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HOMOGENEOUS VECTOR BUNDLES AND STABILITY
SHOSHICHI KOBAYASHI®

§1. Introduction

In [5,6,7] I introduced the concept of Einstein-Hermitian vector
bundle. Let E be a holomorphic vector bundle of rank r over a complex
manifold M. An Hermitian structure ~ in E can be expressed, in terms
of a local holomorphic frame field s, -, s, of E, by a positive-definite
Hermitian matrix function (k,;) defined by

h“"- = h(si, SJ') .
Then the Hermitian connection form and its curvature form are given by

o = 3 hitd'hy,
Q= d"o} .

In terms of a local coordinate system 2!, ---, 2* of M, we can write
Qi=37 Ri,dz" N\ dz*.
Given an Hermitian metric
g = 23 8,;dz°dz*
on M, we define the g-trace K of the curvature of (E, h) by setting
Kj= Sg"Ri,.

Then K is a field of endomorphisms of E with components Ki. We say
that (E, h, M, g) is an Einstein-Hermitian vector bundle if

K=ol,, ie, Ki= g3,

where ¢ is a (real) function on M and I is the identity endomorphism of E.
Received December 26, 1983.
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In [6, 7] I obtained the following differential geometric criterion for
stability, (see Liibke [8] for a simpler proof).

(1.1) TuarEOREM. Let M be a compact complex manifold with an
ample line bundle H and g a Kdhler metric on M whose Kdihler form repre-
sents the Chern class of H. Let E be a holomorphic vector bundle over M
and h an Hermitian structure in E. 1If (E, h, M, g) is an Einstein-Hermitian
vector bundle, then

(a) it is H-semistable in the sense of Mumford-Takemoto;

(b) it is a direct sum of H-stable Einstein-Hermitian vector bundles
(E, h,M,g), -, (E, h,, M, g) with irreducible holonomy group;

(c) wkE)=---=wE)=pukE), where u(E) denotes the degree-rank ratio
of E defined by y(E) = cy(E)e,(H)" '/rank (E), n = dim M.

If E is a homogeneous vector bundle over a homogeneous algebraic
manifold M = G/G, of a compact Lie group G and if the isotropy subgroup
G, is irreducible on the fibre E, of E at the origin oe M, then E with
any G-invariant Hermitian structure A2 is an Einstein-Hermitian vector
bundle. From (a) of (1, 1) it follows that E is H-semistable for any ample
line bundle H. In order to see whether E is indeed H-stable or not, we
study the holonomy group of E in Section 2. In Section 3 we give a
differential geometric proof to the theorem of Ramanan [11] and Umemura
[13] that every irreducible homogeneous vector bundle over a Kahler C-
space M (of H. C. Wang) is H-stable for any ample line bundle H. In
Section 5, as an application we show that the null correlation bundles
over P,, ., are Einstein-Hermitian vector bundles with irreducible holonomy
group (and hence, they are H-stable—a well known fact). Our approach
to null correlation bundles is through complex contact structures (see §4).
In Section 6 we construct example of stable Einstein-Hermitian bundle
using complex contact structures.

§2. Holonomy and automorphisms of Hermitian vector bundles

Let (E, h) be an Hermitian vector bundle over a complex manifold M.
If c=c(f), 0 < ¢t <1, is a piecewise smooth curve in M, the parallel trans-
port z, along ¢ gives an isometry between the fibres E,, and E,,. Fixing
a point o of M and considering all closed curves ¢ from o to o, we obtain
a group ¥ of automorphisms of the fibre E, given by parallel transports
z,. This group ¥ is called the holonomy group of (E, k). We decompose
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the fibre E, into an orthogonal direct sum of ¥-invariant subspaces:
2.1 E,=E; + E, + - + ET,

where ¥ fixes E! elementwise (l.e., acts trivially on E!) and acts irredu-
cibly on E}, ..., EX. By transporting E, parallelly, we extend the decom-
position (2.1) to a global decomposition of E. Thus,

(2.2) E=E +E'+ --. + E".

This decomposition is not only orthogonal but also holomorphic since the
Hermitian connection D (as covariant differentiation) is of the form D =
D+ d’. (In fact, if s = s, + 8, + -+ 4+ 8, is a local holomorphic section
of K and s, s,, ---, s, are local C~ sections of E°, E', --., E*, respectively,
then from D”’s = d”s = 0 we obtain d"’s, = D”s, = 0 for all i, showing
that s,, s, - -+, 8, are holomorphic sections of E. This means that E°, E',
..., E* are holomorphic subbundles of E).

Let G be a group of automorphisms of the Hermitian vector bundle
(E, h). Each element f of G induces a holomorphic transformation f of M.
Since f preserves the connection of E, for each curve c=c(f), 0 <t <1,

of M we have
(23) TFoc Of = fo Tes

where both sides are considered as transformations E,, — E,,. If cisa
closed curve starting from o and if f(0)=o, then both sides are auto-
morphisms of the fibre E,.

Let G, be the isotropy subgroup of G at o, i.e., G, = {f € G; f(0) = 0}.
From (2.3) we obtain

2.4) fotofte ¥ for fe G, and e ¥,

i.e., G, normalizes the holonomy group 7.
Following the decomposition (2.1) of the fibre E, we can express
each element 7z of the holonomy group ¥ by a matrix of the form

Afs) 0 --- 0
[ 0 AR --- 0
(2.5) A(r):l . .
0 0 - AW

We consider an element X of the Lie algebra of G, i.e., X = (df(s)/ds).-o,
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where f(s) is a 1l-parameter subgroup of G,. Corresponding to the decom-
position (2.1) of E,, X can be written in the following block form:

Xoo X01 Tt ch
(26) X — XIO }(11 Xlk
XkO Xm e ka

Since f(s)ozof(s)™ € ¥ by (2.4), the corresponding matrix has zeros off
the diagonal blocks. Differentiating f(s)ozof(s)™* at s =0, we obtain
f(0)or — zof’(0). Hence, the corresponding matrix

@.7 X -A(t)—A(r)- X
must have zeros off the diagonal blocks. Thus,
(2.8) X A(r)=A(v)- X, for i+#j.

Since the holonomy group ¥ acts trivially on E! and irreducibly on
E}, ..., E% it follows that

2.8) Afr) =1 for ¥
and that the representations

(210) A;: c—> Ao, i =1, ---, k, are irreducible.
By Schur’s lemma, we have

(2.11) X,; = 0 unless the representations A, and A; are equivalent.
We note that we have always X;; =0 and X, =0forj=1,---, k.

If A, and A; are equivalent, by changing a basis in E, we may assume
that A, = A;. By parallel transport of such bases in E! and E] we obtain
an isomorphism between E® and E’. We have established the following

(2.12) THEOREM. Let (E, h) be an Hermitian vector bundle over a
complex manifold M. Let o € M and G, a connected Lie group of auto-
morphisms of (E, h) leaving the fibre E, invariant. If G, acts irreducibly
on E,, then

(E,B) = (E",h) + --- +(E", ),  (q copies, say),

where (E’, ') is an Hermitian vector bundle with irreducible holonomy
group.
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The decomposition E = E’ 4 ... + E’ in (2.12) may be written as
(2.13) E=E®CT,

where C? denotes the product bundle of rank g.

Assuming that (E, h) is a direct sum of g copies of (E’, h’) with irre-
ducible holonomy but without assuming that G, acts irreducibly on E,, we
shall study automorphisms f of (E, h). Let f be an automorphism of (E, h)
with the induced transformation f of M. We set

o = f(o0).

We denote the holonomy group of (E, h) with reference point o’ by ¥".
We fix a curve a from o to o’ and assign to each loop ¢ at o the loop
aocoa™! at o'. This gives an isomorphism ¥ — ¥’. To a basis in E, we
associate the basis in E; obtained by parallel transport along the curve a.
Then the corresponding elements under the identification ¥ = ¥” have the
same matrix representation.

The matrix A(r) representing an element r € ¥ is of the form

B(z) 0 0
woo|® oo |
0 0 B(r)J

where the representation B is irreducible since (E’, /') is assumed to have
an irreducible holonomy.
An automorphism f sends the fibre E, to the fibre E,. With respect

to the bases for E, and E, chosen as above, we represent f by a matrix
F:

(2.15) F = |

where each F;; is a (p X p) matrix, p = rank E’.
Let c =17, € ¥ and ¢ = r7., € ¥'. From (2.3) we obtain

(2.16) FA(z) = A(7)F.
Hence,
2.17) F,;B(z)=B(<")F,; for all i,j.
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Each F;; is non-singular unless F;; = 0. (For if v is a vector such
that F;;v = 0, then F;;B(zr)v =0 by (2.17), which implies that the kernel of
the linear transformation F;; is invariant by B(z), ¢ € ¥. Since B is an
irreducible representation, the kernel of F;; is either 0 or the whole space).

We claim next that

(2.18) F,,=u;V for all 1i,j,

where V is a (p X p) unitary matrix and U = (u;;) is a (¢ X q) unitary
matrix. (It suffices to show that F}; is a scalar multiple of F,,, when both
F,; and F,, are non-singular. Eliminating B(z’) from

F,;B(zr) = B(<')F,; and F,,B(r)= B(<)F,,,
we obtain
F.\F,;B,(r) = B(x)F,\F;; for all e V.
Since B is irreducible, F.F;; = cl).
Hence, F can be written as the Kronecker product:
(2.19) F=V®U.
This corresponds to the tensor product E = E’' ® CY, i.e.,
(2.20) fGRE=VyQUs for ®¢& e (E'XCY, =E,.
Any (g X q) unitary matrix U defines an automorphism f, of (E, h) by
(2.21) fi®&E =9 Us for ¢ e EEQC'=E.

Such an automorphism induces the identity transformation on the base
manifold M, i.e.,

fU':idM-

Conversely, assume that f is an automorphism of (E, A) such that f =
id,. By (2.3), f commutes with every element of the holonomy group 7.
With the notation of (2.14) and (2.15), we have

FA(zr) = A(zx)F on E, forall z e ¥.
Hence,
F;;B(z) = B(r)F; for all c ¢ ¥

Since B is an irreducible representation, it follows that
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F,=u;l for all ,j.
This means
(2.22) F=I®RU on E,,

where I denotes the identity transformation of E;. Now, varying the point
0 in M, we obtain (2.22) on E, for all x in M. Thus,

F,=1® U, on E,.

We claim that U, does not depend on x. To see this, let ¢ be a curve from
o to x. By (2.3), since f = id,, we have

(2.23) for.=rt.of.

Since C“? is the product bundle with the natural flat Hermitian structure,
we have

(2.24) . =101 on E,=(E®C9,,

where 7, is the parallel transport in E’ along ¢ and I is the obvious
parallel transport in the product bundle C¢ Then

(for)(@®&) =fin® &) =t @ U,
(zo N ® &) =7y ® Ug) = zip ® U§.

By (2.23), we can conclude U, = U.
We have thus established that for an automorphism f of (E, h)

(2.25) f=1id, if and only if f(H®&E =@ Us for @& € E'XCY,

where U is a (¢ X q) unitary matrix.

We shall now study automorphisms of (E, h) preserving the decom-
position E=E’' 4+ ... + E’. 1t follows from (2.3) that, in general, an
automorphism f of (E, h) preserving the decomposition (2.1) at one point o
preserves the decomposition (2.2) globally, that is,

(2.26) f(EY) = E* if f(E}) = E. for i=0,1, - ---,k,

where o’ = f(0). Going back to the present situation where E = E’+ - ..
+ E’, we see that if an automorphism f of (E, i) preserves the decompo-
sition E=E’ 4+ ..- + E’ by sending each factor into itself, then the
unitary matrix U of (2.18) must be diagonal, i.e.,

2.27) u; =0 for i+#j.

Denoting the restriction of f to the i-th factor of the decomposition
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E=E + ... + E by f, we write

(228) f:(fh "'9fq)’ fi € Aut(E/’ h/)
Writing

C; = Uy i:1""’q’
set

, 1 .

fi=—+ i=1--,q.

C;

We shall show that fi = --- =f,. Since f is given by V® U on E,, f, is
given by u;;V on E,. Hence, fi = --- =f; on E. Consider, for example,

g=1fr"'ofl. Then g induces the identity automorphism of the fibre E,
and the identity transformation g = id,. Applying (2.25) to g, we see
that g is the identity automorphism of (E’, #’). Hence, fi = f}, proving
our assertion. Set f'=fi = --- =f;. Thus we have established that if f
is an automorphism of (E, h) preserving the decomposition £ = E’ + ...
+ E’ factorwise, then

(229) f = (clf’, ttty cqf/) ’

where f/ ¢ Aut(E’, ') and |¢| = --- =c,| = 1L

Now, we shall study the case where f is an arbitrary automorphism
of (E, h). Let o’ = f(0). Let U be the (g X q) unitary matrix given by
(2.18) and f, the automorphism given by (2.21). From (2.20) we obtain

foNOH®E)=V)RE,

which shows that the automorphism f;'of preserves the decomposition
E=E 4 ... + E’ at o and hence globally. Then f;'of must be of the

form (2.29):
(2'30) f[j’lof:(clf,: "')cqf')'
Let C be the diagonal unitary matrix with diagonal entries ¢, ---,c,.

Then (2.30) can be rewritten as

(fe' e N ®&) = (f'p® C8) .

Hence,

fho® &) = (f'n® UCY,
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or

f=1®fuc.

Absorbing C into U, we write U for UC. Thus, every automorphism f of
(E, h) is of the form

(2.31) f=1®f.

where f/ is an automorphism of (E’, &) and f, is the multiplication by a
(g X @) unitary matrix U as in (2.21). In other words,

(2.32) f[GRE =fr@Us »®&ec E®C".

This means that the group homomorphism
Aut (E’, ') x U(q) —> Aut (E, h)

sending (f’, U) to f' ® f, is surjective. Its kernel consists of (u., (1/w)I),
where u is a complex number with |u| =1 and p,: E’— E denotes the
multiplication by u.

Summarizing what we have proved, we state

(2.33) THEOREM. Let(E’, h') be an Hermitian vector bundle over M with
irreducible holonomy group and C be the product bundle of rank q over
M with the natural flat Hermitian structure. Let E = E' ® C* and let h
be the naturally induced Hermitian structure in E. Then the automorphism
groups Aut (E, h) and Aut (E’, h’) are related by the following exact se-
quence:

1—>U1) —> Aut (B, &) ® U(g) ——> Aut (E, hy—>1,

where
DY =F@f, i = (#u, %1) .

(In the definitions of j and i above, f, is the multiplication by U ¢
U(q) as defined in (2.21), and p, is also the multiplication by a scalar u).
The natural projections from Aut(E’, M)X U(q) to Aut(E’, h’') and
U(q) induce homomorphisms
a: Aut(E, h) —> PAut (E’, b'):= Aut (E’, W)[{pt.; u € UQ)},
B: AW(E, h) —> PU(q):= UQ@H{ul; u e UL},
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(where P stands for ‘‘projective’).
Then

Kera = {fU; U € U(q)} = U(q) ’
Ker 8 = {f'®I; f e Aut(E', W)} = Aut (E', /') .

§3. Homogeneous Hermitian vector bundles

Let G be a connected, compact semi-simple Lie group, T a toral sub-
group of G, and C(T) the centralizer of T'in G. Then G/C(T) is a simply
connected, compact homogeneous Kéihler manifold, and conversely, (Wang
[14] and Borel [3]).

We need the following simple lemma.

(8.1) LemMmA. Let G and C(T) be as above and assume that C(T)
contains no simple factor of G. Let PU(n) = U(n)/{ul; u € U(1)} denote
the projective unitary group. If p: G — PU(n) is a representation of G,
then its restriction to C(T) is always a reducible representation.

Proof. We may assume that p is non-trivial, i.e., p(G) # {I}. Let
T = p{(T). Then T’ is a non-trivial toral subgroup of PU(n). (If T’ is
trivial so that T C Ker p, then C(T) must contain all simple factors of G
which are not in Ker p). Let C(T”) be the centralizer of 7" in PU(n).
Since 7" may be considered as a subgroup of the diagonal subgroup of
PU(n), its centralizer C(T") is of the form P(U(n)X - -- x U(n,) = (U(ny)
XX Un){ul; we UQ)}, where n=n,+ --- +n,. By Un)x---
X U(n,), we mean the subgroup of U(n) of the form

U(ny)
0o .
Uny)/ .
Since p(C(t)) © C(T"), Lemma follows immediately. Q.E.D.

Let (E, h) be an Hermitian vector bundle over a complex manifold
M. Let G be a group of automorphism of (E, h). Let o0 € M and G, the
subgroup of G consisting of automorphisms leaving the fibre E, invariant.
If G, acts irreducibly on E,, then (E, h) is of the form (E’, ') ® C?, (see
(2.12)). In the preceding section, we defined a homomorphism f: Aut (%, k)
— PU(q). If G is connected, compact and semi-simple and if G, = C(T),
the centralizer of a toral subgroup 7T of G, then (3.1) implies that 8: G,
— PU(q) is a reducible representation. Let S C C? be a subspace invariant
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by B(G,). Then (E'® S), is a subspace of E, = (E’® C9, invariant by
G,. Since we assumed that G, acts irreducibly on E,, this contradiction
means that we must have ¢ = 1, ie., E= E’ in (2.12). We have shown
the following

(3.2) ProrosITION. Let (E, h) be an Hermitian vector bundle over a
complex manifold M. Let G be a connected, compact, semi-simple Lie group
of automorphisms of (E, h). Let o € M and G, the subgroup of G consisting
of automorphisms leaving the fibre E, invariant. If G, acts irreducibly on
E, and if G, is of the form C(T) for some toral subgroup T of G, then the
holonomy group of (E, h) is irreducible.

We prove now the following

(3.3) THEOREM. Let E be a holomorphic vector bundle over a compact
complex manifold M with an ample line bundle H. Let G be a connected,
compact Lie group of automorphisms of E acting transitively on M. Assume
that the isotropy subgroup G, of G at a point o € M acts irreducibly on
the fibre E, at o. Then

(1) There exists a G-invariant Hermitian structure in E and a G-
invariant Kihler metric g on M whose Kidhler form represents the Chern
class ¢,(H) of H, and (E, h, M, g) is an Einstein-Hermitian vector bundle.

(2) Moreover,

(B, h) = (E, W)+ - + (B, W)= (E,h)®C,

where (E’, h’) is an Einstein-Hermitian vector bundle over (M, g) with irre-
ducible holonomy group. The vector bundle E’ is H-stable in the sense of
Mumford-Takemoto.

Proof. (1). Averaging an arbitrary Hermitian structure of E by the
action of G, we obtain a G-invariant Hermitian structure A in E. Simi-
larly, we start with a Kahler metric on M whose Kahler form represents
co(H). Averaging it by the action of G, we obtain a G-invariant Kahler
metric g on M. Since G is connected, the Kihler form of g still re-
presents c¢,(H).

Since the g-trace K of the curvature R is invariant by G and since
G, is irreducible on E,, the endomorphism K, must be a scalar multiple
of the identity transformation of E,.

(2). The first assertion follows from (2.12). The second assertion
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follows from (1.1).

(3.4) THeEorREM. In (3.3), assume further that G is semisimple and G,
is the centralizer C(T) of a toral subgroup T of G. Then (E,h) is an
Einstein-Hermitian vector bundle over (M, g) with irreducible holonomy group
and E is H-stable for any ample line bundle H over M.

Proof. This follows from (3.2) and (3.3). Q.E.D.

We note that the second assertion in (3.4) is equivalent to the follow-
ing theorem of Ramanan [11] and Umemura [13].

(3.5) THEOREM. Let L be a simply connected, semisimple complex Lie
group and P a parabolic subgroup simple factor. Let p be a finite dimen-
sional irreducible representation of P. Then the homogeneous vector bundle
E, over M = L|P defined by p is H-stable for any ample line bundle H
over M.

We can pass from (3.4) to (3.5) by letting L to be the complexification
of G.

§4. Complex contact structures

Let M be a complex manifold of dimension 2n 4+ 1. A complex contact
structure on M is given by an open cover {U,} and a system of holomorphic
1-forms {w,;} such that

(a) Each o, is a holomorphic 1-form defined on U, and vanishes
nowhere;

(b) The holomorphic (2n 4 1)-form w; A (dw,)"™ vanishes nowhere;

(¢) If U, N U, is non-empty, there exists a (nowhere-vanishing) holo-
morphic function f;; on U; N U, such that o, = f;;0; on U, N U,.

Two complex contact structures {U,, w;} and {V,, 6,} are considered to
be equivalent if w;, = a0, on U; N V, with a suitable holomorphic function
a,. We are, of course, interested in equivalence classes of complex con-
tact structures.

Given a complex contact structure {U,, »;} on M, we obtain a’holo-
morphic subbundle E of rank 2n of the tangent bundle TM:

4.1) E=1{X e TM; u(X) = 0}.

Let F be the line bundle defined by the transition functions {f;;} above.
Then we have an exact sequence
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(4.2) 0—>E—>TM—>F—>0,
Since
4.3 o; N\ (dw)" = (fi)" o, N (dw))",

it follows that the determinant bundle det (TM) = A***'TM is defined by

the transition functions {f?;'}. Hence,

(4.4) (M) = (n + De(F).

From (4.2) we have

(45) 1+ M)+ (M) + -+ = A+c(F)A + c(E) + efE) + ---).
In particular,

(4.6) o(E) = ney(F).

From (c), we obtain

4.7 do; = fde; + dfi; N\ o; .

Since w; = 0 on E, (4.7) implies that we have a skew-symmetric blinear
form {dw;} on E with values in F:

(4.8) {dw}: EXE—> F.

Condition (b) implies that this bilinear form is everywhere non-degenerate
on E. In particular, it defines an isomorphism

(4.9) E=E*x F.

This imposes further conditions on Chern classes of M.

For complex contact structures, see Kobayashi [4], Boothby [1, 2] and
Wolf [15]]. The compact simply connected homogeneous complex contact
manifolds were classified by Boothby. They are 2-sphere bundles over
compact simply connected quaternionic symmetric spaces. This natural
correspondence between the compact simply connected homogeneous com-
plex contact manifolds and the compact connected quaternionic symmetric
spaces was explained by Wolf. In today’s terminology, it is nothing but
the twistor construction, (see Salamon [12]).

§5. Null correlation bundles

We shall first describe a natural complex contact structure on the
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complex projective space P,,,, of dimension 2n+1. Let 2° 2!, --., 2*"*! be
a natural coordinate system in C*"*?, which will be taken as a homo-
geneous coordinate system for P,,,,, On C*** — {0} (considered as a
principal C*-bundle over P,,,,) we consider the following holomorphic 1-

form:
(6.1) o = 2°dz! — 2'dz° + ... F 2*dz"t — 2ridz,

Let {U;} be an open cover of P,,,; with a system of local holomorphic
sections s; of the bundle C**** — {0} over U,. Setting

(5'2) w; = S:;k(l) ,

we obtain a complex contact structure {U,, w;} on P,,,,.
We identify the complex vector space C*** with the quaternionic
vector space H"*!' by setting

(5.3) qo:ZO—i—le, ...,q":zﬁl +22n+1j.
The identification C*"** = H"*' induces a fibering
(5.4) P,,.,—> P,H

whose fibers are complex projective lines in P,,,,;. In order to understand
this fibering group-theoretically, we consider P,,,; as a homogeneous
space of the symplectic group Sp(n 4 1) rather than the special unitary
group SU(2n + 2). Thus,

(6.5) Pyt = Sp(n + 1)[Sp(n) X T' — P,H = Sp(n + 1)/Sp(n) X Sp(1).

Visibly, the form o is invariant by Sp(n + 1). Hence, the complex contact
structure {U,, w;} on P,,,, is invariant by Sp(n + 1). Let o denote the
origin of the homogeneous space P,,,, = Sp(n + 1)/Sp(n) X T'. Then the
isotropy group Sp(n) X T" acts irreducibly on the hyperplane E, of the
tangent space T,P,,,, defined by (4.1). Since Sp(n + 1) is simple and
Sp(n) X T" is the centralizer of 7" in Sp(n + 1), we can apply (3.4) to
obtain

(5.6) THEOREM. Let E be the vector bundle of rank 2n over P,, ., =
Sp(n 4+ 1)/Sp(n) X T* defined by an invariant complex contact structure, (see
(4.1)).

(1) Let h be an Sp(n + 1)-invariant Hermitian structure in E and let
g be an Sp(n + 1)-invariant Kiahler metric on P,,.,. Then (E, h) is an
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Einstein-Hermitian vector bundle over (P,,.,, 8) with irreducible holonomy
group;

(2) E is H-stable in the sense of Mumford-Takemoto for any ample line
bundle H over P,,...

If we apply (4.4) to this example, then
e(Ponsr) = (0 + Def(F) .

Hence,
e(F) = 2«

where « is the positive generator of H*P,,,,; Z). Let H denote the hyper-
plane line bundle over P,,.,. Then

F=H.

From (4.8) we obtain a non-degenerate skew-symmetric bilinear form on
E(— 1) = E x H'. From (4.9) we obtain an isomorphism

(5.7) E(—1) = E(— D*.

The vector bundle E( —1) is called a null correlation bundle over P,,.,.
From (5.6) it follows that E(—1) is an Einstein-Hermitian vector bundle
with irreducible holonomy group and hence is H-stable. (Since c,(E(~1))
= 0, the bundle E(—1) admits actually an Einstein-Hermitian structure
with K = 0). It is not difficult verify (see Okonek-Schneider-Spindler [10])
that the total Chern class of E(— 1) is given by

1+t 4a' + - +ar.

The fact that E(— 1) is H-stable is well known (Okonek-Schneider-Spindler
[10]) and Liibke constructed in his thesis [8] an Einstein-Hermitian struc-
ture in E(— 1) for n = 1.

§6. Cotangent projective bundle over P,

We shall consider another example of complex contact manifold. In
general, let V be a complex manifold of dimension n + 1 and T*V its
holomorphic cotangent bundle. From T*V we construct the cotangent
projective bundle M = P(T*V), which is a holomorphic bundle over V
with fibre P,. Then dim M = 2n + 1. Let o be the holomorphic 1-form
defined on the total space of T*V as follows:
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(6.1) o(X) = v(pxX) for X e T(T*V), ve T*V,

where p: T*V — V is the projection. In terms of a local coordinate
system 2% 2!, - - -, 2" of V and the induced local coordinate system 2°, 2/, - - -
2", Ly, Cyy oo+, &, of T*V, the form o is given by

I

(6.2) w=1{d2’ +{dz' + .- + {,dz".

Then as in the first example discussed in the preceding section, the 1-form
o induces a complex contact structure in M. Then (4.1) defines a
subbundle E of rank 2n of the tangent bundle TM.

In this case, E has a subbundle E’ of rank n consisting of vectors
tangent to fibres of the fibering M — V. We denote the quotient bundle
E/E’ of rank n by E”. If we denote the pull-back of TV to M by the
same symbol TV, then all these vector bundles over M can be organized
by a diagram of commutative sequences as follows:

0 0
1 i
00— F — F —>0
i 1 )
(6.3) 0—>E —>TM-—>TV—0
) 1 1
00— E —> E > E” >0
1 ) 7
0 0 0
The bilinear form {dw;}: E X E— F of (4.8) induces a non-degenerate
pairing
(6.4) E'XE’'—>F

and an isomorphism
(6.5) E'"=E*QF.

Every automorphism of V, lifted to T*V, leaves the 1-form » invariant.
The induced transformation of M leaves the complex contact structure
(defined by o) invariant. It leaves the vector bundles E and E’ also in-
variant and induces an automorphism of the quotient bundle E”.

We consider the special case where V = P,.,, Then the action of
SU(n 4 2) on V= P,,, induces actions of SU(n + 2) on M, E, F, E’ and
E”. Tt is easy to verify that SU(n 4 2) acts transitively on M with the
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isotropy subgroup
S(U(n) x SUQ) x UQ) =8SU(n +2) N (Um) x UQ) x UQ))
so that
M = SU(n + 2)/S(U(n) x U@1) x UQ)).

The isotropy group is the centralizer of a torus (= T% in SU(n + 2) and
acts irreducibly on the fibres of E/ and E” at the origin of M. By (3.4)
we have

(6.6) TueoreEM. Let E’ and E’ be the vector bundles of rank n over
M = P(T*P,,,) defined above.

(1) Let W and " be SU(n + 2)-invariant Hermitian structures in E’
and E’, respectively. Let g be an SU(n + 2)-invariant Kihler metric on
M. Then (E', /) and (E”, ") are Einstein-Hermitian vector bundles over
(M, g) with irreducible holonomy group;

(2) E’ and E” are H-stable in the sense of Mumford-Takemoto for any
ample line bundle H over M.

Let F” be the hyperplane line bundle over V = P,,,. Its pull-back to
M will be denoted also by F”. Let F’ be the line bundle over M defined
by

F=F Q®F".
Let o = c(F"), o' = ¢(F") and a@ = ¢(F) = «' + «”’. Then
H*(M; Z) = (H*(V; Z))la],
where the minimal equation for « is given by
att —e(V)a® + -+ + (—=1)""c, (V) = 0.
By (6.5),
(6.7) E// ® F//—1 ~ (E/ ® F/~1’):k .

The bundle E’ ® F'~! or its dual E” ® F”-' is perhaps an analogue of a
null correlation bundle. Their Chern classes can be computed easily. In
fact, from the Euler sequence

O 3 F//—l > Cn+2 > TV® F//—l

over V= P,,, we obtain the total Chern class of TV® F”-':
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C(TV@ F/-1) = 71¥1

_ a/l

From (6.3) we have an exact sequence

0—>E'QF' ' —>TVXF'' —> F —>0

over M. Hence,

(6.8)

1
E// F//—1 ==
ETOE) = T ana =

From (6.7) and (6.8) we obtain

(6.9

[10]
[11]
[12]

[13]
[14]

[15]

1
C(E/ X FrY=___ - .
) 1 — a1+ a”)
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