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ACCUMULATION POINTS OF CONTINUOUS REAL-
VALUED FUNCTIONS AND COMPACTIFICATIONS

BY

ENG UNG CHOO

All topological spaces are assumed to be completely regular. C(X) (resp.
C*(X)) will denote the ring of all (resp. all bounded) continuous real-valued
functions on X. BX is the Stone-Cech compactification of X. A real number ¢
is said to be an accumulation point of a function fe C(X) if and only if
f '[t—¢,t+¢]] is not compact for every £>0. The set of all accumulation
points of f will be denoted by A(f). For any positive integer n, a topological
criterion for the existence of a function fe C(X) such that |A(f)| = n is given. It
is proved that for every function ge C(X) with finite A(g), there exists a
function fe C*(X) which has finite range on every discrete closed subset of X
such that |A(f)|=|A(g)|. Peter A. Loeb [5] has constructed the minimal compac-
tification X’ of X in which f has a continuous extension which is one-one on
X — X. It is shown that every n-point compactification [6] of X (if it exists) is
of this type. Finally, an equivalent condition for the existence of a
homeomorphism h from X’ onto X?® such that h(x)= x for each x € X is given
for any any two functions f, g€ C*(X). All notations are referred to [3].

DerFmntTioN 1. Let fe C(X). A real number ¢ is said to be an accumulation
point of f if and only if f'[[t— ¢, t+ &]] is not compact for every £ > 0. The set
of all accumulation points of f is denoted by A(J).

Intuitively, A(f) gives the ‘dense’ portion of f[X]. If f~'(¢) is not compact,
then te€ A(f). The converse may not be true.

ExampLe 1. Let X ={(a,sin (1/a):a>0}U{(0,0)} and f be the function
defined by f((a, sin (1/a))= a for each a >0 and f((0, 0))=0. Then fe C(X). It
is easily seen that 0 A(f) even though f '(0) is compact.

We can always restrict ourselves to C*(X) in the study of |A(f)| since for
every fe C(x), there exists ge C*(X) such that |A(g)| =|A(f)|.

Lemma 1. Let fe C*(R) and te R. Then
A(f)= N{CfIX—-K]:K is a compact subset of X}.

Thus A(f) is closed in R.
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Proof. Suppose teA(f). Let K be any compact subset of X. Then f'[[t—
g, t+¢e]]-K# ¢ for every £ >0.

Thus [t—¢, t+e]N f[X — K]# ¢ for every e >0. Hence t € Clgf[ X — K]. Since
K is any arbitrary compact subset of X, we have

te N{Clrf[X-K[:K is a compact subset of X}.

Conversely, if t¢ A(f), then K=f'[[t—8, t+8]] is compact for some &> 0.
Thus (t—86,t+8)f[IX—K]=¢ and t¢ Clrf[X—K].

Lemma 2. Let feC*(X) and teR. Then teA(f) if and only if
() '[[t—¢, t+e]]— X+ ¢ for every € >0, where f° is the continuous extension
of f over BX.

Proof. If te A(f), then f '[[t— &, t+ £]] is not compact for every £ > 0. Hence
() '[[t—e t+ell#f '[[t—¢,t+€e]] for every £>0. It follows that
() [[t—e, t+e]]-x#¢ for every £>0.

Suppose t¢ A(f). Then f '[[t— 8, t+ 8]] is compact for some §>0. If there
exists z € (f®)'[[t— §/3, t+ 8/3]]— X, then there exists a neighbourhood O, of z
in BX such that fP[O,]< (t—8/2, t+8/2). Since f '[[t—8, t+8]] is compact,
O,=BX—f"[[t—8,t+5]] is also a neighborhood of z. Thus O;N O, is a
neighborhood of z. But (O; N O,)N X = ¢. This is impossible since X is dense
in BX. Hence (f*) '[[t—&/3, t+8/3]]- X = ¢. Consequently, if (f*) '[[t—e&,
t+e]]- X# ¢ for every £ >0, then teA(f).

CoroLLARY 1. Let fe C*(X). If X is locally compact, then A(f) = fP[BX - X].

Proof. If te f°[BX — X], then (f*) '[[t—¢, t+ £]]— X# ¢ for every € >0. By
Lemma 2, t€ A(t).

Conversely, suppose t€ A(f). Then (f*) '[[t—&, t+e]]— X# ¢ for every £ >
0. Since X is locally compact, BX — X is compact and f°[BX— X] is closed. If
té¢ f°[BX — X], then there exists § >0 such that [t— 8, t+8]N f°[BX — X]= ¢.
Thus (%) '[[t—8,t+8]]-X=¢, which is a contradiction. Hence te
ffIBX - X].

LemMmA 3. Let fe C(X) such that |A(f)|= n where n is a positive integer. Then
there exists g€ C*(X) such that A(g)={1,2,...,n}.

Proof. Let A(f)={ay, as, ..., a,} where a, < a,<: - -<a,. Let h be a function
in C*(R) defined by

exp(x —ay) if x=a,

h(x):( . )(l+1)+<m)l, lf ai<xsai+l3 i:1:2""7n—15

a1 Q; ai+1— a;

n+2—exp(a, —x) if x>a,.
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Then h is a homeomorphism from R onto the open interval (0, n+2). Let
g=h-f Then ge C*(X) and A(g)={1,2,...,n}.

There may not exist any function fe C*(X) such that A(f) is finite. The
following theorem gives a topological criterion for the existence of fe C*(X)
satisfying |A(f)| = n.

THEOREM 1. Let n be a positive integer. There exists fe C*(X) such that
|A(f)| = n if and only if there exist n mutually disjoint closed non-compact subsets
Ay A,, ..., A, of X such that X—Ji-1 A; has compact closure.

Proof. (=) Let fe C*(X) and |A(f)| = n. By Lemma 3, we may assume that
A(f)={1,2,...,n}. The sets A;=f'[[i—3 i+3]l, i=1,2,...,n are
mutually disjoint closed non-compact subsets of X. For each ye
Clrf[X]1-U-1 (i—3, i+3), there exists a real number &(y)>0 such that
f [y —e(y), y + e(y)]]is compact. By the compactness of the set Clgf[X]— U1
(i—-3%,i+3), there exist 7i, ys ..., v« such that Clgf{x]-U/", (-3,
i +3) is contained in Ui=1 (vi — &(v:), ¥+ e(w))- Thus X — Uiz: f'[(i -3, i +3)]
is contained in U; f [y — (1), : + £(v:)]] which is a compact set, being a
finite union of compact sets. Hence X — |Ji=; A; has compact closure.

(&) Let Ay, A,, ..., A, be n mutually disjoint closed non-compact subsets
of X and X—|Jj-; Aic K where K is a compact subset of X. For each
i=1,2,...,n,let g(x)=i for each x€ A; N K. Then g is a continuous function
on (U1 A;))NK. K is compact and thus is a normal space. Since (J7-; A;))N
K is a closed subset of K, hence g has a continuous extension h € C*(K). Let
f(x)= h(x) for each xe K and f(x)=1i for each x€ A;, i=1,2,...,n. Then
fe C*(X) and |A(f)| = n.

THEOREM 2. Suppose g € C*(X) and A(g) is finite. Then there exists h € C*(X)
such that A(g)=A(h)={yeR:h '(y) is not compact}

Proof. By Lemma 3, we may assume that A(g)={1,2,...,m}. Let f be a
function in C(R) defined by

i if i—-i=x=<i+3, i=1,2,...,m
f(x)=

3x—2i—-1 if i+3i<x<i+} i=1,2,...,m—1

x—3 if x>m+3
It is easily seen that f is a homeomorphism from (7' (i+3, i+3))U(—»,3)U
(m+3,0) onto R—{1,2,...,m}. Then h=f-ge C*X). For each i=
1,2,...,m, h7'(i)=g '[f "(i)]= g '[[i—3, i +3]] is not compact since i A(g).
Then A(g)={1,2,...,m}cA(h). Let ye R—A(g). Then there exists a
real  number e>0 such that [y—¢, y+e]NA(g)=¢. Thus
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f'lly—¢ y+elln[i—3,i+3]=¢ for each i=1,2,...,m. Hence
h ' [[y—¢ y+elle X— UM, g '[[i-3, i+3]]. From the proof of Theorem 1,
we know that X— U™, g '[(i—3, i+3)] is compact. Therefore, h '[[y—¢, y+
€]] being a closed subset of a compact set is itself compact. Hence y¢ A(h).
Consequently, A(h)=A(g)={y€ R:h"'(y) is not compact}.

CoroLLARY 2. If fe C*(X) and A(f) is finite, then there exists an opening
covering {O; :i€ I} of X such that

A(f)= N{fIX- U O;]: F is a finite non-empty subset of I}

Proof. By previous theorem, there exists ge C*(X) such that A(f)=
{yeR:g '[y] is not compact}. For each y€A(f), by the non-compactness of
g '[v], there exists an open covering {O; :i€ L} such that g~ '[y] has no finite
subcover. Let O, = X— U eap g '[v] and I={7}{U cap L, ). Then {O;:iel}
is an open covering of X and

A(f)= N{fIX-U O]:F is a finite non-empty subset of I}.
ieF

In [1], it is proved that the set D(X) of all functions f € C(X), where f[A] is
finite for every closed discrete subset of A of X, is a subring of C*(X). The
next theorem shows that we can restrict ourselves to D(X) in searching for
functions with a finite set of accumulation points.

THEOREM 3. Let g€ C*(X) where A(g) is finite. There exists h € D(X) such
that |A(h)| = |A(g)|.

Proof. By Lemma 3, we may assume that A(g)={1,2,..., m}. Let f be the
function defined in the proof of Theorem 2 and let h=f-g. Then he C*(X)
and |A(h)|=]A(g)|. It follows from the proof of Theorem 1 that X— Ji%,
g '[(i—3%, i+3)] is compact. For every closed discrete subset A of X, since
X—-Umr g '[(i—-3, i+3)] is compact, A— U™, g '[(i—3, i+3)]is a finite set.
Thus h[A] is finite. Hence h e D(X).

From here onwards, X is assumed to be a locally compact space. The proofs
of the following two theorems can be found in [5]. For any two compactifica-
tions X, X, of X, we write X; =X, if there exists a homeomorphism h from
X, onto X, such that h(x)= x for every x € X.

TueoReM 4. Let f e C*(X). For every open set Q in R and compact subset K of
X, let Q. =[QNAIU[f '[Q]-K]. If the disjoint union X’ = X U A(f) has the
topology generated by the base consisting of all open sets of X and all sets Q,
then X' is a Hausdorff compactification of X in which f has a continuous
extension which is one—one on A(f).

TuEOREM 5. Let fe C*(X). If X is a Hausdorff compactification of X such
that f has a continuous extension which is one—one on X — X, then X=X".
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Magill [6] has proved some necessary and sufficient conditions for a space X
to have an n-point compactification. We will show that such compactifications
are of type X'.

TueoReM 6. If X is an n-point compactification of X, then X = X' for some
fe C*(X).

Proof. Let fe C(X) such that f is one-one on X — X. If f is the restriction of
f on X, then fe C*(X). By Theorem 4 and Theorem 5, we conclude that
X=X

The following corollary follows immediately from Theorem 1 and Theorem
6.

CoROLLARY 3. A space X has an n-point compactification if and only if there
exist n mutually disjoint closed non-compact subsets Ay, A,, ..., A, of X such
that X—Ji-1 A; has compact closure.

TueoreM 7. Let fe C*(X) and |A(f)|=<Ro. For every positive n <|A(f)|, there
exists g € C*(X) such that |A(g)|=n.

Proof. Suppose A(f) is finite. By Lemma 3, we may assume that A(f)=
{1,2,..., m}. Given any positive integer n < m, let ¢(y) =y for each y=<n and
¢(y) for y>n. Then ¢ € C(R). Let g=¢ - f. Then ge C*(X) and |A(g)|=n.

Suppose now that A(f) is countably infinite. Then X has a countably infinite
compactification. It follows from Theorem 2.1 in [9] that X has an n-point
compactification, for each positive integer n. Thus by Theorem 6, there exists
g € C*(X) such that |A(g)| = n, for each positive integer n.

It follows from Theorem 4.3.2 in [2] that there is no n-point compactifica-
tion of R for n=3. Thus there is no function fe C*(R) such that A(f) is finite
and |A(f)]=3. In [1], it is shown that for n =2, D(R")={fe C(R"): there exists
a positive integer k such that f is constant on {x € R":|x|=k}}. Therefore
there is no function fe C*(R"), such that A(f) is finite and |A(f)|=2. We note
that the continuous function g(x)=sin x for each x € R satisfies A(g) =[-1, 1].
Thus |A(g)|=c. This shows that the condition |A(f)|<X, in Theorem 7 is
essential.

ExampLe 2. The space N of positive integers has the discrete topology. Let
f(4n)=0 for each ne N and f(n)=1/n for each n which is not a multiple of 4.
Let g(n)=0 for each even ne N and g(n)=1/n for each odd neN. Then
f, g€ C*(N) and A(f) = A(g) ={0}. The open set A(f)U{4n:ne N} in X' is not
open in X®. Therefore, X'# X*.

Finally, an equivalent condition for X’ = X*® is given where we use only the
function values of f and g.

THeOREM 8. Let f, ge C*(X). X’ = X® if and only if there is an one—one

https://doi.org/10.4153/CMB-1977-009-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1977-009-7

52 ENG UNG CHOO

correspondence ® between A(f) and A(g) satisfying

(1) Ve>03 6>0 st g '[[®(y)-8, D(y)+8]-f'[y—e vy+e)l
is compact and

(2) Ve>03 >0 st. flly—8v+38ll-g '[(d(yv)—e d(v)+e)]

is compact for every re A(f).

Proof. (=) Let h be a homeomorphism from X’ onto X* such that h(x)=x
for each x € X. Then the correspondence defined by h satifies (1) and (2) for
every yeA(f).

(<€) Suppose there is an one-one correspondence ® which satisfies (1) and
(2). Let h(x) = x for each x € X and h(y)= ®(y) for each y € A(f). Then h is an
one-one function from X’ onto X®. Obviously, & is continuous at each x € X.
Let yeA(f) and t= h(y)€ A(g). Given £>0 and a compact subset K of X,
[(t—e, t+e)NA(g)]U (g '[(t—¢, t+€)]— K) is a basic neighborhood of ¢ in X&.
By (2), there exists >0 such that f '[[y—8, y+8]]-g '[(t—¢&/2, t+¢/2)] is
compact. Let ue(y—35, y+8)NA(f). Suppose h(u) ¢ (t—&, t+e)NA(g). There
exists 8 >0 such that [h(u)—B, h(u)+BIN[t—¢/2, t+€/2]=¢. By (2) again,
there exists n>0 such that f '[[u—n, u+n]l-g '[(h(uw)—B, h(u)+pB)] is
compact. Let a>0 be sufficiently small so that [u—a, u+alc(y—328,
y+8)N(u—n, u+n). Now, f'{lu—a u+all-g '[(t—¢/2, t+¢/2)] and
fu—ea, u+all-g '[(h(u)— B, h(u)+ B)] are compact and [h(u)— B, h(u)+
BIN[t—¢/2, t+¢/2]=¢. Hence f '[[u—a, u+a]] is compact. But this con-
tradicts the assumption that ueA(f). Thus h(u)e(t—e, t+e)NA(g) for
each ue(y—34, y+8)NA(f). This means that h maps the basic neighborhood
(=38, y+8)NANIU( '[y—8, y+8)]-K) of y into [(t—¢, t+&)NA(g)]U
(g7 '[(t—e, t—¢e)]-K). Therefore h is continuous. Since X’ is compact
and h is one-one, onto and continuous, hence h is a homeomorphism and
X=X,
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