X and α > 0

d-B(A, α) = {x ∈ X : d-dist(A, x) ≤ α},

d-B(α,A) = {x ∈ X : d-dist(x,A) ≤ α}.

The specification “d-” will sometimes be omitted.
Suppose now that (X, τ ) is a topological space, d is a (nonsymmetric) pseudometric on

X and f : X → � is τ -continuous and 1-Lipschitz in d. Then the function d ′ : X × X → �
defined as d ′(x, y) = d(x, y)−

(
f (x)− f (y)

)
is clearly also a nonsymmetric pseudometric

on X. Suppose that d has the property that if A ⊂ X is τ -closed and α > 0 then both
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the sets d-B(A, α) and d-B(α,A) are τ -closed. Then d ′ also has this property. Indeed, let
x ∈ X \ d ′-B(A, α) be arbitrary. Then there is some ε > 0 so that d ′(a, x) = d(a, x) −(

f (a) − f (x)
)
> α + ε for all a ∈ A. Choose an open set U1 ⊂ X so that x ∈ U1 and

| f (x) − f (y)| < ε/4 for each y ∈ U1. Let β = supa∈A{0, f (a) − f (x) + α + ε/2}. If
β = 0 put U2 = X \ A, otherwise let U2 = X \ d-B(A, β); in both cases x ∈ U2. Let
y ∈ U = U1 ∩U2 and a ∈ A be arbitrary. Then

d ′(a, y) = d(a, y)−
(

f (a)− f (y)
)
≥ β −

(
f (a)− f (x)

)
−
(

f (x)− f (y)
)

> α + ε/4.

This means that U ∩d ′-B(A, α) = ∅, and the set d ′-B(A, α) is closed. Similarly we get that
the set d ′-B(α,A) is closed.

The following Urysohn-like lemma is a mild extension of a result contained in [JNR];
we give only an outline of the proof. We use the following elementary property of Fσ sets:
let X be a normal space and A,B ⊂ X be Fσ sets such that Ā ∩ B = A ∩ B̄ = ∅. Then there
exists an open set U ⊂ X so that A ⊂ U and Ū ∩ B = ∅.

Lemma 2.1 Let (X, τ ) be a normal space and d be a (nonsymmetric) pseudometric on X
with the property that if A ⊂ X is τ -closed and α > 0 then both the sets d-B(A, α) and
d-B(α,A) are τ -closed. Suppose F0 and F1 are τ -closed disjoint nonempty subsets of X with

d(x1, x0) ≥ 1 for x1 ∈ F1 and x0 ∈ F0.

Then there exists f : X → [0, 1] continuous in τ and 1-Lipschitz in d, taking the value 0 on F0

and the value 1 on F1.

Proof First observe that if F ⊂ X is closed and α > 0 then the set

{x ∈ X : dist(F, x) < α} =
⋃
1
n<α

B
(

F, α−
1

n

)
,

hence it is an Fσ set. Similarly the set {x ∈ X : dist(x, F) < α} is Fσ .
Let Q be the set of all rational numbers in (0, 1). Enumerate Q ∪ {0, 1} so that r0 =

0, r1 = 1, r2, . . . . We use the convention that U0 = Ū0 = F0 (this means that unlike the
other U ’s U0 is a closed set; it can have even empty interior) and U1 = X \F1. We construct
a family of open sets {Ur : r ∈ Q} in X so that:

(i) for s, t ∈ Q ∪ {0, 1}, s < t , and any x ∈ Ūs, y ∈ X \Ut , we have d(y, x) ≥ t − s.

Suppose that for some n ≥ 1, the sets Uri , 0 ≤ i ≤ n, have been chosen so that (i) holds
for all choices of s, t from {r0, r1, . . . , rn}. The set Urn+1 will be chosen in the following way.
Write r = rn+1 and

S = {r j : 0 ≤ j ≤ n, r j < r},

T = {r j : 0 ≤ j ≤ n, r < r j}.
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Put

A =
⋃
s∈S

{x ∈ X : dist(x, Ūs) < r − s}

A ′ =
⋃
s∈S

B(r − s, Ūs)

B =
⋃
t∈T

{x ∈ X : dist(X \Ut , x) < t − r}

B ′ =
⋃
t∈T

B(X \Ut , t − r).

Both A and B are Fσ sets; the sets A ′ and B ′ are closed and A ⊂ A ′ and B ⊂ B ′. By (i) we
have that A ′ ∩ B = A ∩ B ′ = ∅. Therefore there exists an open set Ur so that

A ⊂ Ur and Ūr ∩ B = ∅.

If we define a function f on X by taking f to be 1 on F1, and

f (x) = inf{r : x ∈ Ur, r ∈ Q} for x ∈ U1

then f is continuous by the proof of Urysohn’s lemma [K, p. 114]. If x, y ∈ X and f (x) =
a < b = f (y) then for all a < s < t < b we have x ∈ Us and y ∈ X \Ut . Hence

d(y, x) ≥ dist(X \Ut ,Us) ≥ s− t,

and d(y, x) ≥ b− a = f (y)− f (x), which means that f is 1-Lipschitz in d.

Theorem 2.2 Let (K, τ ) be a normal topological space, and d be a metric on K such that
the set B(A, ε) is τ -closed for each τ -closed A ⊂ K and ε > 0; c > 0. Let g ≤ h be
bounded functions on K so that g(x) − h(y) ≤ c d(x, y) for each x, y ∈ K. If g is upper
semi-continuous in τ , and h is lower semi-continuous in τ then there exists a function f on K
which is τ -continuous, c-Lipschitz in d, and g ≤ f ≤ h.

Proof By adding a constant and multiplying by a constant of g and h we can suppose that
−1 ≤ g ≤ h ≤ 1; by multiplying the metric by a constant we can suppose that c = 1.
Put g0 = g, h0 = h, and d0 = d. As in the proof of Tietze’s theorem we proceed by
induction. Suppose that dk is a (nonsymmetric) pseudometric on K satisfying the assump-
tions of Lemma 2.1 and gk ≤ hk are functions on K so that gk ≤ 2k3−k, hk ≥ −2k3−k,
gk(x) − hk(y) ≤ dk(x, y) for each x, y ∈ K; gk is upper semi-continuous in τ , and hk is
lower semi-continuous in τ . Put

Gk =

{
x ∈ K : gk(x) ≥

2k

3k+1

}

Hk =

{
x ∈ K : hk(x) ≤ −

2k

3k+1

}
.
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It is dk(x, y) ≥ 2k+13−(k+1) for any x ∈ Gk and y ∈ Hk and by Lemma 2.1 there exists a
τ -continuous function ψk which is 1-Lipschitz in dk, −2k3−(k+1) ≤ ψk ≤ 2k3−(k+1), ψk =
−2k3−(k+1) on Hk and ψk = 2k3−(k+1) on Gk. (If one of the sets Gk, Hk, say Gk, is empty, we
put ψk = −2k3−(k+1); if Gk = Hk = ∅, we set ψk = 0.) Put gk+1 = gk−ψk, hk+1 = hk−ψk,
and dk+1(x, y) = dk(x, y) −

(
ψk(x) − ψk(y)

)
for x, y ∈ K. By the remarks preceding

Lemma 2.1, dk+1 is a pseudometric which satisfies the assumptions of Lemma 2.1. Clearly,
gk+1 ≤ hk+1, gk+1 ≤ 2k+13−(k+1), hk+1 ≥ −2k+13−(k+1), gk+1(x) − hk+1(y) ≤ dk+1(x, y) for
each x, y ∈ K; gk+1 is upper semi-continuous in τ , and hk+1 is lower semi-continuous in
τ . Put f =

∑∞
k=0 ψk. Then f is well defined and τ -continuous; −1 ≤ f ≤ 1. From the

construction it follows that

g −
k∑

i=0

ψi = gk+1 ≤ 2k+13−(k+1) and

h−
k∑

i=0

ψi = hk+1 ≥ −2k+13−(k+1),

for k ∈ N, hence g ≤ f ≤ h. By induction we have also that dk+1(x, y) = d(x, y) −∑k
i=0

(
ψi(x)− ψi(y)

)
for k ∈ N and x, y ∈ K. Since

ψk+1(x)− ψk+1(y) ≤ dk+1(x, y) = d(x, y)−
k∑

i=0

(
ψi(x)− ψi(y)

)

we have
k+1∑
i=0

(
ψi(x)− ψi(y)

)
≤ d(x, y)

for k ∈ N and x, y ∈ K which means that f is 1-Lipschitz in d.
If (K, τ ) is a normal space and d is a discrete metric on K (that is d(x, y) = 1 if x �= y),

then d satisfies the assumptions of Theorem 2.2 and any function ϕ on K with 0 ≤ ϕ ≤ 1
is 1-Lipschitz in d. Therefore by a theorem of Dowker and Katětov (see [E, p. 428]) if we
wish to have sharp inequalities in Theorem 2.2 we have to assume that (K, τ ) is countably
paracompact. Also, we have to assume that both g and h are c-Lipschitz as the example of
c = 1, K = {−1} ∪ (0, 1], g(−1) = 1, h(−1) = 2, and g(x) = 0, h(x) = x2 for x ∈ (0, 1]
shows.

Proposition 2.3 Let (K, τ ) be normal and countably paracompact, and d be a metric on K
such that the set B(A, ε) is τ -closed for each τ -closed A ⊂ K and ε > 0; c > 0. Let g < h
be bounded functions on K, both c-Lipschitz in d. If g is upper semi-continuous in τ , and
h is lower semi-continuous in τ then there exists a function f on K which is τ -continuous,
c-Lipschitz in d, and g < f < h.

Proof First we show that there is a τ -continuous function f1 on K which is c-Lipschitz in
d and for which g < f1 ≤ h. Similarly one shows that there is f2 with g ≤ f2 < h, and
f = 1

2 ( f1 + f2) is the required function.
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For each pair of rational numbers r < s put

Ur,s = {x ∈ K : g(x) < r < s < h(x)}.

The lower semi-continuity of g and h implies that each Ur,s is open (possibly empty). Since
g < h, U = {Ur,s} is a countable open cover of K. Let V = {Vr,s} be a closed cover of K
with Vr,s ⊂ Ur,s; it exists since (K, τ ) is countably paracompact (see e.g., [E, p. 393]). Put

gr,s(x) =

{
g(x), if x ∈ X \Vr,s

g(x) + s− r, if x ∈ Vr,s.

Then g ≤ gr,s ≤ h and gr,s > g on Vr,s. If α ∈ �, then

{x ∈ K : gr,s(x) ≥ α} = {x ∈ K : g(x) ≥ α} ∪ {x ∈ Vr,s : g(x) ≥ α− (s− r)};

since g is upper semi-continuous these sets are closed and gr,s is also upper semi-continuous.
If x, y ∈ K then gr,s(x) − h(y) ≤ h(x) − h(y) ≤ c d(x, y). By Theorem 2.2 there is a τ -
continuous function ϕr,s on K which is c-Lipschitz in d with gr,s ≤ ϕr,s ≤ h. Re-index
the functions ϕ by natural numbers and put f1 =

∑∞
i=1 2−iϕi . Then f1 is τ -continuous,

c-Lipschitz in d and g ≤ f1 ≤ h. Since V covers K it is even g < f1 on K.

Theorem 2.4 Let (K, τ ) be a normal topological space, and d be a metric on K such that
the set B(A, ε) is τ -closed for each τ -closed A ⊂ K and ε > 0; let c > 0. Let F ⊂ K be
closed, f be a bounded and τ -continuous function on F which is c-Lipschitz in d. Then there
is a τ -continuous function f̃ on K such that f̃ = f on F, infF f ≤ f̃ ≤ supF f , and f̃ is
c-Lipschitz in d.

Proof Define functions g and h on K so that g = h = f on F, g = infF f on K \ F, and
h = supF f on K \ F. It is easy to see that g and h satisfy the conditions of Theorem 2.2,
hence there exists a continuous function f̃ defined on K which is c-Lipschitz in d and
g ≤ f̃ ≤ h.

There is a converse to the above theorem. Namely suppose there exists a closed set
A ⊂ K and r > 0 such that B(A, r) is not closed. Choose some z ∈ B(A, r) \ B(A, r), and
put R = dist(A, z). Then r < R and the function

g(x) =

{
0, if x ∈ A

R, if x = z.

is a continuous 1-Lipschitz function on the closed set F = A ∪ {z}. Suppose g admits a
continuous 1-Lipschitz extension f to K. If u ∈ B(A, r), and ε > 0 then there exists v ∈ A
so that d(u, v) < r + ε, hence

f (u) = f (u)− f (v) ≤ d(u, v) < r + ε.

Since f is continuous, f ≤ r on B(A, r), which is a contradiction.
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A metric d on a topological space K is lower semi-continuous, if d is lower semi-continu-
ous as a real valued function on K × K, that is, the set

{(x, y) ∈ K × K : d(x, y) ≤ ε}

is closed for all ε > 0. Notice that the metric d in the previous theorem is necessarily lower
semi-continuous. Indeed, given any two points s, t ∈ K, by Theorem 2.4 there exists a
continuous function f = fs,t on K such that 0 ≤ f ≤ d(s, t), f (s) = 0, f (t) = d(s, t), and
f is 1-Lipschitz in d. If we put

ρ(s, t) = sup{| fu,v(s)− fu,v(t)| : u, v ∈ K}

then clearly d = ρ and ρ is lower semi-continuous on K ×K as a pointwise supremum of a
family of continuous functions. If K is a compact Hausdorff space, we get by the following
corollary that a metric d on K is lower semi-continuous if and only if it has the property
required in Theorem 2.4.

Corollary 2.5 Let K be a compact Hausdorff space, d a lower semi-continuous metric on K,
F ⊂ K closed and c > 0. Let g ∈ C(F) be c-Lipschitz in d. Then there exists f ∈ C(K) such
that f = g on F, minF g ≤ f ≤ maxF g, and f is c-Lipschitz in d.

Proof Let A ⊂ K be closed, and ε > 0. If z ∈ K than dist(A, z) = infA×{z} d, and since
A× {z} is compact and d is lower semi-continuous, the infimum is attained. Hence

B(A, ε) = p2

(
(A× K) ∩ {(x, y) ∈ K × K : d(x, y) ≤ ε}

)
,

where p2 is the projection on the second coordinate. Since A and K are compact and p2 is
continuous, the set B(A, ε) is closed.

Corollary 2.6 Let X be a Banach space and F a weak∗-closed subset of the dual X∗ of X;
c > 0. Let g be a bounded, weak∗-continuous function on F which is c-Lipschitz in the norm-
metric on X∗. Then there exists a weak∗-continuous function f on X∗ such that f = g on F,
infF g ≤ f ≤ supF g, and f is c-Lipschitz in the norm-metric on X∗.

Proof Since (X∗, weak∗) is σ-compact, it is Lindelöf. From the definition of the weak∗

topology it follows easily that it is regular. By a theorem of Tychonoff (see e.g., [K, p. 113])
(X, weak∗) is normal. Let A ⊂ X∗ be weak∗-closed and ε > 0. Observe that B(A, ε) =
A + B(0, ε); the latter set is closed since it is a sum of a weak∗-closed set and of a weak∗-
compact set. Indeed, if z ∈ X∗ and dist(A, z) ≤ ε, then C = A ∩ B(z, 2ε) is a nonempty
weak∗-compact set with dist(C, z) ≤ ε. The function h(x) = ‖x− z‖ is weak∗-lower semi-
continuous, hence it attains its minimum at some point y ∈ C ⊂ A. Then ‖y − z‖ ≤ ε,
and z ∈

(
y + B(0, ε)

)
.
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3 Examples

As we have seen above, τ -lower semi-continuity of the metric d is a necessary condition for
the conclusion of Theorem 2.4 to be valid. It is not sufficient, though; the next theorem
shows that each separable nonreflexive Banach space equipped with the weak topology and
norm metric provides an example. Indeed, the norm-metric on any Banach space is lower
semi-continuous in the weak topology; weak topology is easily seen to be regular, separable
Banach spaces are Lindelöf and therefore normal in the weak topology (see e.g., [K, p. 113]).

Theorem 3.1 Let X be a Banach space. Then X is not reflexive if and only if there exists
a bounded, weakly closed subset F of X and a weakly continuous function g on F which is
1-Lipschitz in norm such that no continuous extension of g on X is c-Lipschitz for any c > 0.

Proof If X is reflexive then X is a dual of X∗ and the weak and weak∗ topology are the
same; every weakly-continuous f which is Lipschitz in norm admits an extension by Corol-
lary 2.6.

Suppose that X is not reflexive. Fix 0 < δ < 1. We will construct a weakly closed set

Fδ ⊂ B(0, 2) such that dist(Fδ, 0) ≥ 1
2 , and 0 ∈ Fδ + B(0, δ)

weak
. Recall that since X is

nonreflexive by a result of James [Ja] there exists a sequence {un}N in the unit ball of X so
that for each n ∈ N

dist
(
span {ui}

n
i=1, conv{ui}

∞
i=n+1

)
> 1− 1

3δ.(1)

Put
Fδ = {u j − (1− δ)ui : i, j ∈ N, i < j}.

Then clearly Fδ ⊂ B(0, 2), and by (1) dist(Fδ, 0) ≥ 1
2 . Let z ∈ Fδ

weak
be given. Then z is

contained in the norm-closure of span {ui}∞i=1. Choose n ∈ N so that

dist
(

span {ui}
n
i=1, z

)
< 1

3δ,

and v ∈ span {ui}n
i=1 so that ‖v − z‖ < 1

3δ. By the Hahn-Banach theorem choose z∗ from
the unit ball of X∗ so that z∗ = 0 on span {ui}n

i=1 and

〈z∗, x〉 > 1− 1
3δ

for all x ∈ conv{ui}∞i=n+1. Then for each for each i, j ∈ N such that i < j and n < j

〈z∗, u j − (1− δ)ui − z〉 = 〈z∗, u j〉 − (1− δ)〈z∗, ui〉 + 〈z∗, v − z〉 − 〈z∗, v〉

> 1− 1
3δ − (1− δ)− 1

3δ − 0 = 1
3δ.

Since the set {u j − (1− δ)ui : i, j ∈ N, i < j ≤ n} is finite, z ∈ Fδ .

To show that 0 ∈ Fδ + B(0, δ)
weak

, let x∗1 , . . . , x
∗
n in the unit ball of X∗ and ε > 0 be

given. Observe that

{u j − ui : i, j ∈ N, i < j} ⊂ Fδ + B(0, δ).
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Since for each 1 ≤ l ≤ n the sequence (〈x∗l , ui〉)i∈N is bounded, there exist a1, . . . , an ∈ �
and a subsequence (uki )i∈N of (ui)i∈N such that

|〈x∗l , uki 〉 − al| <
ε
2

for each 1 ≤ l ≤ n and i ∈ N. Consequently

|〈x∗l , uk2 − uk1〉| < ε

for each 1 ≤ l ≤ n, and 0 is in the weak closure of Fδ + B(0, δ).
Now choose a bounded sequence (zn) in X such that

dist
(
span {zi}

n−1
i=1 , conv{zi}

∞
i=n

)
> 5

for each n ∈ N. Put F = {zn}∞n=2 ∪
⋃∞

n=2 F 1
n

+ zn. The set
⋃∞

n=2 F 1
n

+ zn is weakly closed
since each F 1

n
+ zn is weakly closed and

dist
(

conv
n−1⋃
i=2

F 1
i

+ zi , conv
∞⋃

i=n

F 1
i

+ zi

)
≥ 1

for each n ≥ 3. Since {zn}N is weakly closed, F is weakly closed as well. Define

g(x) =

{
0, if x ∈

⋃∞
n=2(F 1

n
+ zn)

1
2 , if x ∈ {zn}∞n=2.

It is readily seen that g is a weakly continuous and 1-Lipschitz function. Suppose n ∈ N
and f is a weakly continuous, n-Lipschitz extension of g on X. Let x ∈ B(z4n + F 1

4n
, 1

4n ) be

arbitrary; choose y ∈ (z4n + F 1
4n

) so that ‖x − y‖ ≤ 1
3n . Then

f (x) = f (x)− f (y) ≤ n‖x − y‖ ≤ 1
3 .

Hence f ≤ 1
3 on B(z4n+F 1

4n
, 1

4n ), and since z4n ∈ B(z4n + F 1
4n
, 1

4n )
weak

, this is a contradiction.

The following example shows that unlike Tietze-Urysohn and Kirszbraun’s theorems,
the function in the hypothesis of Theorem 2.4 has to be bounded.

Example 3.2 There exists a weakly closed subset F of the Hilbert space �2 and an un-
bounded, weakly continuous function g on F which is 1-Lipschitz in norm, such that no
continuous extension of g on �2 is c-Lipschitz for any c > 0.

Let (ei)No be the canonical basis of �2. Define

xn = n
1
4 eo + n

1
2 en

yn = n
1
2 en;
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observe that zero is in the weak closure of the set {yk}k≥n for each n ∈ N. Indeed if

α = (αi) ∈ �2, ε > 0 then there exists k ≥ n so that |〈yk, α〉| = |k
1
2αk| < ε: otherwise

|αk| ≥ εk−
1
2 for k ≥ n and (αi) /∈ �2. Similarly one can argue for finitely many α’s.

Put F = {xn}N, Fn = {xm : n ≤ m}. Since lim
m→∞

xm
o = ∞, each of the sets Fn is weakly

closed, and the function g : F → � defined by g(xn) = n
1
2 is continuous. Since for n > m

|g(xn)− g(xm)| = n
1
2 −m

1
2 ≤ (n + m)

1
2 ≤
(

(n
1
4 −m

1
4 )2 + n + m

) 1
2 = ‖xn − xm‖,

the function g is 1-Lipschitz. Suppose f is a weakly continuous, c-Lipschitz extension of g
on �2; denote a = f (0). Choose n ∈ N so that if m ≥ n then

m
1
2 − cm

1
4 ≥ a + 1.

Then for m ≥ n

f (ym) ≥ f (xm)− c‖ym − xm‖ = m
1
2 − cm

1
4 ≥ a + 1.

Since zero is in the closure of the set {ym}m≥n, f (0) ≥ a + 1 which is a contradiction.
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Žitná 25
CZ-11567 Prague
Czech Republic
email: matouse@matsrv.math.cas.cz

https://doi.org/10.4153/CMB-2000-028-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2000-028-0

